7 research outputs found

    Regression test selection for distributed Java RMI programs by means of formal concept analysis

    Get PDF
    Software maintenance is the process of modifying an existing system to ensure that it meets current and future requirements. As a result, performing regression testing becomes an essential but time consuming aspect of any maintenance activity. Regression testing is initiated after a programmer has made changes to a program that may have inadvertently introduced errors. It is a quality control approach to ensure that the newly modified code still complies with its specified requirements and that unmodified code has not been affected by the maintenance activity. In the literature various types of test selection techniques have been proposed to reduce the effort associated with re-executing the required test cases. However, the majority of these approach has been focusing only on sequential programs, and provide no or only very limited support for distributed programs or database-driven applications. The thesis presents a lightweight methodology, which applies Formal Concept Analysis to support a regression test selection analysis, in combination with execution trace collection and external data sharing analysis, for distributed Java RMI programs. Two Eclipse plug-ins were developed to automate the regression test selection process and to evaluate our methodology

    Un modèle de programmation intégrant classes, événements et aspects

    Get PDF
    Object-Oriented Programming (OOP) has become the de facto programming paradigm. Event-Based Programming (EBP) and Aspect-Oriented Programming (AOP) complement OOP, covering some of its deficiencies when building complex software. Today's applications combine the three paradigms. However, OOP, EBP and AOP have not yet been properly integrated. Their underlying concepts are in general provided as distinct language constructs, whereas they are not completely orthogonal. This lack of integration and orthogonality complicates the development of software as it reduces its understandability, its composability and increases the required glue code. This thesis proposes an integration of OOP, EBP and AOP leading to a simple and regular programming model. This model integrates the notions of class and aspect, the notions of event and join point, and the notions of piece of advice, method and event handler. It re- duces the number of language constructs while keeping expressiveness and offering additional programming options. We have designed and implemented two programming languages based on this model: EJava and ECaesarJ. EJava is an extension of Java implementing the model. We have validated the expressiveness of this language by implementing a well-known graphical editor, JHotDraw, reducing its glue code and improving its design. ECaesarJ is an extension of CaesarJ that combines our model with mixins and language support for state machines. This combination was shown to greatly facilitate the implementation of a smart home application, an industrial- strength case study that aims to coordinate different devices in a house and automatize their behaviors.Le paradigme de la programmation par objets (PPO) est devenu le paradigme de programmation le plus utilisé. La programmation événementielle (PE) et la programmation par aspects (PPA) complètent la PPO en comblant certaines de ses lacunes lors de la construction de logiciels complexes. Les applications actuelles combinent ainsi les trois paradigmes. Toutefois, la POO, la PE et la POA ne sont pas encore bien intégrées. Leurs concepts sous-jacents sont en général fournis sous la forme de constructions syntaxiques spécifiques malgré leurs points communs. Ce manque d'intégration et d'orthogonalité complique les logiciels car il réduit leur compréhensibilité et leur composabilité, et augmente le code d'infrastructure. Cette thèse propose une intégration de la PPO, de la PE et de la PPA conduisant à un modèle de programmation simple et régulier. Ce modèle intègre les notions de classe et d'aspect, les notions d'événement et de point de jonction, et les notions d'action, de méthode et de gestionnaire d'événements. Il réduit le nombre de constructions tout en gardant l'expressivité initiale et en offrant même des options de programmation supplémentaires. Nous avons conçu et mis en œuvre deux langages de programmation basés sur ce modèle : EJava et ECaesarJ. EJava est une extension de Java implémentant le modèle. Nous avons validé l'expressivité de ce langage par la mise en œuvre d'un éditeur graphique bien connu, JHotDraw, en réduisant le code d'infrastructure nécessaire et en améliorant sa conception. ECaesarJ est une extension de CaesarJ qui combine notre modèle avec de la composition de mixins et un support linguistique des machines à états. Cette combinaison a grandement facilité la mise en œuvre d'une application de maison intelligente, une étude de cas d'origine industrielle dans le domaine de la domotique

    Formal specification-based monitoring, regression testing and aspects

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Flexible and Efficient Measurement of Dynamic Bytecode Metrics

    Get PDF
    Code instrumentation is finding more and more practical applications, but the required program transformations are often difficult to implement, due to the lack of dedicated, high-level tools. In this paper we present a novel instrumentation framework that supports the partial evaluation of compiled Java code transformation templates, with the goal of efficiently measuring chosen dynamic bytecode and control flow metrics. This framework, as well as the instrumentation code it generates, is implemented in pure Java and hence completely platform-independent. We show the benefits of our approach in several application areas, such as platform-independent resource management and profiling of software components

    Supporting Source Code Feature Analysis Using Execution Trace Mining

    Get PDF
    Software maintenance is a significant phase of a software life-cycle. Once a system is developed the main focus shifts to maintenance to keep the system up to date. A system may be changed for various reasons such as fulfilling customer requirements, fixing bugs or optimizing existing code. Code needs to be studied and understood before any modification is done to it. Understanding code is a time intensive and often complicated part of software maintenance that is supported by documentation and various tools such as profilers, debuggers and source code analysis techniques. However, most of the tools fail to assist in locating the portions of the code that implement the functionality the software developer is focusing. Mining execution traces can help developers identify parts of the source code specific to the functionality of interest and at the same time help them understand the behaviour of the code. We propose a use-driven hybrid framework of static and dynamic analyses to mine and manage execution traces to support software developers in understanding how the system's functionality is implemented through feature analysis. We express a system's use as a set of tests. In our approach, we develop a set of uses that represents how a system is used or how a user uses some specific functionality. Each use set describes a user's interaction with the system. To manage large and complex traces we organize them by system use and segment them by user interface events. The segmented traces are also clustered based on internal and external method types. The clusters are further categorized into groups based on application programming interfaces and active clones. To further support comprehension we propose a taxonomy of metrics which are used to quantify the trace. To validate the framework we built a tool called TrAM that implements trace mining and provides visualization features. It can quantify the trace method information, mine similar code fragments called active clones, cluster methods based on types, categorise them based on groups and quantify their behavioural aspects using a set of metrics. The tool also lets the users visualize the design and implementation of a system using images, filtering, grouping, event and system use, and present them with values calculated using trace, group, clone and method metrics. We also conducted a case study on five different subject systems using the tool to determine the dynamic properties of the source code clones at runtime and answer three research questions using our findings. We compared our tool with trace mining tools and profilers in terms of features, and scenarios. Finally, we evaluated TrAM by conducting a user study on its effectiveness, usability and information management
    corecore