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Abstract
Code instrumentation is finding more and more practical applica-
tions, but the required program transformations are often difficult to
implement, due to the lack of dedicated, high-level tools. In this pa-
per we present a novel instrumentation framework that supports the
partial evaluation of compiled Java code transformation templates,
with the goal of efficiently measuring chosen dynamic bytecode
and control flow metrics. This framework, as well as the instru-
mentation code it generates, is implemented in pure Java and hence
completely platform-independent. We show the benefits of our ap-
proach in several application areas, such as platform-independent
resource management and profiling of software components.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming; D.2.8 [Software Engineering]:
Metrics—Performance measures

General Terms Algorithms, Languages, Measurement

Keywords Java, JVM, bytecode instrumentation, program trans-
formations, component-based software engineering, partial eval-
uation, dynamic metrics, resource management, profiling, aspect-
oriented programming

1. Introduction
As Java and the Java Virtual Machine (JVM) are a preferred pro-
gramming language and deployment platform for many application
and middleware developers, there is a need for efficient profiling
tools that help analyzing runtime characteristics of Java-based sys-
tems. The Java Virtual Machine Profiling Interface (JVMPI) [28]
and its successor, the JVM Tool Interface (JVMTI) [29], provide a
set of hooks, which signal events inside the JVM (e.g., thread start,
method invocation, object allocation, etc.) to profiling tools. How-
ever, the interception of such events often causes excessive over-
head – up to factor 4 000 during our experiments with profiling
based on the JVMPI or JVMTI [5] – or are more generally not ap-
propriate for production-time deployment.

With the aid of bytecode instrumentation, programs can receive
minimalistic extensions that collect targeted execution statistics
while causing only moderate overhead. Following such program
transformation techniques, JVM bytecode instruction (from now
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on, we will simply write ’bytecode’) sequences are inserted into
programs at well-chosen locations in order to measure dynamic
metrics [15]. In particular, bytecode metrics, such as e.g. the to-
tal number of executed bytecodes, can be obtained in this way,
while also preserving platform independence [15]. In [5] further
advantages of bytecode metrics for profiling are highlighted, in-
cluding reduced measurement perturbation, reproducibility of mea-
surements, and independence of any platform-specific features; the
latter helps implementing instrumentation tools in pure Java. Based
on the JVMPI, the JVMTI has partly followed this evolution by in-
corporating some support for bytecode instrumentation.

Currently, these program instrumentation schemes imply re-
sorting to low-level bytecode engineering frameworks, such as
e.g. BCEL [14]. While these do offer bytecode instrumentation
without limits, they demand a deep understanding of the JVM,
and it takes a significant programming effort to implement the de-
sired program transformations. Tools for aspect-oriented program-
ming in Java, such as AspectJ [19], do usually not match up to
the intended bytecode instrumentation, because they identify only
higher-level pointcuts, such as method invocations, whereas the
collection of bytecode metrics we address here relies on process-
ing at the level of basic blocks.

One important use case for platform-independent profiling is in
the area of service-oriented architectures (SOA). SOA aim at the
construction of applications by integrating advanced service com-
ponents [25], such as service repositories, matchmakers, service
composition and orchestration engines, reputation mechanisms,
etc. These components are typically deployed in heterogeneous en-
vironments, which means that the actual target platforms are often
not known at development time. Therefore, it becomes necessary to
have platform-independent profiling support that allows the devel-
oper to detect algorithmic inefficiencies during early development
phases. Moreover, as components may involve complex algorithms,
such as planners for automated service composition, the measure-
ment overhead has to be low in order for such profiling tools to
be applicable. Existing profilers are not appropriate for such a set-
ting because of their high overhead, their exclusive focus on highly
platform-specific metrics (e.g., CPU time on a particular target sys-
tem), and frequent suffering from strong measurement perturba-
tion. In contrast, the approach presented here allows to build ef-
ficient profiling tools that compute platform-independent dynamic
metrics with small implementation effort.

The contribution of this paper is a novel approach to bytecode
instrumentation that is based on code templates being inserted at
well-defined program locations, which themselves are identified by
a customizable basic block analysis. Our technique aims at recon-
ciling ease of use and high productivity with the flexibility needed
to implement instrumentation schemes for collecting bytecode met-
rics. We demonstrate our approach with a generic meta-tool called
the Bytecode Metrics Warrior (BMW), which allows the developer
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Figure 3. Step 3: Execution of instrumented program

to implement many non-trivial bytecode instrumentation schemes
– amongst others for profiling [5, 6] and for resource manage-
ment [7, 8, 18] – with only a few lines of code. In short, BMW
represents a synthesis of our previous work, which it enhances
by separating generic bytecode and control flow processing from
mission-specific instrumentation schemes, and by proposing high-
level programming facilities such as partial evaluation.

This paper is structured as follows: In Section 2 we explain the
principles underlying our approach. Section 3 presents our API for
defining program transformation schemes and details how BMW
instruments programs according to a given scheme. In Section 4 we
illustrate our approach with several examples. Section 5 compares
our approach with related work. Section 6 discusses the strengths,
limitations, and possible extensions of our approach. Finally, Sec-
tion 7 concludes this paper.

2. BMW Overview
BMW aims at reducing the effort of writing instrumentation tools
to compute dynamic bytecode metrics. In a typical use case, such

metrics are computed by dynamically aggregating the statically
pre-computed metrics for each basic block that is executed. In the
following we summarize the design goals underlying BMW:

• Easy to learn, no new programming language. Program trans-
formations are defined in the form of templates, which are writ-
ten in Java and compiled to bytecode. The bytecode of compiled
templates is merged into the program to be transformed at well-
defined locations. The merging algorithm relies on the partial
evaluation of templates; it has been designed to avoid complex,
time-consuming analysis of template code in order to enable
efficient instrumentation tools.

• Integration with an existing, well established bytecode instru-
mentation library in order to avoid implementing low-level op-
erations from scratch. BMW is based on the bytecode engi-
neering library BCEL [14], which has been successfully used
in many projects.

• Compact but flexible API to easily define different program
instrumentation schemes, focusing on the computation of dy-
namic bytecode metrics.

• Customizable specification of dynamic bytecode metrics and of
what constitutes a basic block. Support for collecting calling
context-sensitive dynamic metrics. Instrumentation takes place
in the beginning of each basic block. Support for additional
instrumentation of method entries and of exception handlers.

• Thread-local data structures, which may e.g. store calling
context-sensitive dynamic metrics, are passed as extra argu-
ments in method1 invocations. As shown in previous work [5,
6, 7, 8, 18], this technique is essential to achieve low overhead.

• Compatibility with native code. As native code is not aware
of extra method arguments, wrapper methods with unmodified
signature have to establish compatibility between transformed
Java code and unchanged native code.

Figures 1, 2, and 3 illustrate the process of creating a BMW-
based bytecode instrumentation tool. First (see Figure 1), the user
provides implementations of several interfaces, which will be de-
scribed below, and compiles them with a standard Java compiler.
Next (see Figure 2), BMW is executed in order to instrument a
given program: A basic block analysis (BBA implementation) is
used to generate a control flow graph CFG. An implementation of
the BBMetrics interface statically computes bytecode metrics for
each basic block in the control flow graph. The bytecode metrics for
individual basic blocks constitute the basis for the computation of
dynamic bytecode metrics for the execution of a program. The im-
plementation of the Templates interface provides instrumentation
templates to compute dynamic bytecode metrics at execution time.
These templates are partially evaluated and inserted into the pro-
gram to be instrumented. Finally (see Figure 3), the instrumented
program is executed in order to compute the desired bytecode met-
rics, in addition to the normal program output.

The user of BMW has to provide an implementation of the
Transformation interface (see Figure 4), which defines all as-
pects of the desired program transformation. A transformation con-
sists of 3 parts:

• BBA: An implementation of the BBA interface provides a custom
basic block analysis (see Figure 5). It receives the bytecode of
a method and computes a control flow graph, in which each
node represents a basic block. BMW comes with 2 different BBA
implementations, which may be directly reused or extended.
In addition, the user may implement the desired basic block
analysis from scratch.

1 In this paper ‘method’ stands for ‘method or constructor’.



// bundles all aspects of a transformation
public interface Transformation {
BBA getBBA(); // basic block analysis algorithm
BBMetrics getBBMetrics(); // BBMetrics implementation
Templates getTemplates(); // program transformation templates

}

Figure 4. Transformation interface

public interface BBA { // basic block analysis
// Computes a control flow graph for a given method.
// MethodGen is provided by BCEL.
CFG computeCFG(MethodGen m);

}

public interface CFG { // control flow graph for a method
BB getFirstBB(); // first basic block in a method
BB[] getHandlerBBs(); // first b.b. in each exception handler
BB[] getAllBBs(); // all basic blocks in a method
...

}

public interface BB { // basic block
// Returns a handle to the first instruction in the basic block.
// InstructionHandle is provided by BCEL.
InstructionHandle getFirstInstr();

int getSize(); // number of bytecodes in the basic block
...

}

Figure 5. Interfaces for basic block analysis, control flow graph,
and basic block

public interface BBMetrics {
// computes bytecode metrics for a given basic block
int[] getMetrics(BB bb);

}

Figure 6. BBMetrics interface

// program transformation templates
public interface Templates {
// returns type descriptors of extra arguments
String[] getExtraArgTypes();

// inserted in beginning of each method
void onMethodEntry(MID m);

// inserted in beginning of each exception handler
void onHandlerEntry(MID m);

// inserted in beginning of each basic block
void onBBEntry(MID m, int[] bbMetrics);

// inserted in beginning of wrapper methods
void onWrapper(MID m);

}

// represents method identifiers
public interface MID {}

Figure 7. Templates and MID interfaces

• BBMetrics: An implementation of the BBMetrics interface
computes bytecode metrics for each basic block (see Figure 6).

• Templates: An implementation of the Templates interface
provides the program transformation templates (see Figure 7).

3. Program Transformations
In the following we discuss the 3 parts that specify a program
transformation in detail.

3.1 Basic Block Analysis
BMW relies on a user-defined basic block analysis in order to spec-
ify the locations within a Java method that shall be instrumented.
Using aspect-oriented programming (AOP) terminology, the cus-
tom basic block analysis defines a pointcut, i.e., a set of join points.
The basic block analysis implements the BBA interface (see Fig-
ure 5) and computes a control flow graph. Figure 5 shows part of
the CFG interface, which represents a control flow graph as a set of
basic blocks of type BB. BMW provides default implementations of
the CFG and BB interfaces, as well as two different BBA implemen-
tations, DefaultBBA and PreciseBBA. For many purposes, these
default implementations are sufficient, though the user may cus-
tomize the default implementations or provide a completely differ-
ent one.

In the DefaultBBA implementation, only bytecodes that may
change the control flow non-sequentially (i.e., jumps, branches, re-
turn of method or JVM subroutine, exception throwing) end a ba-
sic block. Method or JVM subroutine invocations do not end ba-
sic blocks, because we assume that the execution will return after
the call. This definition of basic block corresponds to the one used
in [8] and is related to the factored control flow graph [12]. The ad-
vantage of DefaultBBA is that it creates rather large basic blocks.
Therefore, the number of locations where instrumentation code has
to be inserted is reduced, which usually helps keeping overheads
(code size and execution time) low. As long as no exceptions are
thrown, bytecode metrics counted per basic block are accurate.
However, exceptions (e.g., an invoked method may terminate ab-
normally throwing an exception) may cause some imprecisions, as
all bytecodes within a basic block are counted, even though some
of them may not be executed in case of an exception.

The PreciseBBA implementation avoids this potential impre-
cision. It ends a basic block after each bytecode that either may
change the control flow non-sequentially (as before), or may throw
an exception. As there are many bytecodes that may throw an ex-
ception (e.g., NullPointerException may be raised by most
bytecodes that require an object reference), the resulting average
basic block size is smaller. Usually, this causes higher overhead for
computing bytecode metrics.

3.2 Basic Block Metrics
Dynamic bytecode metrics for a program execution can be com-
puted by aggregating the bytecode metrics of all basic blocks that
are executed. Hence, for each basic block, BMW statically com-
putes user-defined bytecode metrics that serve to parametrize the
instrumentation of the given basic block. To this end, the user
has to provide an implementation of BBMetrics (see Figure 6);
getMetrics(BB) returns the custom bytecode metrics for a given
basic block as an array of integers. As the array represents bytecode
metrics of only a single basic block, the restricted range of an in-
teger is not a problem. Fractions can be represented by two entries
in the array. Internally, the program instrumentation templates may
maintain bytecode counters of any type (e.g., long or double).

Counting the number of executed bytecodes is a simple but
frequent use case [5, 6, 7, 18]. It can be achieved by incrementing
a counter2 in the beginning of each basic block by the number of
bytecodes inside it. In this case, getMetrics(BB) may return an
array with a single element that contains the number of bytecodes

2 For performance reasons, the counter should be thread-local (to avoid ex-
pensive synchronization) and passed as an extra argument (because access
to the counter is very frequent) [8, 18].



in the given basic block. The examples in Sections 4.1 and 4.2 are
based on this simple bytecode metric.

In a more complex setting, getMetrics(BB) may compute the
number of bytecodes of certain classes (e.g., integer arithmetic,
floating point arithmetic, stack manipulation, etc.), where each
element position in the returned integer array corresponds to a
particular bytecode class.

Another possibility is to multiply each bytecode with a well-
chosen weight related to the complexity of the instruction.
Weighted bytecode metrics may serve to estimate other metrics
(e.g., CPU time), which can be valuable in cross-profiling use
cases [33].

In order to compute control flow metrics, the custom basic
block analysis may assign a unique identifier (an integer value) to
each basic block, which can be preserved in the array returned by
getMetrics(BB). We will sketch such a use case in Section 4.3.

3.3 Program Transformation Templates
Program transformations are defined as code templates, imple-
menting the Templates interface shown in Figure 7. The method
getExtraArgTypes() returns an array representing the types
of extra arguments to be added to all Java methods. Introduc-
ing extra arguments is a convenient and efficient way of pass-
ing thread-local, possibly calling context-sensitive data struc-
tures to each Java method. If an extra argument is accessed
frequently, a just-in-time compiler may allocate it to a proces-
sor register. We use the JVM encoding of field types (see [21],
Section 4.3.2). E.g., if there are 2 extra arguments, one integer
and one hashmap, getExtraArgTypes() would return {"I",
"Ljava/util/HashMap;"}.

The methods onMethodEntry(MID),
onHandlerEntry(MID), onBBEntry(MID, int[]), and
onWrapper(MID), which we will call template methods in
the following, define the program transformation templates.
BMW partially evaluates these template methods and inserts
the resulting code in the appropriate locations of each Java
method. The partially evaluated code of onMethodEntry(MID),
onHandlerEntry(MID), and onBBEntry(MID, int[]) is
inserted in the beginning of a Java method, in the beginning of
each exception handler, and in the beginning of each basic block.
onWrapper(MID) is needed to generate wrapper methods for
compatibility with native code. The template methods are not
allowed to access the this reference and cannot make use of
inheritance.3

BMW is able to generate a method identifier for each Java
method, which is important for program transformations that gen-
erate calling context-sensitive data structures, such as the Calling
Context Tree [1]. These data structures may store references to
method identifiers to distinguish calling contexts. Method identi-
fiers are of type MID (see Figure 7). They are allocated at runtime
of a transformed program in the static (i.e., class-wide) initializ-
ers and stored in static fields. If the template methods make use of
method identifiers, BMW generates the necessary static fields and
generates code for the static initializers. The user may provide a
factory at runtime (as a system property) in order to allocate cus-
tomized method identifiers. If no factory is specified, a default im-
plementation of MID is used, which preserves class name, method
name, and method signature. Details on MID implementations and
factories are omitted here, because they do not affect the program
transformations.

All four template methods take an argument of type MID, which
is treated specially. This is a read-only argument, as the template

3 BMW verifies that all constraints on template methods are respected
before transforming any input classes.

// allows template methods to access the extra arguments
// introduced by the transformation
public final class ExtraArgs {
public static Object loadObj(int idx) { return null; }
public static void storeObj(Object value, int idx) {}

public static int loadInt(int idx) { return 0; }
public static void storeInt(int value, int idx) {}

// load and store methods for all other basic types
// (byte, short, long, char, boolean, float, double)
...

}

Figure 8. ExtraArgs class

methods are not allowed to change the reference. BMW replaces
any access to the local variable corresponding to the MID argument
with a getstatic JVM instruction that loads the MID instance of
the method the template currently is being applied to.

As second argument, onBBEntry(MID, int[]) takes an in-
teger array, which is the result of invoking the user-defined
BBMetrics implementation for the current basic block. The imple-
mentation of onBBEntry(MID, int[]) may only read, not mod-
ify the elements of the integer array. The array indices must be
constants. BMW replaces these array accesses with the integer con-
stants that were previously computed for the basic block. Such re-
placements may result in dead code, which BMW is able to re-
move. E.g., consider the case of counting the number of executed
bytecodes for different classes of bytecode instruction (e.g., stack
manipulation, field access, method invocation, etc.). Each class of
bytecode instruction corresponds to a position in the integer ar-
ray. As a basic block may not have bytecodes of each class, ele-
ments of the integer array may be zero. Hence, an implementation
of onBBEntry(MID, int[]) may include conditionals that check
whether an element of the array is not zero before updating some
thread-local counters. Such code patterns can be easily identified
by BMW as dead code, and hence removed.

All four template methods may use the static load and store
methods defined in the ExtraArgs class (see Figure 8) in or-
der to access the extra arguments. There are separate load and
store methods for each Java basic type and for object refer-
ences. The argument int idx identifies the index of the ex-
tra argument to access; the type of that argument is defined by
getExtraArgTypes()[idx]. The argument int idx must be a
constant, which will be compiled to a JVM instruction that pushes
an integer constant onto the stack. BMW replaces the invocations
of these static methods with JVM instructions that access the JVM
local variables the extra arguments have been mapped to. Note that
the static methods defined in ExtraArgs are never executed at run-
time, so their implementation does not matter and we just provide
the most trivial method bodies.

Algorithm 1 explains the steps performed by BMW to transform
a given class C. Several steps involve the partial evaluation of
template methods, as explained in Algorithm 2.

4. Use Cases
In this section we describe several use cases for BMW, including
resource management (Section 4.1) and profiling (Section 4.2).
Moreover, we highlight the flexibility of BMW, which is also able
to generate control flow metrics (Section 4.3).

4.1 Resource Management
The idea of exploiting the number of executed bytecodes for re-
source management purposes, such as limiting the resource con-
sumption of untrusted mobile code (resource control) or monitoring



Algorithm 1 Transformation of class C
1. Let createMIDs be true if at least one of the 4 template methods refers

to the method identifier (the MID argument).

2. For each Java method m in C:

(a) If createMIDs is true, create a static field in C to hold the method
identifier (type MID) for m and extend the static initializer of C to
allocate and store the method identifier.

(b) Let cfg be the control flow graph of m, computed by the user-
defined BBA implementation.

(c) For each basic block bb in cfg:

• Let integer array metrics(bb) be the bytecode metrics for bb,
statically computed by the user-defined BBMetrics implemen-
tation.

(d) Extend method signature of m. The types of the extra arguments
are provided by the user-defined getExtraArgTypes() method.

(e) Update JVM local variable indices in m so that the local variables
corresponding to the extra arguments are not used. Only the par-
tially evaluated template methods will refer to these local variables.

(f) Update method invocations in m in order to pass the extra argument.
Note that method invocations within template methods are not
updated.

(g) For each basic block bb in cfg:

• Insert partially evaluated template method
onBBEntry(MID, int[]) in beginning of bb. For the
partial evaluation, metrics(bb) is used as the second argument
of onBBEntry(MID, int[]).

(h) Insert partially evaluated template method onMethodEntry(MID)
in beginning of m.

(i) Insert partially evaluated template method
onHandlerEntry(MID) in beginning of each exception handler
in m.

(j) Remove JVM nop instructions and unnecessary jumps in m, which
have been introduced by the partial evaluation of template methods.

(k) Generate wrapper method with unmodified signature. Insert par-
tially evaluated template method onWrapper(MID) in begin-
ning of the wrapper, then invoke m with the extra arguments
and return the result of the invocation. The template method
onWrapper(MID) has to provide the values for the extra arguments
(ExtraArgs.storeX(value, i)).

3. For each native method n in C:

• Create a ‘reverse’ wrapper for n. The ‘reverse’ wrapper has the
extended signature (extra argument types are provided by the
getExtraArgTypes() method) and simply discards the extra ar-
guments before invoking n. ‘Reverse’ wrappers allow transformed
Java methods to invoke any method with the extra arguments.

4. For each abstract method a in C:

• Add an abstract method with the extended method signature to C.

the execution of components in a server environment (resource ac-
counting), was first explored in [8]. In [7, 18] a flexible resource
management framework, J-RAF24, was presented that builds on
this idea.

While the original version of J-RAF2 was directly implemented
by low-level bytecode instrumentation using BCEL [14], it may
now be expressed as a BMW transformation with far fewer lines
of code, as illustrated by class RM in Figure 9. RM relies on the
default basic block analysis introduced in Section 3.1. It transforms
programs to make them compute a single metric, the number of

4 http://www.jraf2.org/

Algorithm 2 Partial evaluation of the compiled template method T
applied to method m
1. Replace JVM instructions in T that load the MID argument (e.g.,

aload 1) with a getstatic instruction to load the method identifier
of m.

2. If T is a template onBBEntry(MID, int[]) to be applied to the ba-
sic block bb, replace the JVM instructions in T that load the elements
of the int[] bbMetrics template argument with the corresponding
constants in metrics(bb). This transformation is simplified by the re-
striction that the array indices must be constants.

3. Remove dead code in T, which the previous step may have revealed.

4. For each extra argument i, compute the corresponding JVM local vari-
able index lvar(i). To compute lvar(i), the signature of m and the extra
arguments provided by getExtraArgTypes() are taken into account.

5. Update JVM local variable indices in T in order to avoid any interfer-
ence with local variables in m as well as with local variables corre-
sponding to the extra arguments (lvar(i)).

6. Replace each invocation of ExtraArgs.loadX(i) (i is a constant)
in T with a corresponding JVM load instruction of local variable
lvar(i). The type of the JVM load instruction corresponds to the
type X (iload or iload n is also used for byte, short, char, and
boolean). In order to avoid complex code analysis, we require the
invokestatic JVM instruction to occur directly after an instruction
to push the constant i onto the stack (iconst n, bipush, sipush,
or ldc). Code generated by standard Java compilers meets this re-
striction. ExtraArgs.loadObj(int) is treated specially: As it is fre-
quently followed by a type check (JVM checkcast instruction), BMW
uses the type information concerning the extra arguments (returned by
getExtraArgTypes()) in order to remove unnecessary type checks.

7. Replace each invocation of ExtraArgs.storeX(value, i) in T
with a corresponding JVM store instruction to local variable lvar(i).
The type of the JVM store instruction corresponds to the type X
(istore or istore n is also used for byte, short, char, and boolean).
As before, complex code analysis is avoided.

8. Add a JVM nop instruction at the end of T and replace each occurrence
of the JVM return instruction in T with a jump to the final nop
instruction. This allows T to be inserted into m.

executed bytecodes, as a side-effect to their original behaviour.
Hence, the metric statically pre-computed for a given basic block is
the number of bytecodes constituting the block. Because BBSize,
an implementation of BBMetrics, will also be used in Section 4.2,
it is here defined as a separate class (and not as an anonymous inner
class, such as the Templates implementation).

RM extends the signatures of all Java methods in order to pass
one extra argument of type Acc, which is an account object main-
taining the bytecode counter consumption of the current thread.
This extra argument is normally passed on sequentially through
invocations from method to method. However, whenever a Java
method is invoked from non-transformed classes, from native code,
or through reflection – such as at program startup – then the corre-
sponding wrapper method with original signature will intercept the
invocation, obtain the Acc instance of the current thread, and finally
use this value to (re-)introduce the additional Acc argument into the
normal flow of invocations.

At the beginning of every basic block, consumption is decre-
mented by the adequate number of bytecodes, and a polling
conditional checks whether consumption is less than or equal
to zero. In this case, the transformed application will invoke
triggerConsume(), the role of which is to enforce a dynamically
selectable resource management policy [7] and, incidentally, to re-
set consumption to a positive value (the polling interval). The
bytecode counter consumption is made to run towards zero, be-
cause in general it is more efficient to compare against zero than



public class RM implements Transformation {
public BBA getBBA() { return new DefaultBBA(); }
public BBMetrics getBBMetrics() { return new BBSize(); }
public Templates getTemplates() {

return new Templates() {
private final String[] extraArgTypes = { "LAcc;" };
public String[] getExtraArgTypes() {

return extraArgTypes;
}
public void onMethodEntry(MID m) {}
public void onHandlerEntry(MID m) {}
public void onBBEntry(MID m, int[] bbMetrics) {

Acc acc = (Acc)ExtraArgs.loadObj(0);
if ((acc.consumption -= bbMetrics[0]) <= 0)

acc.triggerConsume();
}
public void onWrapper(MID m) {

ExtraArgs.storeObj(Acc.getCurrentAcc(), 0);
}

};
}

}

public class BBSize implements BBMetrics {
// number of bytecodes in given bb
public int[] getMetrics(BB bb) {

int[] bbMetrics = new int[1];
bbMetrics[0] = bb.getSize();
return bbMetrics;

}
}

// Acc represents an accounting object.
// Each thread has associated a separate Acc instance,
// which encapsulates the thread’s bytecode counter.
// Acc is a runtime class, also needed to compile RM.
public class Acc {

private static final ThreadLocal tl = new ThreadLocal();
public int consumption; // bytecode counter
public static Acc getCurrentAcc() {

Acc acc = (Acc)tl.get();
if (acc == null) { acc = new Acc(); tl.set(acc); }
return acc;

}
public void triggerConsume() { ... }
...

}

Figure 9. Example: Transformation for resource management

any other arbitrary threshold. The type cast in the first line of
onBBEntry(MID, int[]), which is necessary to compile the tem-
plate method, is removed during the partial evaluation. Note that
in this example, neither of the four template methods refers to the
MID argument: BMW will therefore not create code that allocates
method identifiers. Moreover, note that Acc is not needed during
BMW execution (i.e., during the code transformations), but is re-
quired for compiling the template methods and for the execution of
instrumented programs.

See Figure 10 for an example application of the trans-
formation in Figure 9.5 The original, compiled method
max(int, int, int) (Figure 10, left) consists of a single
basic block with 8 bytecode instructions since DefaultBBA is
used. The transformation adds the extra Acc argument (Figure 10,
right), which is directly passed to callee methods (i.e., here, to the
invocations of the max(int, int) method).

In [18] we evaluated the overhead caused by such a transforma-
tion with the SPEC JVM 98 benchmark suite [32] on Sun JDK 1.5.0
(client and server mode) and on IBM JDK 1.4.1. The transforma-
tion was applied to all classes, including the JDK. On average, the

5 For the sake of better readability, in this paper we show the results of
applying transformations as Java code, whereas BMW works at the JVM
bytecode level.

class X { class X {
int max(int a, int b, int max(int a, int b,

int c) { int c, Acc acc) {
if ((acc.consumption -= 8) <= 0)

acc.triggerConsume();
return return

max(a, max(b, c)); max(a, max(b, c, acc), acc);
} }

// wrapper
int max(int a, int b, int c) {
Acc acc = Acc.getCurrentAcc();
return max(a, b, c, acc);

}
... ...

} }

Figure 10. Example: Applying transformation of Figure 9 for re-
source management

overhead was 20–30%. Without mapping thread-local data struc-
tures to extra arguments, the incurred overhead was significantly
higher.

4.2 Sampling Profiling
In [5, 6] a program transformation scheme was presented for deter-
ministic sampling profiling of Java programs. A user-defined profil-
ing agent is invoked by each thread after the execution of a certain
number of bytecodes, which is dynamically adjusted by the profil-
ing agent. The profiling agent processes a dedicated representation
of the calling thread’s execution stack (a reified stack), which con-
sists of an array of method identifiers and a stack pointer (index of
the next free element in the array). Therefore, the profiling agent is
able to generate calling context-sensitive profiles that approximate
the (relative) number of bytecodes executed in each calling con-
text. In [5, 6] the author showed that this approach reconciled high
profile accuracy with low overhead.

In order to illustrate the versatility of BMW, we show a new
version of this transformation scheme in Figure 11. We use the
same basic block analysis algorithm and BBMetrics implementa-
tion as in the previous example. Three extra arguments are passed
to all Java methods, the thread context TC (resembling the account
Acc used in the previous example) and the reified stack, consisting
of an array MID[] and an integer. onMethodEntry(MID) pushes
the method identifier of the callee method onto the reified stack.
Code for bytecode counting and polling is inserted in each basic
block, in a way similar to the previous example. If the bytecode
counter instrCounter is less than or equal to zero, the method
triggerSampling(MID[], int) invokes the custom profiling
agent to process a sample of the current reified stack and to reset
instrCounter to a positive value. onWrapper(MID) obtains the
calling thread’s TC instance similarly to the previous example. It
also allocates the array of the reified stack and initializes the stack
pointer with zero.

Figure 12 shows an example application of the transformation
in Figure 11. In contrast to the previous example, there is a template
method (onMethodEntry(MID)) that accesses the method identi-
fier. Hence, BMW creates a method identifier for each Java method,
which is allocated in the static initializer. MIDFactory is a runtime
class; the static method createMID(Class, String) either cre-
ates default method identifiers or delegates to a user-defined factory
in order to allocate custom method identifiers.

In [5, 6] we evaluated this program transformation scheme for
sampling profiling with the SPEC JVM 98 benchmark suite [32]
on Sun JDK 1.5.0 (client and server mode) and on IBM JDK 1.4.2.
Depending on the polling interval (500–1 000 000 bytecodes), we
observed an average overhead of 43–96%. We also compared with



public class Sampling implements Transformation {
public BBA getBBA() { return new DefaultBBA(); }
public BBMetrics getBBMetrics() { return new BBSize(); }
public Templates getTemplates() {

return new Templates() {
private final String[] extraArgTypes =

{ "LTC;", "[LMID;", "I" };
public String[] getExtraArgTypes() {

return extraArgTypes;
}
public void onMethodEntry(MID m) {

MID[] stack = (MID[])ExtraArgs.loadObj(1);
int sp = ExtraArgs.loadInt(2);
stack[sp] = m;
ExtraArgs.storeInt(sp+1, 2);

}
public void onHandlerEntry(MID m) {}
public void onBBEntry(MID m, int[] bbMetrics) {

TC tc = (TC)ExtraArgs.loadObj(0);
if ((tc.instrCounter -= bbMetrics[0]) <= 0) {

MID[] stack = (MID[])ExtraArgs.loadObj(1);
int sp = ExtraArgs.loadInt(2);
tc.triggerSampling(stack, sp);

}
}
public void onWrapper(MID m) {

ExtraArgs.storeObj(TC.getCurrentTC(), 0);
ExtraArgs.storeObj(new MID[TC.STACKSIZE], 1);
ExtraArgs.storeInt(0, 2);

}
};

}
}

public class TC { // runtime class, needed to compile Sampling
public static final int STACKSIZE = 1000;
public int instrCounter; // bytecode counter
public static TC getCurrentTC() { ... }
public void triggerSampling(MID[] stack, int sp) { ... }
...

}

Figure 11. Example: Transformation for sampling profiling

the standard ‘hprof’ profiling agent (‘hprof’ is part of many JDK
distributions) in its sampling mode, which caused higher overhead
and resulted in less accurate profiles [5, 6].

In addition to sampling profiling, we also used BMW to re-
implement a variation of the transformation scheme for exact pro-
filing described in [5], which computes a complete Calling Contex
Tree [1] for each thread, offering calling context-sensitive method
invocation and bytecode counters. Due to space limitations, we can-
not present the details here.

4.3 Control Flow Metrics
While the previous example illustrated profiling on a per-method
basis, BMW is also able to generate metrics that provide informa-
tion concerning the control flow within methods. In this section we
just explain the principles, since space limitations prevent us from
including example transformation sources.

First, it is necessary to uniquely identify basic blocks.
Hence, we extend the default implementation of BB to store
an integer basic block identifier which is unique within
the enclosing method. A customized BBA implementa-
tion assigns these identifiers and writes a mapping from
〈class name, method name and sig., basic block identifier〉-triples
to the corresponding location in the program bytecode under
analysis into a file. This mapping is needed to interpret the metrics
generated by the transformed program, either at runtime (e.g.,
a debugger displaying the code being executed) or afterwards
(e.g., to evaluate control flow-sensitive profiles after program
termination).

class X { class X {
private static final MID mid_max =
MIDFactory.createMID(

Class.forName("X"),
"max(III)I");

int max(int a, int b, int max(int a, int b,
int c) { int c, TC tc,

MID[] stack, int sp) {
stack[sp++] = mid_max;
if ((tc.instrCounter -= 8) <= 0)

tc.triggerSampling(stack, sp);
return return
max(a, max(b, c)); max(a, max(b, c,

tc, stack, sp),
tc, stack, sp);

} }

// wrapper
int max(int a, int b, int c) {
TC tc = TC.getCurrentTC();
MID[] stack =

new MID[TC.STACKSIZE];
int sp = 0;
return max(a, b, c,

tc, stack, sp);
}

... ...
} }

Figure 12. Example: Applying transformation of Figure 11 for
sampling profiling

Next, a custom BBMetrics implementation has to include the
identifier of a given basic block in the integer array returned
by getMetrics(BB) in order to make the identifier available to
onBBEntry(MID, int[]).

Finally, onBBEntry(MID, int[]) may collect information
concerning the executed basic blocks within a hashmap, where the
keys can be generated from the method identifier and the basic
block identifier, and the values represent the collected statistics. For
performance reasons, a non-synchronized, thread-local hashmap
should be used and passed as an extra argument in the methods
of the instrumented program.

Note that it is also possible to keep track of execution paths, as
onBBEntry(MID, int[]) may store the current basic block iden-
tifier within an extra argument. In this case, onMethodEntry(MID)
and onHandlerEntry(MID) can be used to initialize the extra ar-
gument.

5. Related Work
In this section we review some related work in the following areas:
bytecode manipulation, aspect-oriented programming, and profil-
ing.

5.1 Bytecode Manipulation
Altering Java semantics via bytecode transformations is a well-
known technique [31] and has been used for many purposes that
can be generally characterized as adding reflection or aspect-
orientedness to programs. When working at the bytecode level, the
program source code is not needed.

There are many tools for manipulating JVM bytecode. The byte-
code engineering library BCEL [14] represents method bodies as
graph structures. Individual bytecode instructions are mapped to
Java objects. BMW is based on BCEL, because the graph repre-
sentation of method bodies eases instrumentation at the basic block
level.

ASM [24] is a lightweight bytecode manipulation framework
designed for dynamic load-time transformation of Java class files.
While the instrumentation process using ASM may in many cases



be more efficient than using BCEL, we found that BCEL gives finer
control on the generated code, and that its representation of method
bodies is better suited for instrumentation at the basic block level.

Javassist [9, 11] and Soot [34] are further examples of bytecode
manipulation libraries implemented in Java. Javassist enables struc-
tural reflection and provides convenient source-level abstractions.
Soot is a framework for analyzing and transforming JVM bytecode
that offers four intermediate code representations.

5.2 Aspect-oriented Programming
Some tools for aspect-oriented programming in Java, such as As-
pectJ [19], work at the bytecode level as well. However, usually
such tools support only higher-level pointcuts, such as method
invocations, whereas our collection of bytecode metrics requires
transformations at the basic block level. Furthermore, the extension
of method signatures, which we found essential to efficiently com-
pute thread-local, calling context-sensitive profiling data, is usu-
ally not supported by aspect-oriented programming tools. Many
extensions to AspectJ have been proposed in the literature, such
as e.g. new types of pointcuts [22, 26].

Frameworks such as Josh [10] or abc [3] ease the implementa-
tion of such extensions. Josh [10] is an AspectJ-like language based
on Javassist [9], which allows to define new pointcut designators.
abc [3] is an extensible AspectJ compiler. Its frontend is based on
Polyglot [23], an extensible compiler framework for Java, whereas
the backend relies on the Soot [34] framework. It certainly is pos-
sible to use such tools to implement instrumentation extensions to
AspectJ for bytecode metrics computation; it would however re-
quire more development effort than with our approach based on
instrumentation templates. In contrast to general-purpose tools for
aspect-oriented programming, BMW is a lightweight approach spe-
cialized for the kind of instrumentation that is needed to efficiently
compute dynamic bytecode metrics.

5.3 Dynamic Metrics and Profiling
In [15] the authors present a variety of dynamic metrics, includ-
ing bytecode metrics, for selected Java programs, such as the
SPEC JVM 98 benchmarks [32]. They introduce a tool called
*J [16] for the metrics computation. *J relies on the JVMPI [20,
28], a former profiling interface for the JVM, which is known
to cause very high measurement overhead6 and requires profiling
agents to be written in native code, contradicting the Java motto
‘write once, run anywhere’. Because of the high overhead, tools
like *J may only be applied to programs with a short execution
time. In contrast, BMW-based bytecode metrics computation min-
imizes the overhead and can be implemented in pure Java. There-
fore, it is possible to instrument long-running, complex applica-
tions in a way that is portable across different virtual execution en-
vironments.

There is a large body of related work in the area of profil-
ing. Fine-grained instrumentation of binary code has been used
for profiling by Ball and Larus [4]. The ATOM framework [27]
has been successfully used for many profiling tools that instru-
ment binary code. However, as binary code instrumentation is in-
herently platform-dependent, this technique is not appropriate to
build tools for the platform-independent performance analysis of
software components.

Whereas BMW-based profiling tools are rather intended for use
at development time, sampling-based profiling is often employed
in already deployed systems as support for feedback-directed opti-
mizations in dynamic compilers [2]; indeed, sampling-based profil-

6 Overheads caused by profiling agents based on the JVMPI [28] or the more
recent JVMTI [29] may easily exceed factor 4 000, because certain profiling
events prevent runtime optimizations, such as just-in-time compilation [5].

ers may yield a sufficiently low overhead to become usable at pro-
duction time. The framework presented in [2] uses code duplication
combined with compiler-inserted, counter-based sampling. A sec-
ond version of the code is introduced which contains all computa-
tionally expensive instrumentation. The original code is minimally
instrumented to allow control to transfer in and out of the dupli-
cated code in a fine-grained manner, based on instruction counting.
This approach achieves high accuracy and low overhead, as exe-
cution proceeds most of the time inside the lightly instrumented
code portions. Moreover, in this setting instruction counting causes
only minimal overhead, since it is implemented directly within the
JVM, whereas in our approach, the instruction counting is part of
the bytecode, and contributes significantly to the experienced over-
head, the rest of the instrumentation representing a fairly small pro-
portion of the overhead. Therefore, the code duplication scheme of
reference [2] would make much less sense with BMW.

Hardware performance counters that record events, such as ex-
ecuted instructions, elapsed cycles, pipeline stalls, cache misses,
etc., are often exploited for profiling. In [1] hardware performance
metrics are associated with execution paths. The Jikes RVM7, an
open source research virtual machine, has been enhanced to gener-
ate traces of hardware performance monitor values for each thread
in the system [30]. In [17] the authors introduce ‘vertical profil-
ing’, which combines hardware and software performance moni-
tors in order to improve the understanding of system behaviour by
correlating profile information from different levels. All these ap-
proaches aim at generating precise profiling information for a par-
ticular environment, with a focus on improving virtual machine im-
plementations. While BMW has been primarily designed to gener-
ate profilers that compute dynamic bytecode metrics in a platform-
independent way, it is also possible to write transformation tem-
plates that exploit platform-specific features. For instance, we al-
ready implemented a BMW-based profiling tool that obtains in-
formation from hardware performance counters using the Perfor-
mance Counter Library PCL8.

BMW can be regarded as a profiler generator. Hence, it is
related to ProfBuilder [13], a toolkit for building Java profilers.
However, ProfBuilder does not address issues concerning multi-
threading and native code, and the generated profiling tools de-
scribed in [13] cause high overhead. The authors of ProfBuilder
show with a case study that profiles based on bytecode metrics are
valuable to detect algorithmic inefficiencies and help the developer
focus on those parts of a program that suffer from high algorithmic
complexity.

Much of the know-how worked into BMW comes from our pre-
vious experience gained with program transformations for resource
management [7, 8, 18] and profiling [5, 6]. The development of
these transformation schemes provided us with much insight con-
cerning the features that BMW had to support in order to reconcile
ease of use, flexibility, and low overhead due to the instrumentation.

6. Discussion
In the following we discuss the strengths and limitations of our
approach and give an overview of our ongoing research to further
improve BMW.

6.1 BMW Benefits
Our primary goal was to develop a generic tool that allows to
quickly implement bytecode instrumentation schemes in order to
efficiently collect dynamic bytecode metrics. BMW fully meets
this goal. Relevant bytecode instrumentation schemes can be spec-

7 http://jikesrvm.sourceforge.net/
8 http://www.fz-juelich.de/zam/PCL/



ified within a few lines of Java code, as illustrated in Section 4.
In comparison to our previous implementation of program trans-
formation schemes using a general-purpose bytecode manipulation
library, BMW helped us to reduce the development effort for an in-
strumention scheme from approximately one man month to a few
hours.

We designed BMW in particular to ease the computation of dy-
namic bytecode metrics, which has valuable use cases in the area
of resource management [7] and profiling [5, 6]. We successfully
re-implemented our instrumentation schemes for resource manage-
ment and profiling with BMW. BMW also allowed us to easily im-
plement further instrumentation schemes, such as the computation
of dynamic control-flow metrics (see Section 4.3). Moreover, we
implemented a BMW-based tool to measure the CPU time for indi-
vidual basic blocks with high accuracy, exploiting processor hard-
ware cycle counters. This information will serve us to correlate
platform-independent, dynamic bytecode metrics with actual CPU
time consumption on a given target system, as discussed at the end
of this section.

BMW has been designed with a particular focus on implement-
ing instrumentation schemes that efficiently compute per-thread,
calling context-sensitive bytecode metrics, as illustrated by our pro-
filing use case. Traditional approaches to compute such data rely
on a modified JVM or on a standard profiling interface, such as the
JVMPI [28] or the JVMTI [29]. These approaches limit portabil-
ity; in the case of a modified JVM this limitation is obvious, in the
case of the JVMPI or JVMTI, profiling agents have to be written in
native code. Moreover, profilers based on the JVMPI or JVMTI of-
ten cause excessive overhead; e.g., we measured overheads of up to
factor 4 000 for the standard hprof profiling agent in its exact pro-
filing mode [5]. In contrast, BMW-based bytecode instrumentation
does not prevent any optimizations performed by the Java runtime
system and therefore results in moderate overhead. BMW’s spe-
cific support for passing calling context-sensitive, thread-local data
structures as extra arguments is crucial to achieve relatively low
overhead.

In a system composed of multiple software components, it is
possible to selectively instrument only certain components of inter-
est, thus reducing the overall overhead. However, classes that may
be used by different components, such as the classes of the JDK,
should always be instrumented.

6.2 BMW Limitations
Concerning limitations, the major hurdle of our approach is that
bytecode instrumentation does not cover the execution of native
code. This is an inherent problem of BMW, since it relies on the
transformation of Java code and focuses on the computation of
dynamic bytecode metrics. For programs that heavily depend on
native code, dynamic bytecode metrics may not be relevant.

If classes are transformed only statically before program exe-
cution, dynamically created or downloaded classes are not instru-
mented. One solution to this problem is to install a dedicated class-
loader that instruments such classes at load time.

Another solution may exploit new features introduced in
JDK 1.5, which enable Java agents to instrument classes at
load time. Java agents are specified with the ‘-javaagent’
command-line option and rely on the instrumentation API (pack-
age java.lang.instrument) to install bytecode transformations.
Java agents are first activated after the JVM has been initialized,
i.e., before the real application. They may even redefine the already
loaded system classes. However, JDK 1.5 imposes several restric-
tions on the redefinition of previously loaded classes. For instance,
fields or methods cannot be added, and method signatures cannot be
changed. Some of the features offered by BMW (e.g., passing ex-
tra arguments, provision of method identifiers) are not compatible

with these restrictions. Because we want to transform all classes
according to the same scheme, the current version of BMW does
not use the instrumentation API.

Another limitation with BMW is that the introduc-
tion of extra method arguments may break existing
code that relies on the reflection API. The methods
getConstructors(), getDeclaredConstructors(),
getMethods(), and getDeclaredMethods() of
java.lang.Class return arrays of reflection objects
(i.e., instances of java.lang.reflect.Constructor
resp. java.lang.reflect.Method), representing wrapper
methods (with the unmodified signatures) as well as methods
with our extended signatures. If an application selects a method
from this array considering only the method name (but not
the signature), it may try to invoke a method with extended
signature, but fail to provide the extra arguments, resulting in an
IllegalArgumentException. We solve this issue by patching
the aforementioned methods of java.lang.Class to filter out the
reflection objects that represent methods with extended signatures.
This modification is straightforward, because in standard JDKs
these methods are implemented in Java (and not in native code).

6.3 Ongoing Research
Concerning ongoing research, we are implementing several exten-
sions in BMW. In the current version, each basic block is instru-
mented in the same way by the partially evaluated method template
onBBEntry(MID, int[]). To allow for more freedom, the next
version of BMW will support multiple onBBEntry(MID, int[])
templates that are selectively applied to different basic blocks, de-
pending on a list of template identifiers stored there beforehand
by the custom basic block analysis implementation. This approach
offers the necessary flexibility to implement many optimizations
(e.g., optimized instrumentation of leaf methods, inserting polling
conditionals only in selected strategic locations such as in loops,
etc.).

Another important improvement is the support for instrument-
ing dynamically created and loaded classes, which are not available
at the time of static instrumentation. We started experiments with
Java instrumentation agents introduced in JDK 1.5, but found it
difficult to work around its restrictions on the redefinition of JDK
core classes in an efficient way. Our current version for dynamic
instrumentation excludes certain core classes from transformation.

More research is needed in order to assess to which extent and
under which conditions bytecode metrics allow a sufficiently accu-
rate prediction of CPU time for arbitrary programs on a given con-
crete system. For this purpose, individual (sequences of) bytecodes
may receive different weights according to their complexity. This
weighting is specific to a particular execution environment and may
be generated by a calibration mechanism. As mentioned before, we
already implemented a BMW-based tool to measure the CPU time
for individual basic blocks with high accuracy. The collected infor-
mation will be used to specify a mathematical optimization prob-
lem in order to assign bytecode weights. This approach is related
to the work described in [33].

7. Conclusion
Bytecode instrumentation is a promising approach to collect dy-
namic metrics without causing excessive overhead. As prevailing,
general-purpose, low-level bytecode engineering libraries are diffi-
cult to use and require much programming effort, there is a need for
specialized toolkits that provide an easy-to-use interface in order to
rapidly implement such bytecode instrumentation schemes.

In this paper we introduced an original, template-based ap-
proach to bytecode instrumentation, which has been tailored for
instrumentation schemes that collect calling context-sensitive byte-



code metrics. Our approach offers several advantages, such as ease
of use, high flexibility and customizability, as well as dedicated
support for efficient instrumentation schemes.
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