
A Programming Model Integrating Classes, Events and

Aspects

Angel Núñez

To cite this version:

Angel Núñez. A Programming Model Integrating Classes, Events and Aspects. Software En-
gineering [cs.SE]. Université de Nantes, 2011. English. <NNT : 2011 NANT 2063>. <tel-
00656649>

HAL Id: tel-00656649

https://tel.archives-ouvertes.fr/tel-00656649

Submitted on 4 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-00656649

Année

École Centrale de Nantes Université de Nantes École des Mines de Nantes

ÉCOLE DOCTORALE STIM

« SCIENCES ETTECHNOLOGIES DE L’I NFORMATION ET

MATHÉMATIQUES »

No attribué par la bibliothèque

Un modèle de programmation intégrant
classes, événements et aspects

THÈSE DEDOCTORAT

Discipline: Informatique

Spécialité : Informatique

Présentée
et soutenue publiquement par

Angel Rodrigo N ÚÑEZ LÓPEZ

le 29 juin 2011, à l’École des Mines de Nantes,
devant le jury ci-dessous

Président : Colin DE LA HIGUERA, Professeur Université de Nantes
Rapporteurs : Wolfgang DE MEUTER, Professeur Vrije Universiteit Brussel

Jacques MALENFANT, Professeur Université Pierre et Marie Curie
Examinateurs : Christophe DONY, Professeur Université de Montpellier-II

Jean-Claude ROYER, Professeur École des Mines de Nantes
Jacques NOYÉ, Maître-Assistant École des Mines de Nantes

Équipe d’accueil :ASCOLA - INRIA /EMN, LINA UMR CNRS

Laboratoire :DÉPARTEMENT INFORMATIQUE DE L’ ÉCOLE DES MINES DE NANTES
, rue Alfred Kastler,BP – Nantes, CEDEX .

favet neptunus eunti

Un modèle de programmation intégrant

classes, événements et aspects

A Programming Model Integrating

Classes, Events and Aspects

Angel Rodrigo Núñez López

⊲⊳

Université de Nantes

Angel Rodrigo Núñez López
Un modèle de programmation intégrant classes, événements et as-

pects

xii+202 p.

This document was edited with these-LINA v. 2.7 LATEX2e class of the “Associa-
tion of Young Researchers on Computer Science (LoGIN)” from the University of
Nantes (available at : http://login.irin.sciences.univ-nantes.fr/). This LATEX2e
class is under the recommendations of the National Education Ministry of
Undergraduate and Graduate Studies (circulaire no 05-094 du March)
of the University of Nantes and the Doctoral School of
« Sciences et Technologies de l’Information et Mathématiques(ed-stim) »

Print : thesis.tex – 06/12/2011 – 12:42.

Last class review: these-LINA.cls,v 2.7 2006/09/12 17:18:53 mancheron Exp

http://login.irin.sciences.univ-nantes.fr/
http://www.sup.adc.education.fr/bib/Acti/These/circulaire.rtf
http://www.univ-nantes.fr/
http://edstim.univ-nantes.fr/

Abstract

Object-Oriented Programming (OOP) has become the de facto programming paradigm.
Event-Based Programming (EBP) and Aspect-Oriented Programming (AOP) complement
OOP, covering some of its deficiencies when building complex software. Today’s applications
combine the three paradigms. However, OOP, EBP and AOP have not yet been properly
integrated. Their underlying concepts are in general provided as distinct language constructs,
whereas they are not completely orthogonal. This lack of integration and orthogonality com-
plicates the development of software as it reduces its understandability, its composability and
increases the required glue code.
This thesis proposes an integration of OOP, EBP and AOP leading to a simple and regular
programming model. This model integrates the notions of class and aspect, the notions of
event and join point, and the notions of piece of advice, method and event handler. It re-
duces the number of language constructs while keeping expressiveness and offering additional
programming options.
We have designed and implemented two programming languages based on this model: EJava
and ECaesarJ. EJava is an extension of Java implementing the model. We have validated
the expressiveness of this language by implementing a well-known graphical editor, JHotDraw,
reducing its glue code and improving its design. ECaesarJ is an extension of CaesarJ that
combines our model with mixins and language support for state machines. This combination
was shown to greatly facilitate the implementation of a smart home application, an industrial-
strength case study that aims to coordinate different devices in a house and automatize their
behaviors.

Keywords: object-oriented programming, event-based programming, aspect-oriented

programming, programming languages

Résumé

Le paradigme de la programmation par objets (PPO) est devenu le paradigme de programma-
tion le plus utilisé. La programmation événementielle (PE) et la programmation par aspects
(PPA) complètent la PPO en comblant certaines de ses lacunes lors de la construction de
logiciels complexes. Les applications actuelles combinent ainsi les trois paradigmes. Toutefois,
la POO, la PE et la POA ne sont pas encore bien intégrées. Leurs concepts sous-jacents sont
en général fournis sous la forme de constructions syntaxiques spécifiques malgré leurs points
communs. Ce manque d’intégration et d’orthogonalité complique les logiciels car il réduit leur
compréhensibilité et leur composabilité, et augmente le code d’infrastructure.
Cette thèse propose une intégration de la PPO, de la PE et de la PPA conduisant à un modèle
de programmation simple et régulier. Ce modèle intègre les notions de classe et d’aspect,
les notions d’événement et de point de jonction, et les notions d’action, de méthode et de
gestionnaire d’événements. Il réduit le nombre de constructions tout en gardant l’expressivité
initiale et en offrant même des options de programmation supplémentaires.
Nous avons conçu et mis en œuvre deux langages de programmation basés sur ce modèle :
EJava et ECaesarJ. EJava est une extension de Java implémentant le modèle. Nous avons
validé l’expressivité de ce langage par la mise en œuvre d’un éditeur graphique bien connu,
JHotDraw, en réduisant le code d’infrastructure nécessaire et en améliorant sa conception.
ECaesarJ est une extension de CaesarJ qui combine notre modèle avec de la composition
de mixins et un support linguistique des machines à états. Cette combinaison a grandement
facilité la mise en œuvre d’une application de maison intelligente, une étude de cas d’origine
industrielle dans le domaine de la domotique.

Mots-clés : programmation par objets, programmation événementielle, programmation

par aspects, langages de programmation

A mi familia

Acknowledgements

First of all, I am grateful to the European Project AMPLE, which, through ARMINES,
financed the first half of my thesis. I am grateful to the Industry Minister of France, which,
through the École des Mines the Nantes, financed the second half.

I am thankful to the École des Mines de Nantes, the institution that made this PhD
work possible. In particular, I am thankful to the ASCOLA project for supporting my work
and for bringing me the possibility to attend several conferences.

I would like to thank the people from Technische Universität Darmstadt, specially
Vaidas Gasiūnas, for a precious collaboration which is reflected in this work.

I am really thankful to Jacques Noyé. He is the most important person in this work. I
have to say that I learnt a lot from you Jacques, not only in the research context. Thank
you for all these years of discussion and advice. Thank you also to my thesis advisor,
Jean-Claude Royer.

I would like to express my gratitude to all the members of the jury for reviewing and
commenting on this work.

I cannot finish these lines without admitting that all these years of research would not
have been possible without the emotional support of my friends. Thank you very much
Delphine, Salva, Cristian, Rodrigo, Ricardo, Stefanie, Anna, Ludo, Soizic, Lotte, Joost,
Axelle, Sady and all my friends of AtlanMod.

Last but not least, this work is dedicated to my family. France is far from Chile. I know
you miss me a lot all this time. However you have to know that part of my heart did not
take the plane, that part was always with you.

Table of Contents

1 Introduction 1

Part I — Context and Problem Statement

2 State of the Art 7
2.1 Event-Based Programming . 7

2.1.1 The Notion of Event . 8
2.1.2 Event-Based Design . 9
2.1.3 Language Support . 17
2.1.4 Complex Event Processing . 21
2.1.5 Summary . 23

2.2 Aspect-Oriented Programming . 23
2.2.1 Introduction . 24
2.2.2 Behavioral Aspects . 25
2.2.3 Structural Aspects . 29
2.2.4 AOP Approaches . 31
2.2.5 Obliviousness, Quantification and Modularity 36
2.2.6 Summary . 36

2.3 Advanced OOP . 37
2.3.1 Virtual Classes and Propagating Mixin Composition 37
2.3.2 CaesarJ Mixins vs. Structural Aspects 41

2.4 Conclusion . 43

3 Problem Statement 45
3.1 EBP and OOP . 45

3.1.1 Regularity of Events . 46
3.1.2 Orthogonality of Events and Methods 47

3.2 EBP and AOP . 47
3.2.1 Orthogonality of Advising and Event Handling 47
3.2.2 Incomplete Integration Efforts . 48
3.2.3 Advantages of an Integration . 48

3.3 AOP and OOP . 50
3.3.1 Orthogonality and Regularity of Aspects and Classes 51
3.3.2 Incomplete Integration Efforts . 52

3.4 Conclusion . 52

Part II — Contribution

4 A Model of Declarative and Polymorphic Events 57
4.1 Motivation . 57
4.2 Imperative Composition of Events . 58

ix

x TABLE OF CONTENTS

4.3 A Programming Model with Declarative Events 60
4.3.1 Events and Event Handlers as Properties of Objects 61
4.3.2 Imperative Events and Runtime Events 63
4.3.3 Declarative Events . 63
4.3.4 Informal Operational Semantics . 67
4.3.5 Conclusion . 72

4.4 A Concrete Syntax with EJava . 72
4.4.1 Examples of Basic Features . 74
4.4.2 Local Event Variables and Anonymous Parameters 76
4.4.3 Quantification . 76
4.4.4 Exception Handling . 77
4.4.5 Deployment . 78

4.5 Related Work . 79
4.6 Conclusion . 79

5 Integrating EBP and OOP 81
5.1 Motivation . 81
5.2 Programming Model . 82

5.2.1 Unification of Event Handling and Method Execution 82
5.2.2 Events as Regular Instance Members 85
5.2.3 Conclusion . 86

5.3 OO Features of EJava . 86
5.3.1 Features . 86
5.3.2 Example . 89

5.4 Related Work . 91
5.5 Conclusion . 91

6 Integrating EBP and AOP 93
6.1 Motivation . 93
6.2 Programming Model . 94

6.2.1 Unification of Event Handling and Advising 94
6.2.2 After Events and Point-in-time Model 95

6.3 AOP Support of EJava . 96
6.3.1 Simple AO Examples . 96
6.3.2 After Events . 97
6.3.3 Telecom Example . 99

6.4 Related Work . 101
6.5 Conclusion . 102

7 Integrating AOP and OOP 105
7.1 Motivation . 105
7.2 Programming Model . 106

7.2.1 Principles . 106
7.2.2 Advantages . 107

7.3 EJava Integrating AOP and OOP . 109
7.3.1 Flexible Asymmetric Aspects . 109
7.3.2 Symmetric Aspects . 114

7.4 Related Work . 114

TABLE OF CONTENTS xi

7.5 Conclusion . 115

8 Mixins, Implicit Invocation and Stateful Behavior 117
8.1 Motivation . 117
8.2 Extensible State Machines . 118

8.2.1 Example . 118
8.2.2 Implementation in Java . 119
8.2.3 Implementation in CaesarJ . 121
8.2.4 Comparison . 123

8.3 The ECaesarJ Language . 123
8.3.1 Principles . 123
8.3.2 Pattern-based Implementation of State Machines 124
8.3.3 Pattern-based Implementation of Hierarchical State Machines 125
8.3.4 Language Support for Stateful Behavior 128
8.3.5 Stateful Aspects . 129

8.4 Related Work . 131
8.5 Conclusion . 132

Part III — Validation and Conclusion

9 Case Study 135
9.1 Mini JHotDraw . 135

9.1.1 Listeners versus Events . 135
9.1.2 Eliminating Crosscuting Concerns 136
9.1.3 Improving Expressiveness . 138

9.2 The Smart Home Case Study . 139
9.2.1 Structural Dimension . 140
9.2.2 Behavioral Dimension . 142

9.3 Conclusion . 145

10 Implementation 147
10.1 Implementation of EJava . 147

10.1.1 Principle . 147
10.1.2 EJava Interpreter . 148
10.1.3 Generated Infrastructure . 149
10.1.4 Optimizations . 150

10.2 Implementation of ECaesarJ . 151
10.3 Final Remarks . 153

11 Conclusion 155
11.1 Summary . 155
11.2 Discussion . 156

11.2.1 Explicit and Implicit Invocation . 156
11.2.2 Event Types versus OO Events . 156
11.2.3 Technical Issues . 157

11.3 Contributions . 159
11.3.1 Declarative Events . 160
11.3.2 Unification of Paradigms . 160

xii TABLE OF CONTENTS

11.3.3 Join-Point Model . 161
11.3.4 Concrete Implementation and Case Studies 161
11.3.5 Experimentation with Applications 161

11.4 Perspectives . 161
11.4.1 General Improvements . 161
11.4.2 EScala . 162

—Appendixes—

A Résumé 167
A.1 Introduction . 167
A.1.1 La programmation par événements . 167
A.1.2 Programmation par aspects . 168
A.2 Problématique . 171
A.2.1 La PPE et la PPO . 172
A.2.2 La PPE et la PPA . 172
A.2.3 La PPA et la PPO . 172
A.3 Un modèle d’événements déclaratifs et polymorphes 173
A.3.1 Motivation . 173
A.3.2 Événements et gestionnaires propriétés des objets 173
A.3.3 Événements impératifs et occurrences d’événements 174
A.3.4 Événements déclaratifs . 174
A.3.5 Gestionnaires d’événements . 178
A.4 Intégration des paradigmes . 178
A.4.1 Unification des événements impératifs et des appels de méthode 178
A.4.2 Unification de la gestion des événements et de l’action des greffons 182
A.4.3 Aspects asymétriques flexibles . 184
A.5 Conclusion . 188
A.5.1 Discussion . 188
A.5.2 Contributions . 190
A.5.3 Perspectives . 191

Bibliography 195

CHAPTER1
Introduction

Research in programming languages is motivated by the need to provide proper means
for building “good quality” software. The quality of a software is usually measured in
terms of properties such as understandability, maintainability, reusability, and evolvability.
Object-Oriented Programming (OOP) marked a point in history by introducing a straight-
forward and intuitive programming model promoting the encapsulation of code and state in
objects. However, it did not scale well when building complex and large applications. New
programming paradigms emerged trying to cover the deficiencies of OOP such as Event-
Based Programming (EBP) and Aspect-Oriented Programming (AOP). EBP proposed a
mechanism for minimizing the dependencies between the components of a software. AOP
proposed a mechanism for modularizing the so-called crosscutting concerns. Due to the
complexity of today’s systems, it is not a surprise that today’s software needs combina-
tions of all the techniques introduced by these paradigms.

Problem Statement

OOP, EBP and AOP have not been properly integrated. Their concepts are in general
provided as distinct language constructs, whereas these constructs are not completely or-
thogonal. When these concepts are combined in an application, the lack of integration and
orthogonality complicates the development of such an application because it reduces its
composability and increases its glue code. The lack of orthogonality also reduces the un-
derstanding of the involved concepts, conflicting with the principles of programing-language
design proposed by MacLennan [Mac95].

Now that OOP, EBP and AOP are better understood, researchers realize that these
paradigms can be better integrated to each other for the sake of simpler and more regular
languages. Although some first steps have been done in this direction [RS05, AGMO06],
the integration is not complete yet.

Thesis

We believe that OOP, EBP and AOP can be better integrated, leading to a simpler
and more regular programming model. This model would facilitate the combination of the
techniques proposed by the different paradigms in complex applications.

This dissertation presents a model that validates this thesis. Whereas EBP augments
the object-oriented (OO) paradigm with the concepts of event, event handling and implicit
invocation, AOP introduces a set of, in principle, new concepts: aspects, join points, point
cuts and pieces of advice. Our model integrates the notions of class and aspect, the notions
of event and join point, and the notions of piece of advice, method and event handler.

Figure 1.1 clarifies the context of our work. It illustrates, in italics, the different concepts
proposed by the three programming paradigms that this dissertation takes into account. On

1

2 Chapter 1 — Introduction

the sides of the triangle we indicate approaches that promotes, in some degree, integration
of the concepts on the vertexes of each side. In the center of the triangle we would like to
place approaches integrating concepts taken from the three paradigms. The empty triangle
shows the fact that at the date of this dissertation no approach has been found to actually
deal with this integration. The objective of our model is to fill this empty space.

AO ProgrammingEB Programming

OO Programming

class

method

class

method

pointcut

advice

aspect

class

method

event handler

event

Classpects

CaesarJ

AspectS

EAOP

e

Ptolemy

C#

Qt

IIIA

Figure 1.1 – Concepts

We have conceived two programming languages, EJava and ECaesarJ, implementing
the proposed model. EJava is an extension to Java that validates the essence of our model.
It has been used to improve a known application: JHotDraw [Eri11]. ECaesarJ combines
the model with advanced OO techniques such as mixin composition. It has resulted in a
suitable tool for implementing an industrial strength case study: the Smart Home case
study [GNNM11].

How to Read this Dissertation

This dissertation is structured as follows.
Chapter 2 gives the reader the necessary background in the areas of EBP and AOP

(we assume that the reader already knows OOP). The last part of this chapter talks about
an advanced OO technique: mixin composition.

Chapter 3 specifies our problem statement. We discuss about the opportunities of in-
tegration of the considered programming paradigms.

Chapter 4 presents the event-based (EB) side of our programming model. We introduce
the notion of declarative event and present EJava, an extension to Java that concretizes
the model.

Chapter 5 is about the integration of EBP and OOP. We present a unification of event
triggering and method call and a unification of event handling and method execution. We
show how these unifications improve the simplicity, the regularity and the orthogonality of
our programming model.

Chapter 6 is about the integration of EBP and AOP. We show how the unifications
presented in Chapter 5 enable AOP. In addition, we introduce a unification of events and
pointcuts based on the notion of declarative event. Finally, we illustrate the support for

Chapter 1 — Introduction 3

AOP of EJava.
Chapter 7 is about the integration of AOP and OOP. We eliminate the frontiers between

classes and aspects and show how aspects can be used to implement functional concerns.
Chapter 8 presents an extension of our model with mixin composition and language

support for state machines. We introduce ECaesarJ, the language that concretizes this
extension, and show how it supports both stateful aspects and stateful objects in a seamless
way.

Chapter 9 validates the usability of EJava and ECaesarJ in the implementation
of real applications. We present the results of two experiences: the implementation of a
graphical editor and the development of a home application.

Chapter 10 describes the main aspects of the implementation of EJava and ECaesarJ.
Chapter 11 concludes this dissertation with the limitations, the contributions and the

perspectives of this work.

PART I

Context and Problem Statement

CHAPTER2
State of the Art

A big part of the research on software engineering is about building “good quality”
software. A software is good if it guarantees some properties such as modularity, extensibi-
lity, maintainability, efficiency, robustness, correctness, between others. The key to achieve
many of these properties is a good separation of concerns (SoC), which follows the pre-
mise divide and conquer [Dij79]. Object-Oriented Programming (OOP) was proposed as
a paradigm that structures programs in objects, which encapsulates data and behavior.
OOP is the by default development paradigm in many domains. However, it presents some
deficiencies for decoupling components and for modularizing crosscutting concerns. Event-
Based Programming (EBP) and Aspect-Oriented Programming (AOP) are two paradigms
that complement OOP with mechanisms to solve these deficiencies. In addition, pure OOP
presents some problems of extensibility in large applications. Advanced OOP techniques
have been developed to cover this problem.

This chapter is structured as follows. Section 2.1 and Section 2.2 present the necessary
background on EBP and AOP, respectively. Section 2.3 describes mixins as an advanced
OOP technique that improves the extensibility of OO programs. Section 2.4 concludes.

2.1 Event-Based Programming

The flow of an event-based program is determined by identifying events, triggering
event notifications and reacting to these notifications. In an event-based program the in-
tegrated components communicate by means of these notifications [FMG02]. Components
interested in certain events subscribe to them, so that upon occurrence of these events,
proper notifications are automatically delivered to these components.

Event-based programming was created in order to alleviate the complexity of large
reactive systems with two principal contributions:

1. Simplification in the implementation of reactive applications. Components
of reactive systems, such as Graphical User Interfaces (GUI), need to be aligned with
an environment that frequently changes. Events provide a notion of change, which is
automatically distributed across the system. Instead of waiting on blocking operations
for input, components can subscribe to events, which notify the availability of such
an input. Events for reactive applications are usually asynchronous, enabling the
management of the huge amount of events that reactive applications need to handle.
Events are stored in event buffers and an event loop notifies components interested
in these events, in an off-line mode.

2. Reduction of the coupling between software components. Event-based (EB)
designs decouple the components of a system, offering a more stable design since the
inter-dependencies are minimized. In EB systems, the components that are source
of events are decoupled from the ones interested in them. Components that notify

7

8 Chapter 2 — State of the Art

events do not know at compile time what components are interested in these events,
reducing the dependency between these components. This is not the case in the
classical Request/Reply model of communication, in which there is a caller/callee
dependency.

This dissertation is principally concerned with this last motivation. The remainder of
this section goes deeper on how EBP reduces the coupling between software components.
Section 2.1.1 defines the notion of event. Section 2.1.2 describes what constitutes an event-
based design. Section 2.1.3 overviews the event support present in some representative
state-of-the-art languages.

2.1.1 The Notion of Event

In a general sense an event denotes something that happens at a given place and time.∗

In the theory of relativity, events are the fundamental entities of observed physical reality.
They are represented by single points in the space-time continuum. Associated to the
concept of event is the concept of causality as the necessary relationship between one
event, the cause, and another event, the effect, which is a direct consequence of the first.

2.1.1.1 Events in the History of Computing

The concept of event has been used from the very beginning of computer science. With
the advent of the digital computer in the 50’s, digital simulation modeling became accepted
as a technique for the analysis of engineering, business and behavioral systems [Sch78]. At
that epoch, digital computers started to be used in the analysis of discrete event systems
such as the Analysis of Air Traffic Control Systems, the Analysis of Large-Scale Military
Operations, Job-Shop Scheduling, Competitive Market Analysis and Man-Machine Inter-
face. An event was early defined as an occurrence which may change the value of some
data [Par69] or simply as a change of state [ND66]. Many simulation languages included
this notion of event, most notably Simula [ND66]. The Simula language was in principle
designed to describe systems such that it is possible to regard its operation as consisting
of a sequence of instantaneous events, each event being an active phase of a process. In
all these simulation languages, events were conceived as the basic constituents of discrete
event processes, in which events may take place only at distinct “points” in time which are
separated by periods in which no change is made in the state of the data [Par69]. As an
example, the acceptance of a passenger in the counter of an “airport departure” model
corresponds to an event, which as a result makes the counter route the passenger either to
the control office or to a fee collector [ND78].

The introduction of process algebras as algebraic/axiomatic approaches to formalize
concurrent processes marked the 70’s. Hoare published his influential paper [Hoa78] as a
technical report in 1976. The paper presents the CSP (Communicating Sequential Pro-
cesses) language. Events and primitive processes are the primitives of the language. Events
represent communications or interactions. Importantly, CSP qualifies events as indivisible
and instantaneous. They are represented by atomic names (e.g. on, off), compound names
(e.g. valve.open, valve.close) or input/output events (e.g. mouse?xy, screen!bitmap).
The work of Hoare is the basis of, without doubt, the most significant contribution in this
area: the CCS (Calculus of Communicating Systems) language of Milner [Mil82]. Even if

∗. Definition taken from WordNet 3.0, Princeton University, 2006.

Chapter 2 — State of the Art 9

Milner does not use the word event in its presentation, his term atomic action represents
the same concept.

Events became even more popular with the proliferation of reactive systems in the
80’s. Active Database Systems [DHW94] introduced the Event Condition Action (ECA)
pattern, to make conventional databases active: the database system itself performs certain
operations automatically in response to certain events occurring or certain conditions being
satisfied [WC96]. In other words, the ECA pattern permits the definition of rules, which
trigger some action once an event happens and a given condition holds. The pattern made
the role of events important: enabling the programming of reactions to them, i.e. the
definition of the effect associated to the event.

Events in active databases are defined as data modifications such as the result of execu-
ting insert, delete or update operations in relational databases, or the creation, deletion
or modification of objects in object-oriented database systems. They also include temporal
events defined in terms of absolute time, repeated time or at periodical intervals. Inter-
estingly, active databases also include support for application-defined events, e.g. high-
temperature, user-login, etc. All these types of events are considered as primitive ones.
Composite events are also supported as the combination of other events defined by using
logical operators, sequences or temporal composition.

Starting in the 80’s, events have been widely used in GUI design. In this area, events
correspond to the input provided by humans in the interaction with machines. Mouse or
keyboard input are examples of events used in GUIs.

2.1.1.2 Events in Programs

As a summary, it is possible to provide the following definition:

Definition 2.1. An event represents a change in the context of a computation that is reflected
as a change in the state of such a computation. For simplicity it is possible to consider an event
just as a change in the state of a computation.

For example, the loan of a book is an event that is reflected as a change in a database.
The physical click of a mouse is an event that is reflected as the reception of a signal from
a mouse device or as the invocation of a method of an API.

From the previous definition any point in the execution of a program is an event since
it changes the state of the execution. For example, the fact that the runtime has reached a
point in which a certain method body has to be executed can be seen as an event, occurring
at the beginning of the method body.

2.1.2 Event-Based Design

As discussed in the previous section, events are inherent to any computer program
because they have been defined as a change in the state of its execution. However, not
every program can be considered as following the principles of the EBP paradigm. The
contribution of EBP is to structure the way specific events are identified in a program and
the way the information about the occurrence of these events is transmitted to software
components interested in these occurrences.

10 Chapter 2 — State of the Art

2.1.2.1 Motivation

In the 80’s, the Smalltalk-80 programming environment introduced the Model-View-
Controller (MVC) triad for developing its user interface [KP88]. The main objective of
MVC was to separate the concerns related to the view of its programming environment
and the core functionality of the same. In order to effectively decouple views from models,
the implementation of MVC needed a mechanism different from the traditional method
invocation protocol used in contemporary programs. Thus, Smalltalk-80 adopts a different
mechanism to decouple software components.

The different parts of the MVC triad are defined as follows:

Models are those components of the system application that actually do the work (simulation
of the application domain). They are kept quite distinct from views, which display aspects of
the models. Controllers are used to send messages to the model, and provide the interface
between the model with its associated views and the interactive user inteface devices (e.g.
keyboards, mouse).

Krassner and Pope [KP88]

As the MVC was conceived, views and controllers have just one model, but a model
can have one or several views and controllers associated with it. A change in the model
(initiated by a particular controller) needs to be reflected in all the views associated with
it, while keeping independence between model code and view code:

To maximize data encapsulation and thus code reusability, views and controllers need to know
about their model explicitly, but models should not know about their views and controllers.

Krassner and Pope [KP88]

class Figure {

DrawingView view;

void moveBy(int x, int y) {

/* change figure position */

view.repaint(this.getArea());

}

}

Listing 2.1: Updating a view in a traditional program.

In a traditional programming scheme, model classes would need to keep fields referen-
cing view classes as Listing 2.1 shows in Java. Model classes would need to be aware of
view classes, not fulfilling the previous requirement.

The class Figure of Listing 2.1 belongs to the model of a figure editor, whereas the
class DrawingView belongs to the view. The class Figure defines the method moveBy, which
changes the position of the figure. The change needs to be reflected in the view. In the
traditional programming style of Listing 2.1, the class Figure keeps an explicit reference
to an instance of the class DrawingView and invokes the repaint method when the state
of the model changes in order to update the view. The model class remains coupled to the
view class. Programmers of the model cannot develop their classes without having some
knowledge about the possible views of the application. In addition, inclusion of further
views into the application requires updating the model code.

Chapter 2 — State of the Art 11

In Smalltalk-80, MVC decouples views and models by establishing a subscribe/notify
protocol between them:

To manage change notification, the notion of objects as dependents was developed. Views and
controllers of a model are registered in a list of dependents of the model, to be informed
whenever some aspect of the model is changed. When a model has changed, a message is
broadcast to notify all of its dependents about the change.

Krasner and Pope [KP88]

In the implementation of Smalltalk-80, model classes are subclasses of a class Model,
which defines a list of dependents and provides methods to register new dependents or to
unregister them. It also provides an implementation of a method notify, which broadcasts
state changes to the registered dependents. Thanks to this design, programmers of the
model classes do not need to be aware of views, which can be programmed and registered
later on. This notion of dependents was further structured as a pattern by Gamma et
al. [GHJV94] and it is the subject of the next section.

2.1.2.2 Design Pattern Observer

The design pattern Observer [GHJV94] structures the notion of dependent objects in-
troduced by Smalltalk-80. It organizes classes in observers of events and subjects, which
trigger the events. Classes that are source of events extends the class Subject, which aggre-
gates observers interested in the events by providing methods to register or unregister them.
In languages such as Java, an observer is an object implementing the interface Observer.
This interface includes the callback method update, which is called as a notification that
the event has happened.

As an example, let us express the example of the previous section using the design
pattern Observer in Java.

class Figure extends Subject {

void moveBy(int x, int y) {

/* change figure position */

notifyObservers();

}

}

Listing 2.2: Example of a subject in the design pattern Observer.

The code of Listing 2.1 can be expressed in a decoupled way by using the pattern Ob-
server as Listing 2.2 shows. The class Figure is the source of an event (the one representing
a change in the figure). As such it extends the class Subject, thus being equipped with
infrastructure code for registering observers. Each time a change is produced (at the end
of the execution of the method moveBy) it notifies all its registered observers by calling the
method notifyObservers. Note that since Java does not support multiple inheritance,
classes that already have a superclass need to include the infrastructure of Subject within
their code.

The class DrawingView constitutes an observer of the class Figure, and therefore im-
plements the method update of the interface Observer as Listing 2.3 shows.

12 Chapter 2 — State of the Art

class DrawingView extends Observer {

void update(Subject subject) {

repaint(((Figure)subject).getArea());

}

}

Listing 2.3: Example of a Java observer in the design pattern Observer.

Figure figure = new Figure();

figure.registerObserver(new DrawingView());

Listing 2.4: Registration in the design pattern Observer.

The pattern Observer makes a clear distinction between source of events and observers.
Afterwards, client code is in charge of properly connecting observers and subjects of events
as illustrated in Listing 2.4.

The pattern Observer decouples model code (subjects) from view code (observers). In
further versions of the application new observers can be implemented by providing a proper
implementation of the interface Observer and by registering their interest in the proper
events.

2.1.2.3 Java Listeners

The pattern Observer makes it possible for a subject to announce a change without
being coupled to observers. However, sometimes this information is not granular enough,
usually when a subject can change in several ways. Observers need to find out how the
subject has changed. For example, a change in a figure can be due to several factors: a
change in size, a change in position, a change in color, etc. Finding out how the figure
changed may be complicated and time-consuming. The Java Listeners [Sun97] offer a
design that can be considered as a fine-grained version of the pattern Observer in Java.

The Java Listeners solution is as follows. First, a listener is an interface similar to
the interface Observer of the pattern Observer. However, the interface may declare several
callback methods representing different events. A callback method of a listener may accept,
as an additional parameter, a reification of the event that produces the callback (a reifi-
cation of the corresponding change). Second, several listener interfaces can be declared for
several kinds of events. Third, a subject provides the required infrastructure for accepting
several kinds of listeners and to notify the proper callback methods of the corresponding
listeners at the proper places.

For example, the class Component of the graphical library AWT of Java defines
methods for attaching listeners such as MouseListener or KeyListener. The interface
KeyListener defines callback methods associated to keyboard events such as keyPressed
or keyReleased. These methods receive as parameter an instance of KeyEvent, which pro-
vides information about the pressed/released key. For example, Listing 2.5 shows the use
of KeyListener. A Frame instance as a subject provides the method addKeyListener in
order to register a listener observing key events. The listener implemented in the class
MyKeyListener prints the value of the key when the callback method keyPressed is invo-
ked by the AWT framework.

Listing 2.6 shows how a figure can notify different kinds of events by using Java lis-

Chapter 2 — State of the Art 13

public class AClass {

public static void main(String[] args){

Frame f = new Frame("App");

f.addKeyListener(new MyKeyListener()); ...

}

}

class MyKeyListener implements KeyListener {

public void keyPressed(KeyEvent e) {

System.out.println(e.getKeyChar());

}

}

Listing 2.5: Example of Java Listeners in AWT.

interface FigureListener {

void figureMoved(FChangeEvent event);

void figureColored(FChangeEvent event);

}

class Figure {

List<FigureListener> figureListener;

void addFigureListener(FigureListener l) { ... }

void removeFigureListener(FigureListener l) { ... }

void notifyMoveEvent(int x, int y) {... }

void notifyColorEvent(Color color) {... }

void moveBy(int x, int y) {

/* change figure position */

notifyMoveEvent(x,y);

}

void setColor(Color color) {

/* change figure color */

notifyColorEvent(color);

}

}

Listing 2.6: Example of Java Listeners in a figure editor.

14 Chapter 2 — State of the Art

teners. It defines a listener interface FigureListener with two methods representing two
types of events, a change in position or a change in color of a figure. The class Figure

is explicitly equipped with the necessary infrastructure for notifying listeners. Indeed, in
Java, when there are several kinds of listeners to be notified by a subject, it is not pos-
sible to extend a class such as the class Subject of the pattern Observer. The benefits of
subclassing Subject is that it hides the notification infrastructure. This can be seen as a
drawback of Java listeners. However, the drawback can also affect the pattern Observer in
Java when a subject already has a superclass. Of course, this is not a problem in languages
that support advanced class-composition mechanisms such as multiple inheritance.

2.1.2.4 Publish/Subscribe Systems

At the end of the 80’s, Birman et al. [BJ87] introduce the messaging paradigm Publi-
sh/Subscribe as a flexible communication model specially dedicated to distributed systems.
Publish/Subscribe organizes components in publishers and subscribers. The notion of pu-
blisher and subscriber is equivalent to the notion of subject and observer in the pattern
Observer. Unlike the latter, in publish/subscribe systems, subscribers do not register their
interest in events directly with publishers:

Producers publish information on a software bus (an event manager) and consumers subscribe
to the information they want to receive from that bus. This information is typically denoted
by the term event and the act of delivering it by the term notification.

Eugster et al. [EFGK03]

This software bus is an event notification service, which acts as a mediator between
both parties broadcasting published events to all the interested subscribers.

The key concepts introduced by publish/subscribe systems are the event notification
service and the subscription mechanisms. The event notification service is, in general,
implemented in a middleware connecting publishers and subscribers. The subscription me-
chanisms can be topic-based, content-based or type-based.

– Topic-based subscription [BJ87] is the earliest subscription scheme, which was based
on the notion of topics or subjects. It was implemented in the context of group com-
munication systems. Subscribing to a topic T can be viewed as becoming a member
of a group T, and publishing an event on topic T translates accordingly into broad-
casting that event among the members of T [EFGK03]. A topic is a name that acts
as a keyword, which is given in the publication of an event.

– Content-based subscription [RW97] is a variant that improves on topics by providing
a more dynamic event selection, which is based on properties of events such as at-
tributes of data structures associated to the events or on some meta-data of events.
Selection is made by using powerful filters defining specific constrains on the event
content.

– Type-based subscription [EGD01, RL08, SPAK10] is the most recent subscription me-
chanism. Event types replace the name-based topic classification model by a scheme
that filters events according to their type, enabling type safety at compile-time.

An important property of this kind of systems is synchronization decoupling. Publishers
are not blocked while producing events. Subscribers can get asynchronously notified. This
makes the Publish/Subscribe pattern well adapted to distributed environments.

Chapter 2 — State of the Art 15

2.1.2.5 The Principle of EBP: Implicit Invocation

The pattern Observer, the Java Listeners and the systems Publish/Subscribe share
a common pattern. In these approaches event sources are unaware of event destinations
with registration and notification supported behind the hood. This architectural pattern
is called Implicit Invocation [GN91] and can be considered as the essence of Event-Based
Programming.

The idea behind implicit invocation is that instead of invoking a procedure directly, a
component can announce (or broadcast) one or more events. Other components in the system
can register an interest in an event by associating a procedure with the event. When the event
is announced the system itself invokes all of the procedures that have been registered for the
event. Thus an event announcement “implicitly” causes the invocation of the procedures in
other modules.

Garlan and Shaw [GS94]

Source

Destination 1

Destination 2

Destination n

...

event

notifications

Figure 2.1 – Event-based design.

Figure 2.1 illustrates the implicit invocation architecture, which organizes components
of a program in event sources and event destinations. When an event happens in a source,
notifications are delivered to all the destinations interested in the event (see the arrows
of the figure). The notification mechanism ensures that all destinations are informed of
the event. A notification corresponds to a message informing that the event has occurred.
What is fundamental in this design is the fact that sources of events do not know at compile
time the potential destinations of their notifications (not in number, not in concrete type).

Let us provide some definitions:

Definition 2.2. An event-based approach is an approach that decouples sources of events from
destinations by adopting an Implicit Invocation scheme.

Definition 2.3. An event handler is code to be executed when an event occurs.

Definition 2.4. The notification of an event corresponds to a process in which all the event
handlers registered with an event are invoked.

Definition 2.5. Event triggering or event announcement is an expression that produces the
notifications of an event.

2.1.2.6 Inversion of Control

Event-based programming produces a phenomenon called inversion of control. Even if
recent research has shown that it is possible to avoid it [HO09], inversion of control has
been classically associated with EBP and permits us to better understand this paradigm.

16 Chapter 2 — State of the Art

Inversion of control is a phenomenon early identified in frameworks. In traditional
programs, user code uses the functionality of libraries by directly calling its methods. In
other words, the control goes from the application towards the libraries. In frameworks
the control is inverted. Frameworks are configured with specific user code that is called
from the framework. Literature associates inversion of control to the so-called Hollywood
principle, which means “don’t call us, we’ll call you”:

One important characteristic of a framework is that the methods defined by the user to tailor
the framework will often be called from within the framework itself, rather than from the
user’s application code. The framework often plays the role of the main program in
coordinating and sequencing application activity. This inversion of control gives frameworks
the power to serve as extensible skeletons. The methods supplied by the user tailor the generic
algorithms defined in the framework for a particular application.

Johnson and Foote [JF88]

Like in frameworks, EBP produces inversion of control because the control resides
within the event-driven infrastructure, rather than in the application code [Sam08]. Source
of events are configured with user-defined handlers, which are invoked by the event-driven
infrastructure when events arise.

We can illustrate the inversion of control phenomenon by comparing a tree-based API
for parsing XML documents, such as DOM (Document Object Model)†, and an event-based
API, such as SAX‡. For this, let us consider an XML file containing a list of contacts with
their name and email address in tags with the following structure:

<contact name="Paty" email="panunez@chile.com" /> ...

A DOM library parses and maps an XML document into an internal tree structure.
As an illustration, Listing 2.7 prints the emails of the contacts present in the file in Java.
The tree acts as a database and the programmers use the API to navigate the resulting
tree, e.g. to get all the elements associated to a tag by using the getElementsByTagName

method.

domTree = domParser.parse(file);

nodes = domTree.getElementsByTagName("contact");

for(int i = 0; i < nodes.getLength(); i++) {

Element element = (Element) nodes.item(i);

System.out.println(element.getAttribute("email"));

}

Listing 2.7: Parsing XML documents using DOM.

The mechanism is quite different when using events. The SAX API reports parsing
events (such as the start or the end of elements) directly to the applications. The application
logic is implemented in event handlers, which receive these events and react accordingly.
As an illustration, Listing 2.8 shows a SAX implementation of the previous example in

†. DOM website: http://www.w3.org/DOM/.
‡. SAX website: http://www.saxproject.org/.

Chapter 2 — State of the Art 17

saxParser.setContentHandler(new DefaultHandler() {

public void startElement(String uri, String tagName,

String qName, Attributes attributes) {

i f(tagName.equals("contact"))

System.out.println(attributes.getValue("email"));

}

});

saxParser.parse(file);

Listing 2.8: Parsing XML documents using SAX.

Java. A first step consists of configuring the library by registering a proper handler with
the SAX parser. The handler is programmed to handle the events generated during the
parsing of the XML document. After configuration, the control is passed to the library by
calling the parse method (see last line in the code), which notifies the respective events to
the configured handler during the parsing process.

The inversion of control can be observed in the fact that in the DOM solution the
execution is controlled by the user, who asks the library for information about the XML
document. In the event-based solution, the control is inverted, it is the library that notifies
the user code.

2.1.3 Language Support

Language support for events corresponds to the inclusion of constructs specially dedi-
cated to EBP in a language. These constructs reduce the necessary infrastructure when
using approaches such as the pattern Observer or the Java Listeners. In general, language
support for events is provided in the form of two constructs: an event representing a state
change, which in some approaches is just a signature, and an event handler, which in seve-
ral approaches is just a method. This section shows the language support for events found
in some mainstream languages and other approaches.

2.1.3.1 Qt Signals and Slots

Qt is a cross-platform application and UI framework implemented in C++. Originally
developed by Haavard Nord and Eirik Chambe-Eng (CEO and President of Trolltech, res-
pectively) in 1991, it nowadays counts several versions, which have been used by enterprises
such as Google Earth, KDE, Opera, Skype, among others. As a framework it provides a
rich set of application building blocks, delivering all of the functionality needed to build
advanced, cross-platform applications. In particular, Qt provides event-based support as
C++ extensions implemented using a special pre-processor, the Meta-Object Compiler.

Apart from standard method calls, Qt objects can communicate using signals and
slots. They are constructs defined as class members. A signal corresponds to an event. It
is declared as a signature and can be triggered using the emit keyword. A slot is a method
designed to handle signals, i.e. an event handler.

Listing 2.9 shows the Qt implementation of the class Figure of a figure editor. In
order to declare events and slots, classes need to extend the class QObject and include
the macro Q_OBJECT, which is used by the pre-processor to instrument the class with the
necessary infrastructure. Line 4 illustrates the declaration of a signal representing a change

18 Chapter 2 — State of the Art

1 class Figure: public QObject {

2 Q_OBJECT

3 signals:

4 void changed(Figure object);

5 public:

6 void moveBy(int x, int y);

7 }

8 void Figure::moveBy(int x, int y) {

9 /* change figure position */

10 emit changed(this);

11 }

Listing 2.9: Example of events in Qt.

in the state of the figure. The signal is emitted in Line 10 passing the current object as a
parameter.

class DrawingView: public QObject {

Q_OBJECT

public slots:

void update(Figure source);

}

void DrawingView::update(Figure figure) {

repaint(figure.getArea());

}

Listing 2.10: Example of event handlers in Qt.

Classes can define slots as the implementation of the class DrawingView in Listing 2.10
shows. It defines the update method as a slot that receives a Figure instance as a para-
meter.

Figure figure; DrawingView view;

QObject::connect(&figure, SIGNAL(changed(Figure)),

&view, SLOT(update(Figure)));

Listing 2.11: Example of connections of signals and slots in Qt.

The signals emitted by an object are connected to the slots defined in another object by
using the method connect of the class QObject. The compiler verifies that the signature of
the slots and the signals (the number of parameters and their type) coincide. Listing 2.11
connects the signal changed of an instance of Figure to the slot update of an instance of
DrawingView.

Signals can only be used for event triggering inside the class or subclasses. Methods
defined as slots can be used for handling signals and also for explicit invocation as standard
methods. However a standard method cannot be used as a slot. Preplanning is needed to
identify the methods that will serve as slots. As a framework, Qt also includes event sup-
port in the form of Java-like Listeners equipped with a complex framework implementing
an event loop.

Chapter 2 — State of the Art 19

Qt is a simple example of language support for implicit invocation. It clearly describes
this pattern. First, an event is declared and triggered at sources. Second, destinations
implement event handlers. Third, a connection between sources and destinations is made
without sources being coupled to destinations.

2.1.3.2 C# Events

1 delegate void ChangeHandler(Figure source);

2

3 class Figure {

4 public event ChangeHandler changed;

5

6 void moveBy(int x, int y) {

7 /* change figure position */

8 i f(changed != null)

9 changed(this);

10 } ...

11 }

Listing 2.12: Example of events in C#.

Similarly to Qt, the language C# allows classes to explicitly define events and stay
completely unaware of potential observers of these events. The language provides objects
interested in these events with mechanisms to perform the corresponding subscriptions. As
an example, Listing 2.12 shows an implementation of the class Figure in C#. The class
Figure explicitly declares an event changed in line 4, which is triggered as a method call
in the method moveBy in line 9. The event triggering produces an implicit notification of
all objects interested in such an event, i.e. all objects that have previously subscribed to
the event.

The notification mechanism of C# is based on the language construct delegate, which
makes it possible to define a data-type name associated to a certain function type. For
example, Line 1 of Listing 2.12 defines a delegate ChangeHandler associated to the func-
tions returning void and receiving an object of type Figure as parameter. A delegate
instance can be attached to a group of functions of the corresponding type. A delegate
instance can be called. The call results in an invocation of all the attached functions. The
construct event is used with a delegate and encapsulates an instance of such a delegate. An
event can only be defined with delegates associated to void functions. In Listing 2.12, the
definition of the event changed of Line 4 internally defines an instance of ChangeHandler.
At runtime, the event changed (or more precisely the respective delegate) can be attached
to any method of any class, as long as the method accepts an instance of Figure as a pa-
rameter and returns void. The call of line 9 serves as notification, in the form of a method
call, to all the methods attached to changed.

A function is attached to an event (delegate) by using the operator +=. In EB parlance,
the operator makes it possible to register a function as a handler of the event. In an inverse
way, the C# operator -= can be used to unregister functions. For example, Listing 2.13
attaches the method update of a DrawingView’s instance to the event changed of a Figure’s
instance. Note that the attached functions are, in this case, methods of particular objects.

A C# event defines not only a delegate but also a default implementation of the
operators += and -= (basically a forwarding to the delegate). This implementation can be

20 Chapter 2 — State of the Art

1 class Test {

2 public static void Main() {

3 Figure figure = new Figure();

4 DrawingView view = new DrawingView();

5 figure.changed += new ChangeHandler(view.update); ...

6 }

7 }

8 class DrawingView {

9 public void update(Figure figure) {

10 repaint(figure.getArea());

11 } ...

12 }

Listing 2.13: Registering to an event in C#.

overridden if an event is defined with a block of code providing a specific implementation.
An event can be defined abstract, deferring the definition of such a block to subclasses.
As a final remark, events cannot be triggered in subclasses. A special method triggering
the event needs to be provided by the class defining the events. This method can then be
used in subclasses to trigger the event.

2.1.3.3 e Events

The language e [IEE08] is an object-oriented language designed to facilitate the verifi-
cation of electronic designs. Language support for events is included as a way of specifying
and verifying behavior over time.

All e temporal language features depend on the occurrence of events, which are used to
synchronize activity within the simulation environment.

IEEE 1647 [IEE08]

Like in Qt and C#, events in e are properties of objects. Interestingly, the events of
e can be defined declaratively as composition of other events, with the lowest level relying
on primitive events. The language provides several operators to combine events.

event sim_ready i s change(’top.ready’) @sim;

event clk1 i s rise(’top.cpu_clk’) @sim;

event clk2 i s true(active == 1) @ clk1

event clk i s (clk2 or sim_ready) @ sys.any

Listing 2.14: Examples of events in e.

Listing 2.14 shows some examples. The event sim_ready happens whenever the value
of the simulator object top.ready changes. The construct @sim represents a callback from
simulation. The event clk1 represents a CPU clock tick and it is defined analogously as
a raise in the value of the simulation object top.cpu_clk. The event clk2 happens when
clk1 happens and the given condition evaluates to true. An expression @event represents
a sampling event. The expression on the left of @ is evaluated at the occurrence of the
sampling event. Finally, the event clk happens when either clk1 or sim_ready happen.

Chapter 2 — State of the Art 21

The event sys.any defines the finest granularity of time. This event happens whenever
another event happens.

As shown in the examples, declarative events consist of a name and an expression, in
e parlance, a temporal expression. Apart from the operators shown in the examples, the
language provides other operators such as conjunction of events, negation, etc. Besides the
declarative events, the language also makes it possible to define imperative events like in
Qt. Imperative events are triggered by using a keyword emit.

struct AClass {

event sim_ready i s change(’top.ready’) @sim;

on sim_ready {

transmit()

}

}

Listing 2.15: Event handlers in e.

Reaction to events is programmed by attaching an event to a block of code as Lis-
ting 2.15 shows. In that example the block of code is executed whenever the event sim_ready
happens. The code also shows that events and handlers are class members (struct AClass).
In e, the handler of the event sim_ready defines a method on_sim_ready(). This makes
it possible to override it in subclasses. However, in order to make it possible a handler can
only be defined for events defined in the same class.

2.1.3.4 Comparison

C# and Qt implements imperative events. C# events are better integrated in the
language than Qt events (indeed Qt is implemented as a pre-processor). First, in order to
include events, a C# class does not need to extend a special class or to include a macro.
Second, any C# method can be registered as a handler of an event. Third, the concept of
delegate of C# makes it possible to associate a type name to a signature, which can be
reused in the definition of several events, whereas in Qt the signature has to be repeated
in the definition of each event. However, the Qt design is simpler. In particular, the mix
event/delegate of C# is complicated for programmers.

The language e complements the design of events of languages like Qt and C# with
declarative events. However, the design is very focussed on verification of electronic de-
vices, showing some deficiencies in other contexts. For example, e events do not support
parameters.

2.1.4 Complex Event Processing

Complex event processing (CEP) is a set of techniques and tools to help us understand
and control event-driven information systems [Luc01]. CEP focus on the complexity of
dealing with a large amount of events which come from information systems such as cell
phones, sensor networks, Internet, etc. CEP pays a special attention to the way events are
correlated to form complex events, events that only happen if many other events happen.
A CEP system monitors the cloud of events that results from running big applications and
detects the occurrence of complex events by using techniques such as pattern matching.

22 Chapter 2 — State of the Art

Events are correlated in terms of time, causality and aggregation. A relationship of time
defines a physical ordering of events by timestamping them. A relationship of causality
defines a logical ordering where events are defined as caused by others. A relationship of
aggregation defines complex (or composite) events, which aggregate several simpler events.
The timing of a complex event starts when the earliest activities of its member events start,
and ends when the latest activities of its members end [Luc01]. These relationships have
mathematical properties. They are transitive and asymmetric forming a partial ordering,
i.e. there can be events that are not ordered by the relationship.

The different approaches to CEP define pattern languages that make it possible to relate
events and define complex events in terms of others. Events are related by using patterns
that are matched against the cloud of events. In general, these patterns provide means
to express the conjunction, the disjunction and the causality of events. The conjunction
A and B and C matches a set of three events, A, B and C. The disjunction A or B or C

matches any one of A, B or C. The causal relation A → B matches pairs of events A, B where
A causes B. A pattern can also have a condition associated to be satisfied when matching
events.

(Dollars ?X, ?Y; Account ?A)

(Deposit(?X, ?A) → Withdraw(?Y, ?A)) where ?Y < ?X

Listing 2.16: Simple event pattern in Rapide.

As an example, Listing 2.16 shows a simple pattern written in the language Rapide-
EPL [Luc97, Luc01], a strong typed language specially designed to support CEP. The
pattern defines the variables ?X, ?Y and ?A, which are bound during pattern matching.
This pattern matches any pair of causally related Deposit and Withdraw events on the
same account. The guard, defined by using the keyword where, restricts the matches to
those pairs for which the amount withdrawn is less than the amount deposited.

The language Rapide-EPL provides several other relational operators such as the inde-
pendent operator, the before operator, the union operator and the disjoint-union operator.
For example, the before operator makes it possible to define an expression A < B that
matches pairs of events A, B where A has an earlier timestamp than B.

(Network_Path ?Route; Real ?Load)

Report(?Route, ?Load) where ?Load > 7 =>

generate Notify(Manager_Console, "Warning", Name(?Route), ?Load, Time)

Listing 2.17: Simple event pattern rule in Rapide.

The approaches to CEP make it also possible to program reactions to the matching of
these patterns following an Event Condition Action model [DHW94]. These reactions are
defined as event pattern rules. For example, the language Rapide provides the symbol =>
to define sequential rules (there is also an operator for parallel rules). Listing 2.17 defines a
rule that generates an event Notify when the event Report matches with a certain binding
for the variables ?Route and ?Load such that ?Load is bigger than 7. Note that this rule
can also be seen as a way to create complex events.

The language Rapide-EPL has several other features for dealing with complex events
in distributed settings. We have just shown the basic ones. A more recent language

Chapter 2 — State of the Art 23

EventJava [EJ09] provides support for CEP on top of Java. Listing 2.18 shows an
example of an event pattern rule in EventJava. It consists of a trading example comparing
earningsReport and analystDowngrade events in terms of their timestamps. It matches
pairs of events where analystDowngrade occurs after earningsReport. The construction
when makes it possible to test condition in the matching. If a stock has a negative earnings
report (the actual earnings per share, epsAct, is less than the estimate epsEst), followed
by an analyst downgrade to “Hold”, then the algorithm recommends selling the stock.

class StockMonitor {

Portfolio p;

event earningsReport(String firm, float epsEst, float epsAct, String period),

analystDowngrade(String firm1, String analyst, String from, String to)

when (earningsReport < analystDowngrade && firm == firm1 &&

epsAct < epsEst && to == "Hold") {

p.RecommendSell(firm);

}

}

Listing 2.18: Event pattern rule in EventJava.

There are several other CEP approaches [WDR06, ADGI08, BDG+07] with different
features that help us better understand the cloud of events that results from running
today’s complex applications. We have shown the most important ideas to give a general
flavor of CEP.

2.1.5 Summary

This section has described the basic elements of Event-Based Programming. Sec-
tion 2.1.2 defined the essence of this paradigm: implicit invocation. The pattern Observer
or the systems Publish/Subscribe provide a dedicated protocol and infrastructure, which
support the implicit invocation of events (state changes) from sources to destinations. Sec-
tion 2.1.3 described how some programming languages have included language support
for EBP. They design events and event handlers as type-safe language constructs, whose
use reduces the amount of glue code needed for implementing EB applications. C#, a
representative language in this context, features imperative events (events explicitly trig-
gered in application’s code), event handlers as plain methods, and dynamic registration
of objects interested in particular events. Interestingly, in order to facilitate the verifica-
tion of electronic devices, the language e introduces declarative events: events defined in
terms of others in a declarative way. Finally, Section 2.1.4 described advanced techniques
to correlate events and to create complex ones. These techniques make it possible to better
understand the cloud of events that results from complex applications and thus better
adapt these applications.

2.2 Aspect-Oriented Programming

The previous section described the EBP paradigm. It showed how applications are
decoupled by using the implicit invocation pattern. Destination components interested
in the changes of source components get notifications when these changes arise, without
sources being coupled to destinations. However, there are some problems that cannot be

24 Chapter 2 — State of the Art

solved by using EB or OO techniques: preplanning, tangling and scattering. As an example,
the implementation of a figure editor using Java Listeners (see Listing 2.6) shows the
needs for defining relevant events in the class Figure and triggering them within different
methods of the class. This is also the case for the other approaches described in the previous
section. If a subclass includes other methods that change the figure, proper notifications
of the events have to be included, too. Preplanning refers to the necessity of planning in
advance the events that destinations could need in the future use of the class. Scattering
refers to the fact that the notifications of the event are present at many places in the code.
Tangling refers to the fact that a method has to notify an event, whereas the notification is
not part of its role. AOP provides a solution to these problems by modularizing the event
definitions.

To illustrate the contribution of AOP the remainder considers an implementation of
the figure editor in which figures do not know views interested in their changes and there
is not explicit notification of events either. This section will show how the views can get
notified of changes in the figures in a transparent way by using aspects.

2.2.1 Introduction

AOP is the convergence point of a group of technologies that emerged to address the
limitations of OO technology in achieving SoC across more that one dimension. Starting
in the late 90’s, AOP has been the subject of wide research and nowadays it covers the
whole software development process with the acronym AOSD (Aspect-Oriented Software
Development).

At the end of the 90’s, Kiczales et al. [KLM+97] observed that there were some design
decisions that were difficult to cleanly capture in actual code due to the fact that they
cross-cut the basic functionality of the system, they called them aspects. They observed
that contemporary languages (either procedural, functional or object-oriented) did not
offer mechanisms to cleanly modularize these design decisions. Whereas those languages
were well-suited to implement a functional decomposition of a system, implementation of
aspects, associated to non-functional concerns, was forced to be scattered throughout the
code, resulting in “tangled” code, making code excessively difficult to develop and maintain.
Kiczales et al. [KHH+01] introduced the AspectJ extension to Java, a language that
permits the expression of crosscutting concerns in a modular way. AOP is nowadays an
accepted paradigm and AspectJ is considered the AOP standard for Java.

In technical terms, the “traditional” premise is that a functional decomposition of a
system is implemented using “standard” components (modules in a procedural or functional
style, classes in an object-oriented style), producing what is called a base application.
Aspects implement the crosscutting concerns by identifying in the base application places
at which the code implementing the crosscutting concerns has to be invoked. Later on, at
runtime, the aspects are implicitly invoked at the described points.

The understanding of an aspect-oriented program as consisting of a base application
and aspects is considered as an asymmetric view. Hyper/J [TOHS99] is another approach
to composing concerns that can be qualified as symmetric: there are no distinguished base
concerns. A concern is composed of a set of plain Java classes, a hyperSlice, and concerns are
composed together as specified by a hyperModule. A hyperModule specifies relationships
between program points from the hyperSlices, i.e., classes, class and instance members,
defining how these program points should be composed using basic operations such as
renaming and merging. Such an approach is by essence more regular than an asymmetric

Chapter 2 — State of the Art 25

approach. It does not mean it is simpler. An essential source of complexity is the fact that
there is a considerable gap between the (static) program and its execution. For instance,
in the absence of a notion of slice interface, looking at an individual slice does not give a
clue of the role of the slice in the composition.

There are several approaches associated to AOSD at the different stages of the software
development. This dissertation is mostly interested in approaches at the language level such
as AspectJ, CaesarJ [AGMO06], AspectS [Hir02], and Classpects [RS05, RS09].

The remainder describes the different AOP concepts and mechanisms. These mecha-
nisms are divided in two: behavioral aspects, which change the behavior of a base applica-
tion, and structural aspects, which change its structure.

2.2.2 Behavioral Aspects

This section clarifies the concepts associated to AOP. It takes definitions from the
book Aspect-Oriented Software Development [FECA05] and uses the language AspectJ
(and sometimes others) to exemplify the concepts.

2.2.2.1 Join-Point Model

In general, aspects are invoked on well-defined points in the program execution called
join points. The possible kinds of join points are described in a join-point model. Method
calls, method executions, access to object fields are typical examples of join points.

Definition 2.6. Join points are well-defined places in the structure or execution flow of a
program where additional behavior can be attached. A join point model (the kinds of joint points
allowed) provides the common frame of reference to enable the definition of the structure of
aspects.

Filman et al. [FECA05]

2.2.2.2 Pointcut Model

The join points that are relevant to an aspect are selected using predicates called
pointcuts. In most aspect languages, most notably in AspectJ, a pointcut is an expression
combining a set of dedicated predicates that reason about the entire possible set of join
points in a software application [BCRD08]. In AspectJ these dedicated predicates are
called pointcut designators. A pointcut uses these predicates to selects the subset of the
application join points that are considered relevant to the aspect.

Definition 2.7. A pointcut is a relationship ’join point -> boolean’, where the domain of the
relationship is all possible join points.

van den Berg et al. [vdBCC05]

Listing 2.19 shows a pointcut written in AspectJ. It selects the executions of the
method moveBy of Figure objects. The pointcut designator execution means the execution
of a method and is used together with a pattern that identifies such a method. Similar
constructs are provided by the AspectJ language to select method calls, field accesses,
between others. In addition, a pointcut can obtain contextual information about the join

26 Chapter 2 — State of the Art

pointcut change(Figure figure):

execution(* Figure.moveBy(..,..)) && this(figure)

Listing 2.19: AspectJ pointcut.

point using particular pointcut designators. For example, the this pointcut designator of
the example is used to get the contextual object involved in the method execution (the
one that is obtained when using this in the method body).

AspectJ provides a variety of pointcut designators, which make it possible to se-
lect precise points in the program execution. Most AspectJ pointcut designators can be
tied to specific places in the code of an application. The pointcut designators cflow and
cflowbelow are two exceptions. They make it possible to define pointcuts that depend on
the runtime state of the program execution: its control flow. Besides the pointcut designa-
tor cflow, it is possible to say that AspectJ pointcuts are static because they cannot
refer to dynamic context: variables or methods in the scope of the structure where they are
defined. Even if AspectJ includes a pointcut designator if, which makes it possible to
test conditions, this designator can only use static variables, static methods or the variables
declared in the pointcut.

?jp matching

reception(?jp, ?methodName, ?args),

method(?methodName, moveBy),

class(?class, Figure),

inObject(?jp, ?figure)

Listing 2.20: CARMA pointcut.

Languages such as CaesarJ and AspectWerkz [BV04] provide AspectJ-like
pointcuts. A different model is adopted by languages such as CARMA [GB03] and
ALPHA [OMB05], which define pointcuts using logical queries. Listing 2.20 expresses
the previous pointcut in CARMA.

The pointcut designators in these languages correspond to logical rules. In this code,
the rule reception selects the reception of a message, the rules method and class select
static program structures, the rule inObject selects the contextual object of the join point.
Differently to AspectJ-like pointcuts, logical pointcuts are not static. They permit the
inclusion of contextual variables in the process of matching a join point. Indeed, Gybels et
al. [GB03] present CARMA as a dynamic pointcut language.

2.2.2.3 Advice

The aspect functionality is implemented in pieces of advice. In general, a piece of advice
binds a pointcut and an action, the advice body, to be performed when the pointcut selects
a join point. Pieces of advice also make it possible to define the location of the action:
before, after, or instead of (around) the join-point execution.

Chapter 2 — State of the Art 27

Definition 2.8. Advice is the behavior to execute at a join point. For example, this might
be the security code to do authentication and access control. Many aspect languages provide
mechanisms to run advice before, after, instead of, or around join points of interest.

Filman et al. [FECA05]

after(Figure figure) : change(figure) {

view.repaint(figure.getArea());

}

Listing 2.21: AspectJ after advice.

Listing 2.21 shows a piece of advice, written in AspectJ, which binds the pointcut
of Listing 2.19 with code that is executed after the execution of a join point matched by
change. The syntax of pieces of advice with before control is similar to the syntax used in
Listing 2.21, but the keyword before is used instead of after. In such a case the piece of
advice is executed before the join point.

void around(Figure figure) : change(figure) {

i f(!figure.isReadOnly())

proceed(figure);

}

Listing 2.22: AspectJ around advice.

In particular, pieces of advice tagged as around are executed instead of the join point.
The keyword proceed offers then the possibility of performing the original join-point exe-
cution inside the advice body. As an example, Listing 2.22 shows a piece of advice, written
in AspectJ, which binds the pointcut of Listing 2.19 with code that executes the initial
join point, through the use of proceed, only when the figure is not read-only.

1 /** @Around execution(* Figure.moveBy(..)) **/

2 void myMethod(JoinPoint joinPoint) {

3 Figure figure = (Figure) joinPoint.getThis();

4 i f(!figure.isReadOnly())

5 joinPoint.proceed();

6 }

Listing 2.23: Advice in AspectWerkz.

Whereas in AspectJ the advice body corresponds to a Java block of code (with
an extended syntax including the keyword proceed in case of around control), the
AspectWerkz language defines a piece of advice as an annotated method. The anno-
tation binds the method with some pointcut. Such a method receives an argument of type
JoinPoint as parameter, which corresponds to the reification of the current join point and
can be used to get its parameters or to proceed. Listing 2.23 shows the AspectWerkz
version of the AspectJ piece of advice of Listing 2.22. In Line 3, a call to the method
getThis on the JoinPoint object obtains the receiver of the call moveBy, whereas in line 5
the method proceed is called in order to execute the join point.

28 Chapter 2 — State of the Art

1 adviceFigureMovement

2 ^ AsAroundAdvice new

3 pointcut: (AsJoinPointDescriptor

4 targetClass: Figure targetSelector: #moveBy)

5 aroundBlock: [:receiver :arguments :aspect |

6 receive isReadOnly ifFalse: [aspect proceed]]

Listing 2.24: Advice in AspectS.

Like in Java, the AspectS [Hir02] extension to SmallTalk provides advice bodies
as blocks. However, differently to Java blocks, SmallTalk blocks are first-class closures.
Thus, advice blocks in AspectS can receive parameters such as the receiver of the message,
the arguments passed in the call and a representation of the aspect (which can be used to
proceed), while being more flexible than a method. Listing 2.24 implements in AspectS
the AspectJ piece of advice of Listing 2.22. Note in Line 6 that proceed is a message sent
to the third parameter received by the advice block.

2.2.2.4 Aspect Definition and Instantiation

Pointcuts and pieces of advice are put together in a module called aspect. An aspect
encapsulates the implementation of a concern.

Definition 2.9. An aspect is a modular unit designed to implement a concern. An aspect
definition may contain some code (or advice [...]) and the instructions on where, when, and
how to invoke it.

Filman et al. [FECA05]

Most aspect-oriented approaches conform to an asymmetric decomposition technique:
aspects are defined as a special kind of modules separating crosscutting concerns. Aspects
are equipped with pointcuts and pieces of advice and can share elements from the base
language in which they have been embedded such as methods and fields. In languages such
as AspectJ and AspectWerkz, for example, aspects are defined similarly to standard
classes, but they follow particular instantiation strategies. Differently to classes, aspects
cannot be explicitly instantiated. An aspect is implicitly instantiated by the language at
load time, by default as a singleton. AspectJ also provides per-object implicit instantiation
for aspects defined by using perthis(pointcut) or pertarget(pointcut). These strategies
instantiate one aspect per specified object. The pointcuts of an aspect instantiated for
a particular object, using perthis or pertarget, can only select join points associated
to the corresponding object, i.e. join points in which the result of the designator this

or target is the corresponding object, respectively. AspectJ also provides strategies that
instantiate an aspect for particular flows of execution, defined by using percflow(pointcut)
or percflowbelow(pointcut).

As an example, Listing 2.25 defines an AspectJ aspect that, given a view and a list
of relevant figures, updates the view as soon as any of the relevant figures change.

AspectJ aspects can include standard class members, which are accessible in advice
code, i.e. advice code is instance-specific. For example, Line 8 of Listing 2.25 uses the
instance variable relevantFigures to test whether the figure bound by the pointcut is a
relevant figure. This is, however, not the case for pointcuts, which are static. The pointcut

Chapter 2 — State of the Art 29

1 aspect Aspect {

2 DrawingView view; List relevantFigures;

3

4 pointcut change(Figure figure):

5 execution(* Figure.moveBy(..)) && this(figure)

6

7 after(Figure figure) : change(figure) {

8 i f(relevantFigures.contains(figure))

9 view.repaint(figure.getArea());

10 }

11 }

Listing 2.25: AspectJ aspect.

of Line 4 observes the execution of all the figures of the editor, not only the relevant ones.
Even if AspectJ makes it possible to use a pointcut designator if to test conditions when
matching a join point, the condition cannot include instance-level context.

2.2.3 Structural Aspects

Structural aspects make it possible to change the static structure of a program. AspectJ
provides a mechanism called inter-type declarations, also known as introductions, which
makes it possible to change the structure of a base application by introducing members or
ancestors to a target class or interface.

1 aspect SubjectObserverAspect {

2 declare parents: Figure extends Subject;

3 declare parents: DrawingView implements Observer;

4

5 public void DrawingView.update(Subject s) {

6 repaint(((Figure)s).getArea());

7 }

8

9 pointcut change(Subject s):

10 execution(void Figure.moveBy(..)) && this(s);

11

12 after(Subject s): change(s) {

13 for (Observer obs: s.observers)

14 obs.update(s);

15 }

16 }

Listing 2.26: AspectJ aspect using inter-type declarations.

For example, the AspectJ aspect of Listing 2.26 uses inter-type declarations for equip-
ping the classes of the figure editor with the infrastructure of the pattern Observer. Lines 2
and 3 set Subject and Observer as ancestors of Figure and DrawingView, respectively. A
figure can, in this way, keep a list of observers interested in its changes and a drawing view
can register itself as an observer of a figure. By using inter-type declarations, Line 5 imple-
ments the method update (declared in the interface Observer) in the class DrawingView.

30 Chapter 2 — State of the Art

The pointcut change of the aspect is similar to the pointcut change of Listing 2.25. Howe-
ver differently to the aspect of Listing 2.25, upon a change in a figure, the piece of advice
of the aspect of Listing 2.26 only notifies the observers registered for the figure.

interface Subject {

void addObserver(Observer obs);

void removeObserver(Observer obs);

}

abstract aspect SubjectObserverProtocol {

Collection<Observer> Subject.observers = new Vector<Observer>();

public void Subject.addObserver(Observer obs) {...}

public void Subject.removeObserver(Observer obs) {...}

abstract pointcut change(Subject s);

after(Subject s): change(s) {

for (Observer obs: s.observers)

obs.update(s);

}

}

Listing 2.27: AspectJ aspect using inter-type declarations.

Java does not support multiple inheritance so that setting Subject as a superclass of
Figure is only possible because the latter has not been defined with a superclass. If a class
already has a superclass, inter-type declarations can still be used for manually including
all the members of Subject in such a class. An additional feature of AspectJ avoids this
complexity. Inter-type declarations make it possible to associate an implementation to the
members declared in an interface. Setting the interface as an ancestor of a class makes
the associated implementation part of the class. For example, the aspect of Listing 2.27
uses inter-type declarations to associate an implementation to Subject, defined this time
as an interface. Setting Subject as a super-interface of Figure in Listing 2.28 makes the
associated implementation part of the class.

aspect SubjectObserverProtocolImpl extends SubjectObserverProtocol {

declare parents: Figure implements Subject;

declare parents: DrawingView implements Observer;

public void DrawingView.update(Subject s) {

repaint(((Figure)s).getArea());

}

pointcut change(Subject s):

execution(void Figure.moveBy(..)) && this(s);

}

Listing 2.28: AspectJ aspect.

The aspect of Listing 2.27 modularizes the infrastructure of the pattern Observer,
making it possible to apply the pattern to any application with a small amount of glue

Chapter 2 — State of the Art 31

code. The abstract pointcut change and the corresponding piece of advice encapsulates the
subject-observer protocol. Listing 2.28 applies the pattern-Observer infrastructure to the
figure editor (1) by setting Subject and Observer as ancestors of Figure and DrawingView,
respectively, (2) by introducing an implementation of the method update in DrawingView,
(3) by providing a concrete implementation of the pointcut change.

As seen in this section, the structural aspects of AspectJ complement the behavioral
aspects. Structural aspects are used to add the fields supporting the infrastructure, beha-
vioral aspects are used to capture the changes and trigger notification when they occur.

2.2.4 AOP Approaches

Besides the AspectJ-like approaches, some modern AOP approaches exist that so-
mehow alter some of the elements of the classical view of AOP. On the one hand, some
authors have observed similarities between the mechanisms of EBP and the mechanisms
of AOP. Some of them propose a link between the implicit invocation mechanisms of both
paradigms, in particular, a link between join points and events:

An AspectJ joinpoint with aspect code to be attached to it can easily be seen as an event-based
system: when the event described by the joinpoint occurs, the specified code (essentially, a
callback) is executed. Pointcuts are a means of describing higher-level events in terms of
primitive ones.

Walker and Murphy. [WM01]

This section describes EAOP [DFS04] and Ptolemy [RL08] as two representa-
tive approaches taking these observations into account. On the other hand, languages
like Ptolemy treat aspects as plain classes. There is no specific aspect construct
as in AspectJ. This feature is shared by languages such as AspectWerkz [BV04],
Spring [JHD+10], JBoss AOP [JBo10], Classpects [RS05] and CaesarJ [AGMO06].
These languages aim to break down the differences imposed by the asymmetric view of
AOP. This section describes Classpects and CaesarJ as the most representative pro-
posals in this regard.

2.2.4.1 EAOP

Filman et al. [FH02] describe how AOP meets the need to be able to respond to sequence
of events. AOP applications requires to be able to quantify over anything that changes the
data or program counter state of the abstract machine executing a given program. Whereas
the abstract interpreter is, in general, not completely accessible at the programming level,
much of the program code (text or byte code) is accessible and most dynamic events are
tied to places in such code.

Event-based AOP (EAOP) [DFS04] is an aspect-oriented (AO) model that considers
join points as execution events occurring in an application. Aspect weaving is modeled as a
monitor that handles these events by inserting instructions according to execution states.
EAOP is richer than AspectJ-like approaches in that pointcuts describe sequences of
events taken from the history of computation. An aspect describes the instructions to
perform along specific event sequences. A big contribution of EAOP is a framework for
detection and resolution of aspect interactions based on sequences of events.

32 Chapter 2 — State of the Art

The link between events and join points can also be observed in Concurrent EAOP
(CEAOP) [DLBNS06], an extension of EAOP for concurrent settings. The approach pro-
poses a translation from aspects into Finite State Processes [MK06]. An aspect is expressed
in terms of actions and atomic events. These events coordinate several aspects together.

2.2.4.2 Ptolemy

Ptolemy [RL08] is a language that combines the ideas of implicit invocation of EBP
with ideas from AO languages. Ptolemy is a simple OO language that includes event
types. An event of a given type can be triggered at sources as an imperative event and
quantified at destinations. The language has classes, objects, inheritance and subtyping,
but it does not have super, interfaces, exception handling, built-in value types, privacy
modifies, or abstract methods. Let us explain the main features of the language by means
of an example.

1 Figure evtype Change {

2 Figure changedFig;

3 }

4 class Figure {

5 void moveBy() {

6 Figure changedFig = this;

7 event Change { /* code changing the figure */ this }

8 }

9 }

10 class Aspect extends Object {

11 DrawingView view; List relevantFigures

12 Aspect init() {

13 register(this)

14 }

15 Figure update(thunk Figure next, Figure changedFig) {

16 Figure res = invoke(next);

17 i f(relevantFigures.contains(changedFig))

18 view.repaint(changedFig.getDrawingArea());

19 res

20 }

21 when Change do update

22 }

Listing 2.29: Ptolemy example.

Listing 2.29 implements an aspect that updates a view when a group of figures of an
editor change. Events are supported by means of event types. Change is an event type
representing a change in a figure (Line 1). It declares a return type of type Figure and
has as data the figure that changes. An occurrence of the event type is triggered with the
keyword event and a block of code, hereafter referred to as the event expression or the
event’s code. The event expression is defined as returning an instance of the return type
declared by the event type (Line 7). Its evaluation can be seen as defining an explicit join
point. Ptolemy makes it possible to replace the execution of the event expression by a
call to a handler method. For example, the method update of the class Aspect (Line 15)
can be used as a handler method for an event of type Change. The handler takes an event
closure as its first argument, the data of the event type as second argument and returns

Chapter 2 — State of the Art 33

an instance of the return type declared by the event type. An event closure contains code
needed to run the applicable handlers and the original event’s code. The call to invoke runs
the event closure (Line 16), which can be interpreted as raising the next handler or the
event expression if there is no more handlers. After running the rest of the handlers and
the event expression, the method repaints the view. The registration of the handler update
to events of type Change is made in two steps. First, the class includes a statement when,
which statically sets the method update as a handler of events of type Change (Line 21).
Second, the instance of Aspect has to register itself as an observer of the events at runtime
(Line 13).

Ptolemy combines the global quantification of AOP with the explicit triggering of
EBP. Similarly to an AspectJ aspect, the observation of a Ptolemy aspect is global. In
the previous example, an instance of Aspect observes all possible events of type Change

occurring for all possible instances of Figure. Ptolemy unifies imperative events and join
points. Whereas in EAOP a join point is seen as an implicit event occurring as a result
of a computation and is defined declaratively, in Ptolemy a join point is an imperative
event explicitly triggered as the execution of a block of code.

2.2.4.3 CaesarJ

The language CaesarJ [AGMO06] is an extension to Java. An aspect is implemented
as a class, which can include AspectJ pointcuts and pieces of advice. It uses the key-
word cclass for classes supporting the specific CaesarJ features. The keyword class

is reserved for pure Java classes for backwards compatibility. In addition, CaesarJ im-
plements virtual classes and family class polymorphism, together with propagating mixin
composition (Section 2.3.1 describes this feature).

1 cclass Aspect {

2 DrawingView view; List relevantFigures;

3

4 pointcut change(Figure figure):

5 execution(* Figure.moveBy(..)) && this(figure);

6

7 after(Figure figure) : change(figure) {

8 i f(relevantFigures.contains(figure)) {

9 view.repaint(figure.getArea());

10 }

11 }

12 }

Listing 2.30: CaesarJ aspect.

As an example, Listing 2.30 implements an aspect that updates a view when a group
of figures change. Note how the pointcuts and the piece of advice are similar to the ones
implemented by the AspectJ aspect of Listing 2.25. Indeed, similarly to AspectJ, pieces
of advice are dynamic since they can use instance-level state and pointcuts are static so
that they observe the global occurrence of join points. The main difference is, however,
the fact that a CaesarJ aspect is a class, and thus it can be explicitly instantiated. In
Listing 2.30, the class Aspect can be explicitly instantiated for different views and for
different groups of figures. When the pointcut change matches a join point, each aspect

34 Chapter 2 — State of the Art

instance will be notified and its corresponding view will be repainted if the figure that
changes corresponds to a relevant figure.

2.2.4.4 Classpects

Classpects [RS05] aspects are plain classes that have been equipped with pointcuts
and pieces of advice similarly to CaesarJ aspects. A novelty of this language is the
concept of instance-level advising and the fact that advice bodies are implemented as plain
methods.

1 class Aspect {

2 DrawingView view;

3

4 Aspect(DrawingView view, List figures) {

5 this.view = view;

6 for(Object fig: figures)

7 addObject(fig);

8 }

9 void around execution(* Figure.moveBy(..)) && this(fig) && aroundptr(d):

10 onChanged(Figure fig, AroundADP d);

11

12 void onChanged(Figure figure, AroundADP d) {

13 view.repaint(figure.getArea());

14 d.innerInvoke(); /* equivalent to a proceed call */

15 }

16 }

Listing 2.31: Classpects aspect.

Listing 2.31 implements an aspect that updates a view when a group of figures change.
The functionality of a piece of advice, i.e. its body, is a plain method in Classpects.
A join-point-method binding construct ties together a pointcut and a method, such that
when a join point is matched the method is executed (Line 9). Similarly to CaesarJ, the
class can be instantiated for different views and groups of figures. However, in CaesarJ
the aspect observes the join points associated to all the figures of the editor, not only the
ones it is interested in. Consequently, the piece of advice has to test whether the figure
is in its list of relevant figures before repainting the view as in Line 8 of Listing 2.30.
The instance-level advising of Classpects makes it possible to associate an aspect with a
group of relevant objects, by using the keyword addObject. As a result, the pointcuts of the
aspect will only match join points in the context of the relevant group of objects avoiding
additional tests in the pieces of advice. For example, Line 7 of Listing 2.31 associates the
aspect with each figure passed as parameter in the constructor and therefore the piece of
advice does not need to include any test.

2.2.4.5 Comparison

Implicit vs. explicit instantiation. In Classpects, explicit instantiation is motivated
by previous work of Sullivan et al. [SGC02], which has shown that the implicit instantiation
scheme, as provided by AspectJ, does not properly cover the implementation of behavioral
relationships. Indeed, AspectJ makes it easy to associate an aspect instance to a class

Chapter 2 — State of the Art 35

instance but does not make it possible to directly associate an aspect instance to two or
more object instances (as in Association aspects [SMU+04]). In CaesarJ, explicit instan-
tiation is key in managing dynamic deployment of aspect instances. CaesarJ significantly
differs from Classpects with respect to inheritance in that it provides virtual classes and
propagating mixin composition, which gives more structuring power. Also, as Section 2.3.2
will show, CaesarJ differs in that it supports structural aspects. However, the principle
is the same in both cases: there is a uniformity of treatment between aspect classes and
plain classes.

The different implementations of the figure editor shown in this chapter help to better
clarify the differences between implicit instantiation and explicit instantiation. In a figure
editor there are several views and figures, and each view is interested in a certain group
of figures. Listing 2.25 shows an AspectJ aspect with a view and a group of figures as
instance variables. Its piece of advice is executed when any figure of the editor changes. A
proper condition is used in the advice body to select the relevant figure changes and notify
the view when necessary. However, the aspect is a singleton. Consequently, it only makes
it possible to communicate a single view with a single group of figures. One may think of
using the per-object instantiation strategies of AspectJ, instantiating one aspect per view,
and then setting a group of relevant figures for each instance at runtime. However, this
does not work. An AspectJ aspect instantiated per object only applies its pointcuts to
join points associated to the corresponding object. Clearly, the interesting join points are
associated to figures and not to views. At the same time, instantiating an aspect per figure
could be a solution for the considered example, but this solution is not scalable because
the number of figures in an editor is in general much bigger (potentially unbounded) than
the number of views. Explicit instantiation makes it possible to explicitly instantiate an
aspect. As a result, several aspects exist at runtime, each aspect related to a particular
view and a particular group of figures, without constraints such as the ones imposed by the
per-object instantiation of AspectJ. This is the case of Ptolemy and CaesarJ, in which
an aspect is a class, i.e. an aspectual class (see Listing 2.29 and Listing 2.30, respectively).
Similarly to the AspectJ aspect of Listing 2.25, each aspectual class observes a change in
any figure of the editor and the piece of advice filters the relevant figure changes and notify
the corresponding view. Unlike in AspectJ, there are several aspectual-class instances.
Explicit instantiation is also implemented in Classpects. Additionally, this language
makes it possible to restrict the observation of an aspectual class to its relevant group of
figures as Listing 2.31 shows. Thus, differently to Ptolemy or CaesarJ pieces of advice
do not need to filter relevant figure changes.

Structural AspectJ aspects provides an acceptable solution with a singleton aspect as
Section 2.2.3 shows. The pattern Observer is superimposed in the figure editor such that a
figure keeps a list of observers. The implementation makes it possible to tie together arbi-
trary views and arbitrary groups of figures, and the aspect implements the communication
protocol in an oblivious way. However, the solution is more verbose than using explicit
instantiation.

Aspect members. With respect to pointcuts and advice, CaesarJ follows AspectJ.
Classpects diverts from it when dealing with advice. As this section has shown, pieces of
advice are anonymous. The lack of name results in the impossibility of selecting a specific
piece of advice, which is an issue when implementing higher-order concerns [RS05], i.e.,
aspects that advise aspects. Classpects solves this issue by replacing the advice body by
a method call.

36 Chapter 2 — State of the Art

AspectJ localizes interactions with the join point in the advice body. This includes
exposition of context information and actual execution of the join point in an around piece
of advice via proceed. This is not possible in Classpects as the advice body is reduced
to a method call. Instead, join point information, including a closure representing the join
point, is accessed via specific primitive pointcuts. This data can then be freely used in
methods. The result of all this is that the advice body, reduced to a method call, can now
be easily selected by a pointcut call.

This leads the authors of Classpects to say that advice is eliminated in favor of
methods. This is using a slightly different terminology from the one this chapter has used so
far: in Classpects, a piece of advice is called a binding declaration and the corresponding
advice body is called advice. This solution solves the issue of selecting advice bodies but
the piece of advice itself remains anonymous and cannot be redefined.

2.2.5 Obliviousness, Quantification and Modularity

The term obliviousness in AOP refers to the fact that by looking at a piece of code
in a base program, it is not possible to be aware of the action of aspects on such a piece
of code. Obliviousness is desirable because it allows greater separation of concerns in the
system creation process - concerns can be separated not only in the structure of the system,
but also in the head of the creators [FECA05]. EBP, for example, does not enable complete
obliviousness. An EB program explicitly trigger events. Consequently, it is possible to
predict that some action may take place even though neither the observers not their actions
are known.

Complete obliviousness is good because it avoids tangling. However, it requires powerful
mechanisms of quantification. Quantification refers to the ability of a language to talk about
precise execution points in the base program. Quantification is needed in AOP for inserting
crosscutting functionality at the right places.

AOP is said to be a mix of quantification plus obliviousness [FF05]. It improves the
modularity of software as it makes it possible to modularize crosscutting concerns. However,
complete obliviousness does not make it possible to build truly modular systems. True
modularity requires a contract between the interfaces of two components, so that it is not
possible to modify the interface of one of them without the other being aware of such a
change. In AOP, a base program can easily break the assumptions made by aspects, which
is known as the pointcut fragility problem [KS04].

2.2.6 Summary

This section has described Aspect-Oriented Programming. This paradigm makes it
possible to modularize crosscutting concerns by using implicit invocation, which is enabled
through the use of a pointcut-advice model. By using pointcuts, aspects identify points in
the execution of a program in an oblivious way, i.e. without the sources of these compu-
tations being aware of the aspect observations. Then, aspects attach dedicated pieces of
code (pieces of advice) implementing the crosscutting concerns to these execution points.
Most AO approaches are asymmetric because they make a separation between a base ap-
plication and aspects. Some approaches such as CaesarJ and Classpects propose to
eliminate aspects as dedicated language constructs in the favor of a more regular design.
Other approaches such as Ptolemy try to make AOP and EBP closer by modeling join
points as special kinds of events. Languages such as AspectJ complements the behavioral

Chapter 2 — State of the Art 37

vision of AOP with structural aspects, which makes it possible to change the structure of
an application, also in an oblivious way.

2.3 Advanced OOP

The modules in conventional programming languages are not sufficiently extensible:
they do not provide mechanisms to extend definitions of existing classes and functions. An
individual class can be extended by means of inheritance, but this leads to creating a new
class rather than to refining the existing class, because the subclass does not automatically
replace its superclass in its relationships with other classes.

This section describes how mixin technology can improve the modularization of functio-
nal concerns. Mixins, first introduced in the Flavors system [Moo86b] and CLOS [Kee89],
are class definitions parametrized over the superclass. By providing an abstraction me-
chanism for inheritance, mixins remove the dependency of the subclass on the superclass,
enabling modular development of class hierarchies [BPS99].

This section presents mixins as an advanced OOP technique, even if it can be “almost”
considered as a symmetric AOP approach like HyperJ:

The scope of quantification is controlled by which classes inherit the mixin. That
is, we can quantify over the descendants of some superclass for a given single
method.[...] Except that class inheritance relationships are part of a class’s
definition, we would have an AOP system.[FECA05]

For the sake of this dissertation, this section illustrates mixin technology as supported
by the language CaesarJ.

2.3.1 Virtual Classes and Propagating Mixin Composition

Mixins are implemented in CaesarJ in the form of virtual classes. Composition of
mixins is enabled by propagating mixin composition. The concept of a virtual class stems
from the Beta programming language [MMP89] and was further developed in gbeta [Ern99a],
which introduced propagating mixin composition [Ern99b] and a type-safe family poly-
morphism [Ern01]. CaesarJ integrates these concepts to Java. It has different method
overriding semantics than Beta, and supports abstract methods and classes.

Virtual classes are late-bound inner classes. Like virtual methods, they can be refined
in subclasses of the enclosing class. They can also be considered as members of the objects
of the enclosing class. Objects with class members are called family objects; their members
are instances of their virtual class members. Analogously, the enclosing classes are referred
as family classes. A refinement of a virtual class, also known as a further binding, implicitly
inherits from the class it refines. In the further binding we can add new methods, fields
and inheritance relationships as well as override the inherited methods. In each family class
all references to a virtual class are always bound to its most specific refinement. Virtual
classes enable application of class inheritance on a larger scale: Inheritance between two
family classes is in principle inheritance between the groups of classes constituting these
families.

Large-scale multiple inheritance is enabled by propagating mixin composition. Any class
in CaesarJ, including family classes and virtual classes, can be used as a mixin. They are
parameterized over their super parameter, i.e., rather than extending a concrete superclass,

38 Chapter 2 — State of the Art

they extend a super parameter, which is not bound at their definition time but at com-
position time. Mixin composition in CaesarJ is a form of multiple inheritance, which is
based on linearization of the inheritance graph. Propagating mixin composition means that
the composition propagates into virtual classes: all inherited declarations of virtual classes
with the same name are automatically composed using the same composition semantics.

2.3.1.1 Modularization in Java

As an example, let us consider the modular development of a figure editor. A first
component implements the basic functionality of figures and a drawing view. A second
component extends the basic editor with drawing functionality.

1 interface IFigure {

2 void moveBy(int x, int y);

3 }

4

5 abstract class Figure

6 implements IFigure {

7 void moveBy(int x, int y) {

8 ...

9 }

10 ...

11 }

12

13 class Circle extends Figure {

14 void setRadius(double r) {

15 ...

16 } ...

17 }

18

19 class DrawingView {

20 Collection<IFigure> figures;

21 void add(IFigure f) {

22 figures.add(f);

23 } ...

24 }

Listing 2.32: Basic figure editor in Java.

Figure 2.32 implements the basic figure editor in Java. The interface IFigure declares
the methods of any figure in the editor. The class Figure represents the superclass of any
“primitive” figure.§ It implements the basic methods of figures such as moveBy. The class
Circle implements a particular type of figure: a circle. The class DrawingView implements
the aggregation of several figures.

1 interface IDrawableFigure

2 extends IFigure {

3 void draw(Graphics g);

4 }

5

6 abstract class DrawableFigure

7 extends Figure

8 implements IDrawableFigure { }

9

10 class DrawableCircle

11 extends DrawableFigure {

12 void draw(Graphics g) {

13 ...

14 }

15 void setRadius(double r) {

16 ...

17 } ...

18 }

19

20 class DrawableDrawingView

21 extends DrawingView {

22

23 void repaint() {

24 for(IFigure fig: figures) {

25 ((IDrawableFigure)fig).draw(g);

26 }

27 } ...

28 }

Listing 2.33: Extension of the basic figure editor with drawing functionality in Java.

§. The editor can have composite figures, but they are not relevant to this section.

Chapter 2 — State of the Art 39

Figure 2.33 implements the extension of the basic editor with drawing functiona-
lity. It provides a new interface IDrawableFigure, which extends IFigure with the me-
thod draw. The abstract class DrawableFigure extends Figure with the abstract method
draw of IDrawableFigure. All the subclasses of Figure implemented in the basic edi-
tor need to be redefined in order to implement the new method. For example, the class
DrawableCircle implements the redefinition of Circle. It extends DrawableFigure and
provides a proper implementation of draw. Since Java does not support multiple inheri-
tance, DrawableCircle cannot inherit from Circle and the methods such as setRadius

have to be manually copied in the new class. An extension of DrawingView is also provided.
It implements a method repaint by invoking the method draw for each aggregated figure.

The implementation of the figure editor in Java does not support type-safe extension
with new functionality. The design of the extension presented in Figure 2.33 is not type-
safe. For example, the type system does not prevent the programmer from aggregating an
instance of Circle to an instance of DrawableDrawingView. As a result, a type cast is
required at line 25 to call the newly introduced method draw. This type cast would cause
a runtime error if an object with an inappropriate type is set.

2.3.1.2 Modularization in CaesarJ

1 cclass Editor {

2 abstract cclass IFigure {

3 abstract void moveBy(int x, int y);

4 ...

5 }

6

7 abstract cclass Figure

8 extends IFigure {

9 void moveBy(int x, int y) {

10 ...

11 }

12 ...

13 }

14 cclass Circle extends Figure {

15 void setRadius(double r) {

16 ...

17 } ...

18 }

19

20 cclass DrawingView {

21 Collection<IFigure> figures;

22 void add(IFigure f) {

23 figures.add(f);

24 } ...

25 }

26 }

Listing 2.34: Basic figure editor in CaesarJ.

Figure 2.34 shows the implementation of the basic figure editor in CaesarJ. Declaring
the classes with the cclass keyword denotes that they have the special CaesarJ seman-
tics¶, i.e., the inner classes implementing the figures and the drawing view are virtual
classes. The figure interface is declared as an abstract virtual class.‖ The class Editor is a
family class.

Since the implementation of the figures and the drawing view are declared as virtual
classes they can be refined in the subclasses of the family class. For example, Figure 2.35
shows the implementation of the extension with drawing functionality. The class IFigure
is extended to include the method draw. The virtual class Circle is also refined in order
to implement draw. The class DrawingView is extended with the method repaint.

¶. The classes declared with the class keyword in CaesarJ preserve the standard Java semantics.
‖. Actually, here is no special syntax for virtual interfaces in CaesarJ. However, this is not a limitation

as compared to Java, because CaesarJ supports multiple inheritance for classes.

40 Chapter 2 — State of the Art

1 cclass DrawableEditor extends Editor {

2 abstract cclass IFigure {

3 abstract void draw(Graphics g);

4 }

5

6 cclass Circle {

7 void draw(Graphics g) {

8 ...

9 }

10 }

11 cclass DrawingView {

12

13 void repaint() {

14 for(IFigure fig: figures) {

15 fig.draw(g);

16 }

17 }

18 }

Listing 2.35: Extension of the basic figure editor with drawing functionality in CaesarJ.

Virtual classes implicitly inherit from their predecessor versions. The virtual classes
IFigure, Circle and DrawingView of DrawableEditor implicitly inherit from the vir-
tual classes IFigure, Circle and DrawingView of Editor, respectively. The superclasses
are implicitly inherited too, but rebound to their new implementations. For example, in
DrawableEditor the class Figure is not redeclared, but it is still implicitly inherited; the
super of the implicitly inherited version is bound to the refined version of IFigure in
DrawableEditor, hence, implicitly inheriting the method draw.

Virtual classes are also automatically rebound in type references, which enables a type-
safe access to the methods introduced in extensions. For example, at line 15 of Figure 2.35
no type cast is needed to draw a figure. The collection figures is declared in Editor with
elements of type IFigure, but in the context of DrawableFigure, the reference to IFigure

is rebound to the refined version of the class, which introduces the method draw. The type
system also ensures that only the figures of this family can be aggregated to the figures.

2.3.1.3 Comparison

The type system of CaesarJ enables type-safe extension of figures. Moreover, type-
safety is achieved without any sophisticated type declarations or any other code overhead.

1 cclass ObservableEditor

2 extends Editor {

3

4 abstract cclass Figure

5 extends Subject {

6 void moveBy(int x, int y) {

7 super.moveBy(x,y);

8 notify();

9 }

10 ...

11 }

12 cclass Circle {

13 void setRadius(double r) {

14 super.setRadius(r);

15 notify();

16 } ...

17 }

18 cclass DrawingView

19 extends Observer {

20 void update(Subject s) {

21 ((IFigure)s).draw(g);

22 }

23 }

24 }

Listing 2.36: Extension of the basic figure editor with pattern Observer in CaesarJ.

Since Java does not support multiple inheritance, different Java extensions of the
figure editor cannot be composed. This makes it impossible to reuse independent pieces of
behavior in different compositions. For example, Figure 2.36 is an extension incorporating

Chapter 2 — State of the Art 41

the pattern Observer to the figure editor in CaesarJ. It declares the class Figure as a
subject and the class DrawingView as an observer. The drawable behavior of Figure 2.35
and the observable behavior of Figure 2.36 are independent extensions of the behavior
of the figure editor. A figure editor that support both drawable figures and observable
figures would need both of them. Composition of such extensions is possible in languages
supporting multiple inheritance, but requires a lot of additional code. Extensions of the
figure editor are composable in CaesarJ. The previous extensions of the figure editor can
be composed using propagating mixin composition. This is done by simply declaring a
class CompleteEditor that inherits from both DrawableEditor and ObservableEditor:

cclass CompleteEditor extends DrawableEditor & ObservableEditor { }

CompleteEditor inherits all virtual classes of DrawableEditor and ObservableEditor,
and the virtual classes with the same name are again composed by the same multiple
inheritance semantics. This means that CompleteEditor implicitly contains virtual classes
IFigure, Figure, Circle and DrawingView. The compiler checks whether the composition
is consistent, otherwise the developer must provide missing method implementations or
resolve conflicting method implementations.

Composition of orthogonal behavioral extensions is fully automatic. In case of inconsis-
tencies, only the code for resolving these inconsistencies must be provided; the remaining
functionality is still composed automatically.

2.3.2 CaesarJ Mixins vs. Structural Aspects

cclass ObservableEditor2 extends Editor {

abstract cclass Figure extends Subject { }

cclass DrawingView extends Observer {

void update(Subject s) {

((IFigure)s).draw(g);

}

}

pointcut change(Subject s):

execution(void Figure.moveBy(..)) && this(s);

after(Subject s): change(s) {

for (Observer obs: s.observers)

obs.update(s);

}

}

Listing 2.37: Extension of the basic figure editor with pattern Observer in CaesarJ.

The structural aspects of AspectJ make it possible to introduce new members or
new ancestors to classes or interfaces. The concept of virtual-class refinement of CaesarJ
makes it possible to achieve the same in the context of a family class. For example, the
family class of Figure 2.37 plays the same role as the AspectJ aspect of Listing 2.26. Both
introduce Subject as an ancestor of Figure, Observer as an ancestor of DrawingView and

42 Chapter 2 — State of the Art

an implementation of the method update in DrawingView. In addition, both include the
same pointcut and the same piece of advice.

cclass SubjectObserverProtocol {

abstract cclass Subject { ... }

abstract cclass Observer { ... }

abstract pointcut change(Subject s);

after(Subject s): change(s) {

for (Observer obs: s.observers)

obs.update(s);

}

}

Listing 2.38: Extension of the basic figure editor with pattern Observer in CaesarJ.

The AspectJ modularization of the pattern-Observer infrastructure presented in Lis-
ting 2.27 can be programmed using family classes as in Figure 2.38. The family class
includes Subject and Observer as virtual classes, the abstract pointcut change, and the
corresponding piece of advice. Differently to the AspectJ implementation, Subject is a
normal class. It is not necessary to define it as an interface and include verbose code to
add members to such an interface as in Listing 2.27. Indeed, CaesarJ supports multiple
inheritance. Figure 2.39 implements in CaesarJ the analogous of the AspectJ aspect of
Listing 2.28. It introduces Subject and Observer as ancestors of Figure and DrawingView,
respectively, and implements the abstract pointcut change.

cclass ObservableEditor extends Editor & SubjectObserverProtocol {

abstract cclass Figure extends Subject { }

cclass DrawingView extends Observer {

void update(Subject s) {

((Figure)s).draw(g);

}

}

pointcut change(Subject s):

execution(void Figure.moveBy(..)) && this(s);

}

Listing 2.39: Extension of the basic figure editor with pattern Observer in CaesarJ.

The mixins of CaesarJ are expressive enough to achieve the same results as when
using inter-type declarations, in the context of a family class. However, there are some
differences between both mechanisms. On the one hand, a benefit of inter-type declarations
is that it refines classes by keeping their same names. In CaesarJ, if a program outside
the family class needs to use a refined virtual class, it would need to include the name
of the family class that introduced the refinement. The only way to avoid this problem
is by defining the program inside the refining family class because in such a context the
class references are rebound for the refined virtual classes. On the other hand, CaesarJ

Chapter 2 — State of the Art 43

mixins implement multiple inheritance with the associated propagating mixin composition
mechanism. These mechanisms include much more flexibility by making it possible to
compose different extensions, detect and solve conflicts. As a simple example, if the class
DrawingView would already have a method update, the AspectJ introduction of update
in DrawingView of Listing 2.28 would produce a compile-time error. The CaesarJ solution
of Figure 2.39 overrides the method, as expected.

2.4 Conclusion

Section 2.1 has described the EBP paradigm. It has shown how applications are de-
coupled by using the implicit invocation pattern. Destination components interested in
the changes of source components get notifications when these changes arise, without cou-
pling sources to destinations. EBP relies on the explicit triggering of events at sources.
Section 2.2 has described some problems that cannot be solved by using EBP or OOP:
preplanning, tangling and scattering. AOP proposed a solution to these problems by ma-
king it possible to define implicit events in a modular way with pointcuts. Differently to
EB events, AO events are defined at destinations. Section 2.3 has described the use of
advanced OOP techniques to solve modularization problems that cannot be solved with
pure OOP. In particular, the section has described mixins as implemented by the language
CaesarJ.

AOP, EBP and (advanced) OOP cover different parts of the design space. Whereas
AOP is useful when the obliviousness of sources is important, EBP is useful when get-
ting modular sources is more important. Whereas AOP is often used for modularizing
non-functional concerns, advanced OOP techniques, such as mixins, are often used for
modularizing functional ones. The intersection of the design spaces these paradigms deal
with is not empty. This suggests that at some point some combination of the techniques
of the different paradigms may be worthwhile. The next chapter analyzes how the dif-
ferent paradigms are integrated together and then presents the problem statement of this
dissertation.

CHAPTER3
Problem Statement

The design of programming languages described by MacLennan [Mac95] puts forward
the principles of orthogonality, simplicity and regularity. The orthogonality principle dic-
tates that independent functions of a language should be controlled by independent me-
chanisms. For example, in class-based OO languages classes are orthogonal to methods as
their functions do not overlap. The simplicity principle states that a language should be as
simple as possible. There should be a minimum number of concepts with simple rules for
their combination. The small number of built-in data types and operations in a language
like PROLOG [Mac95] is an example of simplicity. One can also think about the design of
Smalltalk in which there are only objects and messages. Note that the simplicity principle
has to be balanced with providing the necessary abstractions to describe explicitly the
intention of programmers. The regularity principle corresponds to a coherent and syste-
matic use of the rules governing the syntax and semantics of these concepts. The uniform
treatment of all data types as predicates and terms is an example of regularity in PRO-
LOG [Mac95]. One can also think about the design of Smalltalk that treats everything as
an object.

The proliferation of programming paradigms requires that languages provide appro-
priate mechanisms for them. This is a source of complexity in contradiction to the above
principles. The weak integration of different programming paradigms in an application in-
creases its complexity. For example, the intensive use of listeners when programming EB
functionality in languages like Java increases considerably the size of programs and com-
plicates their understandability. The situation gets worse when this is used in combination
with aspects, which in general require a complete new set of concepts.

This situation calls for a better integration of paradigms such as EBP, AOP and OOP in
order to provide simpler and more regular languages including all the necessary concepts.
This corresponds to the general problem statement of this dissertation, refined in the
remainder of this section.

This chapter is structured as follows. Section 3.1 presents the problems of integration
between EBP and OOP, mainly related to the lack of regularity of the event construct
and the lack of orthogonality of events and methods. Section 3.2 presents the problems of
integration between EBP and AOP, mainly related to the lack of orthogonality of advising
and event handling. Section 3.3 presents the problems of integration between AOP and
OOP, mainly related to the lack of orthogonality of aspects and classes. Finally, Section 3.4
concludes.

3.1 EBP and OOP

The classical way to program EB applications with mainstream OO languages such
as Java is by using callbacks or listeners. Event handlers are encapsulated as objects
conforming to some known interface, which is invoked as notification of the occurrence

45

46 Chapter 3 — Problem Statement

of an event. Some mainstream OO languages such as C# have included special language
support for events in order to reduce the amount of necessary infrastructure when using
callbacks. Events are defined as instance members, are polymorphic and can be used to
emit event occurrences, which produce the automatic notification of the registered hand-
lers. Interestingly, events are also designed as instance members in OO languages such as
e [IEE08] and SystemVerilog [IEE09], focussed on the verification of hardware. However, in
none of the above-mentioned languages the event construct is seamlessly integrated with
OOP.

3.1.1 Regularity of Events

delegate void ChangeHandler(Figure source);

class Figure {

public virtual event ChangeHandler changed;

void moveBy(int x, int y) { ...

changed(this);

} ...

}

class Circle: Figure {

void setRadius(double r) { ...

changed(this);

} ...

}

Listing 3.1: C# events cannot be triggered in subclasses.

class Circle: Figure {

override event ChangeHandler changed;

void setRadius(double r) { ...

changed(this);

} ...

}

class Program {

static void main(string[] args) {

Circle f = new Circle();

f.changed += myHandler;

f.moveBy(10, 50);

} ...

}

Listing 3.2: Events in C# do not support inheritance.

A C# event can be declared abstract. At first sight this makes one think that C#
events support inheritance like methods. However, this is not the case. Events cannot be
directly triggered in subclasses. For example, in Listing 3.1 the statement that triggers
the event changed in the method setRadius of the class Circle produces a compile error
because the event is not visible in subclasses of the class Figure. Declaring the event
public and virtual does not change the situation. The compile error can be avoided by
overriding the event in the subclass as shown in Listing 3.2. However, even if the event can

Chapter 3 — Problem Statement 47

now be triggered in the subclass, it is not associated to the same delegate as the event of
the superclass. Both event declarations introduce different private delegates. Consequently,
Listing 3.2 entails a runtime error when calling the method moveBy in the method main

because in the private extent of the class Figure, the event changed is null (it does not have
any registered handler). This situation introduces a regularity problem in the language as
the rules that govern the inheritance of events are different from the ones governing the
inheritance of other instance members.

The situation gets improved in the language e. Events can be declared abstract and
are subject to inheritance. However, they cannot be refined in subclasses like methods. A
subclass can just redefine an event without a mechanism to refer to the definition provided
in the superclass like the one available for methods.

3.1.2 Orthogonality of Events and Methods

The method invocation and the event handling mechanisms of OOP and EBP are
similar. Whereas a method is executed as a result of a method call, an event handler is
executed as a result of an event occurrence. Interestingly, in languages such as C# there
is no syntactic difference between an event triggering and a method call. The similarity
is made more evident in approaches that use message passing like the actor model and
Smalltalk. In the actor model the actors of a program (i.e. its objects) communicate by
message passing. Interestingly, in the actor model [HBS73, Hew10] events represent the
receiving of a message by an actor [Gre75]. When a message is received, or in other words,
when an event is detected at the interface of an actor, a handling process is triggered that
enqueues the message if the actor is busy, or that executes a set of actions (aka a method
body), otherwise.

The above observations make it possible to conclude that event triggering and method
call are not completely orthogonal mechanisms. This conflicts with the principles of Ma-
cLennan [Mac95] because C#-like languages provide them as different language constructs.

3.2 EBP and AOP

EBP and AOP improve separation of concerns by reducing the coupling between soft-
ware components. Both use the same mechanism: implicit invocation. In EB systems, an
event handler programmed in a component is implicitly executed on the occurrence of an
event triggered in another component without keeping an explicit dependency between
both components. Similarly, in AO systems, the behavior of an aspect is implicitly invoked
in the implementation of other components. The implementers of these other components
can be largely unaware of crosscutting concerns. In spite of the fact that both EBP and
AOP share the same mechanism, there are no languages offering a seamless integration of
event handling and aspect advising. Ptolemy [RL08] has made some interesting steps in
this direction. However, it presents some deficiencies, which are described in Section 3.2.2.

3.2.1 Orthogonality of Advising and Event Handling

Events and join points are similar concepts. This is made explicit in EAOP, which
models join points as events. The differences between the definition of events in EB lan-
guages and the definition of join points in AO languages is mainly a matter of obliviousness.
Whereas, in languages such as AspectJ [KHH+01] join points are declaratively defined

48 Chapter 3 — Problem Statement

at destinations by using pointcuts (see Listing 2.25), in mainstream EB languages such as
C# the occurrences of an event can only be defined by imperatively enumerating them at
their source (see Listing 2.12).

Event handlers and pieces of advice play the same role: to react to the occurrence of
an event or a join point, respectively. The similarity is explicit by looking at languages like
C# and AspectWerkz [BV04], which implement event handlers and pieces of advice as
methods, respectively.

Events and join points are similar concepts and the role of event handlers and pieces
of advice is analogous. Similar mechanisms provided by different constructs conflicts with
the orthogonality and simplicity principles proposed by MacLennan [Mac95].

3.2.2 Incomplete Integration Efforts

Ptolemy provides some flavor of EBP and AOP using the same language constructs
as Section 2.2.4.2 describes. A join point is an event like in EAOP. However the support
for AOP is very limited. Events (join points) cannot be defined declaratively at destination
side as in AspectJ. As Listing 2.29 shows, the aspect can only express that it is interested
in an event type (the event type Change) by using the keyword when, but it cannot express
when or where the event occurs. The event has still to be imperatively triggered as in
C#. Consequently, it is a strong statement to say that Ptolemy is an AOP language or
that it integrates both EBP and AOP. The language is mostly an EB language with some
quantification capabilities taken from AOP.

3.2.3 Advantages of an Integration

Apart from solving the orthogonality problem previously exposed, a better integration
of EBP and AOP entails a list of additional advantages.

Modular events. In mainstream EB languages the statement that notifies the occur-
rence of an event is manually written in the code. This produces a phenomenon of tangling
because the event notification usually is not part of the logic of the application. At the
same time, when the state change represented by an event may happen at multiple places
in code, the statement notifying the event becomes scattered over the class or even over
multiple classes. For example, Listing 3.1 shows the necessity of triggering an event in dif-
ferent methods of a class and at different places in the class hierarchy. Triggering an event
changed does not correspond to the role of a method moveBy or a method setRadius. Com-
pared to the imperative triggering of an event (at different places in code), the declarative
definition of a join point has the advantage that it identifies in one place (the pointcut)
the different occurrences of the join point (in a modular way). For example, the pointcut
of Listing 3.3 identifies in a compact way that a change is produced by the execution of
two methods.

pointcut change(Figure figure):

(execution(* Figure.moveBy(..,..)) ||

execution(* Circle.setRadius(..))) && this(figure)

Listing 3.3: AspectJ pointcut.

Chapter 3 — Problem Statement 49

The manual event notification mechanism of EB applications requires programmers
to preplan the possible events that clients of source classes will need, in order to insert
the statements that trigger these events at the corresponding places. If in further uses of
these classes, new events are needed, the classes need to be changed in order to insert
the respective events. Something analogous happens if the information passed as event
reification is incomplete with respect to further requirements. The preplanning is due to
the fact that in EB applications events are identified at sources. The declarative definition
of join points does not suffer from this issue because join points are defined from the point
of view of the observers (aspects), avoiding preplanning at source-side code.

A better integration of EBP and AOP would enable a modular definition of events.

Coarse-grained join points. Join points or the data related to the join points are so-
metimes insufficient to define useful events. Such a selection depends on the expressiveness
of the join-point model and the pointcut model of the AO language. In approaches such
as AspectS [Hir02], which only consider join points as consisting in method executions,
the availability of events depends on the granularity of decomposition into methods. Thus,
an oblivious design cannot guarantee availability of all necessary events as join points.
The events that do not naturally correspond to the boundaries of methods must still be
modeled as events that are explicitly triggered at the appropriate locations within the me-
thods of the class. Languages such as AspectJ improve this situation as they provide a
richer pointcut model in which designators can select, besides the method-execution join
points, changes or accesses to instances variables. However, they still make it impossible
to access local dynamic state or evaluation of control structures such as if statements.
Events depending on these structures cannot be modeled. A better integration of EBP and
AOP would enable definition of aspects advising coarse-grained join points by explicitly
triggering them in code as imperative events as in Ptolemy.

As an example, consider the necessity of defining a “general” pointcut move representing
a movement of any figure. Consider Listing 3.4 with a method myTransform. The intention
of the programer of this method is that the figure moves twice depending on some conditions
(the comments point out the two movements). There is no direct way in AspectJ to
identify the two movements in the method myTransform by using a pointcut. If the pointcut
move is defined as a disjunction of a change in the variable x and a change in the variable y,
then there would be three movements detected. Approaches such as EAOP [DFS04] make
it possible to define a sequence of a change in x and a change in y as a single movement
event. However, the second movement consists in a single variable change. Setting the
pointcut as the disjunction of a sequence of two variable changes and a single variable
change makes it impossible to determine whether a variable change is part of a sequence or
a single movement. In some cases, it could still be possible to define a dedicated pointcut
that considers all the possible combinations for a given method. However, the pointcut
would become strongly dependent on the implementation structure of the method. Any
change in the code could break down such a pointcut. Triggering move as an imperative
event at the proper places would facilitate the task and in some case provide a more stable
design.

Event handling is better aligned with OOP. In a typical OO design, each piece
of functionality is defined from the perspective of a certain object using the methods,
attributes and relationships of the object. An object does not have a complete knowledge of
the world, only of its own state and the interfaces of directly referenced objects. In a proper

50 Chapter 3 — Problem Statement

class SomeFigure extends Figure {

void myTransform() {

...

/* first movement */

this.positionX = 10;

this.positionY = 50;

...

/* second movement */

this.positionY = 10;

...

}

}

Listing 3.4: Need of coarse-grained join points.

OO design all functionality is defined from a local perspective, while global functionality is
avoided as much as possible. Approaches such as C# make it possible to express interest
in events of specific objects by means of explicit registration using operators such as +=

as Listing 2.13 shows. A view is interested in the events of the model that it observes
rather than all instances of the model class. This is not the case with AOP. AO design is
focused on separating crosscutting concerns often involving different parts of an application.
Therefore, AO design tends to view the application as a whole and modularize its different
concerns into aspects that cut across the object-based design. Consequently, the pointcut
language of AspectJ is designed to quantify over the static structure of an application:
the members of a class, the classes of the application, inheritance relationships between
classes. Although the pointcut language supports dynamic conditions in pointcuts, these
conditions are executed in static context and can use only static variables and methods.
For example, in Listing 2.25 it is not possible to define the event change in terms of the
relevant figures. The aspect observes the changes associated to all the figures of the editor.
As described in Section 2.2.4.5, the implicit instantiation strategies of AspectJ such as
perthis cannot be used either.

3.3 AOP and OOP

AOP features an asymmetric composition of concerns, distinguishing classes, implemen-
ting base concerns, from aspects, implementing crosscutting concerns. In its most successful
incarnation, AspectJ, aspects look very much like classes but contain two new member
types: pointcuts and advice. A pointcut is a predicate selecting the execution points of
interest, also called join points. A piece of advice specifies which action should be taken
when a join point is selected by its associated pointcut. Although an aspect looks very
much like a class, the rules governing its static and dynamic semantics are different. In
particular, it can be extended as a class but in a constrained way and it cannot be explicitly
instantiated. This adds quite a lot of complexity to standard OOP, conflicting with the
principles of simplicity, regularity and orthogonality of MacLennan [Mac95]. On the one
hand, there are a number of new constructs. On the other hand, the basic principles for
working with these constructs (instantiation, inheritance) are not regular. The correspon-
ding design choices can be partly explained by the will to better capture the intension of
the programmer and avoid the issues encountered when using reflection and metaobject

Chapter 3 — Problem Statement 51

protocols [KdRB91], a more general and integrated approach, which unfortunately makes
it much too easy to break base code. They can be also partly explained by performance
consideration.

3.3.1 Orthogonality and Regularity of Aspects and Classes

Kiczales has made an effort to make AspectJ aspects different from classes in or-
der to provide dedicated support for crosscutting concerns. The four main characteristics
that make AspectJ aspects different from plain classes are: implicit instantiation, limited
inheritance, specific members (pointcuts, advice), and inter-type declarations. These diffe-
rences, however, do not make aspects orthogonal to classes. Indeed an aspect is very similar
to a class. For example aspect inheritance is just a restricted form of class inheritance and
aspect instantiation creates standard objects. This situation conflicts with the principles
of orthogonality and simplicity of MacLennan [Mac95]. Understanding aspects requires an
additional effort compared to understanding classes, whereas they both implement similar
mechanisms. Finally, the design of AspectJ aspects to resemble classes is due to an effort
for providing a seamless extension to Java. The design of pointcut and advice is however
not regular regarding the members of classes. For example, pointcuts are “almost static”
and pieces of advice cannot be overridden.

The main reason for this design is that traditional AO design focuses on separation
of crosscutting concerns often involving different parts of an application. Therefore, AO
design tends to view the application as a whole and modularize its different concerns into
aspects that cut across the object-based design.

Implicit Instantiation. In AspectJ, an aspect is implicitely instantiated. By default,
it is a singleton, instantiated at load time. It can still be associated a null constructor.
Additional declarations, like perthis(pointcut) and percflow(pointcut), make it possible
to implicitly create aspect instances and associate them to various entities of the base
program encountered in the selected join points, in the case of perthis and percflow, to
each this object and each control flow, respectively.

It is often said that, because of implicit instantiation, aspects are not first class. Ho-
wever, aspect instances can still be returned by different variants of the static method
aspectOf, depending on whether the aspect is a singleton or not, and then handled as any
plain class instance.

Aspect extension. Aspects can extend aspects in the same way as classes can extend
classes except that aspects may only extend abstract aspects. Of course classes cannot
extend aspects.∗

Pointcuts and advice. Behavioral aspects include two new members: (named) point-
cuts and advice. A pointcut is almost a full-fledged static member of both classes and
aspects. It can be abstract, can have its visibility defined through the usual modifiers,
can be redefined, but it cannot be overloaded. A piece of advice can only be present in
an aspect. It binds a pointcut and the action, the advice body to be performed when the
pointcut selects a join point, and defines the location of the action, before, after, or around

∗. In the early days of AspectJ, there was a period of time when a class could extend an aspect, but
only plain Java members would be inherited.

52 Chapter 3 — Problem Statement

the join point. Like methods it has access to instance state and can be inherited by subas-
pects, however, unlike methods, it is anonymous and therefore cannot be redefined. This
irregularity is an issue when implementing higher-order concerns [RS05], i.e., aspects that
advise aspects. Indeed, the lack of name results in the impossibility of selecting a specific
piece of advice. This is also an issue when different pieces of advice of the same aspect
must have different precedence rules [MW08].

In AspectJ, the composition of an aspect is very similar to the composition of a class
but aspects differ essentially in that they include pieces of advice. Aspects are instantiated
implicitly whereas classes are instantiated explicitly. Rules governing aspect instantiation
are quite constrained. Moreover, the new members introduced by aspects are not pure
instance members. Pointcuts are static and cannot be overloaded. Pieces of advice are
anonymous and therefore cannot be redefined.

3.3.2 Incomplete Integration Efforts

The need of distinguishing between classes and aspects, with special instantiation and
inheritance rules for aspects, is arguable. The orthogonality, simplicity and regularity prin-
ciples suggest to unify classes and aspects by providing a single construct, let us call it
a class, comprising, on top of the usual members, both pointcuts and pieces of advice.
Using a single construct should not be a syntactic trick associated to program analyses
that would distinguish aspect classes from plain classes. Identical instantiation and inhe-
ritance rules should apply. This is not a new approach. It has already been followed by a
number of frameworks and languages, including AspectWerkz [BV04], Spring [JHD+10],
JBoss AOP [JBo10], Classpects [RS05] and CaesarJ [AGMO06]. Section 2.2.4 descri-
bed Classpects and CaesarJ as the most representative proposals. As described there,
both merge aspects and classes in a single class construct, providing explicit aspect ins-
tantiation and uniform class and aspect extension rules. Explicit instantiation covers the
implementation of behavioral relationships, which is not properly covered with the impli-
cit instantiation scheme, as provided by AspectJ. With respect to pointcuts and advice,
CaesarJ follows AspectJ. Classpects diverts from it when dealing with advice. It
replaces the advice body by a method call making it possible to implement higher-order
concerns [RS05].

However, the integration is still not complete. Integration of AOP and OOP has mainly
two faces: aspects as classes and full-fledged aspectual class members. Approaches such
as CaesarJ and Classpects do well with treating aspects as plain classes. The treat-
ment of pointcuts and advice as full-fledged class members is, however, not completely
achieved. Pointcuts in CaesarJ are static. In Classpects the join-point selection of a
pointcut is instance-specific. However, as Section 2.2.4.4 showed, pointcuts are embedded
in a join-point-method binding construct. Consequently, they are not real class members.
For example, they cannot be inherited nor reused. Regarding pieces of advice, they are
in general not named as standard class members are, limiting their use. In addition, join
point selection is still based on the static structure of programs rather than implementing
an OO collaboration between classes.

3.4 Conclusion

This chapter has shown that the OOP, the EBP and the AOP paradigms are not well in-
tegrated together, and that this lack of integration conflicts with the programming-language

Chapter 3 — Problem Statement 53

principles proposed by MacLennan [Mac95]. This integration problem is the motivation of
this dissertation. The next chapters present an approach that provides a better integra-
tion of these paradigms. The cornerstone of the integration is an EB programming model
with declarative events, smoothly extended to support AOP and naturally well integrated
with OOP. The next chapter introduces this programming model showing the needs for
declarative means for expressing events.

PART II

Contribution

CHAPTER4
A Model of Declarative

and Polymorphic Events
The previous chapter described the problem statement of this dissertation: the lack

of integration of OOP, EBP and AOP. This chapter presents the main elements of the
programming model that we propose to solve this problem. This chapter describes the EB
side of this model. We introduce a novel notion of declarative event. This notion improves
existing EB models such as the one of C#. Section 4.1 motivates the contribution of this
chapter. Section 4.2 reviews the imperative composition of events in languages such as C#.
Section 4.3 introduces the programming model with a special focus on declarative events.
Section 4.4 presents EJava, a programming language that materializes the programming
model. Section 4.5 discusses related work. Finally, Section 4.6 concludes.

4.1 Motivation

Events have been introduced as language constructs in mainstream OO languages
such as C# as a way to facilitate the implementation of reactive applications. Howe-
ver, the design of events in these languages has failed in providing appropriate means
for expressing events as composition of other events. Composite events are often nee-
ded in large applications. In layered applications, for example, upper layers can define
events in terms of events provided in lower layers. It is natural for programmers to think
of composite events as logical combinations of events. A declarative expression such as
someoneEntered = aliceEntered || bobEntered describes well the intention of a pro-
grammer: the event indicating that someone entered a place is either the event that Alice
entered the place or the event that Bob entered the place. Unfortunately, in C#-like lan-
guages there is a gap between the way composite events are written and the intention of
programmers. Composite events are expressed as imperative events and cannot be defined
using a declarative expression.

The contribution of this chapter is twofold. First, it introduces the programming model
that further chapters use for integrating the different programming paradigms that this
dissertation takes into account. Second, it describes the EB side of this model, including,
besides imperative events, declarative events. This kind of events are defined as composition
of other events in a declarative way, better expressing the intention of programmers.

The next section shows how events are imperatively composed in languages such as
C#.

57

58 Chapter 4 — A Model of Declarative and Polymorphic Events

4.2 Imperative Composition of Events

The events of an application can be related to each other. For example, an event indi-
cating that night is falling can be related to an event indicating that it is getting dark or
to an event indicating that it is getting late. Analogously, the getting-dark event can be
related to an event indicating a severe change in the intensity of light when it is still day-
time. In languages such as C#, the relation between events is expressed imperatively. The
occurrence of an event is triggered as a result of the occurrence of another. Unfortunately,
such an imperative composition does not express the intention of a programmer in a direct
way.

1 delegate void ChangedHandler(Figure source);

2

3 abstract class Figure { ...

4 event ChangedHandler changed(Figure source);

5 abstract void onChanged(Figure source) {

6 changed(source);

7 }

8 }

9 abstract class AbstractFigure extends Figure { ...

10 void moveBy(int x, int y) { ...

11 onChanged(this);

12 }

13 }

14 class Circle extends AbstractFigure { ... }

Listing 4.1: Event definition and event triggering in C#.

As an example, Listing 4.1 illustrates the imperative composition of events in the
implementation of a simple figure editor in C#. The abstract class Figure is on top of
a basic hierarchy of figures. The event changed represents a change in a figure (line 4),
observed by the views of an editor in order to update themselves when the figure changes.
The event changed declares a parameter of type Figure representing the figure that has to
be repainted. This is useful for composite figures, which can indicate the child that is the
source of the change, avoiding to repaint the complete composite figure. For other figures,
the parameter is most of the times the figure defining the event. The class Figure, apart
from defining the event changed, defines the method onChanged for triggering the event in
subclasses (line 5). The class AbstractFigure (lines 9-13) is the superclass of figures such
as the class Circle. It triggers the event changed at the end of methods such as moveBy

(line 11), which change the state of the figure. It passes the figure itself as a parameter of
the event.

A composite figure serves for grouping figures. It changes when any of its children
change, so that its event changed depends on the event changed of its children. Listing 4.2
shows how the occurrence of an event is related to the occurrence of other events in C#.
The composite event is still imperative. A dedicated handler has to be included that is
registered with the composed events. The handler is in charge of imperatively triggering
the composite event when the composed events happen.

A drawing is a composite figure. The view of a drawing defines an event invalidated
meaning that the view does not correctly reflect the state of the drawing. When this event
happens the figure that changed has to be repainted. The occurrence of the event is related

Chapter 4 — A Model of Declarative and Polymorphic Events 59

class CompositeFigure extends Figure { ...

Figure fig1, fig2;

CompositeFigure() {

fig1.changed += changedHandler;

f1g2.changed += changedHandler;

}

void changedHandler(Figure source) {

onChanged(source);

}

}

class Drawing extends CompositeFigure { ... }

Listing 4.2: An event defined in terms of other events in C#.

1 class DrawingView { ...

2 event ChangeHandler invalidated(Figure changedFig);

3 Drawing drawing;

4 boolean isVisible;

5

6 DrawingView() {

7 drawing.changed += changedHandler;

8 invalidated += invalidatedHandler;

9 }

10 void changedHandler(Figure changedFig) {

11 i f(isVisible)

12 invalidated(changedFig);

13 }

14 void invalidatedHandler(Figure changedFig) {

15 repaint(changedFig.getDrawingArea());

16 }

17 }

Listing 4.3: An event defined in terms of another event and a condition in C#.

60 Chapter 4 — A Model of Declarative and Polymorphic Events

to the occurrence of the event changed of its drawing when the view is visible. Listing 4.3
shows the implementation of the drawing view and how an event can be related to the
refinement of an event with a condition in C#. Note how the condition is tested in the
handler before triggering the composite event (line 11).

The way events are related in these kinds of languages presents the problem that the
relationships between the events are not explicit.

By looking at the previous examples, it is possible to observe that the way two events are
related in C# follows a common pattern. First, the first event is defined as an imperative
event of the class (like the event invalidated in line 2 of Listing 4.3). Second, at some
place in the class (for example in the constructor) a handler is registered with the second
event (like with the event changed of the drawing in line 8 of Listing 4.3). Third, the
registered handler is included as a member of the class. Its body triggers the first event
depending on an optional condition (like the condition isVisible in line 11 of Listing 4.3).
An event can be related to two or more events by repeating the same steps as for the
event changed in Listing 4.2. Even if the relationships between events follow a certain
pattern, the pattern is frequently embedded in other code complicating its recognition.
The different relationships between events need to be determined by analyzing the code of
the application. This analysis can be a complicated task. The lack of explicitness may result
in a misunderstanding of applications, complicating their maintainability and extensibility.

A solution to this problem is the inclusion of declarative means to relate events. Decla-
rative events would be explicit and compact, expressing in an effective way the intention
of programmers. In addition, they would enable optimizations. The next section presents
our EB model supporting declarative events.

4.3 A Programming Model with Declarative Events

This section introduces an EB programming model that includes declarative events
besides imperative events. Declarative events can be defined in terms of other events in a
declarative way, thus making explicit the relationships between the events of an application.
The understanding, the maintenance and the evolution of the application get improved.

In order to illustrate the design decisions of our programming model, this section consi-
ders a simple, typed, and class-based OO language like MiniMAO0 [CL05]. This section
describes the support for events of our programming model on top of this language. In
order to be as general as possible, the different elements of our model are illustrated in
abstract syntax.

Listing 4.4 shows the abstract syntax of a MiniMAO-like language. The terminals t, f, m
and v range on class names, field names, method names, and variable names, respectively.
A class consists of a name, the name of its superclass and zero or more members. Class
members are fields or methods. A field consists of a type and a name. A method consists of
a return type, a name, zero or more formal parameters (FormalParam), and zero or more
expressions (Expr). A method returns the value that results from the evaluation of the last
expression.∗ An expression can be an expression New used to instantiate a class, a method
call Call, a field access FieldAccess, a field assignment FieldAssign, a type casting Cast,
the object This, the object Null or a variable v declared in the signature of a method.

∗. This makes it also possible to model languages with statements. The list of expressions can be seen
as equivalent to a list of statements with the last statement being a return.

Chapter 4 — A Model of Declarative and Polymorphic Events 61

Class ::= t t Member∗
Member ::= Field | Method

Field ::= t f

Method ::= t m FormalParam∗ Expr∗
FormalParam ::= t v
Expr ::= New | Call | FieldAccess | FieldAssign | Cast | This | Null | v

New ::= t
Call ::= Expr m Expr∗
FieldAccess ::= Expr f
FieldAssign ::= FieldAccess Expr
Cast ::= t Expr

Listing 4.4: Abstract syntax of a simple typed class-based OO language.

4.3.1 Events and Event Handlers as Properties of Objects

We equip the language with new class members: events and event handlers (see Lis-
ting 4.5). The terminal e ranges on event names. An event can be declared as abstract
or defined as either imperative or declarative (non-terminals AbsEvent, ImpEvent and De-
cEvent, respectively). Both abstract events and imperative events consist of a name and
zero or more formal parameters. An abstract event defers its definition to subclasses. An
imperative event is used to explicitly trigger an event occurrence similarly to the events of
C#. Declarative events consist of a name, zero or more formal parameters and an event
expression (EventExpr). A declarative event can combine other events, by means of its
event expression, similarly to the declarative events of the language e [IEE08]. A decla-
rative event is a composite event (unless it simply aliases a primitive event), whereas an
imperative event is a primitive one.

An event expression can be an access to an event defined elsewhere (EventAccess), a
disjunction of two event expressions (Disjunction), a conjunction of two event expressions
(Conjunction), the refinement of an event expression with a condition (Refinement), an
event expression with an explicit parameter binding (Binding), an event expression with
local formal variables (LocalVar) and a quantification on the events of a list of objects
(Quantification). These expressions are detailed in Section 4.3.3.

An event handler (non-terminal Handler) is defined by indicating the signature of
an event (i.e. its name and its list of formal parameters) and zero or more expressions
implementing the body of the event handler. These expressions are either the standard
expressions of the body of a method† or the expressions Trigger or Next, used to trigger
an event and to compose event handlers, respectively (Trigger and Next are detailed in
Sections 4.3.2 and 4.3.4, respectively). The event handler is defined as bound to the cor-
responding event, so that it is executed when the event occurs. In order to provide event
handlers with an identity, an event handler can only be bound to an event defined in the
same class or in a superclass.‡ Thus, the identity of an event handler corresponds to the

†. In Java a method can have a return statement. A priori an event handler does not return so the
return statement it not part of an event handler.

‡. In order to handle an external event, the class has to define a (local) declarative event in terms of
the external event.

62 Chapter 4 — A Model of Declarative and Polymorphic Events

Member ::= Field | Method | AbsEvent | ImpEvent | DecEvent | Handler

AbsEvent ::= e FormalParam∗

ImpEvent ::= e FormalParam∗

DecEvent ::= e FormalParam∗ EventExpr

EventExpr ::= EventAccess | Disjunction | Conjunction |
Refinement | Binding | LocalVar | Quantification

EventAccess ::= Expr e Expr∗
Disjunction ::= EventExpr EventExpr
Conjunction ::= EventExpr EventExpr
Refinement ::= EventExpr Condition
Condition ::= Expr
Binding ::= EventExpr Bind
Bind ::= v Expr
LocalVar ::= FormalParam∗ EventExpr
Quantification ::= Expr e Expr∗

Handler ::= e FormalParam∗ HandExpr∗
HandExpr ::= Expr | Trigger | Next
Trigger ::= Expr e Expr∗

Listing 4.5: Extension of the syntax of Listing 4.4 with the elements of our model.

signature of the corresponding event. Note that in Listing 4.5 the name of an event handler
is the name of an event. As a consequence, a class can have pairs (event, handler) sharing
the same signature. There is no ambiguity since events and event handlers are used in
different contexts.

1 Class(Automator , Object , [
2

3 Field(LightSensor , sensor)
4

5 DecEvent(nighttime , [] ,
6 EventAccess(FieldAccess(sensor) , gettingDark , [])) ,
7

8 Handler(nighttime , [] , close-shutters)
9])

Listing 4.6: Simple example of a declarative event and an event handler.

In order to give a first feeling of the model, consider Listing 4.6. It illustrates, by using
the abstract syntax of the language, a class equipped with a field, a declarative event and
an event handler attached to the event. Listing 4.6 and the rest of the listings of this section
use the ATerm syntax formalism [VdBdJKO00], which makes it possible to represent an
abstract syntax tree. The name of a non-terminal is written in italics and uppercase, and
its constituents are put in a tuple. Terminals are typewritten and lists of elements are put
between square brackets. Variables representing folded syntax trees are put in italics and
lowercase.

Chapter 4 — A Model of Declarative and Polymorphic Events 63

The class Automator of Listing 4.6 defines a declarative event nighttime in line 5,
indicating that night is falling, and an event handler nighttime in line 8, handling the
event nighttime. The event nighttime is defined as an access to the event gettingDark of
the field sensor. This field, defined in line 3, represents a light sensor. The event describes
in a declarative way that night is falling as soon as the light sensor detects that it is
getting dark (this is, of course, an approximation). The event is used by the class to close
the shutters of a house by using the event handler nighttime. The folded implementation
of the event handler is represented by the variable close-shutters

Events are properties of objects. The external access to an event has to be qualified
with an expression returning the object the event belongs to. This means that events are
late-bound since their concrete value depends on the evaluation of the corresponding ex-
pression at runtime. Internal access to an event is qualified with This. Events are accesses
in the definition of declarative events (see non-terminal EventAccess) and when triggering
imperative events (see non-terminal Trigger). In our model any object can trigger an im-
perative event of another object. This is compatible with the design of EB applications
such as JHotDraw [Eri11], in which, as an answer to a command, the current tool applies
several transformations to a figure and then triggers the imperative event changed of the
figure to indicate that the figure has changed.

Event handlers are also properties of objects. However, an event handler is only accessed
explicitly in the class hierarchy for inheritance purposes.

The fact that both events and handlers are object properties also implies that they can
use instance-level context in their definition such as references to fields or methods of the
object they belong to. In addition, events and event handlers are subject to inheritance
like fields and methods. Inheritance is described in Chapter 5.

4.3.2 Imperative Events and Runtime Events

As previously said, our model enables external triggering: any object can trigger an
imperative event of another object. Occurrences of imperative events are triggered to point
out changes in the state of an application. We use the term event occurrence for a runtime
event, whereas we use the term event for the corresponding language construct. When
we say that an imperative event is triggered, we actually mean that an occurrence of the
imperative event is triggered. An imperative event is triggered at runtime by providing
each declared parameter with a value. The execution of a program produces a sequence of
runtime events indicating several state changes.

As an example, Listing 4.7 shows how the C# implementation of Listing 4.1 can be
implemented using the abstract syntax of the language. The event changed of a figure
is declared abstract in line 2. Indeed, in our model abstract events make sense because
subclasses may provide either an imperative definition or a declarative definition of the
event. The class AbstractFigure defines the event as imperative in line 6 and uses it to
trigger an occurrence inside the method moveBy in line 10. It provides the object This as
a parameter.

4.3.3 Declarative Events

A declarative event is an event selector, a function that selects the runtime events that
notify the state change that the event represents. An imperative event is also an event
selector, but it selects its own occurrences. We refer to the occurrences of an event for
referring to the runtime events that the event selects. We say that an event occurs when

64 Chapter 4 — A Model of Declarative and Polymorphic Events

1 Class(Figure , Object , [
2 AbsEvent(changed , [FormalParam(Figure , source)])
3])
4

5 Class(AbstractFigure , Figure , [
6 ImpEvent(changed , [FormalParam(Figure , source)]) ,
7

8 Method(void , moveBy , fparams , [
9 implementation ,

10 Trigger(changed , [This])
11])
12])

Listing 4.7: Definition of an imperative event and example of triggering in the model.

the event has successfully selected a runtime event. For example, if a figure defines an
imperative event changed, triggered in proper places for indicating a change in the figure
state, the declarative event changed of a composite figure can be defined such that it selects
the occurrences of the imperative event changed of its children. Since these occurrences
indicate that some child figure has changed, they also indicate in a proper way that the
composite figure has changed.

A declarative event is defined in terms of other events by using an event expression. An
event expression is also an event selector, so that a declarative event selects the runtime
events that its event expression selects. The different event expressions are described as
follows:

Event access. An event access (non-terminal EventAccess) makes it possible to access
an event of an object. It is a primitive event expression that selects the runtime events
that the accessed event selects. For example, the event nighttime of Listing 4.6 is defined
as an access to the event gettingdark of a sensor. The event nighttime selects the same
runtime events that the event gettingdark, so that nighttime occurs when gettingdark

occurs.

Disjunction. An event expression may consist of the disjunction of two event expressions
(non-terminal Disjunction). It selects the union of the runtime events that the two event
expressions select.

1 Class(CompositeFigure , Figure , [
2 Field(Figure , fig1) ,
3 Field(Figure , fig2) ,
4

5 DecEvent(changed , [FormalParam(Figure , source)] ,
6 Disjunction(
7 EventAccess(FieldAccess(fig1) , changed , [source]) ,
8 EventAccess(FieldAccess(fig2) , changed , [source])))
9])

Listing 4.8: An event defined in terms of other two events in the model.

Chapter 4 — A Model of Declarative and Polymorphic Events 65

As an example, Listing 4.8 shows how the C# code of Listing 4.2 can be expressed
in our model. The event changed of a composite figure is defined as a disjunction of the
events changed of its children. Thus, whenever the event changed of a child occurs, the
event changed of the composite figure also occurs.

Refinement. An event expression can represent the refinement of another event expres-
sion with a condition (non-terminal Refinement). It selects the runtime events selected by
the given event expression occurring when the condition holds.

1 Class(DrawingView , Object , [
2 Field(Figure , drawing) ,
3 Field(Boolean , isVisible) ,
4

5 DecEvent(invalidated , [FormalParam(Figure , changedFig)] ,
6 Refinement(
7 EventAccess(FieldAccess(drawing) , changed , [changedFig]) ,
8 Condition(FieldAccess(isVisible)))) ,
9

10 Handler(invalidated , [FormalParam(Figure , changedFig)] , [
11 implementation ,
12 Next
13])
14])

Listing 4.9: An event defined in terms of another event and a condition in the model.

As an example, Listing 4.9 shows how the C# code of Listing 4.3 can be expressed in
our model. The event invalidated of a drawing view is defined in line 5 as a refinement of
the event changed of a drawing with the condition isVisible. Thus, whenever the event
changed of a drawing occurs, the event invalidated also occurs when the view is visible.

The examples so far show how declarative events make the programming intention
more explicit than the same examples implemented in C#. This explicitness is even more
evident in Section 4.4, which shows these examples in concrete syntax.

Parameters. As previously seen, the signature of an event can declare parameters. An
imperative event is triggered at runtime by providing each declared parameter with a
value. These values can be captured and bound to the parameters of declarative events,
concretely in event accesses, and propagated to other declarative events. An event handler
attached to an event can use the bound parameters to perform its actions. For example,
line 10 of Listing 4.7 triggers the event changed of a figure by providing the object This as
parameter. This object is captured and bound to a parameter source when accessing the
events of the children of a composite figure in the declarative event changed of line 5 of
Listing 4.8. The propagation of the parameter continues until reaching the event handler
invalidated of Listing 4.9, which uses the bound parameter to repaint the area of the
corresponding figure.

An event binds values for its parameters when it selects a runtime event. Parameters
can play a role in the process of selection as they can be used in conditions of the refine-
ment of an event expression (non-terminal Refinement of Listing 4.5). The parameters of a
declarative event are implicitly bound when accessing other events. In addition, the event

66 Chapter 4 — A Model of Declarative and Polymorphic Events

expression Binding of Listing 4.5 makes it possible to explicitly bind a parameter with a
custom value, e.g. with the result of calling a function.

In general, the conditions of an event expression can use the parameters bound by
declarative events and any field or method of the contextual object. In addition, our model
makes it possible to declare local event variables (non-terminal LocalVar of Listing 4.5).
These variables are local to an event expression and can be bound and used in conditions
inside the event expression. They are not visible outside.

1 DecEvent(newRedCars , [FormalParam(List , redCars)] ,
2 Refinement(
3 LocalVar(
4 [FormalParam(List , cars)] ,
5 Binding(
6 EventAccess(This , newCars , [cars])) ,
7 Bind(redCars , Call(This , filterRedCars , [cars]))) ,
8 Condition(Call(redCars , isNotEmpty , [])))

Listing 4.10: Example of explicit binding and local event variables.

Listing 4.10 shows an example of an explicit binding and local event variables. It de-
fines a declarative event newRedCars in terms of an imperative event newCars. The event
newCars represents the availability of a list of new cars and the event newRedCars the
availability of a list of new red cars. The event newRedCars is defined by accessing newCars

in line 6. The list of cars provided by newCars is bound to a local variable cars defined in
line 4. An explicit binding is used in line 7 to bind the variable redCars with the result
of filtering the red cars from cars. The event newRedCars occurs when the event newCars
occurs and the list of red cars is not empty, which is tested in line 8.

Conjunction. In our model two or more events can happen simultaneously as they can
select the same runtime event. Thus, it makes sense to provide, apart from disjunction,
conjunction of events. The conjunction of two event expressions (non-terminal Conjunction)
selects the runtime events that the two expressions select.

1 DecEvent(newHotCars , [FormalParam(List , redCars) , FormalParam(List , cheapCars)] ,
2 Conjunction(
3 EventAccess(This , newRedCars , [redCars])) ,
4 EventAccess(This , newCheapCars , [cheapCars]))
5

6 DecEvent(newHotCars , [FormalParam(List , cars)] ,
7 LocalVar(
8 [FormalParam(List , redCars) , FormalParam(List , cheapCars)] ,
9 Binding(

10 EventAccess(This , newHotCars , [redCars , cheapCars]) ,
11 Bind(cars , Call(This , intersect , [redCars , cheapCars])))))

Listing 4.11: Example of conjunction of events.

As an example, Listing 4.11 defines a declarative event newHotCars, in line 1, as a
conjunction of two events newRedCars and newCheapCars. The event newRedCars is the
one presented earlier, representing the availability of a list of new red cars. The event

Chapter 4 — A Model of Declarative and Polymorphic Events 67

newCheapCars represents the availability of a list of new cheap cars and it is defined in
terms of an imperative event newCars in a analogous way as newRedCars. When the event
newCars happens, both newRedCars and newCheapCars can happen simultaneously, each
one filtering the proper list of cars. The event newHotCars, defined as a conjunction of these
events, represents the availability of new cars where some are red and the other are cheap.
The event defines two parameters that capture each kind of cars. The event newHotCars

of line 6 uses the event newHotCars of line 1 to provide a single list of cars, which are both
red and cheap.

In the previous example, the event newHotCars could have been defined directly in
terms of the event newCars without requiring a conjunction of other events. However, we
illustrate here how we can reuse existing events.

Quantification. So far we have considered objects related by one-to-one relationships,
but an object may also be related to a collection of other objects and need to glo-
bally observe occurrences of a specific event defined by all these objects. Our model
enables a form of existential quantification on a list of objects (non-terminal Quanti-
fication of Listing 4.5). An event can be defined as a disjunction of computed event
expressions all related to the same event name by using an expression of the form
Quantification(list, eventName, params), where list is an expression evaluating to a list
of objects, eventName an event defined by these objects and params a list of formal para-
meters.

DecEvent(changed , [FormalParam(Figure , source)] ,
Quantification(FieldAccess(This , figures) , changed , [source]))

Listing 4.12: Example of quantification on the events of a list of objects.

For example, Listing 4.12 shows how a change of a figure, which is a composition of a
list of figures (variable figures), can be described in terms of the events observed on its
children. It defines that the event changed of the composite figure occurs when the event
changed of some composed figure occurs.

4.3.4 Informal Operational Semantics

An event evaluates to a selector of runtime events. On a runtime event all the selectors
of the objects of the application are used to select the runtime event. The event handlers
bound to the ones that select the runtime event are then executed.§.

An event selector is a function that receives a runtime event as a parameter and returns
a tuple with values for its declared parameters when it selects the occurrence or ǫ, otherwise.
Let us show what these selectors look like in Scheme.

We consider a runtime of the the form (list obj e tuple), where obj is an object, e is
an event name and tuple is a tuple of values. An imperative event evaluates to a selector
that select its own occurrences. It can be defined in Scheme by the function imp-event

shown below, where this is a function that returns the object that owns the imperative
event:

The definition of a declarative event evaluates to a selector that depends on its event
expression. An event expression also evaluates to a selector of runtime events. However, this

§. This is optimized in the concrete implementation.

68 Chapter 4 — A Model of Declarative and Polymorphic Events

(define (imp-event event-name)

(lambda (rt-event)

(i f (and (eqv? (car rt-event) (this)) (eqv? (cadr rt-event) event-name))

(cddr rt-event)

’epsilon)))

selector receives as parameters not only a runtime event but also an environment with pairs
name-value representing variable bindings, where the variables are either the parameters
declared by the event or local event variables. These bindings can be used in conditions.
The selector returns an environment with the new parameter bindings computed inside
the expression. The selector of a declarative event calls the selector of its event expression
and from the obtained environment calculates the corresponding tuple. The definition of a
declarative event looks as follows in Scheme, where var-names are the list of parameters
of the event and s is the selector that resulted from evaluating the event expression:

(define (dec-event var-names s)

(lambda (rt-event)

(let ((env (s rt-event ’())))

(i f (eqv? env ’epsilon)

’epsilon

(map (lambda (x) (cadr (assq x env))) var-names)))))

The returned selector calls s passing the runtime event and an empty environment as
parameters to obtain a new environment with variable bindings. It creates a proper tuple of
parameters values from the obtained environment and the list of parameters of the event.
The selector s evaluates to one of the functions described in the remainder:

– An event access of the form expr.eventName(varName1,...,varNameN) evaluates
to a selector which, when applied to a runtime event, applies to it the selector
of the event eventName of the object that result from evaluating the expression
expr. We obtain as a result a tuple of parameter values ’(value1 ... valueN). By
using such a tuple the selector creates and returns an environment of the form
’((varName1 value1) ... (varNameN valueN)). The definition of an event access
looks as follows in Scheme, where delayed-expr is a function that evaluates to
an object, event-name is the name of the accessed event and var-names the list of
parameters of the event:

(define (event-access delayed-expr event-name var-names)

(lambda (rt-event env)

(letrec ((s (get-member event-name (delayed-expr)))

(tuple (s rt-event)))

(i f (eqv? ’epsilon tuple) ’epsilon (map l i s t var-names tuple)))))

The function delayed-expr is a function that “wraps” the expression expr that re-
turns the object that belongs the accessed event. It is of the form (lambda()expr),
delaying the evaluation of expr. This highlights the late-bound nature of our events.
The expression is evaluated in the process of selection of a runtime event.

– The definition of the disjunction of two event expressions looks as follows in Scheme,
where s1 and s2 are the selectors that result from evaluating the composed event
expressions:

Chapter 4 — A Model of Declarative and Polymorphic Events 69

(define (disjunction s1 s2)

(lambda (rt-event env)

(let ((env1 (s1 rt-event env)))

(i f (eqv? ’epsilon env1) (s2 rt-event env) env1))))

The selector is such that when applied it returns the result of applying s1 when the
obtained environment is not ǫ, or the result of applying s2, otherwise.

– The definition of the refinement of an event expression with a condition looks as
follows in Scheme, where s is the selector that results from evaluating the refined
event expression, and condition represents the condition:

(define (refinement s condition)

(lambda (rt-event env)

(let ((new-env (s rt-event env)))

(i f (eqv? ’epsilon new-env)

’epsilon

(i f (eval condition (union new-env env)) new-env ’epsilon)))))

The selector is such that when applied, it applies s to obtain an environment with new
parameter bindings. With the union of the obtained environment and the original
environment env it evaluates the condition. The environment with the new parameter
bindings is returned if the condition holds. We use a function eval that evaluates an
expression considering a given environment. The function union returns the union
of two lists.

– The definition of the conjunction of two event expressions looks as follows in Scheme,
where s1 and s2 are the selectors that result from evaluating the composed event
expressions:

(define (conjunction s1 s2)

(lambda (rt-event env)

(let ((new-env1 (s1 rt-event env)))

(i f (eqv? ’epsilon new-env1)

’epsilon

(let ((new-env2 (s2 rt-event (union new-env1 env))))

(i f (eqv? ’epsilon new-env2)

’epsilon

(union new-env1 new-env2)))))))

The selector applies s1 with the original environment and then s2 with the union
of the original environment and the one obtained from s1. Thus, the second expres-
sion can use the variables bound by the first event expression. Finally, the returned
environment is formed by the union of the two newly obtained environments.

– The definition of an explicit binding looks as follows in Scheme, where s is the selector
that results from evaluating the corresponding expression, var-name is the name of
a variable and var-value the value to bind.

(define (binding s var-name var-value)

(lambda (rt-event env)

(let ((new-env (s rt-event (union env (l i s t var-name var-value)))))

(i f (eqv? ’epsilon new-env)

’epsilon

(union new-env (l i s t var-name var-value))))))

Note that the new binding is used in the application of s. Then, the selector returns
the environment obtained from s extended with the new parameter binding.

70 Chapter 4 — A Model of Declarative and Polymorphic Events

– The definition of an expression with local event variables looks as follows in Scheme,
where s is the selector that results from evaluating the given expression and
var-names the list of local variables:

(define (local-var s var-names)

(lambda (rt-event env)

(let ((new-env (s rt-event env)))

(i f (eqv? ’epsilon new-env) ’epsilon (rm-vars new-env var-names)))))

The function returns the environment obtained from applying s. However, it removes
the bindings corresponding to local variables by using the function rm-local. Thus
they cannot be used by enclosing selectors as they are local.

– The definition of an quantification on a list of objects looks as follows in Scheme,
where delayed-expr evaluates to a list of objects, event-name is the name of event
to access and var-names is the list parameters of the event:

(define (some delayed-expr event-name var-names)

(lambda (rt-event env)

(fold (lambda (tail obj)

(i f (eqv? tail ’epsilon)

((event-access (lambda() obj)

event-name

var-names) rt-event env)

tail))

(delayed-expr))))

Similarly to simple event access, the function delayed-expr delays to selection time
the evaluation of the expression that returns the required list of objects.

Composition of event handlers. The handling of a runtime event consists of executing
a list of event handlers. These handlers are the ones bound to the events that selected the
runtime event. Each one is executed with values for its parameters taken from the tuple of
parameter values that resulted from the application of the corresponding event selector.

The execution of event handlers is nested by using the event expression Next. The
execution is such that the first handler of the list can use Next to nest the execution of
the second handler. The second handler can use Next to nest the execution of the third
handler, and so on. When the last handler executes Next, the control comes back just after
the triggering of the event. Expressed in other terms, event handlers can control the rest of
the process of handling. If an event handler does not execute Next, the remaining handlers
are not executed.

In order to illustrate the nesting of event handlers, consider Listing 4.13. It defines an
inspector of figures with a handler for the event changed of a figure. Thus, two handlers
can be registered for the occurrences of the event changed of the same figure: the one of a
drawing and the one of a figure inspector. For example, consider that at runtime there is a
view (view) of a drawing (draw), which consists of a single figure (fig). In addition, there
is a figure inspector (inspector) associated to the figure. Figure 4.1 shows what happens
when the event changed of the figure is triggered. The new runtime event is detected
by the language runtime, which evaluates all the events of the application in order to
determine the ones that occur. The gray arrows point out the process of evaluation. As a
result the language runtime determines that the event invalidated of the view (defined
in Listing 4.9) occurs and also the event changed of the inspector. Thus, the event handler
invalidated of the drawing and the event handler changed of the inspector have to be

Chapter 4 — A Model of Declarative and Polymorphic Events 71

1 Class(FigInspector , Object , [
2 Field(Figure , figure) ,
3

4 DecEvent(changed , [FormalParam(Figure , fig)] ,
5 EventAccess(FieldAccess(figure) , changed , [fig])) ,
6

7 Handler(changed , [FormalParam(Figure , fig)] , [
8 implementation ,
9 Next

10])
11])

Listing 4.13: A second handler attached to the change of a figure.

fig Language Runtime view

changed(fig)

Next

Method(repaint, [fig])
Handler(invalidated, [fig])

Handler(changed, [fig])

fig.changed(fig)

view.invalidated(fig)

draw.changed(fig)

inspector

Method(update, [fig])

Figure 4.1 – The runtime model when a figure changes in an editor.

72 Chapter 4 — A Model of Declarative and Polymorphic Events

executed together. The handler invalidated is first executed (the order of event handlers
is described below). The call to Next, after repainting the figure, nests the execution of the
handler changed.

Ordering of event handlers. The order of execution of event handlers is as follows.
Given a declarative event declarativeEvent and given an event accessedEvent accessed in
the event expression that defines declarativeEvent, an event handler directly bound to
declarativeEvent is executed before an event handler directly bound to accessedEvent. When
this statement is not enough to determine the order between two event handlers, the order
of their executions is arbitrary. A consequence of this design is that an event handler
directly bound to an imperative event is always the last handler to be executed when this
event is triggered.

1 Class(A , Object , [
2 ImpEvent(evt , []) ,
3 Handler(evt , [] , [Next])
4])
5

6 Class(B , Object , [
7 Field(A , a) ,
8 DecEvent(evt1 , [] , EventAccess(FieldAccess(a) , evt , [])) ,
9 Handler(evt1 , [] , [Next])

10])

Listing 4.14: Ordering of event handlers. The event handler evt1 is executed before the
event handler evt.

As an example, in Listing 4.14 the event handler evt1 of an instance of B is executed
before the execution of the event evt of its instance variable a. The order between the
event handlers evt1 of two instances of B is arbitrary.

4.3.5 Conclusion

By looking at the runtime execution of the figure editor we can see how the triggering
of the event changed of a figure directly produces the execution of the handler that repaints
the figure in the view. When events are composed imperatively like in C#, the same effect
requires to trigger each involved composite event in a method. The model of this section
improves on this situation. No intermediate method execution is needed. The model also
provides a compact way to express event composition.

The next section makes even more evident how composition of events is compact and
expresses in a direct way the intention of programmers.

4.4 A Concrete Syntax with EJava

The language EJava provides the model presented so far with a concrete syntax and
a concrete implementation. The semantics of this concrete language corresponds to the
semantics of the extended model previously described in Section 4.3 (except some slight
modifications).

Chapter 4 — A Model of Declarative and Polymorphic Events 73

abstract? class JavaId (extends JavaId)? { Member∗ }

Event | Handler | JavaFieldDec | JavaMethodDec

AbsEvent | ImpEvent | DecEvent
abstract event EventHead ;

event EventHead ;

event EventHead = EventExpr ;

JavaId ({ JavaFormalParam , }∗) JavaThrows?

EventAccess | Disjunction | Conjunction |
Refinement | Binding | LocalVar | Quantification |
(EventExpr)

(JavaExpr .)? JavaId ({ ExprOrType , }∗)

EventExpr || EventExpr
EventExpr && EventExpr
EventExpr && JavaExpr
EventExpr with JavaId = JavaExpr
({ JavaFormalParam , }∗) EventExpr
some ((JavaId :)? JavaExpr) . JavaId ({ JavaExpr , }∗)

JavaExpr | JavaType

EventHead => JavaBlock [[HCtx]]

−> Class
−> Member

−> Event
−> AbsEvent
−> ImpEvent
−> DecEvent

−> EventHead

−> EventExpr

−> EventAccess
−> Disjunction
−> Conjunction
−> Refinement
−> Binding
−> LocalVar
−> Quantification

−> ExprOrType

−> Handler

Listing 4.15: EJava syntax.

next

JavaReturn [[HCtx]]
−> JavaBlockStm [[HCtx]]
−> JavaBlockStm [[HCtx]] {reject}

Listing 4.16: EJava syntax of Java block statements in the context of an event handler.

74 Chapter 4 — A Model of Declarative and Polymorphic Events

EJava is built on top of Java. We skip visibility annotations for the sake of simplicity.
Listing 4.15 shows the syntax of EJava, a concretization of the abstract syntax presented in
Listing 4.5. This concrete syntax definition, as well as the other concrete definitions shown
in this dissertation, are based on the syntax definition formalism SDF [Vis97b] (close to
EBNF) and its implementation with scanner-less generalized-LR parsing (SGLR) [Vis97a,
vdBSVV02]. A SDF production s1...sn -> s0 defines that an instance of non-terminal
s0 can be produced by concatenating elements from symbols s1...sn, in that order. SDF
provides notation for optional (?) and iterated (*,+) non-terminals. The notation {s lit}*
represents a list of s separated by lit.

EJava uses different symbols in a Java-like fashion: parameters are put between pa-
rentheses, the body of handlers is enclosed between brackets and its statements separated
with semicolon. In addition, thanks to SDF, the syntax of Java is reused: all the non-
terminals and terminals prefixed with Java in Listing 4.15. For example, the fields and the
methods of EJava have the Java syntax.

Similarly to approaches such as C# or e [IEE08], EJava events are defined as full-
fledged instance members by using the keyword event. Abstract events are qualified by
abstract. Concrete syntax is provided for all the abstract event expressions introduced in
Section 4.3. Java expressions are used to access events of external objects, bind parameters
or test conditions. The disjunction of event expressions is expressed by using the operator
||. The conjunction of event expressions and the refinement of an event expression use
the operator &&. Parameter binding uses the keyword with. Local event variables are
put between parentheses. In addition, a new event expression Quantification represents
a quantification over the events of a list of objects as described in Section 4.4.3.

The syntax of event triggering is not included because it is the same as the syntax of
method call.

Event handlers are defined with the signature of an event, the symbol => and a body.
A handler body is similar to a method body. Indeed, it is defined in Listing 4.15 as a
Java block by using the non-terminal JavaBlock[[HCtx]]. This non-terminal includes a
mixin parameter, a SDF facility which makes it possible to reuse the original syntax of the
non-terminal for a given context. The parameter is propagated within the non-terminal,
making it possible to add new productions or remove existing ones. In our case Java-
Block includes the context of an event handler HCtx. This makes it possible to include
the productions of Listing 4.16. A Java block statement in the context of an event hand-
ler (non-terminal JavaBlockStm[[HCtx]]) can include a next statement implementing the
Next expression of the model. A return statement in the context of an event handler
(non-terminal JavaReturn[[HCtx]]) is removed as a valid production by using the “reject”
annotation.

4.4.1 Examples of Basic Features

Listing 4.17 shows the EJava implementation of the basic figure editor of Section 4.3.
The class Figure being the superclass of any figure of the editor declares the abstract event
changed (line 2). The class AbstractFigure provides the event changed with an imperative
definition (line 6) and uses it for explicit triggering (line 8). The class CompositeFigure

defines the event changed as a declarative event (line 16). The event occurs when the event
changed of some of the composed figures occurs. The event expresses in a proper way the
fact that if one of the composed figures changes, the composite figure also changes. The
parameter of the event represents the primitive figure that has to be repainted. Event

Chapter 4 — A Model of Declarative and Polymorphic Events 75

1 abstract class Figure { ...

2 abstract event changed(Figure source);

3 }

4

5 abstract class AbstractFigure extends Figure { ...

6 event changed(Figure source);

7 void moveBy(int x, int y) { ...

8 changed(this);

9 }

10 }

11

12 class Circle extends AbstractFigure { ... }

13

14 class CompositeFigure extends Figure { ...

15 Figure fig1, fig2;

16 event changed(Figure source) =

17 fig1.changed(source) || fig2.changed(source);

18 }

19

20 class Drawing extends CompositeFigure { ... }

21

22 abstract class DrawingView { ...

23 Drawing drawing;

24 event invalidated(Figure changedFig) = drawing.changed(changedFig);

25

26 invalidated(Figure changedFig) => {

27 repaint(changedFig.getDrawingArea());

28 next;

29 }

30 }

Listing 4.17: EJava example of abstract events (line 2), imperative events (line 6), decla-
rative events (line 16 and 24), event handlers (line 26) and event triggering (line 8).

76 Chapter 4 — A Model of Declarative and Polymorphic Events

handlers are also defined as full-fledged instance members. The class DrawingView imple-
ments a view of a drawing in the editor. It defines an event invalidated (line 24) and an
event handler bound to this event (line 26). The event invalidated represents a change
into a situation in which the view does not reflect anymore the state of the drawing be-
cause a figure has changed. The event handler obtains the figure passed as a parameter
and repaints the drawing area of the figure. The handler is named as the event it handles.
Consequently, the class DrawingView has two members with the same name: the event
invalidated and the handler invalidated. No ambiguity is introduced since events and
handlers are accessed in different contexts.

4.4.2 Local Event Variables and Anonymous Parameters

1 class ConnectionFigure extends Figure { ...

2 Figure fig1, fig2;

3 event changed(Figure source) =

4 ((Figure f) fig1.changed(f)

5 || fig2.changed(Figure)

6)

7 with source = this;

8 }

Listing 4.18: Connector between two figures in EJava.

As explained in the model, local event variables allow a projection on the parameters
of events. For example, Listing 4.18 shows the implementation of a class representing a
connector between figures. Being a subclass of Figure, the class ConnectionFigure is
equipped with an event changed. Line 4 shows how the definition of the event uses a local
variable for capturing the parameter bound by the event changed of the first figure. A local
event variable makes it possible to locally declare and bind a variable. The variable can be
then used in conditions if needed. However, the local variable of line 4 is not further used.
EJava includes anonymous parameters (non-terminal ExprOrType of Listing 4.15), which
make it possible to indicate types in the place of parameters of event accesses without the
necessity of declaring local variables. An anonymous parameter is syntactic sugar for the
declaration of a local variable, without a further use of it. In the example, an anonymous
parameter is used for the event changed of the second figure in line 5. The effect is the
same as using a local variable like in line 4.

4.4.3 Quantification

Quantification on a collection of objects is defined in EJava with an event expres-
sion of the form some(collection).eventName(params), where collection is an expression
evaluating to a collection of objects, and eventName an event defined by these objects
(non-terminal Quantification of Listing 4.15).

For example, a change of a figure, which is a composition of a collection of figures, can
be described in terms of the events observed on its children. The construct some is useful in
this case. Listing 4.19 defines that the event changed of the composite figure occurs when
the event changed of some composed figure occurs. The semantics of the construct some

is a disjunction for an unbounded amount of objects. The construct some can, in addition,

Chapter 4 — A Model of Declarative and Polymorphic Events 77

abstract class CompositeFigure extends Figure {

Collection<Figure> figures;

event changed(Figure source) = some(figures).changed(source);

...

}

Listing 4.19: Example of use of event quantifier some.

event changed(Figure source) = some(source: figures).changed(Figure);

Listing 4.20: Use of event quantifier some capturing the object whose event occurs.

obtain the first object whose event occurs. For example, Listing 4.20 shows another version
of the event changed binding its parameter with the first figure whose event selects an event
occurrence.

4.4.4 Exception Handling

Dealing with exceptions in EB applications is a challenging task [PH07]. This disserta-
tion does not go deep into this subject. We have adopted a Java-like treatment by using
checked exceptions. Event handlers can throw exceptions like methods by using the throw

keyword. An event handler that throws an exception (which is not a runtime exception)
has to declare in its definition the type of these exceptions with a throws statement. In
the absence of asynchronous events, event triggering and event handling of a given event
occurrence belong to the same flow of control. As a result, events also need to be declared
as throwing exceptions, which can be captured as a result of triggering an event.

This treatment of exceptions requires: (1) all related events to be declared as throwing
the same types of exceptions, and (2) event handlers to be declared as throwing the same
types of exceptions as their bound events modulo subtyping.

class B {

A a;

event evt3() throws E1, E2, E3 = a.evt1() || a.evt2();

evt3() throws E1, E2, E3 => {

i f(condition)

next;

else

throw new E3();

}

}

Listing 4.21: Example of exceptions in EJava.

The example of Listing 4.21 justifies this design. An event evt3 is defined as a disjunc-
tion of two imperative events evt1 and evt2. Consider that there are handlers bound to
evt1 that can throw exceptions of type E1 and handlers bound to evt2 that can throw
exceptions of type E2. A handler evt3 is defined that can call next or throw and exception
of type E3. Since next can nest a handler registered with evt1 or a handler registered with

78 Chapter 4 — A Model of Declarative and Polymorphic Events

evt2, the handler evt3 has to be defined as potentially throwing exceptions of the types
E1, E2 and E3. Then we say that the event evt3 can throw the same kinds of exceptions.
At the same time, since the handler evt3 is a part of the process of handling the events
evt1 and evt2, these events have to be defined as potentially triggering the same kinds of
exceptions, E1, E2 and E3.

The problem with checked exceptions is that event sources need to preplan the type
of exceptions that handlers can throw. If a handler needs to throw an exception of a type
that was not taken into account, it is necessary to modify the header of its bound event
and all the related events, together with the header of all the handlers bound to all the
modified events.

There are some discussions about whether checked exceptions could be replaced by
unchecked exceptions as in C# and other languages [Bru07]. Unchecked exception would
be more suited in our case as they do not require events to declare the types of exceptions
that they can throw. This is still possible in EJava by throwing runtime exceptions.

4.4.5 Deployment

class A {

A a; String id;

event bar();

event externalBar() = a.bar();

void foo() { bar(); }

bar() => {

print(id + ".bar");

}

externalBar() => {

print(id + ".extBar"); next;

}

}

class Main {

public void main(String[] a) {

A a1 = new A(), a2 = new A();

a1.id = "a1"; a1.a = a2;

a2.id = "a2"; a2.a = a1;

//prints "a1.bar"

a1.foo();

deploy(a2);

//prints "a2.extBar" "a1.bar"

a1.foo();

}

}

Listing 4.22: Example of use of deploy.

We can classify the events of an object in two categories: internal events and external
events. An internal event is either an imperative event or a declarative event formed as
compositions of only internal events. The other events are external. An external event is
related to events of external objects. In order for an event handler that is bound to an
external event to be executed on the occurrence of this external event, the object needs
somehow to be registered with the corresponding external objects. If this is the case, when
the object is not explicitly referred by other objects, it cannot be garbage collected imme-
diately. This may produce unexpected results as the object, still alive, can continue to be
notified of occurrences of external events. As a design decision, when an object is instantia-
ted in EJava, it is only able to be notified of the occurrences of internal events (and execute
the corresponding handlers), so that the object can be garbage collected. The object is able
to be notified of occurrences of external events (and execute the corresponding handlers)
only after deployment. Deployment is achieved by using a special construct deploy. The
language also includes a construct undeploy that undeploys an object, reverting to its

Chapter 4 — A Model of Declarative and Polymorphic Events 79

original state. Listing 4.22 shows an example of use of deploy.

4.5 Related Work

The model presented in this chapter has similarities with the model of the language
e [IEE08]. Both models provide imperative events and declarative events and treat events
and event occurrences in a similar way. In e like in EJava a handler can only be bound to
an event declared in the class. However, the similarities in the models of both languages are
for a part a coincidence. The decisions taken in these models meet different needs. In the
language e declarative events make it possible to define temporal situations, most of these
events involving callbacks from simulated devices or clocks. Events do not define parameters
and there is a lot of special purpose operators. The model presented in this section makes it
possible to improve the design of EB applications and specially to better decouple software
components. For the sake of encapsulation the model provides parametrized events, which
make it possible to execute event handlers for different parameter bindings. We provide
a regular treatment of event and event handler enabling inheritance as the next chapter
shows. In addition, several design decisions in the model of EJava have as a justification to
make it easier to integrate different programming paradigms as further chapters describe.

The declarative events introduced in this chapter are related to the complex events of
approaches to Complex Event Processing (CEP) such as the language Rapide-EPL [Luc97,
Luc01]. In CEP, complex events are defined by using patterns of events. These patterns
use operators to relate events in a declarative way, similarly to our event expressions. Like
in our model, these operators include conjunction and disjunction of events. They also
include other operators that are specific to CEP. Despite the similarities of the operators,
our declarative events are different from the complex events of CEP. Our events provide
different views of a common runtime event, whereas in CEP a complex event relates dif-
ferent runtime events. For example, in CEP the conjunction of two events expresses that
two occurrences of these events have happened in the past. This is not the case in our
model, where the conjunction of two events defines another view of the same occurrence.

4.6 Conclusion

This chapter has presented a programming model that integrates imperatively triggered
events with a notion of declarative events. We have presented EJava, a language that
materializes the model. By using some examples we have illustrated the convenience of
including declarative means to define events in EB programs.

The model presented in this chapter has been validated in previous works [NN08,
NnNG09]. There we have used declarative events to design context-oriented applications.
A context, describing a situation such as “it is night” or “there is somebody in the house”,
is modeled as an object with two events, in and out. The event in activates the context.
The event out deactivates the context. Our model makes it possible to define these events
in terms of other events of the application in a declarative way. The composability of our
events facilitates the composition of contexts, expressing complex situations in terms of
simpler ones. A composite context is translated into a composition of the in and out events
of the composed contexts. Event handlers are used to adapt an application at the beginning
and at the end of a context.

In the following chapter we use the programming model and its concretization in the

80 Chapter 4 — A Model of Declarative and Polymorphic Events

EJava language to present the integration of the different programming paradigms put
forward by this dissertation.

CHAPTER5
Integrating EBP and

OOP
The previous chapter presented the idea of declarative events. It illustrated how an EB

language complementing imperative events and declarative events provides a good degree
of flexibility and simplicity for defining EB behavior. This chapter looks at the presented
programming model from the point of view of OOP, discussing how EBP and OOP can be
better integrated. Section 5.1 motivates the contribution of this chapter. Section 5.2 revisits
the programming model of Section 4.3 from the point of view of OOP and extends it with
the unification of event triggering and method call and the unification of event handling and
method execution. Section 5.3 describes the EJava features that implement the modeling
elements of this chapter. Section 5.4 discusses related work. Finally, Section 5.5 concludes.

5.1 Motivation

EBP is born as a paradigm on top of OOP. For example, Smalltalk-80, the pattern
Observer or the Java Listeners consider sources and destinations of events as objects.
A destination subscribes to events happening in the context of the objects it explicitly
knows. Languages such as C# have increased the integration between both paradigms by
including events as language constructs in the core of OO languages. They offer events as
instance members like methods or fields. However, a good integration implies a regular and
orthogonal treatment of the new constructs. As Section 3.1 described, this is not the case
in these languages:

– C# events do not support inheritance as fields or methods. An event declared in
a class cannot be directly triggered in a subclass. A dedicated method has to be
included in the class in order to trigger the event in subclasses. This results in a
problem of regularity as events are not treated as other class members.

– The event-triggering/event-handling mechanism of EBP is very similar to the tradi-
tional method-call/method-execution mechanism of OOP. An event handler responds
to the occurrence of an event as a method responds to a method call. This results
in a problem of orthogonality as two similar mechanisms are provided by different
language constructs.

The question that arises then is whether we can design regular and orthogonal language
constructs to implement both explicit and implicit invocation. We answer to this question
with a programming model that considers method calls as events and method bodies
as event handlers. The next section extends our programming model with this idea. It
reconsiders message passing from the point of view of EBP obtaining an orthogonal and
simple design, which unifies event handling and method call. The resulting EB model is
more regular and better integrated with OOP.

81

82 Chapter 5 — Integrating EBP and OOP

5.2 Programming Model

This section describes the principles of integrating EBP and OOP. Basically, we revisit
and extend the programming model of Section 4.3, elaborating on the orthogonality of
event handling and the regularity of events and event handlers.

5.2.1 Unification of Event Handling and Method Execution

Class(Callee , superclass , [Method(T , m , [] , methodBody)])

Listing 5.1: A method m defined in a class Callee.

The metaphor of OOP is that objects communicate by interchanging messages. An
object sends a message to another one, and the latter reacts by looking for a method and
executing its body. For example, the method m of the class Callee of Listing 5.1 defines a
piece of code methodBody to be executed as a response to a call to m.

Event handlers and methods play a similar role. Whereas a handler is executed as a
response to the occurrence of an event, a method (body) is executed as a response to a
method call. What about providing a uniform treatment of both?

5.2.1.1 Method Calls as Imperative Events

Class(Callee , superclass , [
ImpEvent(T , m , []) ,
Handler(T , m , [] , methodBody)

])

Listing 5.2: De-sugaring of the method m of the class Callee of Listing 5.1.

Our model provides a uniform treatment of event handling and method execution by
modeling method calls as triggering imperative events.

The standard OO syntax of methods is provided as a shortcut for defining both an
imperative event and an event handler registered with such an event. The event handler
contains the method body. More concretely, the class definition of Listing 5.1 is de-sugared
in Listing 5.2. Thus, calling a method of an object is equivalent to triggering the corres-
ponding imperative event. The handler containing the method body is executed in the
process of handling the triggered event. In other words, the method body handles the
corresponding method call.

Note that the event handler of Listing 5.2 is equipped with a return type. Indeed, the
unification requires some modifications to our abstract language of Section 4.3. Listing 5.3
shows the reformulated abstract syntax∗. The main modification corresponds to equip-
ping events and event handlers with a return type. The syntax also incorporates abstract
methods and abstract event handlers, together with super calls. As a result, the abstract
syntax of both methods and event handlers is the same. The remainder describes these
extensions.

∗. The non-terminals that are not defined correspond to the non-terminals of Listing 4.5.

Chapter 5 — Integrating EBP and OOP 83

Class ::= t t Member∗
Member ::= Field | AbsEvent | ImpEvent | DecEvent

| AbsHandler | Handler | AbsMethod | Method

AbsEvent ::= t e FormalParam∗

ImpEvent ::= t e FormalParam∗

DecEvent ::= t e FormalParam∗ EventExpr

EventExpr ::= Super | . . . EventExpr of Listing 4.5
Super ::= e Expr∗

AbsHandler ::= t e FormalParam∗

Handler ::= t e FormalParam∗ Expr∗
Expr ::= Super | Next | . . . Expr of Listing 4.5

AbsMethod ::= t e FormalParam∗

Method ::= t e FormalParam∗ Expr∗

Listing 5.3: Extension of the abstract syntax of Listing 4.5.

5.2.1.2 Events with Return Type

As Listing 5.3 shows, an event handler is defined with a return type. It returns the
value that results from evaluating the last expression of its body†. An event is also defined
with a return type, indicating that the triggering of an imperative event (or a method call)
returns the value returned by the first executed handler. An event handler can compose its
return value with the value returned by the rest of the event handlers. This value can be
obtained by using the expression Next. The execution of Next returns the value returned
by the next handler in the list of handlers to be executed.

1 Class(Agenda , Object , [
2 ImpEvent(List , meeting , [FormalParam(Date , date)]) ,
3 Handler(List , meeting , [FormalParam (Date , date)] , [New(List)])
4])
5

6 Class(Employee , AbstractEmployee , [
7 Field(agenda) ,
8

9 DecEvent(List , meeting , [FormalParam(Date , date)] ,
10 EventAccess(FieldAccess(agenda) , meeting , [date])) ,
11

12 Handler(List , meeting , [FormalParam(Date , date)] ,
13 [Call(Next , add , [This])])
14])

Listing 5.4: Utility of events with a return value in the model.

As an example, Listing 5.4 implements an agenda with an event meeting representing
the planning of a meeting at a certain date. Several employees can observe this event and

†. In Java a handler defined with a return value includes a return statement.

84 Chapter 5 — Integrating EBP and OOP

point out their attendance. The event meeting returns the list of employees that can attend
the meeting. The handler of an employee is supposed to indicate whether the employee
can attend the meeting. The conditional has been omitted for simplicity. In line 13, the
handler uses the expression Next to obtain the list returned by the other handlers and add
its owner object in the list. The method add of a list returns the resulting list.

It is important to remember the fact that an event handler directly registered with an
imperative event is always the last handler to be executed when the event is triggered (see
Section 4.3.4). In particular, this is the case of the event handlers implicitly defined by
using method syntax.

In line 3 of Listing 5.4 the class Agenda defines an event handler that returns a prelimi-
nary empty list. The fact that this handler is the last handler to be executed ensures that
the precedent handlers will obtain a valid initial list when calling Next. The event handler
of line 3 is a default event handler. Note that the event meeting and the event handler
meeting could have been defined by using a method.

The reader may wonder what happens if there is no handler registered with an impe-
rative event defined with a return type, in particular, what happens if a value is expected
when triggering the event. Since the hypothetical language considered by our model is a
“pure-object” language, it is possible to impose that the return value is the object Null.
This can be valid for languages such as Smalltalk. However, in a language such as Java
this could be a problem, for example, when the event is defined as returning a built-in
primitive type such as int. In a language like Java it would be necessary to impose that
a class defining an imperative event with a return type (distinct to void) has to provide a
default event handler as in line 3 of Listing 5.4. In other words, in these cases we should
always be able to use a method syntax.

5.2.1.3 Abstract Event Handlers

An event handler can be declared abstract, thus deferring its implementation to sub-
classes. An abstract handler obliges concrete subclasses to handle an event. This can be
useful for understanding in an abstract way the relationships between event sources and
event destinations.

1 Class(AbstractEmployee , Object , [
2 Field(agenda) ,
3

4 DecEvent(List , meeting , [FormalParam(Date , date)] ,
5 EventAccess(FieldAccess(agenda) , meeting , [date])) ,
6

7 AbsHandler(List , meeting , [FormalParam(Date , date)])
8])

Listing 5.5: Abstract handler.

For example, Listing 5.5 defines an abstract class representing employees. It defines
an abstract handler in line 7 for the event meeting defined in line 4. The event refers to
the event meeting of an agenda and the event handler indicates in a proper way that an
employee handles this event.

An abstract method is a shortcut for declaring an imperative event and an abstract
handler registered with the event. Thus, whereas in OO languages an abstract method

Chapter 5 — Integrating EBP and OOP 85

requires subclasses to provide an implementation, the abstract handlers play the same
role.

5.2.1.4 Super Calls

Events and event handlers are provided with super calls (non-terminal Super of Lis-
ting 5.3). In the context of an event, a super call is considered as an event expression that
makes it possible to access the definition of an event of the super class. Its semantics is
similar to the semantics of a standard event access. The super call can be composed with
other event expressions in a standard fashion.

Class(Employee2 , Employee , [
Field(Boolean , isAvailable) ,

DecEvent(List , meeting , [FormalParam(Date , date)] ,
Refinement(Super(meeting , [date]) , FieldAccess(isAvailable))

])

Listing 5.6: Declarative-event definition using a super call.

For example, Listing 5.6 shows a subclass of the class Employee of Listing 5.4 that
redefines the event meeting by attaching a condition to the event defined in the super
class indicating whether the employee is available.

An event handler can also include super calls indicating the name of an event handler
defined in the super class. The code of the event handler of the superclass can then be
executed. However, this is only possible when the definition in the superclass does not
include Next statements.

5.2.2 Events as Regular Instance Members

Methods are the de facto class members in the OO paradigm. The following three
principles, included in our model, ensure a regular treatment of events and event handlers
regarding to the treatment of methods in OO languages:

1. Design of events and event handlers as polymorphic properties of objects.
This has basically three consequences. First, the access to an event (event handler)
has to be qualified with an expression returning the object the event (event hand-
ler) belongs to. Second, it is possible to refer to an event (event handler) without
knowledge of the concrete value of the event (event handler), which depends on
the runtime object returned by the expression qualifying the event (event handler).
Third, an event (event handler) definition can include instance level context such as
references to members of the object the event (event handler) belongs to.

2. Support for inheritance of events and event handlers. The events or event
handlers of a class are inherited by subclasses. Similarly to methods, subclasses can
override the events or event handlers defined in the superclass. When overriding an
event (event handler) a super expression is available to refer to the definition of an
event (event handler) provided in the superclass.

3. Abstract events and event handlers. An event or an event handler can be decla-
red abstract, deferring its definition to subclasses. The importance of abstract events

86 Chapter 5 — Integrating EBP and OOP

is that the reactive behavior of applications can be completely programmed without
any knowledge about the way events are concretely defined. At a later stage, dif-
ferent versions of a piece of software can be easily instantiated by providing different
event definitions adapted to each situation without modifying the already program-
med reactive behavior. The importance of an abstract event handler is that it obliges
a concrete subclass to implement an event. This makes it easier to understand the
abstract relationships between objects.

5.2.3 Conclusion

As a conclusion, the events and the event handlers of our model are orthogonal and
regular. Method-call/method-execution is eliminated as a different mechanism in the favor
of a single and orthogonal mechanism: event-triggering/event-handling. Classes only have
three kinds of members: fields, events and event handlers. Methods are included as syntactic
sugar for the definition of events and event handlers. Finally, the treatment of events and
event handlers is regular regarding to the treatment of methods in OO languages. The next
section shows in concrete syntax the elements discussed in this section.

5.3 OO Features of EJava

This section presents an extension of EJava by incorporating the object-oriented fea-
tures previously described, such as inheritance of events and the unification of event hand-
ling and method execution.

5.3.1 Features

JavaResultType? JavaId ({ JavaFormalParam , }∗) JavaThrows?

EventHead => JavaBlock

EventAccess | Disjunction | Conjunction | Refinement |
Binding | LocalVar | Quantification | Super

super . JavaId ({ JavaFormalParam , }∗)

next

−> EventHead

−> Handler

−> EventExpr

−> Super
−> JavaExpr

Listing 5.7: Extension of the EJava syntax of Listing 4.15 unifying methods and events.

The EJava syntax presented in the previous chapter (Listing 4.15) is extended, in
Listing 5.7, in order to cover the elements presented in the previous section. First, events
and event handlers are equipped with an optional return type (see EventHead). Second,
Super is incorporated as an event expression. Third, the keyword next is not anymore a
Java statement but rather a Java expression similarly to a method call. The syntax of the
body of methods and the body of event handlers are now equivalent (a JavaBlock).

5.3.1.1 Abstract Events

Abstract events are declared in EJava by using the keyword abstract as the syntax of
Listing 5.7 shows. Similarly to methods, an abstract event must be defined in a subclass in

Chapter 5 — Integrating EBP and OOP 87

order to be used. Note that we have already used abstract events in the previous chapter.
The class Figure of Listing 4.17 defines an abstract event changed representing a change
in a figure such as a movement, a change in its size, etc. The event changed, similarly to
the abstract methods of the class, has no definition. Definitions of abstract members are
postponed to a separate stage in which specific settings can provide the needed details to
implement them. The previous chapter showed the utility of defining the abstract event
changed. Classes such as DrawingView (see Listing 4.17) use this event to program its
behavior independently of the particular definitions made in concrete figures.

5.3.1.2 Inheritance of Events

The semantics of event inheritance in EJava is analogous to the semantics of method
inheritance. The inherited events can be overriden by binding them to new event expres-
sions. The definitions of the event inherited from the subclass can be accessed through the
super reference.

class ConnectionFigure2 extends ConnectionFigure {

event childChanged() = super.changed();

event connectionChanged();

event changed() = connectionChanged();

childChanged() => {

next;

/* recalculate area */

connectionChanged();

}

Area area;

Area getDrawingArea() {

return area;

}

}

Listing 5.8: A figure that connects figures with a line.

As an example, the class ConnectionFigure2 of Listing 5.8 extends the class
ConnectionFigure of Listing 4.18 and overrides the event changed defined there. As
a reminder, the class ConnectionFigure defines the event changed in terms of the
events changed of the connected figures. It does so by making the assumption that
its method getDrawingArea, used by the class DrawingView of Listing 4.17, recalcu-
lates the shape of the connection figure. If the connected figures change, the connection
will be correctly drawn. Contrary to ConnectionFigure, the method getDrawingArea of
ConnectionFigure2 does not recalculate the shape of the connection. The class keeps
the area in an instance variable and the method getDrawingArea just returns this va-
riable. Consequently, as soon as a connected figure changes, the connection shape has
to be recalculated in situ and assigned to the instance variable. The class includes an
event childChanged representing a change in a connected figure. Its definition is made
in terms of the event changed provided in the superclass by using the keyword super.
As a reaction to childChanged, the class recalculates the area and triggers an imperative
event connectionChanged representing a change in the connection. The event changed of

88 Chapter 5 — Integrating EBP and OOP

ConnectionFigure2 is redefined in terms of the event connectionChanged, representing
in this way a change in the shape of the connection.

5.3.1.3 Unification of Method Bodies and Event Handlers

A method in EJava is syntactic sugar for the definition of an imperative event with
the signature of the method and an event handler binding the method body to the event.

abstract class AbstractCompositeFigure

extends CompositeFigure

{

void draw(Graphics2D g) {

/* method body */

}

}

abstract class AbstractCompositeFigure

extends CompositeFigure

{

event draw(Graphics2D g);

draw(Graphics2D g) => {

/* method body */

}

}

Listing 5.9: Method syntax on the left and de-sugared syntax on the right.

As an example, the left side of Listing 5.9 shows the class AbstractCompositeFigure

defining the method draw. This class definition is equivalent to the one on the right side.
The latter defines an imperative event draw and an event handler draw containing the
method body. Once the event draw occurs the method body is executed together with
the code of all the rest of the handlers registered with the event. As already explained,
a method call is equivalent to trigger the respective imperative event and the associated
method execution is equivalent to handling the event.

5.3.1.4 Abstract Event Handlers

abstract class Figure {

abstract void draw(Graphics2D g);

...

}

abstract class Figure {

event draw(Graphics2D g);

abstract draw(Graphics2D g) =>;

}

Listing 5.10: Abstract method syntax and de-sugared abstract method syntax.

EJava makes it possible to define abstract event handlers as defined in the syntax of
Listing 5.7. An example of an abstract handler is the definition of an abstract method,
which is equivalent to the definition of an imperative event and an abstract handler bound
to it. For example, the left of Listing 5.10 shows a class Figure with an abstract method
draw and the right shows its de-sugared version.

5.3.1.5 Inheritance of Event Handlers

Due to the unification of method bodies and event handlers, inheritance of event hand-
lers becomes equivalent to inheritance of methods. Event handlers have an identity given
by the name of the event they handle. This makes it possible to override them in subclasses
as shown in Listing 5.11. The class LabeledLineConnectionFigure overrides the handler
transform defined in its superclass. The handler transform is indeed a handler bound to

Chapter 5 — Integrating EBP and OOP 89

1 class LabeledConnectionFigure extends ConnectionFigure {

2 transform(AffineTransform tx) => {

3 super.transform(tx)

4 /* rest of the implementation */

5 }

6 ...

7 }

Listing 5.11: Inheritance of event handlers.

the imperative event transform defined in the hierarchy of figure. This design makes the
class have two members with the same name. No ambiguity is produced because these mem-
bers are accessed in different contexts. For example, the statement super.transform(tx)
of Line 3 nests the execution of the handler transform defined in the super class and does
not correspond to an event triggering. The same statement without the super keyword
would be interpreted as a triggering of the event transform.

The unification of event handling and method execution in a common notion of message
passing permits a more flexible definition of events. New events can be declaratively defined
as composition of events defined with method syntax.

5.3.2 Example

abstract class Agenda {

abstract List meeting(Date date);

}

abstract class Employee {

abstract boolean isAvailable(Date d);

}

Listing 5.12: Abstract structure of an agenda.

EJava can be used to implement an agenda with the structure given in Listing 5.12. The
abstract class Agenda declares an abstract method meeting, which is invoked for scheduling
a meeting at a given date. It returns a list with the employees that can attend the meeting.
The abstract class Employee declares an abstract method isAvailable indicating the
availability of the employee at a given date.

EJava makes it possible to implement these interfaces by using either explicit invoca-
tion or implicit invocation, both in a straightforward way. As an example, Listing 5.13 shows
an implementation with explicit invocation. The class ExplicitAgenda keeps a list of em-
ployees. Its implementation of meeting iterates on this list checking the availability of each
employee and adding the available ones to the resulting list. The class ExplicitEmployee
extends Employee with a basic implementation of the method isAvailable.

Listing 5.14 shows an implementation of this example using implicit invocation. The
class ImplicitAgenda is “lazy”. It implements meeting by returning an empty list. It is the
role of each employee to manifest its interest in a meeting. The class ImplicitEmployee

observes the imperative event meeting of its instance variable agenda. Such an event
has been implicitly defined by the method meeting. The class ImplicitEmployee defines
a declarative event meeting in terms of the event meeting of agenda refined with the

90 Chapter 5 — Integrating EBP and OOP

class ExplicitAgenda implements Agenda {

List<Employee> employees;

List meeting(Date date) {

List result = new ArrayList();

for(Employee e: employees) {

i f(e.isAvailable(date))

result.add(e);

}

return result;

}

}

class ExplicitEmployee extends Employee {

boolean isAvailable(Date d) { ... }

}

Listing 5.13: Implementation of the agenda of Listing 5.12 with explicit invocation.

class ImplicitAgenda implements Agenda {

List meeting(Date date) {

return new ArrayList();

}

}

class ImplicitEmployee extends ExplicitEmployee {

Agenda agenda;

event List meeting() = (Date d) agenda.meeting(d) && isAvailable(d);

List meeting() => {

List list = next;

list.add(this);

return list;

}

}

Listing 5.14: Utility of events with a return value in the model.

Chapter 5 — Integrating EBP and OOP 91

condition isAvailable. A handler attached to this event adds the employee to the returned
list.

The example points out how the unification of event handling and method execution
increases the expressiveness of a language such as Java. A standard class such as Agenda

can be implemented either by using explicit invocation in a standard fashion or by using
implicit invocation facilitated by the previous unification. In addition, the example shows
the regularity of events and event handlers as they are used as any instance member.

5.4 Related Work

In the actor model [HBS73, Hew10] the sending and the receipt of a message are
decoupled, so that events represent the receiving of a message by an actor [Gre75]. When
several actors concurrently send several messages to an actor, the order in which these
events will be received by the actor is undetermined. The actor captures the message
receipts as events happening at different points in time and can choose when and how
to react to them. Our model, instead of modeling message receipts as events, models
message sends as events. The reason is that calling a method is an imperative action,
which can be easily seen as imperatively triggering an event. Indeed, since we do not deal
yet with concurrency or distributed systems, choosing between attaching a method body
to a method sending or a method receipt is analogous. As future work we plan to provide
a finer model including message receipts as events.

Our approach is related to approaches that, like C#, Qt and e [IEE08], include events
as class members. In these approaches, methods can implement event handlers, however,
there is no unification of event handling and method execution as we propose.

5.5 Conclusion

This chapter has presented an integration of EBP and OOP based on a unification of
event handling and method execution. This permits us to use EJava for both EBP and
OOP in a regular way. In the next chapter we will take a different point of view. We will
show how the notion of event can be used to program aspects and how our programming
model contributes to a better integration of EBP and AOP.

CHAPTER6
Integrating EBP and

AOP
The previous chapter described how EBP and OOP can be better integrated by unifying

events and methods. This chapter describes the integration of EBP and AOP. Section 6.1
motivates the need for a better integration of EBP and AOP. Section 6.2 presents the
elements of our programming model integrating these paradigms. Section 6.3 materializes
this model by showing how classical AO examples can be programmed in EJava. Section 6.4
discusses related work. Finally, Section 6.5 concludes.

6.1 Motivation

As argued in Section 3.2, the main difference between EBP and AOP is a matter
of obliviousness and modularity. EB programs explicitly trigger events at the source side
causing the notification of the respective event handlers at the destination side. Sources
need to pre-plan the events that destinations may need and insert the event calls at the
proper places in the code. Obliviousness is desirable because it allows greater separation
of concerns [FECA05]. For instance, in most of the examples of the previous chapters the
figures of the figure editor define an event changed. However, it can be that at some point in
time the destinations require finer-grained events such as moved or resized. If it is the case,
the sources need to be refactored in order to fulfill the new requirements. AO programs
provide the destinations with the flexibility of defining the events that they need. This
is transparent for the sources, which are unaware of the computations that trigger these
events. However, as described in Section 2.2.5, AOP sacrifices modularity for obliviousness:
it basically works on the static structure of programs and it is invasive, so that it may not
respect the inter-object interfaces of sources. Besides this difference, the mechanisms are
conceptually similar as both implement some form of implicit invocation. Providing similar
mechanisms with different language constructs conflicts with the orthogonality principle
of programming-language design [Mac95].

What about providing a more general model including both the EB mechanism and
the AO mechanism? Some existing work goes in this direction. Approaches such as EAOP
consider join points as events, which may be part of the computation history of a program.
More technically, aspects describe actions to perform along certain sequences of events.
However, EAOP [DFS04] is an AO model and does not enable source-side event triggering.
Recently, Ptolemy [RL08] has proposed a model, which integrates EB ideas and AO
ideas. However, Ptolemy is more a new EB language including AO features such as
quantification than a language featuring a general approach in which both AOP and EBP
are symmetrically enabled. In particular, source-side obliviousness cannot be achieved in
Ptolemy.

93

94 Chapter 6 — Integrating EBP and AOP

Based on the previous remarks this chapter reconsiders AOP from the point of view of
EBP. As a result, we get a programming model providing a good integration of both worlds,
enabling both styles of programming in a symmetric way. A big part of this integration is
a product of the unification of event handling and method execution already presented in
Chapter 5. We show how this unification turns EJava into a language for separation of
crosscutting concerns comparable to languages such as AspectJ [KHH+01].

6.2 Programming Model

EBP and AOP are in general not well-integrated because the mechanisms of event
handling and advising are treated in an orthogonal way. The key to the integration of EBP
and AOP proposed by our model is the unification of these mechanisms. We show how this
unification is possible thanks to the unification of event handling and method execution
introduced in the previous chapter.

6.2.1 Unification of Event Handling and Advising

As explained in Section 5.2.1, a method is syntactic sugar for the definition of an
imperative event and an event handler registered with such an event. This event handler
contains the method body. Consequently, pieces of advice can be simply modeled as event
handlers handling the occurrences of the same imperative event. The semantics of the
model ensures that the event handler introduced by a method is the last event handler to
be executed when the event is triggered (see Section 4.3.4). Thus, the control will be always
given to the pieces of advice before it is given to the method body. The pieces of advice
can control, in this way, the execution of the method body in the same way a standard
piece of advice controls its join point. Let us describe this in more detail.

aspect Aspect {

pointcut m() = ca l l(void Callee.m());

void around(): m() {

/* before code */ proceed(); /* after code */

}

}

Listing 6.1: An AspectJ aspect advising a method m of a class Callee.

Advising in AspectJ. Given a class Callee with a method m, the AspectJ aspect
of Listing 6.1 defines an around piece of advice whose execution replaces the call to the
method m of such a class. The keyword proceed nests the execution of the join point in the
advice body if needed. In other words, an around piece of advice takes the control of the
execution of the join point, preventing the base program from executing it when proceed

is not invoked.
If several around pieces of advice have been defined for a call to m, then all these pieces

of advice are composed using proceed. When the first piece of advice is executed, a call to
proceed nests the execution of the next piece of advice in its body. The next piece of advice
does the same, and so on. When the last piece of advice is executed, a call to proceed

Chapter 6 — Integrating EBP and AOP 95

nests the execution of the join point. If some piece of advice does not call proceed, then
the rest of the pieces of advice are not executed nor the join point.

Class(Aspect , Object , [
Field(Callee , callee) ,

DecEvent(void , m , EventAccess(FieldAccess(callee) , m)) ,

Handler(void , m , [beforeCode , Next , afterCode])
])

Listing 6.2: Modeling an aspect with an event and an event handler.

Advising in EJava. Section 5.2.1 showed that in our model the method m of a class
Callee (Listing 5.1), is just syntactic sugar for the definition of an imperative event repre-
senting a call to m, and an event handler registered with that event (Listing 5.2). A class in
our model, on behalf of a design-level aspect, can observe the event of a method call and
implement a piece of advice as an event handler. The AspectJ aspect of Listing 6.1 can
be expressed in our model as shown in Listing 6.2. The aspect is modeled as a class with
a field callee. The pointcut is modeled as a declarative event m accessing the event m of
callee (the method call). The corresponding piece of advice is programmed as an event
handler bound to the event m. As a result, two event handlers are bound to the same event:
the one of Listing 5.2 containing the method body and the one of Listing 6.2 containing
the advice body. The effect of the AspectJ aspect of Listing 6.1 is obtained because the
handler programmed in the aspect is executed first, so that it controls the execution of the
method body. Indeed, Section 4.3.4 describes that an event handler directly registered with
an imperative event is always the last handler to be executed when the event occurs. The
expression Next in the event handler of the aspect nests the execution of the next event
handler, i.e. the method body, in the same way a call to proceed nests the execution of
the method body in AspectJ.

6.2.2 After Events and Point-in-time Model

m() {
 /* body */
}

callee.m();

caller

call join
point

callee

Figure 6.1 – AspectJ point-in-region model.

Our model is compatible with the join-point model of Masuhara et al. [MEY06], i.e.
join points (events) are atomic points in execution time. The Masuhara’s model is finer-
grained than the join-point model of AspectJ, which considers a join point as a region.
For example, this region includes the method-body execution in the case of a method-call

96 Chapter 6 — Integrating EBP and AOP

join point. Figure 6.1 illustrates the region that a method-call join point represents in
AspectJ for a method m.

callee.m();

caller

m() => {
 /* body */
}

callee

handling process
event
m()

event
After(m())

other
handlers

Figure 6.2 – EJava point-in-time model.

In our model, a method-call corresponds to an atomic event: the triggering of the
corresponding imperative event. Figure 6.2 illustrates this event as the small gray circle
on top. This atomic event is similar to the call join point of the model of Masuhara et
al. [MEY06]. As a reaction to this event, a process of handling is started. All the handlers
are executed, where the last one corresponds to the method body.

EventExpr ::= After | . . . EventExpr of Listing 5.3
After ::= Expr e Expr∗ v?

Listing 6.3: Abstract syntax of after events.

Note in Figure 6.2 a second gray circle at the bottom of the previous one. This circle
represents an event After(m) that is triggered once the event m has been handled. This
event is called an after event and is equivalent to the reception join point of the model
of Masuhara et al. [MEY06]. Our model introduces after events implicitly to be able to
notify that an event has been handled. For every event definition, an associated after event
is made available. This after event can be accessed in the definition of other events by
using an event expression with the abstract syntax of Listing 6.3. The non-terminal After
is similar to an event access. In addition, it can include an optional variable that makes
it possible to bind the value returned by the process of handling. After events are useful
when the handling of an event introduces changes and we need to react to such changes.
For example, an after event can be used to define the event changed of a figure as triggered
after the handling of events such as moveBy. Section 6.3.2 will show the use of after events.

Let us now see the unification of EBP and AOP in concrete syntax.

6.3 AOP Support of EJava

This section shows how standard OO programs can be enhanced with aspects in EJava.
These aspects are classes defining event handlers for method-call events, i.e. imperative
events implicitly defined with method syntax.

6.3.1 Simple AO Examples

Given a program including the class AbstractCompositeFigure of Listing 5.9, Lis-
ting 6.4 implements a simple aspect that traces the executions of the method draw of

Chapter 6 — Integrating EBP and AOP 97

1 class FigureTracing {

2 Figure figure;

3 event drawPct(Graphics2D g) = figure.draw(g);

4

5 drawPct(Graphics2D g) => {

6 next;

7 log("Method␣’draw’␣has␣been␣executed");

8 }

9 }

Listing 6.4: Aspect saving a message after a figure is drawn. The call to next nests the
execution of the method body, which is one of the next event handlers.

instances of such a class in EJava. The aspect observes the event that represents that the
message draw has been sent to the figure and defines a handler that saves a proper logging
message. The message is correctly saved after the body of method draw is executed. Indeed
such a method body just corresponds to an event handler that is registered for the call
to draw as explained in Chapter 5. The call to next of line 6 makes it possible to exe-
cute all the remaining event handlers, including the one with the method body. The class
FigureTracing plays the role of an aspect, its event drawPct plays the role of a pointcut
and its event handler drawPct plays the role of a piece of advice.

class BackupAspect {

File file;

event savePct() = file.save();

savePct() => {

backup(file); next;

}

}

Listing 6.5: Aspect that backups a file before it is saved.

Listing 6.5 shows another typical aspect which makes backups of a file before the file
is saved. The file is an instance of a class File, which defines a method save. The aspect
defines an event savePct representing the sending of a message save to a file. It also
defines a proper event handler, which performs the backup and then calls next in order to
nest the execution of the remaining handlers, in particular, the one with the body of the
method save of the class File.

Finally, Listing 6.6 shows an example of an aspect that measures the time elapsed in
the execution of a command.

6.3.2 After Events

EJava supports the after events introduced in Section 6.2.2. Every event definition
implicitly introduces the definition of an after event. After events are accessed by using an
event expression with the syntax of Listing 6.7. Line 2 shows its canonical form. An event
expression with the form after(expr.evt(params), var) accesses the after event implicitly
defined for the event expr.evt(params). The second argument var, which is optional, binds

98 Chapter 6 — Integrating EBP and AOP

class CommandTimingAspect {

Command command;

event execute() = command.execute();

execute() => {

long t = time(); next;

saveElapsedTime(time() - t);

} ...

}

Listing 6.6: Aspect that times the execution of a command.

1 After | . . . EventExpr of Listing 5.7 −> EventExpr
2 after (MemberAccess (, JavaId)?) −> After
3 after (EventExpr (, JavaId)?) −> After
4 (JavaExpr .)? JavaId ({ ExprOrType , }∗) −> MemberAccess

Listing 6.7: EJava syntax including before and after events.

the value returned by the handling of the previous event. Line 3 introduces syntactic sugar
that makes it possible to inline the definition of a declarative event inside after.

abstract class AbstractFigure extends Figure {

event aboutToChange(Figure source) =

(moveBy(int, int) || resize(int)) with source = this;

event changed(Figure source) = after(aboutToChange(source));

...

}

Listing 6.8: Declarative definition of the event changed of primitive figures.

As an example, after events can be used to improve the figure editor of Chapter 4.
Such a chapter illustrated the flexibility of our model to implement the event changed of
composite figures in a declarative way. However, the event changed of primitive figures
(instances of subclasses of AbstractFigure) was still defined as an imperative event ma-
nually triggered at the end of the methods that change the figures. This manual triggering
crosscuts all the methods that change the figures and introduces tangling. The after events
of EJava make it possible to express the event changed of a primitive figure in a declara-
tive way in terms of the calls to the methods that change the figure. See Listing 6.8. The
event aboutToChange is defined as the disjunction of moveBy and resize, where moveBy

and resize are methods that change the figure. The event changed is defined as an ac-
cess to the after event implicitly defined for aboutToChange. In other words, changed is
programmed to occur after the handling of the event aboutToChange and consequently
after the figure changes. Listing 6.9 shows an equivalent version with the event expression
defining aboutToChange in-lined inside the after construct.

With this extension the event changed of a primitive figure can be defined in a decla-
rative way. As a normal event, changed can still be refined in subclasses as in Listing 6.10.

Chapter 6 — Integrating EBP and AOP 99

abstract class AbstractFigure extends Figure {

event changed(Figure source) =

after((moveBy(int, int) || resize(int)) with source = this);

...

}

Listing 6.9: Alternative declarative definition of the event changed of primitive figures.

class Circle extends AbstractFigure {

event changed(Figure source) =

super.changed(source) || after(setRadius(int) with source = this);

...

}

Listing 6.10: Inheritance of the event changed of primitive figures.

6.3.3 Telecom Example

Let us now show the implementation in EJava of an example taken from the dis-
tribution of AspectJ. It corresponds to a Telecom Simulation, a small application that
simulates a telephony system in which customers make, accept, merge and hang-up both
local and long distance calls.∗ In the example, two aspects are provided. First, a timing
aspect is concerned with timing the connections and keeping the total connection time per
customer. Second, the information captured by the timing aspect is later on used by a
billing aspect in order to charge customers for their calls.

The telecom simulation comprises, between others, the classes Connection and
Customer. Simple calls are made between one customer (the caller) and another (the
receiver), a Connection object connects them. Conference calls between more than two
customers will involve more than one connection. A customer may be involved in many
calls at a time.

Timing aspect. Listing 6.11 shows the implementation of the timing aspect in EJava.
The aspect is instantiated with the list of customers to monitor (line 5). The role of the
aspect is to record the total connection time of each customer (method getConnectionTime

of line 6). The event call of line 8 represents the instant after the call to the method call

of a customer is handled. The variable ret captures the returned Call object. The call

handler, in line 12, captures the connection created by the call to be stored in a list with
the connections of the monitored customers (variable connections of line 3). The event
completed of line 9 represents the instant after the call to the method complete of some
connection has been handled. It indicates that a connection has been established. The
handler bound to this event, in line 17, obtains the timer for the given connection and
starts it. The event dropped of line 10 is defined in an analogous way. On the occurrence of
this event, the timer associated to the respective connection is stopped and the connection
times of both the caller and the receiver of the connection are updated (line 22).

Similarly to the AspectJ solution, the class Timing of Listing 6.11 modularizes a
crosscutting concern. The classes of the application model (the classes Connection and

∗. http://eclipse.org/aspectj/doc/released/progguide/examples-production.html

100 Chapter 6 — Integrating EBP and AOP

1 class Timing {

2 List<Customer> customers;

3 List<Connection> connections;

4

5 Timing(List<Customer> customers) { ... }

6 Long getConnectionTime(Customer customer) { ... }

7

8 event call(Call ret) = after(some(customers()).call(Customer), ret);

9 event completed(Connection c) = after(some(c: connections()).complete());

10 event dropped(Connection c) = after(some(c: connections()).drop());

11

12 call(Call call) => {

13 storeConnection(call.getInitialConnection());

14 next;

15 }

16

17 completed(Connection conn) => {

18 getTimer(conn).start();

19 next;

20 }

21

22 dropped(Connection conn) => {

23 getTimer(conn).stop();

24 Long time = getTimer(conn).getTime();

25

26 updateConnectionTime(conn.getCaller(), time);

27 updateConnectionTime(conn.getReceiver(), time);

28 next;

29 }

30 ...

31 }

Listing 6.11: Timing aspect in EJava.

Chapter 6 — Integrating EBP and AOP 101

Customer among others) are unaware of the timing concern. They implicitly trigger events
when calling the methods of the model. These events are observed by the timing aspect in
a transparent way. Unlike the AspectJ solution, the timing aspect implemented in EJava
is instantiated for a group of customers. The AspectJ solution, however, works on the
static structure of the application. This difference is discussed Chapter 7.

1 class Billing {

2 Timing timing;

3

4 Billing(List<Customer> customers) {

5 timing = new Timing(customers);

6 }

7 Long getCharge(Customer customer) { ... }

8

9 event billing(Connection conn) = after(timing.completed(conn));

10

11 billing(Connection conn) => {

12 Long time = timing.getConnectionTimer(conn).getTime();

13 long cost = callRate(conn) * time.longValue();

14 updateCharge(conn.getCaller(), cost);

15 next;

16 } ...

17 }

Listing 6.12: Billing aspect in EJava.

Billing aspect. Listing 6.12 implements the billing aspect of the Telecom application in
EJava. This aspect uses the timing aspect of Listing 6.11 in order to calculate the cost of
connection of a group of customers (line 2). The aspect defines an event billing in line 9,
representing the instant when a timing has been performed. Actually, the event is defined
as an alias to the after event of the event completed of the timing aspect. The handler
billing of line 11 obtains the time of a connection using the timing aspect and calculates
the cost. The cost is attached to the caller of the connection.

The implementation of the billing concern in EJava shows again how the unification
of event handling and method execution makes it possible to implement aspects. This
implementation highlights the fact that aspects can be related to each other because they
are regular classes: the billing aspect instantiates a timing aspect. This is discussed in more
detail in the next chapter.

6.4 Related Work

EJava is closely related to approaches that combine ideas of imperative events and
AOP such as Ptolemy [RL08] and Implicit Invocation with Implicit Announcement
(IIIA) [SPAK10]. Ptolemy and IIIA occupy different points in the design space. First,
unlike EJava and Ptolemy, IIIA keeps classes and aspects distinct, but, like EJava, pro-
vides both imperative and implicit events (defined through AspectJ-like pointcuts), whe-
reas Ptolemy does not provide implicit events. Second, and more importantly, Ptolemy
and IIIA event handlers/advice react to events characterized by their (event) type. Using

102 Chapter 6 — Integrating EBP and AOP

event types fully decouples event sources and sinks while providing robust interfaces bet-
ween both ends. But it also means that events are “application-level” events. Restricting
observation to specific sources requires either to set up a filtering mechanism on the ob-
server/sink side, with possible performance issues if too many useless events are emitted,
or to fall back on the standard pattern Observer. In line with the OO philosophy, we have
rather chosen the opposite route by making it easy and efficient to observe selected events
from selected objects, handling the pattern Observer behind the scene.

In addition to these crucial differences, there are some other noticeable ones. First,
working with event types, Ptolemy and IIIA are more limited with respect to composing
event abstractions. In Ptolemy, the only composition operator is a disjunction operator,
which makes it possible to associate a single event handler to a disjunction of event types.
In IIIA, event types can be organized in an inheritance hierarchy defining their subtyping
relationship and implemented by AspectJ-like polymorphic pointcuts (different pointcuts
are attached to different classes but produce events of the same type). The definition
of an event type can be seen as a disjunction of its class-local definitions. This has to be
contrasted with EJava, which provides a rich set of composition operators, on event names
rather than event types, which makes it possible to create new event names.

The declarative events of EJava are similar to the (declarative) AspectJ-like point-
cuts, where we use event names instead of pointcut designators. A declarative event selects
and event occurrence, which is equivalent to a join point. An event expression supports
disjunction and conjunction and can be refined with conditions. However, the conditions
of EJava are dynamic as they can include instance-level context, contrasting with the
static nature of AspectJ-like pointcuts. In addition, AspectJ pointcut designators such
as this are not longer needed, because EJava events observe join points associated to
already known sources. Since EJava aims at keeping the modularity of sources, EJava
pointcuts only act on the public interface of sources: their method executions. In this re-
gard, EJava is very related to other AO language that work on the interface of objects, such
as AspectS [Hir02]. The join-point model of EJava is closer to the join-point-in-time mo-
del of Masuhara than the point-in-region model of AspectJ as explained in Section 6.2.2.
Even if, for the time being, we only support two of the four join-point types proposed by
Masuhara, EJava makes it possible to cover the AspectJ call join points and implement
scenarios that require these kinds of join points. Support for a richer join-point model is
left as a perspective.

Finally, EJava uses the same construct to deal with both method bodies and pieces of
advice: an event handler. This makes the treatment of advice similar to languages such as
AspectWerkz [Bon04], which implements pieces of advice by using methods.

6.5 Conclusion

This chapter has shown how EBP and AOP can be better integrated. We have done
so by describing the support of our programming model for AOP. In previous chapters we
presented EJava as an AO language well integrated with OOP. The same integration has
been the basis to present EJava as an AO language. An advantage of the integration is
that it can promote the adoption of AOP. In general, people from the OO world get more
comfortable with concepts such as events and event handlers, maybe as a the result of the
fact that the notion of event was born together with the notion of object. Programmers
that are not comfortable with AOP can use the language as an EB and OO tool and ignore
the concepts tied to AOP. The integration may permit an adoption of AOP at a later stage

Chapter 6 — Integrating EBP and AOP 103

without modifying already existing code and without much effort.

CHAPTER7
Integrating AOP and

OOP
The previous chapters have shown how our programming model improves the integra-

tion of EBP and OOP, and the integration of EBP and AOP. This chapter discusses the
last side of the triangle. It describes how our model contributes to the integration of AOP
and OOP. Section 7.1 motivates the need for integrating both paradigms. Section 7.2 re-
visits our programming model, already presented in the previous chapters, showing how it
contributes to a better integration of AOP and OOP. Section 7.3 illustrates the expressi-
veness of EJava by showing its ability to offer new programming possibilities besides the
support for standard AOP idioms. Section 7.4 discusses related work. Finally, Section 7.5
concludes.

7.1 Motivation

AOP emerged as a complement to OOP making it possible to locally capture, down
to the implementation, crosscutting concerns that would otherwise result in scattered and
tangled code [KLM+97]. AOP features an asymmetric composition of concerns, which
distinguishes classes, implementing base concerns, from aspects, implementing crosscutting
concerns. In its most successful incarnation, AspectJ [KHH+01], aspects look very much
like classes but contain two new member types, pointcuts and advice. Although an aspect
looks very much like a class, the rules governing its static and dynamic semantics are
different. In particular, it can be extended as a class but in a constrained way and it
cannot be explicitly instantiated. This adds quite a lot of complexity to standard OOP.
On the one hand, there are a number of new constructs. On the other hand, the basic
principles for working with these constructs (instantiation, inheritance) are not regular. As
a whole, they have resulted in a very effective tool for practitioners as well as a concrete
token against which researchers could test new ideas. However, now that the concepts at
stake are better understood, one may wonder whether this complexity, and especially this
lack of regularity, could not be lowered to the benefit of a wider adoption of AOP, making
it easier to implement AOP in new languages, as well as to learn and use AOP. Such a
position has, for instance, been put forward by the authors of Classpects [RS05, RS09].

The next section describes how our model reconsiders the basic ingredients of AOP at
the light of the previous remarks and slightly alter them in order to get both regularity
and symmetry while keeping the possibility of defining behavioral aspects with a direct
dynamic interpretation.

105

106 Chapter 7 — Integrating AOP and OOP

7.2 Programming Model

7.2.1 Principles

The starting point of our design, shared with Classpects, and many other language
designs, are the principles of simplicity, orthogonality and regularity put forward by Ma-
cLennan [Mac95]. The four main characteristics that make AspectJ’s aspects different
from plain classes are: implicit instantiation, limited inheritance, specific members (point-
cuts, advice), and intertype declarations. In Section 3.3 we discussed these characteristics
at the light of the above-mentioned principles. Let us now explain how and why our pro-
gramming model diverge from AspectJ. Our treatment of the first two characteristics is
not novel but is still worth discussing in order to make the overall logic of the design clear.

In CaesarJ and Classpects, aspects are implemented as classes. The same instan-
tiation and inheritance rules are used. However, the rules governing pointcuts and advice
are still specific. Pointcuts are class members and pieces of advice are anonymous. What
about promoting pointcuts and advice as full-fledged instance members?

Pointcuts The basic advantage of promoting pointcuts as instance members is that they
can then refer to dynamic information (instance state) and can therefore be more selective.
When defined in a different class than its associated piece of advice, this means that the
pointcut can select join points based on the state of the advised instance (on the state of the
subject, using the vocabulary of the observer pattern), beyond the information accessible
through the join point. When defined in the same class, the pointcut can select join points
based on a combination of the dynamic state of the aspect (or observer) and the dynamic
state of the advised instance available through the join point.

The use of dynamic pointcuts makes it possible to locate the tests on the dynamic state
of the aspect indifferently in the pointcut or in the piece of advice, depending on the logic
of the test, which can either be seen as part of join point selection or part of the advice
body. This makes a difference in terms of reuse as well as when aspects of aspects are used
(pointcuts are not advised whereas advice bodies are). It also changes the picture when
considering the use of quantification without obliviousness. In such a case, the pointcut is
part of the interface between the advised class and the aspect. Such an interface should not
reveal the details of the implementation of the advised class. Thus, it may be impossible to
put the dynamic tests in the advice body, as the latter may not have access to the relevant
dynamic information.

In our model, pointcuts are dynamic. They are implemented as declarative events,
which, as described in Chapter 5, are full-fledged instance members and can then refer to
dynamic information.

Advice In AspectJ and CaesarJ, a piece of advice has access, within the advice body,
to instance state (in Classpects, this is true of the advising method, i.e., the method
body of the method called in the piece of advice). However, this piece of advice cannot
be redefined in a subclass (in Classpects, the advising method can be redefined, not the
existing binding between a pointcut and a method). Making it possible to redefine a piece
of advice requires to be able to identify it.

A piece of advice can be identified by the name of the pointcut it advises as in Lis-
ting 7.1. Identifying a piece of advice necessarily excludes the possibility of using a syntax
with an anonymous pointcut as Listing 7.2 shows. When excluding anonymous pointcuts,

Chapter 7 — Integrating AOP and OOP 107

pointcut detect(): execution(Sensor.detect()) { ... }

before(): detect() { ... }

Listing 7.1: A piece of advice in AspectJ with its (named) pointcut.

before(): execution(Sensor.detect()) { ... }

Listing 7.2: A piece of advice in AspectJ with an anonymous pointcut.

the AspectJ syntax can be simplified so that only the control and the pointcut are ne-
cessary as in Listing 7.3.

The design of Listing 7.3 coincides with the design of our event handlers. In our model,
pieces of advice implemented as event handlers have an identity given by the event they
handle, thus enabling inheritance.

Redefinition, overloading and interfaces In our model, both advice and pointcuts
can be redefined using super and overloaded. When redefining a piece of advice, super
within the definition of the pointcut refers to the definition of the pointcut in the superclass
and super within the definition of the advice body refers to the definition of the advice
body in the superclass.

In the case of pointcuts, overloading refers to the possibility of having pointcuts with
the same name and different signature. In the case of advice, overloading refers to the
possibility of having pieces of advice bound to pointcuts with the same name and different
signature. For example, EJava makes it possible to write the class of Listing 7.4. Both
events changed, modeling pointcuts, are different as their signatures are different. Similarly
the event handlers, modeling pieces of advice, are different as they are bound to events
with different signatures.

Finally, as full-fledged instance members, in our model both pointcuts and advice may
appear in interfaces as standard class members.

The next section describes the advantages of the integration of AOP and OOP enabled
by our programming model.

7.2.2 Advantages

As previously described, our model reconsiders the basic ingredients of AOP in order
to get both regularity and symmetry while keeping the possibility of defining behavioral
aspects with a direct dynamic interpretation. Two key design decisions make this possible:
(1) pieces of advice and pointcuts are made full-fledged instance members, (2) method call
is seen as explicitly triggering imperative events. As a result, we get a model that is simpler
and more regular than traditional AOP, while being more expressive.

Simplicity and regularity There is no need to distinguish between classes and aspects
with special instantiation and inheritance rules for aspects. Methods and pieces of advice
can be seen as different disguises for the same concept, that we refer to as event handlers,
whereas pointcuts can be seen as event selectors – we will refer to them as events as they
are a way to denote the events they select. Pointcuts/events and pieces of advice/event
handlers can be inherited and redefined, possibly referring to their super definition.

108 Chapter 7 — Integrating AOP and OOP

pointcut detect(): execution(Sensor.detect()) { ... }

before detect() { ... }

Listing 7.3: A simple piece of advice.

class Aspect {

List<Figure> figures;

event changed() = some(figures).moveBy(int, int);

event changed(Figure source) = some(source: figures).moveBy(int, int);

changed() => { ... }

changed(Figure source) => { ... }

}

Listing 7.4: Overloading of events and event handlers.

B

B

Advice
Pointcut

A

Advice1
Pointcut2

AB1

Advice2
Pointcut1

AB2

Advice2
Pointcut2

AB2

Advice1
Pointcut1

AB1

Pointcut
Advice

A

pointcut refers to join point in

advises

a)

b)

c)

d)

Figure 7.1 – Various localizations of pointcuts and advice.

Chapter 7 — Integrating AOP and OOP 109

Expressiveness
– As a class member, a pointcut can refer to other class members and therefore to

dynamic values depending on its owner object. This makes it possible to program
context-aware applications where the context can be flexibly captured in pointcuts
and include the context of the observee, as usual, but also the context of the observer.

– As illustrated in Figure 7.1a, it is still possible to program à la AspectJ, maintaining
both obliviousness and the asymmetry of advising, by defining base classes and aspect
classes that encapsulate all the necessary pointcuts and their associated pieces of
advice. But it is also possible to define the pointcuts in the base classes as illustrated
in Figure. 7.1b, which makes compositions more robust to independent evolution as
advocated by Aldrich [Ald05]. The trade-off between robustness and obliviousness is
not imposed on the user but left as a choice depending on the needs of the application.
Finally, it is possible to program in a symmetrical way, using what could be called
aspectual components, which can both advise some other components and be advised
by them as illustrated in Figure 7.1c and Figure 7.1d. Here again, this may assume
obliviousness (this is already available in proposal merging classes and aspects, such
as CaesarJ and Classpects).

– The merging of aspects and classes, together with the definition of pointcuts and
advice as full-fledged class members, improves on the reusability of aspects by making
it possible to use the standard rules of OOP.

The next section shows how the elements contributing to the integration of AOP and
OOP have been made part of EJava.

7.3 EJava Integrating AOP and OOP

In EJava, there are three main features contributing to the integration of AOP and
OOP. First, pointcuts and pieces of advice, implemented as events and event handlers,
have been incorporated in the language as full-fledged instance members. Thus, aspect
instances have access to more information about the context when selecting join points and
can therefore be more selective. Furthermore, the different instances of the same “aspectual
class” still share the same general behavior when selecting join points, but this behavior is
parametrized by their particular dynamic context. Second, an EJava aspect is a plain class.
It implements a crosscutting concern by defining proper events and handlers on available
events of the base application (usually defined using method syntax). Third, as full-fledged
instance members they can be redefined in subclasses. Redefinition of pieces of advice is
possible because an event handler has an identity given by the event it handles.

This design reconciles the AOP world and the OOP world. Aspects are now standard
classes, which can be freely instantiated and which interact with other objects by respecting
the OO principles. But these objects are also special: they modularize crosscutting concerns
in collaboration with the objects defined in their interfaces.

Let us now see how the design of EJava makes it possible to program aspects better
aligned with OOP and how it enables the implementation of symmetric aspects.

7.3.1 Flexible Asymmetric Aspects

The integration of AOP and OOP of EJava enables the implementation of asymmetric
aspects which are more flexible than the asymmetric aspects of languages such as AspectJ.
With flexibility we refer to the possibility of freely instantiate them and the integration

110 Chapter 7 — Integrating AOP and OOP

of the OO features discussed in the previous sections. This section describes two examples
that use this flexibility.

7.3.1.1 Revisiting the Telecom Example

As described in Section 6.3.3, the standard distribution of AspectJ includes a simple
Telecom application in its list of examples. A crosscutting concern dealing with the timing
of the connections of customers is implemented in AspectJ in the Timing aspect. This
implementation shows clearly the static nature of AspectJ aspects. The timing aspect is
implemented in such a way that it calculates the connection time of all the customers of
the application by quantifying on the static structure of the class Connection. The same
is done for the billing aspect, which obtains a reference to the timing aspect by invocation
of the static AspectJ construct aspectOf. The static nature of AspectJ does not make
it possible to directly instantiate different billing and timing aspects for different groups of
customers when needed. This could be needed for example if a business strategy requires
to apply different billing schemes to different groups of customers.

EJava promotes aspect instances as objects, so that they interact with other objects
in a standard OO fashion. An EJava aspect, as a plain class, can be instantiated and
associated to a group of objects. The dynamic pointcuts, as events, make it possible to
observe events related to these objects. This is observed in the EJava implementation of the
timing aspect of Listing 6.11. Instead of operating on the static structure of the program,
the aspect observes events associated to the group of customers passed as parameters in
its constructor. In this sense, by being more aligned with OOP, EJava is less invasive
than AspectJ, respecting encapsulation. The freedom of aspect instantiation is observed
in the implementation of the timing aspect of Listing 6.12, which instantiates a timing
aspect for the group of objects the billing is interested in. The timing aspect is part of
the dynamic information of the billing aspect, and its use in the definition of the billing

event highlights the benefits of dynamic pointcuts modeled as events.

7.3.1.2 Pattern Mediator in EJava

Let us now see how EJava makes it possible to implement the pattern Media-
tor [GHJV94] in a truly modular way. We illustrate this by using an example taken from
the presentation of Classpects [RS09]. We have chosen this example because it has al-
ready served to illustrate the benefits of the unification of classes and aspects. We illustrate
the expressiveness of EJava to program such an example.

The example consists of a system integrating two types of components: sensors and
cameras. A camera can be related to several sensors and a sensor to several cameras.
When some sensor detects a signal each related camera takes a picture. Once the picture
taken, the camera resets the sensor so that it can sense again.

class Sensor {

void movementDetect() { ... }

void temperatureDetect() { ... }

void reset() { ... }

}

class Camera {

void click() { ... }

}

Listing 7.5: Classes implementing sensors and cameras.

The Classpects solution, presented in [RS09], illustrates the convenience of using the

Chapter 7 — Integrating AOP and OOP 111

pattern Mediator [GHJV94]. Such a solution considers the classes Sensor and Camera of
Listing 7.5, implementing the sensors and the cameras, respectively.

class Mediator {

Sensor s; Camera c;

Mediator(Sensor s, Camera c) {

this.s = s; this.c = c;

addObject(s); addObject(c);

}

after(): execution(void Sensor.movementDetect()) ||

execution(void Sensor.temperatureDetect()): onDetected();

after(): execution(void Camera.click()): onClicked();

onDetected() { c.click(); }

onClicked() { s.reset(); }

}

Listing 7.6: Implementation of a mediator between a sensor and a camera in Classpects.

The class Mediator of Listing 7.6 modularizes the relationship between a camera and
a sensor in Classpects. The class is instantiated for a sensor and a camera. It captures
the execution of the methods movementDetect or temperatureDetect of the sensor and
makes the camera take a picture. Analogously, it captures the executions of the method
click of the camera and resets the sensor. The design using a mediator is an example of a
programming style à la AspectJ, maintaining both obliviousness and the asymmetry of
advising. The cameras and sensors can be seen as the base program, whereas the mediators
can be seen as the aspect instances. The benefits of a unification of classes and aspects is
made evident since these mediators can be flexibly instantiated to represent each individual
relationship between several sensors and cameras.

class Mediator {

Sensor s; Camera c;

Mediator(Sensor s, Camera c) {

this.s = s; this.c = c;

}

event onDetected() = after(s.movementDetect() || s.temperatureDetect());

event onClicked() = after(c.click());

onDetect() => { c.click(); next; }

onClick() => { s.reset(); next; }

}

Listing 7.7: Implementation of a mediator between a sensor and a camera in EJava.

EJava shares with Classpects the unification of classes and aspects, which makes it
possible to program flexible asymmetric aspects such as the mediator. Listing 7.7 shows
the implementation of the mediator in EJava. Like the Classpects mediator, the EJava

112 Chapter 7 — Integrating AOP and OOP

mediator is instantiated for a sensor and a camera, it observes the events of the sensor in
order to make the camera take a picture, and it observes the events of the camera in order
to reset the sensor. However, EJava is more flexible than Classpects. First, it makes it
possible to define finer-grained events. Second, it allows a truly modular design by defining
events at the source side. The remainder describes these features.

Fine-grained events An event is defined in EJava by using a single construct. In
Classpects, the definition of an event is made in two steps. First, an AspectJ-like
pointcut describes the join points to be observed in a base program. Second, the addObject
construct makes it possible to restrict the observation to a given set of objects. For example,
an instance of the class Mediator of Listing 7.6 observes the execution of methods such as
movementDetect and click restricted to a particular sensor and camera. The difference in
the way events are defined in EJava and Classpects has an impact on the expressiveness
of these languages to discriminate between events of different objects.

class Mediator {

Sensor s1, s2; Long time;

event onDetect1() = after(s1.movementDetect());

event onDetect2() = after(s2.movementDetect());

onDetect1() => {

time = currentTime();

next;

}

onDetect2() => {

report(currentTime() - time);

s1.reset();

s2.reset();

next;

}

}

Listing 7.8: Double detection implemented in EJava.

In Classpects it is not easy to discriminate between the events of an object and
the events of another when these objects are of the same type. Consider as an example
the EJava code of Listing 7.8. It implements a class that calculates the time taken for a
particle to go from one point to another, assuming that at each point there is a sensor. The
class is instantiated with two sensors, one for each point. When the first sensor detects
the particle the instance calculates an initial time. When the second sensor detects the
particle the class calculates the final time. The class defines an event for the detection of
each sensor and its corresponding event handler. This example cannot be implemented in
Classpects in a direct way. The reason is that Classpects can only differentiate events
in terms of the static structure of the program that generates the join point. Since in this
example the join point is generated by the same method movementDetected, Classpects
cannot define two different events.

Chapter 7 — Integrating AOP and OOP 113

A design à la Open Modules. In the example of the sensors and the cameras, an
important feature of the presented design is the obliviousness of camera and sensor code
regarding their mutual integration. Integration code, which has been shown to be a cross-
cuting concern, has been moved out of camera and sensor code. However, the presented so-
lution is fragile because it does not properly reflect the relations between the base program
and the mediator. The base program is not aware of possible violations of the assumptions
made by the mediator. For example, the class Mediator of Listing 7.7 assumes that sen-
sor detection is implemented by the methods movementDetect or temperatureDetect. A
programmer can independently evolve the sensing code without being aware of a possible
violation of this assumption.

class Sensor { ...

/* provided event */

event onDetected() = after(movementDetect() || temperatureDetect());

}

class Camera { ...

/* provided event */

event onClicked() = after(click());

}

class Mediator {

Sensor s; Camera c;

event onDetected() = s.onDetected();/* required event */

event onClicked() = c.onClick();/* required event */

onDetected() => { c.click(); next; }

onClicked() => { s.reset(); next; }

}

Listing 7.9: Asymmetric solution à la Open Modules with events defined at the base-
program side (Sensor and Camera classes).

As described in Section 2.2.5, complete obliviousness contradicts truly modularity. Al-
drich [Ald05] has proposed the idea of Open Modules as a truly modular design by sacri-
ficing complete obliviousness. The idea is that base program provides the pointcuts that
the aspects will use. Thus, the semantics of these pointcuts is maintained by the base pro-
gram along its evolution. These pointcuts belong now to the interface of the base program,
permitting both parts to evolve independently while preserving this interface. Listing 7.9
shows how EJava is expressive enough to provide a solution à la Open Modules. Note
how the onDetected and onClicked events are now provided by the Sensor and Camera

classes, respectively. The Mediator object can observe these events in order to implement
their handlers.

Definition of pointcuts at the base-program side is already statically possible in
AspectJ. The novelty of EJava is the fact that events are full-fledged instance mem-
bers contrasting with the static nature of the AspectJ pointcuts. Note how the Mediator

object observes the onDetected event on the proper Sensor object defined as part of its
interface. This would not be possible in AspectJ, which would need to quantify on all
possible Sensor instances and include an additional conditional statement in the advice to

114 Chapter 7 — Integrating AOP and OOP

select the correct one.

7.3.2 Symmetric Aspects

Traditional AOP introduces aspects as asymmetric entities. Aspects do not belong to
the same level as the classes implementing an application. Aspects see the application as a
base program, which they observe and modify. The unification of aspects and classes enables
a symmetrical style of programming in which a component can be provided with aspectual
behavior. This symmetry makes no distinction between aspects and base program.

A simple example of this symmetry is the class ConnectionFigure of Listing 4.18. An
instance of this class observes the changes in the figures that it connects. The changed

event is equivalent to a pointcut. The instances of ConnectionFigure define a reaction
to these events so that they can be seen as aspects. On the other hand, it is difficult to
consider the class ConnectionFigure as an aspect and see the figures as a base program
because the class itself is a subclass of Figure. Thus, ConnectionFigure plays both the
role of an aspect and of a base program at the same time.

7.4 Related Work

AOP has been designed in such a way that an aspect instance has a global vision of all
the join points occurring in the extent of its deployment scope. Several languages propose
different strategies to define such an scope. For example, the scope of an AspectJ-like
aspect is by default the whole application, so it applies its pointcuts to all the occurring
join points. The per-object AspectJ deployment strategy refines the scope of an aspect
instance, such that it applies its pointcuts only to the join points that directly occur in
the context of the object it is deployed on. CaesarJ shares the default strategy adopted
by AspectJ and also the per-object strategies. Additionally, it introduces per-thread de-
ployment and dynamic deployment in a block of code. Classpects extends the per-object
strategies by making it possible to the set the scope of an aspect instance to a group of
objects instead of a single object. The authors of Classpects talk about instance-level
advising because an instance can set and modify its group of objects at runtime. Tan-
ter [Tan08] provides a study on the scope of aspects and proposes a flexible and general
model of scoping strategies. However, if an aspect has several pointcuts, it is, in general,
not possible to associate a particular scope to each individual pointcut of an aspect. In
traditional AO approaches the same scope is shared by all the pointcuts of an aspect.
EJava differs from other approaches in that each individual pointcut (event) is able to
indicate the scope on which it operates, i.e. each pointcut observes the event occurrences
associated to specific objects. For example, the scope of a pointcut defined with the event
expression some(figures).changed() is the group of objects figures. It observes the
occurrences associated to this group and selects the event changed. Some approximation
could be achieved by coding and passing a specific join-point filter parameter in the scoping
strategies of Tanter [Tan08]. However, this makes the definition of the relevant events less
explicit, because pointcuts do not contain the complete information about the events to
be selected and must be analyzed in combination with the deployment instructions of the
aspect.

Chapter 7 — Integrating AOP and OOP 115

7.5 Conclusion

This chapter has discussed the benefits of knocking down the barriers that separate
aspects from classes. The unification of aspects and classes reconciles AOP with the OO
world because a design-level aspect implemented as a class respects the frontiers between
objects. However, this approach is not expressive enough to implement complete obli-
viousness, which requires powerful quantification mechanisms, often working on the static
structure of a program such as the ones of AspectJ. Instead, we replace complete obli-
viousness for true modularity based on the ideas of Open Modules [Ald05]. Furthermore,
the distinction between aspects and base program can be dissolved.

So far we have discussed the integration of the three paradigms considered by this
dissertation: OOP, EBP and AOP. The next chapter combines our programming model
with advances OO techniques such as mixins. This combination will enable, between other
applications, the definition of structural aspects.

CHAPTER8
Mixins, Implicit

Invocation and Stateful
Behavior

So far we have presented a model of implicit invocation on top of an object-oriented
language. EJava has been provided as an implementation of the model on top of Java.
Since standard OO languages have exhibited problems with decomposing large applications
and enabling transparent extensions, this chapter investigates the applicability of the model
to a language with support for advanced decomposition features such as virtual classes and
propagating mixin composition. As a motivation this chapter studies the implementation
of state-dependent behavior using state machines. It shows how advanced decomposition
features together with implicit invocation as provided by the model makes it possible to
program extensible state-dependent event handling. In addition, the unification of event
handling and advising makes it possible to implement extensible stateful aspects in a
transparent way.

The chapter is structured as follows. Section 8.1 motivates the combination of advan-
ced decomposition features and implicit invocation. Section 8.2 revisits propagating mixin
composition and compares the implementation of extensible state machines in both Java
and CaesarJ. Section 8.3 introduces ECaesarJ, an application of the model of implicit
invocation of this dissertation to the CaesarJ language. It presents how ECaesarJ sup-
ports extensible state machines. The work on ECaesarJ has been conducted in the context
of the European project AMPLE [AMP10, GNNM11]. Section 8.4 discusses related work.
Finally, Section 8.5 concludes.

8.1 Motivation

In simple scenarios, modularization of functional requirements can be achieved by using
the object-oriented paradigm. However, as argued in Section 2.3, functional requirements
are often not aligned to the structure of software objects and operations. In these cases,
advanced structural decomposition mechanisms like virtual classes make it possible to split
definitions of objects and operations and distribute them into multiple modules.

Independently of the decomposition technique used, modularization of requirements
also requires modularization of the dynamic structure of the program, i.e. the structure of
its control flow. The conventional computational model is based on decomposing control
flow into procedures (or functions), where each procedure modularizes a segment of a
control flow. In such a structure a caller is modularized from the callee, but not the other
way around. It is difficult to align the structure of control flow to requirements, because
the direction of functional dependencies between requirements does not always correspond

117

118 Chapter 8 — Mixins, Implicit Invocation and Stateful Behavior

to the direction of the control flow: the functionality of a requirement may need to be
called within the control flow of the implementation of another requirement, whereas the
latter (the caller) is logically independent of the former (the callee). In order to derive a
modularization of the structure according to such dependencies, some form of inversion of
control and implicit invocation is required.

We illustrate the convenience of a combination of advanced decomposition features and
implicit invocation by implementing extensible state machines. The latter are usually imple-
mented through the design pattern State [GHJV94]. Unfortunately, this pattern is verbose
and does not properly support extension and composition of state machines and state-
dependent behavior. Although a state can be made extensible by using factory methods
and generics, as demonstrated by Chin and Millstein [CM08], such a solution introduces
even more glue code, and does not support composition of extensions.

The contributions of this chapter are as follows. First, we illustrate the utility of ad-
vanced decomposition mechanisms and investigate to which extent some of the problems
of the design pattern State can be alleviated in a language such as CaesarJ [AGMO06].
Second, we motivate the benefits of incorporating event support in CaesarJ. Whereas
EJava extended Java with the implicit-invocation model of this dissertation, we intro-
duce ECaesarJ, an extension of CaesarJ with the same model. As a result, virtual
classes enable type-safe extension of classes that represent object states with handlers
for new events. Propagating mixin-composition improves the composability of extensions.
Third, we propose language support for (a) state machines, (b) their extension and compo-
sition, and (c) hierarchical states. The new language features provide a lot of flexibility for
fine-grained decomposition of behavior: hierarchical states support hierarchical refinement
of object behavior with respect to its life cycle, while inheritance enables refinement with
respect to the object type.

8.2 Extensible State Machines

8.2.1 Example

This section presents an example involving state-dependent behavior and extensions
thereof. The example is from the domain of building automation. Its purpose is to automate
the control of various devices in a building. Specifically, we consider the need of implemen-
ting a shutter control encapsulating the interaction with a shutter device. We compare an
implementation in Java and an implementation using virtual classes in CaesarJ.

A base shutter control encapsulates the basic interaction with the physical device.
The shutter control can receive aperture commands in terms of percent of aperture and it
translates them into low-level device commands. Two extensions are proposed on top of
the base shutter control. A stuck shutter control informs the users of the control whether
the physical device has got stuck. A stop shutter control is available whenever the physical
device supports stop commands. It allows a user to send a stop command to stop the device
and to override the behavior of the aperture command while a device is moving.

The behaviors of the base, stuck and stop shutter controls are described by the finite
state machines of Figure 8.1, whereby the operator => denotes the relationship between
an event and the respective action. The behavior of the base shutter control (Figure 8.1a)
introduces two possible states: Idle and Moving. When a shutter control is in the state
Idle, it can receive a setAperture command, which initiates the movement of the physical
device and makes the object transit into the state Moving. The shutter control returns into

Chapter 8 — Mixins, Implicit Invocation and Stateful Behavior 119

Moving Stuck

gotStuck

setAperture =>

 exception
Idle Moving

setAperture => setDeviceAperture

apertureReached

a)

c)

b)

setAperture =>

 stopDevice ;

 setDeviceAperture

Idle Moving

stop => stopDevice

Figure 8.1 – Behaviors of a shutter control.

the state Idle once an event apertureReached is triggered by the physical device. When
an aperture command is received in the state Moving, an exception is triggered indicating
an unsuccessful command. The behavior of the stuck shutter control (Figure 8.1b) adds a
new state Stuck and the corresponding transition from the state Moving triggered by an
event gotStuck. Finally, the behavior of the stop shutter control (Figure 8.1c) refines the
base behavior to permit the execution of an aperture command while the device is moving.
The device is stopped before being forwarded the new aperture command. In addition, a
stop command is provided, which makes it possible to stop the physical device and causes
a transition from the state Moving into the state Idle.

8.2.2 Implementation in Java

Listing 8.1 shows the implementation of the base shutter control using the design pat-
tern State [GHJV94] in Java. The class BaseShutter contains an inner interface State,
which declares the messages that a shutter control object can receive. The two inner classes
Idle and Moving represent the two possible states of the base shutter control by imple-
menting State. The current state of the shutter control (variable currentState) is an
object of type State. All state-dependent methods of the shutter control are forwarded to
the current state. A transition to a particular state is achieved by instantiating the corres-
ponding state class and assigning the instance to currentState. The state classes are not
instantiated directly, but over the corresponding factory methods (lines 16 and 21) to en-
able the extension of the state-dependent behavior for subclasses of BaseShutter. The class
BaseShutter is defined as a listener of the physical device. The interface BaseDevListener
declares the method apertureReached, which is invoked by the device on the occurrence
of the corresponding event.

Listing 8.2 shows the extension of BaseShutter with a stop behavior. The extension
provides a new message to stop the device and permits sending a new aperture command
to a moving device. In order to enable different handling of the stop message in different
states, the state interface must be extended with a new method (line 18). The classes
Idle (line 20) and Moving (line 25) must be extended accordingly. The new Moving class
also overrides the implementation of setAperture to stop the device and send the new
aperture to it. The factory methods are overridden to instantiate the new implementations
of Idle and Moving. An implementation for the stuck shutter control can be provided in
an analogous way.

120 Chapter 8 — Mixins, Implicit Invocation and Stateful Behavior

1 interface BaseDevListener {

2 void apertureReached();

3 }

4

5 class BaseShutter

6 implements BaseDevListener {

7 State currentState = newIdle();

8

9 void setAperture(int ap) {

10 currentState.setAperture(ap);

11 }

12

13 void apertureReached() {

14 currentState.apertureReached();

15 }

16

17 void transit(State state) {

18 currentState = state;

19 };

20

21 Moving newMoving() {

22 return new Moving();

23 }

24

25 Idle newIdle() {

26 return new Idle();

27 }

28 interface State {

29 void setAperture(int ap);

30 void apertureReached();

31 }

32

33 class Idle implements State {

34 void setAperture(int ap) {

35 /* sends device aperture */

36 transit(newMoving());

37 }

38

39 void apertureReached() {}

40 }

41

42 class Moving implements State {

43 void setAperture(int ap) {

44 throw new Exception();

45 }

46

47 void apertureReached() {

48 transit(newIdle());

49 }

50 }

51 ...

52 }

Listing 8.1: Implementation of basic shutter control in Java.

1 class StopShutter extends

2 BaseShutter {

3

4 void stop() {

5 ((State)currentState).stop();

6 }

7

8 Moving newMoving() {

9 return new Moving();

10 }

11

12 Idle newIdle() {

13 return new Idle();

14 }

15

16 interface State extends

17 BaseShutter.State {

18 void stop();

19 }

20 class Idle extends BaseShutter.Idle

21 implements State {

22 void stop() {}

23 }

24

25 class Moving

26 extends BaseShutter.Moving

27 implements State {

28 void stop() {

29 /* stop the device */

30 transit(newIdle());

31 }

32 void setAperture(int ap) {

33 /* stop the device */

34 /* send aperture to device */

35 }

36 } ...

37 }

Listing 8.2: Implementation of stop behavior in Java.

Chapter 8 — Mixins, Implicit Invocation and Stateful Behavior 121

As already shown in Section 2.3.1.1, the implementation of the pattern State in Java
does not support type-safe extension with new events. There is no way to ensure that
extensions of the context class are only used in combination with respective extensions of
the state class.∗ The design of the extension presented in Listing 8.2 is not type-safe. For
example, the type system does not prevent the programmer from assigning an instance of
BaseShutter.Moving to currentState of an instance of StopShutter. As a result, a type
cast is required at line 5 of Listing 8.2 to call the handler of the newly introduced event
stop. This type cast would cause a runtime error if a wrong state object is set.

8.2.3 Implementation in CaesarJ

Chin and Millstein [CM08] show how to extend state machines with new events in a
type-safe way using Java generics. A more concise and natural solution to these problems
is enabled by virtual classes and propagating mixin composition as they are implemented in
the language CaesarJ [AGMO06]. This section presents an implementation of the design
pattern State using these language features and evaluate the resulting design.

The Java design of Section 8.2.2 implemented the different states of a class as its inner
classes and used factory methods to make them extensible. In CaesarJ, state classes can
be automatically made extensible by declaring them as virtual classes.

1 abstract cclass BaseDevListener {

2 abstract void apertureReached();

3 }

4

5 cclass BaseShutter extends

6 BaseDevListener {

7 State currentState = new Idle();

8

9 void setAperture(int ap) {

10 currState().setAperture(ap);

11 }

12

13 void apertureReached() {

14 currState().apertureReached();

15 }

16

17 void transit(State state) {

18 currentState = state;

19 }

20 abstract cclass State {

21 abstract void setAperture(int ap);

22 void apertureReached() {

23 transit(new Idle());

24 }

25 }

26

27 cclass Idle extends State {

28 void setAperture(int ap) {

29 /* send aperture to device */

30 transit(new Moving());

31 }

32 }

33

34 cclass Moving extends State {

35 void setAperture(int ap) {

36 throw new Exception();

37 }

38 } ...

39 }

Listing 8.3: Implementation of the basic shutter control in CaesarJ.

Listing 8.3 shows the implementation of the base shutter control in CaesarJ. It looks
very similar to the implementation in Java. However, the keyword cclass declares the
classes that have the special CaesarJ semantics†, i.e., the inner classes implementing

∗. We use here the terminology of [GHJV94]. The term context classes refers to the classes subject to
state-dependent behavior, BaseShutter and its subclasses in our example. The term state classes refers
to the classes implementing the various logical states, the classes implementing the interface State in our
example.

†. The classes declared with the class keyword in CaesarJ preserve the standard Java semantics.

122 Chapter 8 — Mixins, Implicit Invocation and Stateful Behavior

states and the state interface are virtual classes. The state interface is declared as an
abstract virtual class.‡ This way, default handlers are provided to their events.

1 cclass StopShutter

2 extends BaseShutter {

3

4 void stop() {

5 currentState.stop();

6 }

7

8 abstract cclass State {

9 void stop() { }

10 }

11 cclass Moving {

12 void stop() {

13 /* stop the device */

14 transit(new Idle());

15 }

16

17 void setAperture(int ap) {

18 /* stop the device */

19 /* send aperture to device */

20 }

21 } ...

22 }

Listing 8.4: Implementation of stop behavior in CaesarJ.

1 abstract cclass StuckDevListener {

2 void gotStuck();

3 }

4

5 cclass StuckShutter extends

6 BaseShutter &&

7 StuckDevListener {

8

9 void gotStuck() {

10 currentState.gotStuck();

11 }

12 abstract cclass State {

13 void gotStuck() { }

14 }

15

16 cclass Moving {

17 void gotStuck() {

18 transit(new Stuck());

19 }

20 }

21

22 cclass Stuck extends State { }

23 ...

24 }

Listing 8.5: Implementation of stuck behavior in CaesarJ.

Since the interface and implementations of states are declared as virtual classes they
can be refined in the subclasses of the context class. For example, Listing 8.4 shows the
implementation of the extension with the stop behavior. The state interface is extended
to include the stop event by refining the virtual abstract class State. The virtual class
Moving is also refined in order to implement a handler for the new event and to override
the inherited handling of setAperture. Implementation of the extension with the stuck
behavior is analogous and shown in Listing 8.5.

As explained in Section 2.3, virtual classes implicitly inherit from their predecessor
versions. The superclasses are implicitly inherited too, but rebound to their new imple-
mentations. Class instantiation expressions are also rebound to the refined versions of
virtual classes, which makes explicit factory methods redundant. In BaseShutter the state
classes are instantiated directly (see lines 15 and 24 of Listing 8.3), but instantiation of
virtual classes is late-bound and determined by the dynamic type of the family object.§

‡. Actually, here is no special syntax for virtual interfaces in CaesarJ. However, this is not a limitation
compared to Java because CaesarJ supports a form of multiple inheritance for classes.

§. In the instantiation expressions of Listing 8.3 the family object is determined implicitly, e.g. new

Chapter 8 — Mixins, Implicit Invocation and Stateful Behavior 123

Virtual classes are also automatically rebound in type references, which enables a type-safe
access to the methods introduced in extensions.

8.2.4 Comparison

The design of an extensible design pattern State with virtual classes and propagating
mixin composition improves on the Java solution. The type system of CaesarJ enables
type-safe extension of a state machine with handlers for new events. Moreover, type-safety
is achieved without any sophisticated type declarations or any other code overhead. Since
Java does not support multiple inheritance, the Java extensions of the base shutter control
cannot be composed. For example, the stop behavior and the stuck behavior are inde-
pendent extensions of the base shutter behavior. A shutter control that supports both stop
commands and reports the stuck condition would need both of them.¶ Extensions of a
state machine are composable in CaesarJ. The stop and the stuck extensions of the base
shutter control can be composed using propagating mixin composition. This is done by
simply declaring a class CompleteShutter which inherits from both StuckShutter and
StopShutter:

cclass CompleteShutter extends StuckShutter & StopShutter { }

The amount of required glue code is also reduced. Virtual classes support late-bound
instantiation directly making the factory methods of the Java solution redundant. Implicit
inheritance of virtual classes and their superclasses avoids most of the explicit inheritance
declarations required in Java; compare, e.g., the definitions of StopShutter.Moving in
Listing 8.2 and in Listing 8.4. Finally, when introducing a new event with a default hand-
ler, only the classes implementing specific handling of the event have to be overridden. For
example, Listing 8.4 and Listing 8.5 did not redefine the class Idle, because it was auto-
matically updated to inherit from the refined version of State, which implements default
handlers for new events.

8.3 The ECaesarJ Language

ECaesarJ [GNNM11] is a new language that extends CaesarJ with the model of im-
plicit invocation developed in this dissertation. While we have shown the benefits of EJava
by extending Java with such a model, the same benefits are transferred to ECaesarJ. The
novelty of ECaesarJ, regarding EJava, is the support for virtual classes and propaga-
ting mixin composition. ECaesarJ inherits from EJava the integration of EBP, AOP and
OOP. It completes such an integration by replacing the inter-type declarations of AspectJ
by a more general mechanism: mixin composition. In addition, ECaesarJ includes special
language support for state machines as presented in Section 8.3.4.

8.3.1 Principles

ECaesarJ eliminates the AO constructs of CaesarJ, pointcuts and pieces of advice,
for the benefit of more regular and orthogonal class members: events and event handlers.
ECaesarJ provides a unification of event handling and method execution as in EJava,

Moving() is equivalent to BaseShutter.this.new Moving(), where BaseShutter.this is Java syntax to
refer to the enclosing object of an inner class.

¶. Because of the limitation of single inheritance, we could not provide either default implementations
of states with default event handlers, which, for example, ignore the events.

124 Chapter 8 — Mixins, Implicit Invocation and Stateful Behavior

so that methods are provided just as syntactic sugar. Thus, the only class members of
ECaesarJ are fields, events and event handlers. The mixin-composition semantics of
ECaesarJ is the semantics provided by CaesarJ. Indeed, the linearization algorithm
of CaesarJ just organizes the hierarchy of classes and performs the necessary type rebin-
ding. It does not depend on the kind of class members of the language. Since ECaesarJ is
an extension of CaesarJ, many scenarios can be implemented as in CaesarJ. The benefit
of ECaesarJ is its support for events, or in other words the combination of mixins and
implicit invocation. This combination offers additional flexibility and expressiveness. Whe-
reas mixins decouple the structure of complex applications, implicit invocation decouples
their behavior. We have already observed this combination in Section 2.2. Structural as-
pects (inter-type declarations in AspectJ) are in general used to complement behavioral
aspects (pointcut-advice model). ECaesarJ provides structural aspects as in CaesarJ
and behavioral aspects as in EJava.

The remainder shows the combination of mixins and implicit invocation in action by
implementing extensible state machines in ECaesarJ.

8.3.2 Pattern-based Implementation of State Machines

The CaesarJ implementations presented in Section 8.2.3 of the basic shutter control
and its extensions are valid ECaesarJ implementations. The syntax used there is a subset
of the ECaesarJ syntax. These examples use a method syntax, which in ECaesarJ, as
in EJava, introduces imperative events and event handlers. The compiler is in charge of
de-sugaring the code into the corresponding version using only events and event handlers.

1 cclass BaseShutter extends

2 StateMachine {

3

4 event setAperture(int ap);

5

6 event apertureReached() =

7 device.apertureReached();

8

9 void transit(State s1, State s2) {

10 undeploy(s1);

11 deploy(s2);

12 }

13 abstract cclass State {

14 abstract setAperture(int ap) =>;

15

16 apertureReached() => {

17 transit(this, new Idle());

18 }

19 }

20

21 cclass Idle extends State {

22 setAperture(int ap) => {

23 /* send aperture to device */

24 transit(this, new Moving());

25 }

26 }

27

28 cclass Moving extends State {

29 setAperture(int ap) => {

30 throw new Exception();

31 }

32 } ...

33 }

Listing 8.6: Implementation of base shutter control in ECaesarJ.

The unification of event handling and method execution provides additional program-
ming alternatives. Listing 8.6 illustrates an alternative implementation of the base shutter
using an implicit invocation scheme. In this implementation, the events setAperture are

Chapter 8 — Mixins, Implicit Invocation and Stateful Behavior 125

explicitly defined with the event construct. The event setAperture is defined as impera-
tive. The event apertureReached is defined as a declarative event representing an event
apertureReached triggered by the physical device, avoiding in this way an implementa-
tion using listeners (the class BaseDevListener is not needed anymore). Since the events
setAperture and apertureReached are in the scope of the state classes, these classes can
handle them directly, avoiding the use of forwarding methods. As a whole, this implemen-
tation works by keeping a single instance of a state class deployed: the method transit

undeploys the current state and deploys the new one. The reference to the current state is
not needed anymore.

The solution of Listing 8.6 eliminates part of the glue code required by the previous
solutions when implementing the shutter control. It eliminates the forwarding calls, elimi-
nates the reference to the current state, and uses the notion of event to implement the
interaction of the shutter control and the physical device. Let us now carry the example a
little further with an implementation of hierarchical state machines.

8.3.3 Pattern-based Implementation of Hierarchical State Machines

Hierarchical state machines were first introduced in the Statecharts visual forma-
lism [Har87] and later on included in the Unified Modeling Language (UML) notation
with the name of UML statecharts. Hierarchical state machines are important because
they provide a compact and structured way to express complex behavior. They define
states which can be decomposed into further states, thus making it possible to reuse com-
monalities of multiple states by declaring them as substates of a state with an associated
common behavior. They also enable decomposition of states in the extensions of a state
machine.

OppositeRetrying Normal

Moving

gotStuckapertureReached

Figure 8.2 – Moving in a corrective stuck behavior.

Figure 8.2 shows an example of a hierarchical state. The figure extends the basic stuck
behavior with corrective functionality trying to free the shutter by moving it into the
opposite direction and then back. The state Moving is decomposed into further states to
differentiate between moving as part of the normal device operation, represented by the
substate Normal, and moving for the purpose of trying to free the shutter from the stuck
condition, represented by the states Opposite and Retrying. Transitions toward the state
Moving are translated into transitions toward the substate Normal, which has been marked
as an initial substate using a small arrow. When a stuck event is received in the state
Normal, the object will try to set a movement in the opposite direction in order to free the
shutter by sending the physical device the corresponding aperture command. It will transit
into the state Opposite and wait for an event apertureReached representing the success
of the opposite movement. When this event is received, the shutter control will repeat the
original aperture command transiting into the state Retrying. All the transitions defined
for the state Moving are inherited by its substates, including the transitions of Moving

defined in the basic stuck control. For example, when the shutter control is in the state

126 Chapter 8 — Mixins, Implicit Invocation and Stateful Behavior

Normal, the reception of an event apertureReached will trigger a transition into the state
Idle. Since gotStuck is not overridden for the states Opposite and Retrying, they will
inherit the default handler of this event, handler that simply transits into the state Stuck.
Hence, there will not be a repeated attempt to solve the problem. Something less obvious
happens when in the state Normal an event gotStuck is received. In this case, the more
specific transition (the one of the substate) overrides the transition defined in the super
state, so that the shutter control transits into the state Opposite.

1 cclass UnstuckShutter

2 extends StuckShutter {

3

4 void transit(State state) {

5 super.transit(state.initial());

6 }

7

8 abstract cclass State {

9 State initial() { return this; }

10 }

11

12 cclass Moving {

13 State initial() {

14 return new Normal().initial();

15 }

16 }

17 cclass Normal extends Moving {

18 gotStuck() => {

19 /* send opposite aperture */

20 transit(new Opposite());

21 }

22 }

23

24 cclass Opposite extends Moving {

25 apertureReached() => {

26 /* send previous aperture */

27 transit(new Retrying());

28 }

29 }

30

31 cclass Retrying extends Moving { }

32 ...

33 }

Listing 8.7: Implementation of base behavior in CaesarJ with mixins.

Listing 8.7 shows the ECaesarJ implementation of the behavior of Figure 8.2. It intro-
duces the family class UnstuckShutter as a subclass of the family class StuckShutter with
Idle and Moving as its inner classes. The substates of the state Moving are implemented
as subclasses of the class Moving, thus inheriting all the event handlers of Moving and over-
riding the needed ones (Figure 8.3 illustrates the relationships between these classes). For
example, the class Normal overrides the handler gotStuck by sending an aperture to the
physical device and transiting into Opposite. Finally, the method transit of the family
class has been modified in order to implement the transitions between hierarchical states.
When this method is called with a given state it asks the state for its initial substate so
that it makes the machine transit into the corresponding substate. If the state does not
have substates it responds with this.

The example of hierarchical state machines illustrates the inheritance of event handlers
in ECaesarJ. The event handlers of the state classes have an identity given by the event
they handle. This makes it possible to override them in subclasses. For example the event
handler apertureReached of class Opposite overrides the event handler apertureReached
of class Moving.

Plain state machines or hierarchical ones are widely used nowadays. This makes us
consider as a good option to provide explicit support for them in mainstream languages. A
big advantage is that dedicated language constructs can enforce a correct use of the state
machines while this is harder to verify with pattern-based implementations. For illustration,
in the Figure 8.1, there is a transition from Moving to itself when setAperture(int) is
received. Now, consider the implementation of the stop shutter control shown in Listing 8.8.

Chapter 8 — Mixins, Implicit Invocation and Stateful Behavior 127

StuckShutter

UnstuckShutter

Moving

Normal Opposite Retrying

Idle

Idle

Moving

Figure 8.3 – Moving in a corrective stuck behavior.

cclass StopShutterAlt extends BaseShutter {

cclass Moving {

setAperture(int ap) => {

stop();

setAperture(ap);

} ...

} ...

}

Listing 8.8: Erroneous Implementation of Stop Behavior.

128 Chapter 8 — Mixins, Implicit Invocation and Stateful Behavior

Following our previous considered semantics, this code is not correct because the instruction
stop() introduces a transition into the state Idle. However, there is no way to statically
detect this error. The next section introduces language support for stateful behavior in
ECaesarJ.

8.3.4 Language Support for Stateful Behavior

A state machine can be seen as a set of atomic transitions of the form (S1, e => a, S2),
which tells that in state S1 an event e causes the execution of the action a and a transition
of the machine into state S2. The whole transition is atomic. This means that during the
execution of the action a the machine is in neither of the states, and the object cannot
handle other events within the control flow of the action. Thus, an important semantics
property of our state machines is that event handlers are considered to be non-reentrant.

The ECaesarJ state machines presented in the previous section provide a good struc-
ture on top of which to design dedicated language support for state machines ensuring
a correct semantics. The language support is provided by using the keywords smcclass,
state and initial introducing a state machine, a state of the state machine and an an-
notation of the initial state, respectively. An smcclass defines a context class and all the
necessary infrastructure to implement hierarchical state machines. All the rules associa-
ted to standard classes are valid for an smcclass. As a standard class it can include any
kind of members, can be instantiated and is subject to inheritance and mixin composition.
Differently to a standard class, an smcclass includes state constructs. A state defines
an inner state class. It also behaves as a standard class, however, it cannot be explicitly
instantiated. Its instantiation is governed by the language. The event handlers inside a
state are equipped with statement of the form => stateName. These statements represent
transitions into the given states.

The use of the new state-machine constructs impose additional semantic constraints,
most of them verified at compile time, except reentrancy.

– All the events defined inside the smcclass are considered as the alphabet of the state
machine.

– For the sake of determinism, every state has to provide a transition for each event
in the alphabet.

– The execution of a state has to end with a transition.
– There is no reentrance.
Non-reentrance cannot be easily enforced statically. If at all feasible, it would at least

require a complicated non-modular static analysis of the control flow of the program.
Therefore, the language constructs impose dynamic checks that detect the reentrant cases
and generate runtime errors.

The new state-machine constructs generate at compile-time an implementation ana-
logous to the one seen in the previous section. The smcclass and state constructs are
de-sugared in classes equipped with some additional infrastructure and the annotation
initial is de-sugared in a method that sets the initial state.

Listing 8.9 shows the implementation of the base shutter control with the new constructs.
When compared to Listing 8.3, most of the glue code required when implementing state
machines in CaesarJ is avoided. Line 3 and 5 define the alphabet of the state machine.
Every state has to provide handlers for these events. When an event is always handled
in the same way, a class can declare default event handlers by defining branches valid for
any state, denoted by the use of the anonymous state name _. For example, lines 9 defines

Chapter 8 — Mixins, Implicit Invocation and Stateful Behavior 129

1 smcclass BaseShutter {

2

3 event setAperture(int ap);

4

5 event apertureReached() =

6 device.apertureReached();

7

8 state _ {

9 apertureReached() => Idle;

10 }

11 i n i t i a l state Idle {

12 setAperture(int ap) => {

13 /* send aperture to device */

14 => Moving;

15 }

16 }

17

18 state Moving {

19 setAperture(int ap) => {

20 throw new Exception() => Moving;

21 }

22 } ...

23 }

Listing 8.9: Base shutter control with state machine constructs.

a default handler for the event apertureReached. If a state does not declare a specific
handler for an event, the default handler is used. If a default handler is not available for
an event and the class is not declared as abstract, then all the states of the class must
provide handlers for the event. In this way it is statically ensured that all the events from
the alphabet of a class are handled in all the states of the class. Line 11 defines Idle as
the initial state. Line 14 shows how the transitions are defined by using the operator =>.
The syntax used in the line 9 is a shortcut for an event handler whose body has just a
transition.

1 smcclass StuckShutter

2 extends BaseShutter {

3 event gotStuck() =

4 device.gotStuck();

5

6 state _ {

7 gotStuck => _;

8 }

9 state Moving {

10 gotStuck() => Stuck;

11 }

12

13 state Stuck { }

14 ...

15 }

Listing 8.10: Stuck shutter control with state machine constructs.

Listing 8.10 shows the extension with stuck behavior. It illustrates how the machine

and state constructs behave as standard classes and hence are subject to inheritance and
mixin composition. Note how in a default handler, the anonymous state name can also be
used to name a target state in order to indicate that the state should not change (line 7).

Listing 8.11 shows how hierarchical state machines are supported. Since the state

construct acts as a standard class, substates are defined using the extends keyword.

8.3.5 Stateful Aspects

The support for events of the programming model of this dissertation combined with
the stateful definition of a class makes it possible to implement stateful aspects (see Sec-
tion 2.2.4.1). In particular, the dedicated support for stateful behavior of ECaesarJ makes
this task easy.

As an example, Listing 8.12 shows a class Monitor, which each time that a user is added
into the system explicitly instantiates an aspect UserAsp for the given user. The aspect

130 Chapter 8 — Mixins, Implicit Invocation and Stateful Behavior

1 smcclass UnstuckShutter extends

2 StuckShutter {

3

4 i n i t i a l state Normal extends

5 Moving {

6 gotStuck() => {

7 /* send opposite aperture */

8 => Opposite;

9 }

10 }

11 state Opposite extends Moving {

12 apertureReached() => {

13 /* send previous aperture */

14 => Retrying;

15 }

16 }

17

18 state Retrying extends Moving {}

19 ...

20 }

Listing 8.11: Unstuck shutter control with state machine constructs.

1 cclass Monitor {

2 List aspects;

3

4 event added(User user) =

5 after(system.add(user));

6 added(User u) => {

7 aspects.add(new UserAsp(u));

8 next;

9 }

10 }

11

12 smcclass UserAsp {

13 User user;

14 DataBase db;

15

16 event login() = user.login();

17 event logout() = user.logout();

18 event query(Query q) = db.query(q);

19 state _ {

20 login() => { next; => In }

21 logout() => { next; => Out }

22 }

23 i n i t i a l state Out {

24 query(Query q) => {

25 next; => Out

26 }

27 }

28

29 state In {

30 query(Query q) => {

31 log(q); next; => In

32 }

33 }

34 }

Listing 8.12: Stateful aspect in ECaesarJ.

Chapter 8 — Mixins, Implicit Invocation and Stateful Behavior 131

is intended to log the queries of the user. It is implemented with the smcclass construct
because its behavior is stateful. It defines an event login capturing the login of the user.
A login makes the aspect transit into a state In. In such a state, the aspect is interested
in two additional events. The event logout represents a logout of the user and the event
query represents a query of the user in a database. On logout the aspect comes back into
state Out. On query, the aspect logs the query. This aspect is an example of a stateful
aspect because its observation depends on its internal state. The events logout and query

are only taken into account when the user is logged in.

8.4 Related Work

Patterns Sane and Campbell [SC95] consider the incremental construction of state ma-
chines. Their premise is that it is not possible to simply model states as objects and derive
new machines by inheritance because states cannot be inherited in isolation. This problem
is solved by relying on family polymorphism.

Chin and Millstein [CM08] propose an extensible State design pattern, which uses Java
generics to solve the problem of type-safe extension of a state machine with new events.
While the proposed design solves the typing problem, it requires much more overhead than
the pattern implementation with virtual classes, e.g. it requires two classes for each state
machine - one class to support its extension and another for its instantiation. The pattern
also does not address the problem of composition of extensions.

Behavior Substitutability There is a whole line of work (see for instance [BvdA01])
concerned with the meaning of inheritance, or more generally with substitutability with
respect to behavior. For instance, linear substitutability requires that every trace in a
superclass is a trace of its subclasses. This requires when extending a state machine to
only add some behavior. As standard class inheritance does not provide any guarantee
in this respect, we have chosen a very practical model whereby state machines can be
extended with the same freedom as standard classes. In any case, the presence of explicit
state machines may also help in case more control on the inheritance of behavior is required.

Virtual Classes and propagating mixin composition The concept of a virtual
class stems from the programming language Beta [MMP89] and was further developed
in gbeta [Ern99a], which introduced propagating mixin composition [Ern99b] and a type-
safe family polymorphism [Ern01]. CaesarJ [AGMO06] integrates these concepts to Java,
which has different method overriding semantics than Beta, and supports abstract methods
and classes.

Concurrent Object-Oriented Languages Logical states are, at least implicitly,
present in many concurrent object-oriented languages, where they implement behavioral
synchronization, i.e. the need to delay the acceptance of a request until a service is avai-
lable [BGL98]. Two proposals are explicitly related to our work. Both integrate explicit
state machines, although in a different form, to promote a better separation of communi-
cation as an inter-object concern from the internal activities of the objects. These state
machines implement behavioral synchronization.

PROCOL [vdBL89, vdBL91] is based on delegation. PROCOL objects interact through
synchronous send and receive primitives. A protocol controls object access and completely

132 Chapter 8 — Mixins, Implicit Invocation and Stateful Behavior

serialize interaction by specifying which are, depending on the logical state of the object,
the message receipts that should be handled and the ones that should be delayed. Simple
protocols are expressed using guarded regular expressions. These protocols can be compo-
sed using parallel composition. The definition of a primitive expression makes it possible
to match message receipts against the type of the sender and also recognizes specific sen-
ders (for instance the creator of the object). So-called constraints can be used as a weak
form of aspects, included unlike aspects within the object to which they apply, to specify
additional code to be executed in case of specific message sends.

ACT++ is a hybrid of an actor language and C++ and combines the notion of behavior
replacement typical of actor systems with inheritance (whereas actor systems usually rely
on delegation) [KL89]. Instead of denoting an actor script, an ACT++ behavior denotes
a set of methods that terminate by making the object obey to a new behavior using the
standard become primitive of actor languages. Subclasses can be extended with new beha-
viors whereas previously defined behaviors can be redefined. These behaviors correspond
quite forwardly to our logical states.

Our work generalizes these ideas, for the time being in a sequential setting, with the
possibility of composing state machine extensions and generalized events, while resorting
to a limited number of concepts at the implementation level.

Hierarchical States Harel’s Statecharts [Har87] propose a graphical notation for hie-
rarchical state machines, which are very expressive, but also very complex. Indeed, several
authors such as [US94] have tried to give a proper semantics to Statecharts. Hierarchi-
cal states of ECaesarJ have taken many ideas from Statecharts, but they are simpler.
One important difference in ECaesarJ is the overriding semantics for conflicting event
handling defined in a substate and its enclosing state. This situation is considered as an
ambiguous state machine in Statecharts. We have shown the utility of this feature. In addi-
tion, Statechart is a graphical notation, whereas we provide a programming language with
extensible states.

8.5 Conclusion

This chapter has presented ECaesarJ, a language that combines advanced OO fea-
tures such as propagating mixin composition with our model of implicit invocation. We have
shown how the implementation of extensible state machines can be achieved in ECaesarJ
without much glue code compared to a solution in Java or CaesarJ. Whereas virtual
classes and mixin composition make the state machine extensible, events and event hand-
lers reduce a big part of the glue code needed in a language such as Java. In addition, we
have introduced dedicated language support for state machines, which is not so far from
an ECaesarJ implementation using just classes, event and handlers. The main benefit of
this language support is that it reduces a part of the remaining glue code and enforces a
state machine semantics.

This chapter has shown how our model can be beneficial to the implementation of
complex patterns. The next chapter confirms these benefits by showing how a smart home
application can be implemented using ECaesarJ.

PART III

Validation and Conclusion

CHAPTER9
Case Study

After having considered small illustrative examples in the previous chapters, this chap-
ter validates our programming model and our prototypes on two case studies. The first
case study is a minimal version of the drawing editor JHotDraw [Eri11]. The second one
is an industrial-strength case study: the Smart Home case study [GNNM11]. Section 9.1
presents the principal elements of the implementation of the drawing editor in EJava. Sec-
tion 9.2 illustrates the expressiveness of ECaesarJ when implementing the Smart Home
case study. Finally, Section 9.3 concludes.

9.1 Mini JHotDraw

We have previously illustrated several features of our model by using examples inspired
by a drawing editor. It is natural that our first case study consists of evaluating how EJava
can actually facilitate the implementation of an application such as JHotDraw.

We have taken the current version of JHotDraw and we have eliminated part of its
code in order to keep the core functionality. Thus, we can measure how much of this
core functionality implements implicit invocation. We have commented some methods and
their calls and eliminated some classes, being careful to maintain the original JHotDraw
architecture. The result is a minimal version of JHotDraw that makes it possible to display
text area figures, to select them with the mouse, to move them by dragging them into a
different position or by using the keyboard, to resize them, to change text and the size of
its font, and to delete the figures. As a whole the program consists of around 7K lines of
code, distributed in around 70 classes.

A first evaluation studies how language support for events reduces the amount of lines of
code of the application. A second evaluation studies how the crosscutting of event triggering
can be reduced thanks to the unification of event handling and method execution. Finally,
we have studied how some design intentions can be better expressed by using the EJava
constructs.

9.1.1 Listeners versus Events

In JHotDraw, implicit invocation is programmed by using Java listeners. In our mi-
nimal JHotDraw application the methods declared by the interfaces FigureListener,
FigureSelectionListener and ToolListener define the events of the application. We
encountered events such as areaInvalidated, figureChanged and toolStarted, which
are listed in the first column of Table 9.1. The last column of the table shows the classes
that provide the necessary registration infrastructure. The last row of the table shows the
amount of lines of code used by the declaration of listeners and the registration infrastruc-
ture. Table 9.2 lists the classes where the events are triggered and the classes where these
events are handled. The table also shows the amount of lines of code. If we sum up the

135

136 Chapter 9 — Case Study

Event Name Interface Registration Infrastructure

areaInvalidated FigureListener AbstractFigure

attributeChanged

figureChanged

selectionChanged FigureSelectionListener DefaultDrawingView

toolStarted ToolListener AbstractTool

toolDone

areaInvalidated

boundsInvalidated

Lines of code 19 121

Table 9.1 – Events of our minimal JHotDraw.

Event Name Triggering Handling

areaInvalidated AbstractFigure AbstractCompositeFigure

figureChanged AbstractCompositeFigure DefaultDrawingView

attributeChanged AbstractAttributtedFigure AbstractHandle

AbstractAttributtedCompositeFigure FloatingTextArea

selectionChanged DefaultDrawingView AbstractSelectedAction

toolStarted AbstractTool DefaultDrawingEditor

toolDone SelectionTool SelectionTool

areaInvalidated DefaultDragTracker

boundsInvalidated TextAreaEditingTool

DefaultHandleTracker

DefaultSelectAreaTracker

Lines of code 39 120

Table 9.2 – Triggering and handling of the events of our minimal JHotDraw.

total amount of lines of code provided in both tables and we add the amount of lines of
code needed to define subclasses of the listeners, to instantiate these subclasses, to call the
registration infrastructure and to capture user input, we obtain around 500 lines of code.
This number measures the amount of effort needed to connect the application functionality
with the user input.

We have replaced the use of listeners by our events and event handlers. We have elimi-
nated the 3 listeners, the registration code and some calls to the registration infrastructure.
As a result, we eliminated around 300 lines of code, i.e. around 60% of the effort required
when using listeners. We run the editor and the performance of the application was not
visibly affected by the use of EJava.

This experience demonstrates the capacity of EJava to program traditional EB appli-
cations. The result would be analogous when using the imperative events of a language
such as C#. The next section shows additional refactoring that highlights the benefits of
declarative events and the unification of event handling and method execution.

9.1.2 Eliminating Crosscuting Concerns

The figure-change protocol of JHotDraw works in terms of the methods willChange and
changed of the class AbstractFigure (see Listing 9.1). The method willChange of a figure
is called each time the figure is about to be modified. It triggers the event areaInvalidated
and invalidates the drawing area of the figure. The method changed is called each time the
figure has been modified. It validates the new drawing area of the figure and triggers the

Chapter 9 — Case Study 137

abstract class AbstractFigure implements Figure {

...

public void willChange() {

i f (changingDepth == 0) {

fireAreaInvalidated();

invalidate();

}

changingDepth++;

}

public void changed() {

i f (changingDepth == 1) {

validate();

fireFigureChanged(getDrawingArea());

}

else i f (changingDepth < 0)

throw new InternalError();

changingDepth--;

}

}

Listing 9.1: Figure change protocol.

event figureChanged. These events are used by a drawing editor to clear an invalidated
area and to repaint a validated one.

For example, the class TextAreaEditingTool has the following piece of code in its
method endEdit:

textHolderFigure.willChange();

textHolderFigure.setText(newText);

textHolderFigure.changed();

This code calls willChange before changing the text of a text-holder figure and calls
changed after the figure has been modified.

abstract class AbstractFigure implements Figure {

...

event change() = transform(AffineTransform) ||

setBounds(Point2D.Double, Point2D.Double);

void change() => {

willChange();

next;

changed();

}

public void willChange() { ... }

public void changed() { ... }

}

Listing 9.2: Figure change protocol.

The methods willChange and changed are called within 10 different methods in the

138 Chapter 9 — Case Study

code of our minimal JHotDraw application, distributed among 8 different classes. It consti-
tutes a crosscutting concern, also introducing tangling in the corresponding methods. In
order to evaluate whether EJava can improve the situation, we have defined a new event
change in the class AbstractFigure capturing the calls to the methods that modify a
figure. At the same time we have implemented an event handler that calls the methods
willChange and changed as illustrated in Listing 9.2. This refactoring replaced the 10
invocations of the methods willChange and changed by a single invocation in the handler
change of AbstractFigure. We needed, however, the definition of the new event change in
AbstractFigure and the refinement of this event in the classes AbstractCompositeFigure
and TextAreaFigure. In terms of lines of code we just reduced around 8 lines of code, ho-
wever we improved the modularity of the application as now only 3 classes are aware of
the figure-change protocol and the definition is not tangled in any method.

9.1.3 Improving Expressiveness

A third study consisted of figuring out how to improve the design of JHotDraw by taking
advantage of the expressiveness of EJava. Again we centered our attention on the figure-
change protocol. If we look at Listing 9.1 the actual objective of the methods willChange
and change is to invalidate and validate the drawing area of the figure. The notification
of the events areaInvalidated and figureChanged are a result of these invalidation and
validation. Indeed, by looking at the use of figureChanged in the application, we could
perfectly rename it as areaValidated.

1 abstract class AbstractFigure implements Figure {

2 ...

3 event change() = transform(AffineTransform) ||

4 setBounds(Point2D.Double, Point2D.Double);

5

6 change() when !isChanging => {

7 invalidate();

8 isChanging = true;

9 next;

10 isChanging = false;

11 validate();

12 }

13

14 event areaInvalidated(Figure source, Rectangle2D.Double area) =

15 after(invalidate() with source = this, area = getDrawingArea());

16

17 event figureChanged(Figure source, Rectangle2D.Double area) =

18 after(validate()) with source = this, area = getDrawingArea();

19

20 }

Listing 9.3: Figure change protocol.

Listing 9.3 shows the result of our third experience. We have eliminated the methods
willChange and changed and placed some of their code in the event handler change. Spe-
cifically we call invalidate before continuing with the change (call to next) and validate

afterwards. Then we have defined the events areaInvalidate and figureChanged in terms

Chapter 9 — Case Study 139

of the calls to validate and invalidate in a declarative way. The variable isChanging pre-
vents from nested change notifications in an equivalent way the variable changingDepth

was used in Listing 9.1. As a result, we eliminated 12 lines of code, but more importantly
we believe the intention of the programmer is clearer in Listing 9.3. We define what a
change is, we express that when there is an enclosing change we invalidate the figure, we
continue with the change and then we validate the changed figure. Finally we express that
the area has been invalidated after the call to invalidate and that the figure has finally
changed after the call to validate.

We have presented the first case study, which validates EJava. Now we continue with
the second case study that validates the combination of our implicit invocation model and
advanced OO features in ECaesarJ.

9.2 The Smart Home Case Study

This case study is part of a larger case study used in the project AMPLE [AMP10,
GNNM11] in the context of building software product lines using model-driven enginee-
ring and aspect-oriented software development. The Smart Home case study is related to
building automation. Modern buildings are equipped with a set of electrical sensors and
actuators in order to allow for an intelligent sensing and controlling of building devices:
temperature sensors and thermostats, electrically steered blinds and windows, fire and glass
break sensors, etc. As there is the increasing demand to coordinate the various devices un-
der control of an integrating IT platform, a Smart Home product emerges as software that
networks these devices and enables the inhabitants to monitor and control their house from
various user interfaces. A local network also allows the devices to coordinate their behavior
in order to fulfill complex tasks without human intervention.

Houses are intrinsically different from each others, not only in terms of architecture, but
also in terms of their available devices. Home-automation software needs to be adaptable
to each possible setting. The Smart Home case study consisted of understanding how to
build a software product line. It provides the necessary building blocks and mechanisms
to automatically select and assemble suitable components and generate proper software
products in terms of the set of features that better describes the requirements of a particular
home.

Several techniques can be used in order to build a suitable smart home. First, modulari-
zation mechanisms such as family classes can help providing a good structural decomposi-
tion as they permit us to define the structure of objects in terms of features. Second, events
can improve the decoupling of the different building blocks and provide good abstractions
to describe automation behavior. Third, aspects can help modularizing crosscutting func-
tionality. The case study is an example of large software that requires combining all these
techniques. This section shows how ECaesarJ can be used to implement a smart home.
This solution was initially described in [GNNM11].

Section 9.2.1 shows how the ECaesarJ virtual classes and propagating mixin are the
starting point of our solution by providing good means to separate the structure of a smart
home in terms of features. Then, Section 9.2.2 shows how, on top of this structural decom-
position, the ECaesarJ event abstractions permit the implementation of the behavioral
dimension of a smart home.

140 Chapter 9 — Case Study

9.2.1 Structural Dimension

Every house is different. An important source of variability lies in the layout of a house.
The number of floors, rooms, connecting doors and/or windows are typically unique for
every house. On top of this (building) architectural setting, houses are equipped with
connected devices. We have exploited the flexibility of virtual classes and propagating
mixin composition in order to reflect in code the layout elements of a house and to express
its variability in a modular way.

Virtual-class decomposition. The required functionality of a smart home can be se-
parated in features [Pre97]. A feature may indicate for example a house with shutters,
another may indicate a house with movement detectors and a certain behavior and ano-
ther a house with several floors. They are combined to form the whole home functionality.
This separation is called a feature-oriented decomposition.

cclass HouseStructure {

abstract cclass Location { }

abstract cclass CompositeLocation extends Location {

abstract List<? extends Location> locations();

}

cclass Room extends Location { }

cclass Floor extends CompositeLocation {

List<Room> rooms;

List<Room> rooms() { return rooms; }

void addRoom(Room r) { rooms.add(r); }

List<? extends Location> locations() { return rooms(); }

}

cclass House extends CompositeLocation {

List<Floor> floors;

List<Floor> floors() { return floors; }

void addFloor(Floor r) { floors.add(r); }

List<? extends Location> locations() { return floors(); }

}

House house = new House();

House house() { return house; }

}

Listing 9.4: Implementation of a house structure as a family class.

We model a smart home feature as a family class and domain objects as its virtual
classes. Since virtual classes can be refined in subclasses of the family class, a feature can
extend the functionality of another feature by inheriting from it and selectively refining its
classes. As an example, Listing 9.4 shows the implementation of the feature that defines
the structure of the house. This feature is represented by the class HouseStructure, which
contains virtual classes describing house locations.

The advantage of such class grouping is that it makes it possible to extend the classes

Chapter 9 — Case Study 141

cclass HouseShutters extends HouseStructure {

abstract cclass Location {

abstract List<Shutter> shutters();

}

abstract cclass CompositeLocation {

List<Shutter> shutters() {

List<Shutter> shutters = new ArrayList<Shutter>();

for (Location child : locations()) {

shutters.addAll(child.shutters())

}

return shutters;

}

}

cclass Room {

List<Shutter> shutters;

List<Shutter> shutters() { return shutters; }

}

}

Listing 9.5: Extension of house structure with shutter devices.

with new features in a consistent way. For example, Listing 9.5 shows the extension of
a house structure with shutter devices. This extension is defined in a new family class
HouseShutters, declared as a subclass of HouseStructure. As a result, it inherits all virtual
classes of its superclass, and can selectively extend them with new functionality. The class
Location is extended with a declaration of an abstract method shutters providing access
to the shutters of the location. The classes CompositeLocation and Room are extended to
implement this method. In addition, the class Room is extended with a new field to store the
list of shutter devices of its instances. As can be seen, the class HouseShutters defines only
the very functionality related to organising the shutters in a house. All other definitions
are implicitly inherited from HouseStructure and combined with the definitions of the
extension. This means that HouseShutters inherits the definitions of House and Floor

from its superclass, and the redefined classes Location, CompositeLocation, and Room

implicitly inherit from the respective classes of HouseStructure.

Particular Products. Let us consider another extension of the house structure with
light devices, presented in Fig. 9.6. This extension is analogous to the extension with the
shutter devices of Fig. 9.5. The two extensions can be composed using propagating mixin
composition by defining a class inheriting from them both as shown in Listing 9.7. The
class MyHouse inherits all the members of both superclasses, and in particular their virtual
classes. The virtual classes with equal names are automatically merged using the same
mixin composition semantics. For example, the virtual class MyHouse.House inherits from
the composed version of CompositeLocation, which implements operations for collecting
all lights and all shutters in the house.

The class MyHouse represents a particular house product with two features: (1) a house
with shutters and (2) a house with lights. More features can be added by composing the
respective family classes. In the remainder we show how this structural implementation can

142 Chapter 9 — Case Study

cclass HouseLights extends HouseStructure {

abstract cclass Location {

abstract List<Light> lights();

}

abstract cclass CompositeLocation {

List<Light> lights() { ... }

}

cclass Room {

List<Light> lights;

List<Light> lights() { return lights; }

}

}

Listing 9.6: Extension of house structure with light devices.

cclass MyHouse extends HouseShutters & HouseLights { }

Listing 9.7: Particular smarthome product.

be extended with behavior using the programming model introduced in this dissertation.

9.2.2 Behavioral Dimension

The structural decomposition described so far is the base framework on top of which
we have defined the behavioral dimension of a smart home that we describe in this section.
This behavior mainly corresponds to reactive functionality on the occurrence of several
events, which are part of the daily life of the inhabitants of a home. For instance, a sunrise
is an example of an event on which occurrence we would like shutters to be automatically
opened in the morning.

This section shows how the different language abstractions and the integration of the
different programming paradigms introduced by our programming model provide a simple
and regular way to express the different behaviors of a smart home in a modular way
respecting feature decomposition. The family classes that describe the layout of a house
are extended here with events and handlers in order to implement the listed behaviors.

Event Abstractions Various events can be identified in a smart home application. How
these events are defined corresponds to a variability point. Event definitions may depend on
the kind of devices that are available in a particular house or on environmental conditions.
For example, a sunrise event can be defined in terms of light intensity if the house is
provided with a light sensor and it is summer, or as a timer signal otherwise. When defining
a reactive behavior in a modular way we would like to abstract out from the manner
events are defined. ECaesarJ permits this separation thanks to the fact that events
can be defined as abstract permitting independence from their concrete definitions. This
flexibility highlights the benefits of an integration of EBP and OOP allowing programmers
to deal with events similarly to methods.

As an example, Listing 9.8 declares a daytime detection feature representing the ca-

Chapter 9 — Case Study 143

abstract cclass IDaytime {

abstract event sunrise();

abstract event sunset();

abstract boolean isDaytime();

}

Listing 9.8: Event Abstractions.

pacity (or feature) of a house to provide sunrise and sunset events. The IDaytime family
class declares the sunrise event, emitted when it gets bright, and sunset, emitted when
it gets dark. Additionally, the isDaytime predicate makes it possible to check whether it is
daytime (in-between sunrise and sunset). The sunrise and sunset events are abstract,
delaying definition to concrete subclasses. A smart home provided with this family class
enables the implementation of behaviors on top of these events independently from the
way the events are defined at different stages. A complete Smart Home product can be
equipped with all the required behavior and just needs to be connected with the proper
event sources depending on concrete situations.

cclass DaytimeShutterAutomation

extends HouseShutters & IDaytime & IShutterControl {

cclass Room {

sunrise() => {

for (Shutter s : shutters())

s.setAperture(100); // fully open

next;

}

sunset() => {

for (Shutter s : shutters())

s.setAperture(0); // fully closed

next;

}

}

}

abstract cclass IShutterControl {

cclass Shutter {

abstract void setAperture(int aperture);

}

}

Listing 9.9: A feature that opens shutters at sunrise and closes them at sunset.

Smart, Reactive Home Behavior We have implemented the different reactive beha-
viors of a smart home on top of abstract events in a modular way. The standard EBP capa-
bilities of ECaesarJ have been intensively used to implement reactive behaviors as event
handlers, whereas other functions have been implemented as methods. As an example, the
DaytimeShutterAutomation class of Listing 9.9 implements an automation behavior which
opens and closes shutters on the occurrence of the sunrise and sunset events, respectively.
This feature requires a house equipped with shutters and with sunset and sunrise events
as illustrated by the dependence on the HouseShutters and IDaytime classes. In addition,

144 Chapter 9 — Case Study

it requires the class IShutterControl, which imposes a specific behavioral interface to
shutters with a command to set a specific aperture.

cclass SensorDaytime extends IDaytime requires ILightSensor {

f ina l int THRESHOLD = 80;

protected boolean daytime;

event sunrise() = lightSensor().intensityChanged()

&& i f(!daytime && lightSensor().getIntensity() > THRESHOLD);

event sunset() = lightSensor().intensityChanged()

&& i f(daytime && lightSensor().getIntensity() < THRESHOLD);

public boolean isDaytime() { return daytime; }

sunrise() => { daytime = true; next; }

sunset() => { daytime = false; next; }

}

Listing 9.10: Implementation of daytime events in terms of light intensity.

Variability of Event Definition When a house is not provided with a light sensor a
second implementation can be used. This implementation imperatively define these events
in terms of the hour of the day as shown in Listing 9.11.

cclass TimedDaytime extends IDaytime {

public void run() {

sunrise();

}

}

Listing 9.11: Implementation of daytime events in terms of the hour of the day.

As previously said the complete functionality of a smart home can be expressed in
terms of abstract events. In a second step, we need to provide proper event definitions
in order to consolidate a final product. With ECaesarJ, events can be defined either by
explicitly triggering them in code or by composing other existing events in a declarative
way. The way events are defined is a variability point that depends on particular home
settings. As an example, Listing 9.10 shows a possible implementation of the sunrise

and sunset events. This implementation assumes that the lightSensor method provides
a light sensor. Line 5 defines the sunrise event as a light intensity change taking place
when it is still nighttime and exceeding a predefined threshold. Here, the event expression
defining the sunrise event combines the definition of the intensityChanged event of the
light sensor returned by the lightSensor method and a conditional expression testing the
current state and light intensity. Line 8 defines the sunset event in an analogous way.

Quantification The quantification feature of ECaesarJ makes it possible to express
in a compact way events that depend on several objects. For example, the presence of
somebody in a location can be described in terms of events of motion sensors available at

Chapter 9 — Case Study 145

cclass PresenceAtLocation {

Location location;

TimeService timeOut;

event somebodyInLocation() = some(location.motionSensors()).motion();

event somebodyOutOfLocation() = timeOut.time();

...

}

Listing 9.12: Presence in terms of activity in several sensors.

this location. A motion sensor provides an event motion. The constructor some is very
useful in this case. As an example, in Listing 9.12 a presence is notified when some motion

is detected.

Method Calls as Events Many events are made available for free thanks to the unifica-
tion of method calls and events. Method calls as explicitly triggered events are observable
by external entities, which can program reactive behavior on their occurrence. As a conse-
quence the necessity of preplanning is reduced, simplifying in this way the implementation
of the application and improving its extensibility.

cclass LightActivityDetection requires IHouseLights {

event activityDetected() =

some(house().lights()).turnOn() ||

some(house().lights()).turnOff();

}

Listing 9.13: Light activity detection.

The implementation of an alarm system is an example of this. The alarm needs to be
triggered when some activity is detected in the house in a period at which nobody should
be at home. The alarm behavior is bound to an abstract event activityDetected, which
indicates the situation when the alarm should be triggered. The event could be defined in
several ways: in terms of the detection of a movement sensor, or the state of the device of
the house. An additional source of events is provided by the activity of the Smart Home
software. A call to a method turnOn on any device could be considered as an indicator
that somebody is at home. Since a method call is an event in our model, the turnOn call
can be used without additional effort to define the activityDetected event as shown in
Listing 9.13.

We have show how our programming model, materialised in the ECaesarJ language,
provides the necessary abstractions to build a Smart Home in a regular and simple way,
all this thanks to a better integration of the techniques provided by the OOP, EBP and
AOP paradigms.

9.3 Conclusion

Our first case study has shown that the amount of event-related code in a sizable
application such as JHotDraw is not very big. In our minimal version we measured 500
lines of code in a total of 7K. These 500 lines of code are however fundamental as they

146 Chapter 9 — Case Study

connect the user input with the application functionality. We saw that a big part of this
code was just registration infrastructure and registration calls. We eliminated more than
half of the number of lines of code and we improved their modularity. As a result, we got
code that is easier to verify and maintain, with a direct mapping between the features at
the design level and their implementation.

Our second case study was built from scratch. Whereas family classes made the de-
composition of the application in features easy, our implicit invocation model motivated
the use of events and facilitated the task. We showed how both technologies were used
together.

The next chapter provides details on the implementation of our languages and some
hints on their performance.

CHAPTER10
Implementation

This chapter is dedicated to the implementation of the languages introduced in this
dissertation. Sections 10.1 and 10.2 describe the main aspects of the implementation of
EJava and ECaesarJ, respectively. Section 10.3 concludes with some final remarks.

10.1 Implementation of EJava

EJava is a language compiled into Java. The compilation process generates the infra-
structure that implements our implicit-invocation model and the needed glue code. The
code transformation/generation is performed by using the code-transformation tool Stra-
tego XT [Vis01, Vis04]. The generated Java code is compiled by using a standard Java
compiler. The remainder of this section describes the compilation process.

10.1.1 Principle

Most of the code of an EJava application consists of plain Java: definition of classes,
definition of methods and invocations of these methods. As an important design decision,
the plain Java code of an EJava program is not modified by the compilation process. It
remains as plain Java code. This feature contributes to the efficiency of EJava but it also
makes it possible to consider any Java program as an EJava program, in particular, Java
libraries. All the generated EJava infrastructure depends on this design decision.

As explained in Chapter 5, plain Java code respects our implicit-invocation model.
A method is conceptually seen as both an imperative event and an event handler, and a
method call as the triggering of an imperative event. No additional compilation effort is
needed if the method body is the only event handler registered with the imperative event:
on the method call the method body is normally executed. However, the compilation of
an EJava program must take into account the fact that an imperative event defined with
method syntax can be used in the definition of other (declarative) events. Consequently,
other event handlers can be (indirectly) registered with such an imperative event. Since we
do not touch the plain Java code of an EJava program a mechanism is needed to intercept
the relevant method calls and give the control to the EJava interpreter.

For the sake of simplicity, imperative events directly defined by using the event

construct are translated into Java methods. The bodies of these methods are the bo-
dies of the handlers directly registered with these imperative events. They are empty if
there is no handler. This simplification allows all the imperative events of the program to
be treated in the same way: by performing method-call interception.

The remainder describes the interpreter (Section 10.1.2) and the code-generation pro-
cess (Section 10.1.3).

147

148 Chapter 10 — Implementation

10.1.2 EJava Interpreter

Join-point

interceptor
InterpreterApplication

event handler

selector

body

Figure 10.1 – Architecture of the EJava interpreter.

The EJava interpreter is a dedicated extension of the aspect-language interpreter
CALI [AN09]. Figure 10.1 shows the architecture of the system. The three boxes on top
represent the application and the interpreter, connected by a join-point interceptor. The
box on the bottom represents a list of deployed event handlers. A selector of runtime events
and a body is associated with each event handler. The join-point interceptor intercepts the
relevant join-points from the application execution and passes the control to the inter-
preter. The latter executes a set of proper event handlers. This set contains the handlers
whose selectors select the runtime event.

abstract aspect AbstractPlatform {

abstract pointcut reifyBase();

Object around(): reifyBase() {

return Interpreter.eval(new RtEvent(thisJoinPoint));

}

}

Listing 10.1: AspectJ aspect intercepting the relevant method calls in the application.

The join-point interceptor is implemented by the AspectJ aspect of Listing 10.1. The
pointcut reifyBase indicates the list of join points to intercept in the application. It is
defined as abstract so that the list of join points can be defined later on. The aspect defines
a piece of advice that creates a runtime event, i.e. an instance of the class RtEvent. The
RtEvent instance is created from the intercepted join point. The piece of advice evaluates
this runtime event by calling the method eval of the class Interpreter, which implements
the interpreter.

In the implementation of the interpreter we use the following classes:
– The class EventSelector defines an object that is used to select a runtime event.

The events of the application are translated into instances of this class.
– The class HandlerBody defines an object with an executable method run. This me-

thod is executed in reaction to a runtime event given as a parameter. The bodies of
the event handlers of the application are translated into instances of this class.

Chapter 10 — Implementation 149

– The class EventHandler ties together an instance of EventSelector and an instance
of HandlerBody. The event handlers of the application are translated into instances
of this class.

The repository of event handlers consists of a list of EventHandler instances, repre-
senting all the event handlers deployed in the application. Each time a new object is
deployed their event handlers are added to the repository. The method eval of the inter-
preter evaluates the selectors of all the deployed EventHandler instances and filters the
ones whose selectors select the event.∗ It puts the resulting objects in a stack and executes
the HandlerBody of the instance on the top of the stack. The class Interpreter provides
a method next, which can be called from the running HandlerBody instance to nest the
execution of the next handler on top of the stack. When next is called and there are no
more handlers on the stack, a dedicated handler performs an AspectJ proceed.

10.1.3 Generated Infrastructure

class Connector {

event out() = leftFigure().changed() || rightFigure().changed();

out() => {

next; update();

}

Figure leftFigure() { ...}

Figure rightFigure() { ...}

}

Listing 10.2: Implementation of a connector between two figures.

The compilation of a class defining events and handlers consists of generating the
corresponding instances of the previous classes and the needed additional infrastructure.

As described earlier, imperative events are translated into standard Java methods. If
no handler has been bound to an imperative event, the resulting method has an empty
body. Otherwise, the method body is the body of the corresponding event handler.

In order to describe the translation of declarative events and the translation of event
handlers bound to declarative events, we will use as an example the translation of the
EJava class Connector of Listing 10.2 into the Java class of Listing 10.3.

A declarative event evt is translated into a selector of runtime events. More concre-
tely the event construct is translated into a field event_evt referencing an instance of
EventSelector implemented in terms of the corresponding event expression. Lines 2-15
of Listing 10.3 show the translation of the event out of the class Connector into the field
event_out.

An event handler evt is translated into a field handler_evt referencing an instance of
HandlerBody. The method run of such an instance contains the handler body with the
calls to next translated into a call to the method next of the interpreter. Lines 17-25 show
the translation of the event handler out of the class Connector into the field handler_out.

Each class that defines at least one event handler is equipped with a method deploy.
For each event handler evt defined in the class, this method deploys in the interpreter

∗. Section 10.1.4 describes some optimizations to reduce the amount of evaluations.

150 Chapter 10 — Implementation

1 class Connector {

2 EventSelector event_out =

3 new EventSelector()

4 {

5 Object[] select(RtEvent evt) {

6 return getS1().select(evt) ||

7 getS2().select(evt);

8 }

9 EventSelector getS1() {

10 Figure f = leftFigure();

11 return f != null?

12 f.evt_changed: FALSE;

13 }

14 EventSelector getS2() { ... }

15 };

16

17 HandlerBody handler_out =

18 new HandlerBody()

19 {

20 Object run(Object[] t) {

21 Interpreter.next();

22 update();

23 return null;

24 }

25 };

26

27 void deploy() {

28 Interpreter.deploy(

29 new EventHandler(

30 event_out, handler_out));

31 }

32 }

Listing 10.3: Translation of the EJava class of Listing 10.2 into Java.

an instance of EventHandler. The EventHandler instance ties together event_evt and
handler_evt. Lines 27-31 show the method deploy added to the class Connector.

Finally, the compilation of an EJava program creates a concrete subclass of the as-
pect AbstractPlatform of Listing 10.1 defining the pointcut reifyBase with the list of
method calls to intercept. This list is created by analyzing the application and obtaining
the signature of the events used by the application.

10.1.4 Optimizations

EJava events are late-bound. The relationships between events are context-dependent.
For example, the event out of the connector of Listing 10.2 is related to the events changed
of the connected figures. The connected figures are returned by the methods leftFigure

and rightFigure. The objects returned by these methods may depend on the context. This
makes the event out of the connector potentially related to the event change of any figure
in the application. Consequently, when any figure changes in the application the event
selector of out needs to be evaluated to test whether it selects the corresponding runtime
event. In the evaluation, the selector invokes the methods leftFigure and rightFigure to
obtain the current figures (see line 10). Then it tests whether the runtime event corresponds
to a change in one of these figures.

So far we have shown a very simplistic translation of an EJava class. The current
implementation of EJava produces better code. For example, we avoid evaluating several
times expressions such as the call to the method leftFigure of line 10 during the handling
of the same runtime event. We also implement a more selective evaluation of event selectors.
For example, a connector is only interested in the event changed of figures. The occurrence
of an event called changed of another kind of object should not trigger the evaluation of
the event selector of the connector.

Despite these optimizations, when there are many figures and many connectors the
number of evaluations of event selectors can rapidly increase. A connector would observe
the changes of several figures, whereas it is only interested in two particular figures. As a

Chapter 10 — Implementation 151

class Connector {

Figure leftFigure, rightFigure;

event out() =

leftFigure.changed() || rightFigure.changed();

...

}

Listing 10.4: Optimized event out.

solution to this problem, Lucas Satabin [GSM+11] implemented an optimization for the
case an event is defined by accessing the events of the fields of a class (in a direct way).
For example, this optimization is feasible for the event out of the class Connector of
Listing 10.4, in which leftFigure and rightFigure are fields instead of methods. When
the fields used in the definition of an event are immutable, the relationships between the
defined event and the events of these fields are also immutable. Thus, it is possible to
construct a graph expressing the relationships between the events of different objects. On
the occurrence of an event in the graph, the occurrence can be propagated to the next
nodes of the graph, avoiding the evaluation of the unconnected events. In the case the
fields are mutable, a mechanism is needed to detect the modifications of the fields and
update the graph.

We have borrowed these ideas so that EJava optimizes the case in which events are
related through the fields of a class (in a direct way). Since in Java we cannot declare a
field as immutable we have to deal with the case where a field is modified. This problem is
solved with the introduction of a dedicated AspectJ aspect that intercepts the changes
of relevant fields such as leftFigure and rightFigure and updates the corresponding
graphs.

10.2 Implementation of ECaesarJ

The implementation of ECaesarJ consists of incorporating the previous implementa-
tion into CaesarJ. Since we generate methods and fields, the propagating mixin compo-
sition of CaesarJ can be applied to them without problems. The generated code is then
compiled by using the CaesarJ compiler. Since the compilation process is the same as
the one of EJava, the remainder of this section is just dedicated to the implementation of
the language support for state machines in ECaesarJ.

State machines implemented with the smcclass construct are translated into plain
ECaesarJ classes to be afterwards compiled with the ECaesarJ compiler. The transla-
tion generates an implementation similar to the one described in Section 8.3.2. In order
to describe the translation let us consider the state machine BasicShutter of Listing 8.9.
As a result of the compilation, BasicShutter is translated into the plain ECaesarJ class
BasicShutter of Listing 10.5.

The class StateMachine of lines 1-23 defines the common infrastructure of state ma-
chines. It includes a reference to the current state of the state machine, a default constructor
transiting into the initial state of the state machine, two classes State and Internal, and
methods to transit between states. The initial state is defined with a method initial, left
abstract. The class State represents a state. The class Internal represents an internal

152 Chapter 10 — Implementation

1 cclass StateMachine {

2 State currentState;

3

4 StateMachine() {

5 transit(i n i t i a l());

6 }

7

8 abstract State i n i t i a l();

9

10 abstract cclass State {}

11 abstract cclass Internal

12 extends State {}

13

14 void transit(State aState) {

15 undeploy(currentState);

16 deploy(currentState = aState);

17 }

18

19 void transitInternal() {

20 undeploy(currentState);

21 currentState = new Internal();

22 }

23 }

24

25 cclass BaseShutter

26 extends StateMachine {

27

28 void setAperture(int ap) {

29 currentState.setAperture(ap);

30 }

31

32 event apertureReached() =

33 device.apertureReached();

34 cclass State {

35 abstract void setAperture(int ap);

36 apertureReached() => {

37 transit(new Idle());

38 }

39 }

40

41 State i n i t i a l() {

42 return new Idle();

43 }

44

45 cclass Idle extends State {

46 void setAperture(int ap) {

47 transitInternal();

48 /* send aperture to device */

49 transit(new Moving());

50 }

51 }

52

53 cclass Moving extends State {

54 void setAperture(int ap) {

55 throw new Exception();

56 }

57 }

58

59 cclass Internal {

60 abstract void setAperture(int ap) {

61 throw new ReentranceException();

62 }

63 } ...

64 }

Listing 10.5: Translation of the base shutter control of Listing 8.9.

Chapter 10 — Implementation 153

state between two transitions for reentrance purposes. The method transit undeploys the
current state and deploys the new one. The method transitInternal makes the machine
transit into the state Internal and will be called at the beginning of an event handler for
reentrance purposes.

The translation of a smcclass construct goes through the following steps:
– The alphabet of the state machine is determined by looking at all the defined

events. In the example, the alphabet consists of the events setAperture and
apertureReached.

– All the imperative events are translated into forwarding methods. The reason is
that in our implementation plain Java methods perform better than events. In the
example, the event setAperture is translated into a method that forwards the call
to the current state (lines 28-30).

– From the alphabet of the state machine and the default event handlers we create
the class State. It includes the default event handlers and abstract members for
the events of the alphabet lacking a default event handler. In the example, the class
State of line 34 includes setAperture as abstract and the default handler of the
event apertureReached.

– The state constructs are translated into classes extending State. The constructs
=> within the event handlers of each state are translated into calls to the method
transit.

– When the body of an event handler includes more instructions than just a transition
we include a call to transitInternal at the beginning. This call makes the state
machine transit into an internal state. The internal state, represented by the class
InternalState, is formed of handlers for the imperative events of the alphabet of the
state machine. These handlers throw a reentrance exception. Thus, inside an event
handler of a state the state machine cannot handle other events. In the example, the
event handler setAperture in the state Idle performs some instructions to send the
aperture to the device. Before performing the instructions a call to transitInternal

is introduced (line 47). As a result, while performing these instructions the state
machine is in the internal state. The class transitInternal deals with setAperture

by sending a reentrance exception.
As a result of the compilation of a state machine we get a standard ECaesarJ class

that can be compiled by the ECaesarJ compiler.

10.3 Final Remarks

In our model an object is able to see any method call, even when the callee is another
object. An efficient implementation of this model is not that easy to get as method-call
observation grows with the number of objects of the application independently from the
number of actually observed objects. Optimizations are important to get a scalable solution.
Indeed, the standard OO metaphor can be seen as an optimized subset of our programming
model such that an object only sees the calls to its own methods.

The implementation of our programming model has been optimized for dealing with
methods. Methods are kept as plain Java code so that they are directly compiled by
Java. In this way, the performance of a Java program is not affected by our model.
Imperative events that have not been directly attached to event handlers are also translated
to methods, with an empty body. As a result, every event triggering in the application
corresponds to a method call and this method call is by default dealt with by Java. For

154 Chapter 10 — Implementation

the case a method call is observed by other objects we have put in place a method-call
interception mechanism using AspectJ.

CHAPTER11
Conclusion

This chapter concludes this dissertation. Section 11.1 sums up the programming model
introduced by this dissertation. Section 11.2 discusses the most important design decisions
of this programming model. Section 11.3 highlights the main contributions of this work.
Finally, Section 11.4 gives some guidelines on future work.

11.1 Summary

We have introduced a programming model, which, based on a general notion of event
and event handler, unifies three programming paradigms: EBP, AOP and OOP. Classes
in the model consist of fields, events and event handlers. Events are either imperative or
declarative. An imperative event is explicitly triggered in the code of an application with
a syntax similar to a method call. A declarative event is defined in terms of other events
in a declarative way. Event handlers register with events such that they are executed when
the respective events happen. Listing 4.17 illustrates what events and event handlers look
like. The notion of declarative event contributes to the area of EBP as it makes it easy to
program reactions to compositions of events. This is harder in most EB approaches, which
only provide imperative events. The integration with OOP is enabled by the inclusion of
methods in the model. A method is introduced as syntactic sugar for both an imperative
event and an event handler registered with this event (see Listing 5.9). Thus, the model
unifies the notion of method call of OOP with the notion of event triggering of EBP: the
occurrence of an imperative event corresponds to a method call. In other words, when an
object sends a message to another object, it explicitly triggers an imperative event. As
a reaction to this imperative event, the method body is one of the event handlers to be
executed. In this way, EBP and OOP can be provided in a regular way by using the same
language constructs. The unification of event handling and method execution also enables
AOP. A programmer working with methods implicitly trigger imperative events which can
be observed by aspects, implemented as classes. These aspects implement their pieces of
advice as event handlers reacting to such imperative events (see Listing 6.4). Pieces of
advice can also react to declarative events, which combine events in a declarative expres-
sion similarly to the pointcuts of AO languages. Finally, the implementation of aspects
as plain classes provides a good integration of AOP and OOP. First, aspects are expli-
citly instantiated like any class. Second, pointcuts, implemented as events, are full-fledged
instance members. Third, aspects are subject to the standard inheritance rules of classes.
The programming model has been implemented as an extension of Java called EJava,
and as an extension of CaesarJ called ECaesarJ. The latter completes the integration
by including support for structural aspects by using the notion of mixin composition and
language support for state machines.

155

156 Chapter 11 — Conclusion

11.2 Discussion

This section clarifies some important points of our programming model. First, we clarify
the respective role of explicit and implicit invocation resulting from the unification of event
handling and method execution. Second, we make a parallel between the object-oriented
nature of our events and the global nature of events in approaches based on event types.
Finally, we discuss some technical issues such as expressiveness.

11.2.1 Explicit and Implicit Invocation

Whereas events are natural implementations of implicit invocation, methods are natural
implementations of explicit invocation. Since our model unifies methods and events it is
important to clarify how explicit and implicit invocation can both coexist in our model.

1 class SomeTool implements Tool {

2 Figure targetFigure;

3 ...

4 /* code that transforms the target figure */

5 targetFigure.changed();

6 ...

7 }

Listing 11.1: Event triggering or method call in EJava.

Consider Listing 11.1 implementing a JHotDraw tool in EJava. This tool trans-
forms the figure targetFigure declared in line 2 and then executes the expression
targetFigure.changed() in line 5. In our model, this expression means a triggering of the
event changed of targetFigure. It notifies that the figure has changed after the transfor-
mation. The expression causes the implicit invocation of all the event handlers registered
with the event changed.

When the class Figure declares the event changed using method syntax, i.e. when
changed is a method, we can refer to the event triggering as a method call. In this case,
the tool is aware of the existence of one of the event handlers registered with changed:
the method body. The expression means the explicit invocation of the method body (as
the tool is aware of it) and, at the same time, the implicit invocation of the other event
handlers registered with the event (as the tool does not know them). This is the way both
explicit and implicit invocation are combined in our model.

In other words, the invocation scheme depends on the protocol describing the rela-
tionship between objects. When there is a notion of required and provided interfaces, the
invocation scheme is explicit, otherwise the scheme is implicit. This difference poses some
challenges when combining aspects and components with explicit protocols as we explored
in [NN07]. The model of this dissertation provides a seamless integration of both schemes.

11.2.2 Event Types versus OO Events

The interaction between objects is one of the most important constituents of an OO
design. In models of explicit invocation, objects send messages to objects. In models of
implicit invocation, such as the pattern Observer, objects register with objects. Similarly,
in our model an object registers with the events of the object it explicitly knows. However,

Chapter 11 — Conclusion 157

in approaches based on event types object interaction is indirect. An object registers with
event types, not with events of particular objects. Something similar happens in most AO
approaches. In this section we would like to discuss about event types as there is a complete
branch of EBP that is based on this notion [EGD01, RL08, SPAK10].

The idea of a design based on event types is to decouple destinations from sources:
instances of an event type are provided by objects that destinations do not know. However,
such a design is less object-oriented than the solution that uses the pattern Observer. Since
an event type is in general provided by an application, it promotes the interaction between
an object and the application instead of an interaction between objects. Thus, instances
of event types have to provide the necessary information to be used by destinations, which
have to apply specific filters on this information to select the relevant events associated to
the relevant objects.

Events in AOP are compatible with event types. For example, an AspectJ aspect can
monitor the calls to a method of a class. The aspect does not really know the objects
that will provide such an event. They can be any instance of the class or a subclass. An
event defined in this way is “application-level” or, in other words, static. Thus, AspectJ
provides specific pointcut designators such as this to obtain the objects that are sources
of the event. If an event of a specific object is expected then a specific filtering has to be
done in the advice code to select such an event. The link between the event types and
the events of AOP is made even more explicit in IIIA [SPAK10]. An event type in this
approach can be implemented by a pointcut. Classes can be registered as advising an event
type or as providing it.

Our programming model gives a bigger priority to an object-oriented design than to
the decoupling of destinations from sources. In our model a destination registers with the
events of the objects it is supposed to collaborate with, similarly to the pattern Observer.
Thus, no additional filtering is necessary to select the relevant events. An object is only
notified of the relevant events.

A way to turn an application-level event type into an object-level one is by restricting
the scope of observation of an event type. If a destination object subscribes to a certain
event type, scoping strategies [Tan08] can be used to restrict the space in which instances
of such an event type are collected. This space can be set to the source objects that are
relevant to the destination object. Thus, combinations of event types and proper scoping
strategies can produce object-oriented interactions like the ones achieved with the pattern
Observer.

The use of event types together with proper scoping strategies has the advantage that
it permits designers to address the tradeoff between specificity and reusability by deferring
certain decisions to aspect deployment, leaving aspect definitions more reusable [Tan08].
However, the definition of events as combinations of other events implies not only combining
event types but also providing the proper combinations of the respective scoping strategies.
The task is duplicated. The advantage of our model is that an event encapsulates an object-
level event, so that it can be reused in a straightforward manner. We can still deal with
specificity thanks to the late-bound nature of our events.

11.2.3 Technical Issues

Let us now discuss and justify some technical design decisions taken in our model.
The discussion mainly concerns the design of event handling and the expressiveness of our
model.

158 Chapter 11 — Conclusion

11.2.3.1 Event Handlers

An event handler in our programming model is defined as bound to an event. This design
decision contrasts with the flexible subscription and unsubscriptions of event handlers with
particular events of traditional EB languages. In the pattern Observer, for instance, a
subject provides methods to add and remove observers. In approaches such as C# the
operators += and -= are provided for the same purposes. The design proposed by this
dissertation is less dynamic in this sense.

class A {

B b;

event evt2() = b.evt3();

evt2() => { /* code of the handler */ }

public static void main(String[] args) {

A a = new A(); B b = new B();

/* subscription */

a.b = b;

/* unsubscription */

a.b = null;

}

}

Listing 11.2: Emulating subscription and unsubscription of events.

Our design is natural when considering the definition of methods as event handlers
(method bodies are statically defined). On the other hand, thanks to the late-bound nature
of events, it is still possible to emulate the subscription and unsubscription of event handlers
with events. A declarative event can be defined in terms of the events of a particular object
and the value of the event depends on the value of the given object reference at runtime. If
the object reference is null, then there is no observation of any event occurrence. By setting
the object reference to null we can emulate unsubscription, whereas by assigning a new
object we can emulate dynamic subscription. Listing 11.2 illustrates this idea. In addition,
we provide the construct undeploy (see Section 4.4.5) that deactivates the observation of
events of external objects.

11.2.3.2 AspectJ Expressiveness

Quantification on the static structure of a program as provided by AspectJ is, in
some cases, more expressive than quantification on a list of objects as achieved with our
constructor some. This issue is a consequence of the OO nature of the events of our model:
we observe events of particular objects. Let us describe this issue in more detail.

Consider as an example the AspectJ pointcut of Listing 11.3. It defines a pointcut
change representing the change of a figure. The pointcut selects calls to either the method
moveBy of the class Figure, the method setBounds of the class Rectangle or the method
setRadius of the class Circle. The classes Rectangle and Circle are subclasses of Figure
so that the pointcut designator target can be used to obtain the called object, as a Figure

instance, no matter what method was called.

Chapter 11 — Conclusion 159

pointcut change(Figure figure):

(ca l l(* Figure.moveBy(int, int))

|| ca l l(* Rectangle.setBounds(double, double))

|| ca l l(* Circle.setRadius(double))

) && target(figure);

Listing 11.3: ECaesarJ aspect.

Collection<Figure> figures;

event change(Figure figure):

some(figure: figures).moveBy(int, int)

|| some(figure: getRectangles(figures)).setBounds(double,double)

|| some(figure: getCircles(figures)).setRadius(double);

Listing 11.4: EJava aspect.

Listing 11.4 shows the EJava version of the previous code snippet. We assume a collec-
tion figures containing Figure instances. By using the constructor some, we observe the
events moveBy, setBounds and setRadius of the objects in the collection. However, the
constructor some relies on the type of the elements of the collection in order to safely define
the declarative event. Since the method setBounds is only defined in the class Rectangle,
we need to filter the Rectangle instances from the collection of figures. We do that by
calling a function getRectangles. We do something analogous for Circle instances. The
problem is that filtering is far from being efficient.

Collection<Figure> figures;

event change(Figure figure):

some(figure: figures).moveBy(int, int)

|| ((Rectangle) some(figure: figures)).setBounds(double,double);

|| ((Circle) some(figure: figures)).setRadius(double);

Listing 11.5: EJava aspect.

We consider as future work an extension of the constructor some improving on this
issue. Listing 11.5 shows a possible extension in which the constructor some is equipped
with a casting expression filtering the objects of the given type from the given collection.
As provided by the language, the filtering could be done efficiently.

11.3 Contributions

The main contributions of the work presented in this dissertation are: (1) an EB pro-
gramming model with declarative events, (2) a better integration of EBP, AOP and OOP
through this model, (3) support for a region-in-time model of aspects by using a point-
in-time model, (4) the concretization of the model as an actual programming language
with two prototype implementations, (5) thanks to the prototypes, the validation of the
programming model on the implementation of both a figure editor and a home-automation

160 Chapter 11 — Conclusion

application. We summarize these contributions in the remainder.

11.3.1 Declarative Events

As Chapter 4 described, when developing large applications, a programmer often needs
to define events in terms of other events. In several EB languages, the composition of events
is programmed by using imperative events. The composite events are triggered as impera-
tive events within event handlers registered with the composed events. As a result, when
several events are defined in this way, it is hard to understand the different relationships
between the events of an application. This is source of complexity when developing such
an application. Chapter 4 introduced an EB programming model that innovates with the
notion of declarative events. A declarative event expresses in a declarative way the relation-
ships between the events of an application. The different relationships between events are
easier to understand. Imperative and declarative events can be made part of the interface
of a system offering additional modularity.

11.3.2 Unification of Paradigms

A combination of several programming paradigms is often required in order to im-
plement the requirements of a complex application and provide good quality software.
Examples of paradigms that can often be found in applications are EBP, AOP and OOP.
In most applications the different paradigms are implemented by using different language
abstractions. These abstractions are provided as different language constructs. The proli-
feration of concepts and language constructs may result in complicated programs.

We have noted that some of these mechanisms are not that different from one ano-
ther. This conflicts with the principles of programming-language design stated by MacLen-
nan [Mac95]. To solve this issue we have introduced a programming model that integrates
EBP, AOP and OOP. The model is an extension of the model of declarative events pre-
viously described. The cornerstone of this model is a unification of event handling and
method execution. The contributions of the model are as follows:

– The model demonstrates that the same language constructs can be used to implement
both explicit and implicit invocation. Thus, both EBP and OOP can be supported in
a simple and orthogonal way by a programming model equipping classes with fields,
events and event handlers.

– The model shows that the same mechanism of events and event handlers can be used
to implement both EB and AO applications. Events and join points can be unified
and a piece of advice can be implemented as an event handler. Thus, programmers
with an understanding of EBP can get into AOP without additional efforts.

– The model shows the benefit of providing both events and event handlers as full-
fledged instance members. It improves the integration between EBP and OOP and
at the same time the integration of AOP and OOP. We have shown that aspects
and classes can be provided in a common language construct: a (possibly aspectual)
class. The same regular rules of inheritance, instantiation and treatment of class
members can govern the semantics of classes and aspects. Thus, programmers with
an understanding of OOP can more easily integrate in their programming practice
the EBP and AOP paradigms.

Chapter 11 — Conclusion 161

11.3.3 Join-Point Model

The model presented in this dissertation makes it possible to implement aspects with a
join-point model based on the join points in time introduced by Masuhara et al. [MEY06].
There has been discussions whether the region-in-time model could not be replaced by a
simpler point-in-time model. We have actually seen that this is indeed possible, except that
we have only implemented part of the join points that can be of interest. In Section 6.2.1
we have shown how our model support AspectJ-like aspects where the key is to consider
pieces of advice and method bodies as event handlers.

11.3.4 Concrete Implementation and Case Studies

Two languages implement our programming model. EJava implements the essence of
the model as an extension to Java. ECaesarJ combines our model and mixin composi-
tion. Both languages have been used to validate our model in the implementation of real
applications. They improved the design of these applications and reduced glue code needed
when using a mainstream language such as Java. These languages are freely available for
further experimentation in this area.

11.3.5 Experimentation with Applications

We applied our programming model in the implementation of a known figure editor,
JHotDraw [Eri11]. EJava allowed expressing the relationships between the events of fi-
gures, views and tools in a straightforward way. It reduced the number of lines of code of
the application and increased its understandability. We also applied the model to the imple-
mentation of an industrial strength case study: a home-automation application [GNNM11].
In this case, we used ECaesarJ. Whereas family classes and virtual classes were used to de-
compose the structure of the application, events were used for representing context changes
and event handlers implemented adaptive behavior. By implementing these application we
validated the usability of our model.

11.4 Perspectives

11.4.1 General Improvements

Formal treatment. In order to prove the correctness of our model and other properties
we have as a perspective a formalization of this model. The interest in a formal treatment
was reflected in Chapter 4. There we introduced the model based on the formal language
MiniMAO0 [CL05].

Richer join-point model. The model presented in this dissertation makes it possible
to implement aspects with a join-point model based on the join points in time introduced
by Masuhara et al. [MEY06]. Only two of the four kinds of join points of the model of
Masuhara are supported: call and reception. These join points make it possible to express
the method-call join point of AspectJ. As future work we plan to extend the kinds of
join points supported by our model. For example, we would like to include support for the
execution and return join points of the model of Masuhara. This would enable the support
for the execution join point of AspectJ. Since in our model the execution of a method
(its method body) corresponds to the execution of an event handler, we should be able to

162 Chapter 11 — Conclusion

support execution join points by including a kind of event representing the execution of an
event handler and its corresponding after event. This kind of event would make it possible
to implement aspects interested in the execution of a particular event handler.

Exception handling. As described in Section 4.4.4, we deal with exceptions following
the Java style of checked exceptions, which is not well-suited to EB applications. As a
perspective we plan to investigate possible ways to deal with exceptions [PH07]. As a
rough idea, it seems appropriate in this case to augment the expressiveness of our model
to be able to define events representing exceptions. As a type of exception can be thrown
from many places in code with many involved objects, it can be unsuitable to quantify on
the list of all the objects that can throw a type of exception. In this case, it seems that a
model of event types can be better suited.

Improvement of the prototypes. We have provided two implementations of the mo-
del, EJava and ECaesarJ. These prototypes still require improvements, especially in
terms of performance. In addition, we still need to improve the semantic analysis of the
EJava and ECaesarJ compilers and provide better tool support. Regarding the latter,
an initial Eclipse plugin has been developed using Spoofax [KV10]. However, it still does
not enable advanced features such as debugging.

Concurrency. Our work has focussed on a sequential setting. Studying the applicability
of our model to a concurrent setting is seen as future work. The notion of event is often
used to coordinate concurrent applications by using models taken from process algebras.
Since our model is based on events the task should be facilitated in this sense.

Exploring other design choices. Now that we have a better understanding of the
implications of our initial design decisions, we do not discard considering other design
choices. In particular, we consider that the polymorphic events proposed in IIIA are espe-
cially interesting and it would be worth exploring the integration of event types with our
OO events.

11.4.2 EScala

As a new/late spin-off of this work, a subset of our model has been implemented
in the language EScala [GSM+11]. This language implements our model of declarative
events on top of Scala. There are some differences between this language and EJava
both at the model and at the implementation level. First, whereas the basic operators
to compose events, such as disjunction and conjunction, are similar in both languages,
EScala provides operators that exploit the functional side of Scala offering additional
flexibility. Second, EScala does not integrate events and methods as in EJava. A method
is a construct different from an event handler. Even if in EScala a method call can
be seen as an event, method bodies are not considered as event handlers as in EJava.
EScala does not make it possible to implement a design-side aspect that prevents the
base program to perform a method call. In EJava this issue is just a matter of composition
of event handlers. Thus, EScala is an EB language with some flavor of AOP rather than
a language that integrates both EBP and AOP in a seamless way as EJava. Finally, the
implementation of EScala, made by Lucas Satabin, is more efficient than the original
implementation of EJava thanks to the use of a push-based notification process. The

Chapter 11 — Conclusion 163

implementation of EJava presented in this dissertation has borrowed the idea of using a
push-based notification process and the treatment of references to events through mutable
fields. Even though, we still differ in that our implementation uses AspectJ as a tool for
code instrumentation. Regarding ECaesarJ, EScala does not support state machines
and mixins.

Scala is a good language for pursuing this work thanks to its combination of functional
and imperative programming and features such as type inference. EScala can be improved
with the elements presented in this dissertation that have not been still considered, such as
the unification of event handling and method execution and the support for state machines.

Appendixes

APPENDIXA
Résumé

A.1 Introduction

Une grande partie de la recherche sur l’ingénierie de logiciel s’intéresse à la qualité
du logiciel. Un logiciel de bonne qualité garantit des propriétés comme la modularité,
l’extensibilité, l’efficacité, la robustesse, la correction, entre autres.

La clé pour obtenir beaucoup de ces propriétés est une bonne séparation des préoccupa-
tions. La programmation par objets (PPO) a été proposée comme un paradigme structurant
les programmes en termes d’objets, lesquels renferment des données et des comportements.

La PPO est le paradigme de développement de fait dans beaucoup de domaines. Pour-
tant, il présente certains manques pour le découplage de composants et pour la modu-
larisation de préoccupations transverses. La programmation par événements (PPE) et la
programmation par aspects (PPA) sont deux paradigmes qui complètent la PPO avec les
mécanismes pour résoudre ces manques.

Nous supposons que le lecteur a des connaissances sur la PPO. Dans la suite, nous
donnons des éléments sur la PPE et la PPA.

A.1.1 La programmation par événements

Le flot d’un programme à base d’événements est déterminé en identifiant des événe-
ments, en déclenchant des notifications d’événements et en réagissant à ces notifications.
Dans un programme à base d’événements les composants intégrés communiquent au moyen
de ces notifications [FMG02]. Les composants intéressés par certains événements y sous-
crivent de sorte que lors de l’occurrence de ces événements, les notifications nécessaires
leur soient automatiquement livrées.

Un événement représente un changement dans le contexte d’un calcul qui est reflété
comme un changement dans l’état d’un tel calcul. Simplement, il est possible de consi-
dérer un événement comme un changement dans l’état d’un calcul. En conséquence, les
événements sont inhérents à tout programme informatique. Toutefois, tous les programmes
ne peuvent pas être considérés comme suivant les principes du paradigme de la PPE. La
contribution de la PPE est de structurer la manière dont les événements spécifiques sont
identifiés dans un programme et la façon dont les informations sur l’occurrence de ces
événements sont transmises à des composants logiciels intéressés par ces événements. Une
approche basée sur des événements est une approche qui découple les sources d’événements
de leurs destinations en adoptant un schéma d’invocation implicite.

La figure A.1 montre les parties principales d’un système événementiel. Un gestionnaire
d’événement est le code à exécuter lorsqu’un événement se produit. La notification d’un
événement correspond à un processus dans lequel tous les gestionnaires d’événements at-
tachés à un événement sont invoqués. Un déclencheur d’événements est une expression qui
produit les notifications d’événements.

167

168 Appendix A

Source

Destination 1

Destination 2

Destination n

...

event

notifications

Figure A.1 – Conception à base d’événements.

Le support linguistique pour les événements correspond à l’inclusion de constructions
spécialement dédiées à la PPE dans un langage de programmation. Ces constructions ré-
duisent l’infrastructure nécessaire lors de l’utilisation des approches événementielles telles
que le patron de conception Observateur et les Java Listeners. De façon générale, le sup-
port linguistique pour les événements est fourni sous la forme de deux constructions: un
événement qui représente un changement d’état, qui dans certaines approches est juste
une signature, et un gestionnaire d’événements, qui dans plusieurs approches est juste une
méthode.

1 class Figure {

2 public event ChangeHandler changed;

3

4 void moveBy(int x, int y) {

5 /* change figure position */

6 i f(changed != null)

7 changed(this);

8 } ...

9 }

Listing A.1: Un exemple d’événement en C#.

Le langage C# permet aux classes de définir explicitement des événements et de rester
complètement ignorantes des observateurs potentiels de ces événements. Le langage fournit
aux objets intéressés par ces événements des mécanismes pour effectuer les souscriptions
correspondantes. Par exemple, le Listing A.1 montre une implémentation d’une classe
Figure en C#. La classe Figure déclare explicitement un événement changed à la ligne 2,
qui est déclenché comme un appel de méthode dans la méthode moveBy à la ligne 7.
L’événement déclencheur produit une notification implicite de tous les objets intéressés
par un tel événement, i.e. tous les objets qui ont déjà souscrit à l’événement.

En C# une fonction est attachée à un événement, en tant que gestionnaire de l’événe-
ment, en utilisant l’opérateur +=. De manière inverse, l’opérateur -= peut être utilisé pour
détacher une fonction. Par exemple, le Listing A.2 attache la méthode update d’une ins-
tance de la classe DrawingView à l’événement changed d’une instance de la classe Figure.
Notez que les fonctions sont, dans ce cas, des méthodes d’objets particuliers.

A.1.2 Programmation par aspects

La PPA est le point de convergence d’un ensemble de technologies qui ont émergé
pour répondre à l’incapacité des technologies des objets à atteindre une séparation des
préoccupations à travers plus d’une dimension. À partir de la fin des années 90, la PPA a

Appendix A 169

1 class Test {

2 public static void Main() {

3 Figure figure = new Figure();

4 DrawingView view = new DrawingView();

5 figure.changed += new ChangeHandler(view.update); ...

6 }

7 }

8 class DrawingView {

9 public void update(Figure figure) {

10 repaint(figure.getArea());

11 } ...

12 }

Listing A.2: Registering to an event in C#.

été l’objet de nombreuses recherches et aujourd’hui elle couvre l’ensemble du processus de
développement du logiciel.

Modèle de points de jonction. En général, les aspects sont invoqués sur des points
bien définis dans l’exécution du programme appelés points de jonction. Les types possibles
de points de jonction sont décrits dans un modèle de points de jonction. Les appels de
méthode, les exécutions de méthode, les accès à des champs d’objet sont des exemples
typiques de points de jonction.

Modèle de points de coupure. Les points de jonction qui sont pertinents pour un
aspect sont sélectionnés à l’aide de prédicats appelés points de coupure. Dans la plupart
des langages d’aspects, plus particulièrement en AspectJ, un point de coupure est une
expression combinant un ensemble de prédicats dédiés qui raisonnent en termes du jeu
complet des points de jonction possibles dans une application logicielle [BCRD08]. Dans
AspectJ ces prédicats dédiés sont appelés désignateurs de points de coupure. Un point de
coupure utilise ces prédicats pour sélectionner le sous-ensemble des points de jonction de
l’application qui sont jugés pertinents pour l’aspect.

pointcut change(Figure figure):

execution(* Figure.moveBy(..,..)) && this(figure)

Listing A.3: Point de coupure AspectJ.

Le Listing A.3 montre un point de coupure écrit en AspectJ. Il sélectionne les exécu-
tions de la méthode moveBy des instances de Figure. Le désignateur de points de coupure
execution signifie l’exécution d’une méthode et est utilisé conjointement avec un motif
qui identifie la méthode. Des constructions similaires sont fournies par le langage AspectJ
pour sélectionner les appels de méthodes et les accès aux champs, entre autres. En outre,
une point de coupure peut obtenir des informations contextuelles sur le point de jonction
à l’aide de désignateurs de points de coupure particuliers. Par exemple, le désignateur de
points de coupure this est utilisé pour obtenir l’objet contextuel impliqué dans l’exécu-
tion de la méthode (celui qui est obtenu lors de l’utilisation de this dans le corps de la
méthode).

170 Appendix A

La plupart des désignateurs de points de coupure d’AspectJ peuvent être liés à des
endroits précis dans le code d’une application. Il est possible de dire que les points de
coupure AspectJ sont statiques, car ils ne peuvent pas se référer à un contexte dynamique:
variables ou méthodes de la structure dans laquelle ils sont définis. Même si AspectJ
comprend un désignateur de points de coupure if, ce qui permet de tester des conditions,
ce désignateur ne peut utiliser que des variables statiques, des méthodes statiques ou des
variables déclarées dans le point de coupure.

Greffon. La fonctionnalité d’un aspect est mis en œuvre dans des morceaux de code
appelés greffons. En général, un greffon lie un point de coupure et une action, le corps
du greffon, exécutée lorsque le point de coupure sélectionne un point de jonction. Les
greffons permettent également de définir l’emplacement de l’action: avant, après ou au lieu
de l’exécution du point de jonction.

void around(Figure figure) : change(figure) {

i f(!figure.isReadOnly())

proceed(figure);

}

Listing A.4: Greffon AspectJ around.

En particulier, les greffons étiquetés comme around sont exécutés à la place du point
de jonction. Le mot-clé proceed offre ensuite la possibilité d’exécuter le point de jonction
original à l’intérieur du corps du greffon. À titre d’exemple, le Listing A.4 montre un greffon,
écrit en AspectJ, qui lie le point de coupure du Listing A.3 avec le code qu’exécute le
point de jonction initial, par l’utilisation de proceed, uniquement lorsque la figure n’est
pas en mode lecture seule.

Définition des aspects et leur instanciation. Les points de coupure et les greffons
sont mis ensemble dans un module appelé aspect. Un aspect encapsule l’implémentation
d’une préoccupation du logiciel.

La plupart des approches de programmation par aspects s’appuient sur une technique
de décomposition asymétrique: les aspects sont définis comme un type particulier de mo-
dules qui sépare les préoccupations transversales. Les aspects sont équipés de points de
coupures et de greffons et peuvent partager des éléments du langage de base dans lequel
ils ont été embarqués tels que méthodes et champs. Dans les langages tels que AspectJ
et AspectWerkz, par exemple, les aspects sont définis de façon similaire aux classes
standard, mais ils suivent des stratégies d’instanciation particulières. Contrairement aux
classes, les aspects ne peuvent pas être explicitement instanciés. Un aspect est implicite-
ment instancié par le langage au moment du chargement, par défaut comme un singleton.
AspectJ fournit également une instanciation implicite par objet pour des aspects définis
en utilisant perthis(pointcut) ou pertarget(pointcut). Ces stratégies instancient un as-
pect par objet spécifié. Une stratégie perthis(pointcut) exclut les point de jonction qui
ne sont pas sélectionnés par le point de coupure pointcut et associe à chaque nouvel objet
courant (objet au sein duquel s’exécute le point de jonction) une nouvelle instance d’as-
pect. La stratégie pertarget fonctionne de la même manière en considérant l’objet cible
du point de jonction (l’objet appelé dans le cas d’un appel de méthode) au lieu de l’objet
courant.

Appendix A 171

1 aspect Aspect {

2 DrawingView view; List relevantFigures;

3

4 pointcut change(Figure figure):

5 execution(* Figure.moveBy(..)) && this(figure)

6

7 after(Figure figure) : change(figure) {

8 i f(relevantFigures.contains(figure))

9 view.repaint(figure.getArea());

10 }

11 }

Listing A.5: Aspect AspectJ.

À titre d’exemple, le Listing A.5 définit un aspect AspectJ qui, étant donné une vue
et une liste de figures pertinentes, met à jour la vue dès que l’une des figures change.

Les aspects AspectJ peuvent inclure des membres de classe standard, qui sont acces-
sibles dans le code des greffons, i.e. le code d’un greffon est spécifique à l’instance. Par
exemple, la ligne 8 du Listing A.5 utilise la variable d’instance relevantFigures pour
tester si la figure liée par le point de coupure est une figure pertinente. Ce n’est cependant
pas le cas pour les points de coupure, qui sont statiques. Le point de coupure de la ligne 4
observe l’exécution de toutes les figures de l’éditeur, pas seulement celles qui sont perti-
nentes. Même si AspectJ permet d’utiliser un désignateur de points de coupure if pour
tester l’état du calcul lors de la sélection d’un point de jonction, il n’est pas possible de
faire directement référence à des méthodes ou variables d’instance de l’aspect.

A.2 Problématique

La conception des langages de programmation décrite par MacLennan [Mac95] met
en avant des principes comme l’orthogonalité, la simplicité et la régularité. Le principe
d’orthogonalité dicte que les fonctions indépendantes d’une langage doivent être contrô-
lées par des mécanismes indépendants. Selon le principe de simplicité un langage doit être
aussi simple que possible. Il devrait y avoir un nombre minimum de concepts avec des
règles simples pour leur combinaison. Le principe de régularité correspond à une utilisa-
tion cohérente et systématique des règles qui régissent la syntaxe et la sémantique de ces
concepts.

La coexistence des paradigmes de programmation exige que les langages fournissent
des mécanismes appropriés à chacun de ces paradigmes. C’est potentiellement une source
de complexité en contradiction avec les principes ci-dessus. La faible intégration des dif-
férents paradigmes de programmation dans une application augmente sa complexité. Par
exemple, l’utilisation intensive de listeners lors de la programmation des fonctionnalités
événementielles dans langages comme Java augmente considérablement la taille des pro-
grammes et complique leur compréhension. La situation s’aggrave lorsque ils sont utilisés
en combinaison avec les aspects qui nécessitent un ensemble complet de nouveaux concepts.

Cette situation appelle à une meilleure intégration des paradigmes tels que la PPE, la
PPA et la PPO, afin de fournir des langages plus simples et plus réguliers, incluant tous
les concepts nécessaires. Cela correspond à la problématique générale de cette thèse.

172 Appendix A

A.2.1 La PPE et la PPO

La manière classique de programmer des applications événementielles avec les langages
à objets traditionnels tels que Java consiste à utiliser des callbacks ou des listeners. Les
gestionnaires d’événements sont encapsulés en tant qu’objets conformes à une interface
connue, qui est invoquée lors de l’occurrence d’un événement. Certains langages à objets
tels que C# ont inclut un support linguistique spécial pour les événements afin de réduire
l’infrastructure nécessaire lors de l’utilisation de callbacks. Les événements sont définis en
tant que membres des objets. Fait intéressant, les événements sont aussi conçus comme des
membres d’instance dans les langages à objets tels que e [IEE08] et SystemVerilog [IEE09],
focalisés sur la vérification de circuits. Cependant, aucun des langages mentionnés ci-dessus
n’intègre véritablement les événements au sein de la PPO.

A.2.2 La PPE et la PPA

La PPE et la PPA améliorent la séparation des préoccupations en réduisant le couplage
entre les composants logiciels. Les deux paradigmes utilisent le même mécanisme: l’invoca-
tion implicite. Dans les systèmes événementiels, un gestionnaire d’événement programmé
dans un composant est implicitement exécuté lors du déclenchement d’un événement dans
un autre composant sans garder de dépendance explicite entre les deux composants. De
même, dans les systèmes aspectuels, le comportement d’un aspect est implicitement in-
voqué dans l’implementation d’autres composants. Les développeurs de ces autres com-
posants peuvent être largement ignorants des préoccupations transverses. En dépit du
fait que la PPE et la PPA partagent le même mécanisme, il n’existe pas de langages of-
frant une intégration transparente de la gestion des événements et de l’action des greffons.
Ptolemy [RL08] a pris des mesures intéressantes dans cette direction, mais sa prise en
compte des aspects reste très limitée.

A.2.3 La PPA et la PPO

La PPA fournit une composition asymétrique des préoccupations, en distinguant les
classes, lesquelles mettent en œuvre des préoccupations de base, et les aspects, lesquels
mettent en œuvre des préoccupations transverses. Dans son incarnation la plus réussie,
AspectJ, les aspects ressemblent beaucoup aux classes, mais contiennent deux types de
membres nouveaux: points de coupure et greffons. Bien qu’un aspect ressemble beaucoup
à une classe, les règles régissant sa sémantique statique et dynamique sont différentes. En
particulier, il peut être étendu en tant que classe, mais de manière limitée et il ne peut pas
être explicitement instancié. Cela ajoute beaucoup de complexité, en contradiction avec les
principes de simplicité, de régularité et d’orthogonalité de MacLennan [Mac95]. D’un côté,
il y a un certain nombre de nouvelles constructions. D’autre part, les principes de base pour
travailler avec ces constructions (instanciation, héritage) ne sont pas réguliers. Les choix
de conception correspondants peuvent en partie s’expliquer par la volonté de mieux saisir
l’intention du programmeur et d’éviter les problèmes rencontrés lors de l’utilisation de la
réflexion et des protocoles à méta-objets [KdRB91], une approche plus globale et intégrée
mais difficile à maîtriser. Ils peuvent aussi être en partie expliqués par des considérations
de performance.

Pour résoudre la problématique de cette thèse nous commençons avec la présentation
de notre modèle de programmation, lequel est ensuite utilisé pour mettre en œuvre l’inté-
gration des paradigmes. Pour illustrer notre modèle nous utilisons la syntaxe du langage

Appendix A 173

EJava qui est un des deux langages qui concrétisent notre modèle.

A.3 Un modèle d’événements déclaratifs et polymorphes

A.3.1 Motivation

Des constructions spécifiques aux événements ont été introduites dans les langages
à objets traditionnels tels que C# afin de faciliter la mise en œuvre des applications
réactives. Cependant, ces constructions ne fournissent pas les moyens appropriés pour
définir des événements comme compositions d’autres événements. Les grandes applications
ont généralement besoin d’événements composites. Dans les applications en couches, par
exemple, les couches supérieures peuvent définir des événements en termes d’événements
prévus dans les couches inférieures. Il est naturel pour les programmeurs de penser à des
événements composites sous forme de combinaisons logiques d’événements plus primitifs.
Malheureusement, dans les langages comme C# il y a un fossé entre la manière dont les
événements composites sont écrits et l’intention finale des programmeurs. Les événements
composites sont exprimés à l’aide d’événements impératifs et ne peuvent pas être définis
déclarativement.

Cette thèse introduit un modèle de programmation avec événements déclaratifs. Le mo-
dèle est utilisé ensuite pour intégrer les différents paradigmes de programmation introduits
précédemment.

A.3.2 Événements et gestionnaires propriétés des objets

Nous proposons un modèle objet simple avec méthodes et champs et avec deux nou-
veaux membres de classe: événements et gestionnaires d’événements. Un événement peut
être déclaré comme abstrait ou défini comme étant impératif ou déclaratif. Un événement
abstrait ajourne sa définition aux sous-classes. Un événement impératif est utilisé pour dé-
clencher explicitement l’occurrence d’un événement semblable aux événements de C#. Un
événement déclaratif combine d’autres événements comme l’autorise le langage e [IEE08].
Un événement déclaratif est un événement composite (à moins qu’il n’associe tout simple-
ment un nouveau nom à un événement primitif), tandis qu’un événement impératif est un
événement primitif.

Les événements sont des propriétés des objets. L’accès externe à un événement doit être
qualifié par une expression retournant l’objet propriétaire de l’événement. Cela signifie que
les événements sont à liaison tardive puisque leur valeur concrète dépend de l’évaluation
de l’expression correspondante à l’exécution. L’accès interne à un événement est qualifié
avec this. Les événements sont accédés lors de la définition des événements déclaratifs
et lors du déclenchement des événements impératifs. Dans notre modèle tout objet peut
déclencher un événement impératif d’un autre objet.

Un gestionnaire d’événement est défini en indiquant la signature d’un événement (c’est-
à-dire son nom et sa liste de paramètres formels) et un corps. Le gestionnaire d’événement
est défini comme étant lié à l’événement correspondant, de sorte qu’il est exécuté lorsque
l’événement survient. Afin de fournir des gestionnaires d’événements avec une identité, un
gestionnaire d’événement ne peut qu’être lié à un événement défini dans la même classe
ou dans une superclasse. Ainsi, l’identité d’un gestionnaire d’événement correspond à la
signature de l’événement correspondant. En conséquence, une classe peut avoir des paires

174 Appendix A

(événement, gestionnaire) partageant la même signature. Il n’y a aucune ambiguïté puisque
les événements et les gestionnaires d’événements sont utilisés dans des contextes différents.

Les gestionnaires d’événements sont également des propriétés des objets. Cependant,
un gestionnaire d’événement est uniquement accessible de manière explicite dans la hiérar-
chie de classe à des fins d’héritage. Le fait que les événements et les gestionnaires sont des
propriétés des objets implique également qu’ils ont accès au contexte de leur objet proprié-
taire, tels que des références à des champs ou des méthodes. En outre, les événements et
les gestionnaires d’événements peuvent être hérités, comme les champs et les méthodes.

A.3.3 Événements impératifs et occurrences d’événements

Comme il a été dit précédemment, notre modèle permet le déclenchement externe: tout
objet peut déclencher un événement impératif d’un autre objet. Des occurrences d’événe-
ments impératifs sont déclenchés pour signaler des changements dans l’état d’une applica-
tion. Nous utilisons le terme occurrence de l’événement pour l’utilisation d’un événement
à l’exécution, alors que nous utilisons le terme événement pour la construction syntaxique
correspondante. Quand nous disons que l’événement impératif est déclenché, nous voulons
dire qu’une occurrence de l’événement impératif est déclenchée. Un événement impératif
est déclenché lors de l’exécution en fournissant à chaque paramètre déclaré une valeur.
L’exécution d’un programme produit une séquence d’occurrences d’événements indiquant
plusieurs changements d’état.

1 abstract class Figure {

2 abstract event changed(Figure source);

3 }

4 class AbstractFigure extends Figure {

5 event changed(Figure source);

6

7 void moveBy(int x, int y) {

8 /* implementation*/

9 changed(this);

10 }

11 }

Listing A.6: Définition d’un événement impératif changed et son déclenchement.

Les événements abstraits et les événements impératifs se composent d’un nom et de
zéro, un ou plusieurs paramètres formels. À titre d’exemple, regardons le Listing A.6 écrit en
EJava, l’un des langages qui concrétisent notre modèle. Un événement changed est déclaré
abstrait dans une classe Figure à la ligne 2. En effet, dans notre modèle les événements
abstraits ont du sens car les sous-classes peuvent prévoir soit une définition déclarative soit
une définition impérative de l’événement. La classe AbstractFigure définit l’événement
comme impératif à la ligne 5 et l’utilise pour déclencher une occurrence à l’intérieur de la
méthode moveBy à la ligne 9. L’objet this est fourni comme paramètre de l’événement.

A.3.4 Événements déclaratifs

Un événement déclaratif est un sélecteur d’occurrences d’événements, une fonction qui
sélectionne les occurrences d’événements qui informent du changement d’état représenté

Appendix A 175

par l’événement. Un événement impératif est également un sélecteur d’occurrences d’évé-
nements, mais il choisit ses propres occurrences. Les occurrences d’un événement déclaratif
sont les occurrences que l’événement déclaratif sélectionne. On dit qu’un événement se
produit lorsque le sélecteur a sélectionné une occurrence de l’événement.

Les événements déclaratifs se composent d’un nom, de zéro, un ou plusieurs paramètres
formels et d’une expression d’événement. Cette expression peut être un accès à un événe-
ment défini ailleurs, une disjonction de deux expressions d’événements, ou une conjonction
de deux expressions d’événements, entre autres. Une expression d’événement est également
un sélecteur d’occurrences d’événements, de sorte qu’un événement déclaratif sélectionne
les occurrences que son expression d’événement sélectionne. Les différentes expressions
d’événements sont décrites comme suit:

Accès à un événement. Un accès à un événement permet d’accéder à un événement
d’un objet. C’est une expression d’événement primitive qui sélectionne les occurrences que
l’événement accédé sélectionne.

1 class CompositeFigure extends Figure {

2 Figure fig1, fig2;

3

4 event changed(Figure source) =

5 fig1.changed(source) || fig2.changed(source);

6 }

Listing A.7: Un événement défini en termes de deux autres événements.

Disjonction. La disjonction de deux expressions d’événement sélectionne les occurrences
sélectionnées par l’une ou l’autre des expressions. À titre d’exemple, le Listing A.7 montre
comment l’événement changed d’une figure composite est défini comme une disjonction
des événements changed de ses enfants. Ainsi, chaque fois que l’événement changed d’un
enfant se produit, l’événement changed de la figure composite se produit également.

1 class DrawingView {

2 Figure drawing;

3 Boolean isVisible;

4

5 event invalidated(Figure changedFig) =

6 drawing.changed(changedFig) when isVisible;

7

8 invalidated(Figure changedFig) {

9 /* implementation */

10 next;

11 }

12 }

Listing A.8: Un événement défini en termes d’un autre événement et raffiné avec une
condition.

176 Appendix A

Raffinement. Une expression d’événement peut représenter le raffinement d’une autre
expression d’événement avec une condition. Elle sélectionne les occurrences choisies par
l’expression d’événement donnée qui ont lieu lorsque que la condition est vraie. À titre
d’exemple, le Listing A.8 montre comment l’événement invalidated d’une vue est défini
à la ligne 5 comme un raffinement de l’événement changed d’un dessin avec la condition
isVisible. Ainsi, chaque fois que l’événement changed d’un dessin se produit, l’événement
invalidated se produit également lorsque la vue est visible.

Paramètres. Comme il a été vu précédemment, la signature d’un événement peut décla-
rer des paramètres. Un événement impératif est déclenché lors de l’exécution en fournissant
à chaque paramètre déclaré une valeur. Ces valeurs peuvent être saisies et liées à des para-
mètres d’événements déclaratifs, concrètement dans un accès d’événement, et se propager à
d’autres événements déclaratifs. Un gestionnaire d’événement attaché à un événement peut
utiliser les paramètres liés pour exécuter ses actions. Par exemple, la ligne 9 du Listing A.6
déclenche l’événement changed d’une figure en fournissant l’objet this comme paramètre.
Cet objet est capturé et lié au paramètre source lors de l’accès aux événements des enfants
de la figure composite dans la définition de l’événement déclaratif changed de la ligne 5
du Listing A.7. La propagation du paramètre continue jusqu’à atteindre le gestionnaire
d’événement invalidated du Listing A.8, qui utilise le paramètre lié pour repeindre la
surface de la figure correspondante.

Un événement lie les valeurs de ses paramètres quand il choisit une occurrence. Les
paramètres peuvent jouer un rôle dans le processus de sélection, car ils peuvent être uti-
lisés dans la condition d’un raffinement. Les paramètres d’un événement déclaratif sont
implicitement liés lors de l’accès à d’autres événements. En outre, le mot-clé with permet
de lier explicitement un paramètre avec une valeur personnalisée, par exemple le résultat
d’un appel de fonction.

En général, les conditions d’une expression d’événement peuvent utiliser les paramètres
liés par des événements déclaratifs et tout champ ou méthode de l’objet courant. De plus,
notre modèle permet de déclarer des variables d’événements locales. Ces variables sont
locales à une expression d’événement et peuvent être liées et utilisées dans des conditions
à l’intérieur de l’expression d’événement. Elles ne sont pas visibles à l’extérieur.

1 event newRedCars(List redCars) =

2 (List cars)

3 newCars(cars)

4 with redCars = filterRedCars(cars)

5 when redCars.isNotEmpty())

Listing A.9: Exemple de liaison explicite et variable d’événement locale.

Le Listing A.9 montre l’exemple d’une variable d’événement locale explicitement liée. Il
définit un événement déclaratif newRedCars en termes d’un événement impératif newCars.
L’événement newCars représente la disponibilité d’une liste de voitures neuves et l’évé-
nement newRedCars la disponibilité d’une liste de voitures rouges neuves. L’événement
newRedCars est défini par l’accès à newCars à la ligne 3. La liste des voitures fournies
par newCars est liée à une variable locale cars définie à la ligne 2. Une liaison explicite
est utilisée à la ligne 4 pour lier la variable redCars avec le résultat du filtrage des voi-
tures rouges depuis la liste cars. L’événement newRedCars se produit lorsque l’événement

Appendix A 177

newCars survient et la liste des voitures rouges n’est pas vide, ce qui est testé à la ligne 5.

1 event newHotCars(List redCars, List cheapCars) =

2 newRedCars(redCars) && newCheapCars(cheapCars);

3

4 event newHotCars(List cars) =

5 (List redCars, List cheapCars)

6 newHotCars(redCars, cheapCars)

7 with cars = intersect(redCars, cheapCars);

Listing A.10: Exemple de conjonction d’événements.

Conjonction. Dans notre modèle plusieurs événements peuvent se produire simultané-
ment, car ils peuvent sélectionner les mêmes occurrences. Ainsi, il est logique d’offrir, en
dehors de la disjonction, la conjonction d’événements. La conjonction de deux expressions
d’événements sélectionne les occurrences que les deux expressions sélectionnent. À titre
d’exemple, le Listing A.10 définit un événement déclaratif newHotCars, à la ligne 1, comme
la conjonction des événements newRedCars et newCheapCars. L’événement newRedCars est
celui présenté plus tôt, soit la disponibilité d’une liste de voitures rouges neuves. L’évé-
nement newCheapCars représente la disponibilité d’une liste de voitures neuves bon mar-
ché et il est défini en fonction d’un événement impératif newCars d’une façon analogue à
newRedCars. Lorsque l’événement newCars se produit, tant newRedCars que newCheapCars
peuvent arriver simultanément, chacun filtrant la liste correcte de voitures. L’événement
newHotCars, défini comme une conjonction de ces événements, représente la disponibilité
de voitures neuves dont certaines sont rouges et les autres sont bon marché. L’événement
définit deux paramètres qui capturent chaque type de voitures. L’événement newHotCars

de la ligne 4 utilise l’événement newHotCars de la ligne 1 pour fournir une liste unique
de voitures, qui sont à la fois rouges et bon marché. Dans l’exemple précédent, l’événe-
ment newHotCars aurait pu être défini directement en fonction de l’événement newCars

sans avoir besoin d’une conjonction. Cependant, nous illustrons ici la réutilisation d’évé-
nements existants.

event changed(Figure source) = some(figures).changed(source);

Listing A.11: Exemple de quantification sur les événements d’une liste d’objets.

Quantification. Jusqu’ici nous avons considéré des objets liés par des relations un-à-un,
mais un objet peut également être lié à une collection d’autres objets et avoir besoin d’ob-
server globalement les occurrences d’un événement spécifique défini par l’ensemble de ces
objets. Notre modèle permet une forme de quantification existentielle sur une liste d’objets.
Un événement peut être défini comme une disjonction d’expressions d’événements toutes
liées au même nom d’événement en utilisant une expression de quantification. Par exemple,
le Listing A.11 montre comment un changement d’une figure, qui est une composition d’une
liste de figures (variables figures), peut être décrit en termes des événements observés sur
ses enfants. Il définit que l’événement changed de la figure composite se produit lorsque
l’événement changed d’une figure composée survient.

178 Appendix A

A.3.5 Gestionnaires d’événements

Un gestionnaire d’événement est défini en indiquant la signature d’un événement (c’est-
à-dire son nom et sa liste de paramètres formels) et de zéro, une ou plusieurs expressions
implémentant le corps du gestionnaire d’événement. Ces expressions sont soit des expres-
sions standard du corps d’une méthode, soit les expressions Trigger ou Next, utilisées
respectivement pour déclencher un événement et pour composer des gestionnaires d’évé-
nements.

A.4 Intégration des paradigmes

A.4.1 Unification des événements impératifs et des appels de méthode

class Callee extends Superclass {

T m(){ methodBody }

}

Listing A.12: Une méthode m définie dans une classe Callee.

Dans la métaphore de la PPO les objets communiquent en interchangeant des messages.
Un objet envoie un message à un autre, et ce dernier réagit en recherchant une méthode
et en exécutant le corps de la méthode. Par exemple, la méthode m de la classe Callee du
Listing A.12 définit un morceau de code methodBody à exécuter en réponse à un appel à
m.

Les gestionnaires d’événements et les méthodes jouent un rôle similaire. Alors qu’un
gestionnaire est exécuté au déclenchement d’un événement, une méthode (le corps) est
exécutée en réponse à un appel de méthode. Qu’en est-il d’offrir un traitement uniforme
des deux ?

A.4.1.1 Principe

class Callee extends Superclass {

event T m();

T m() { methodBody }

}

Listing A.13: La méthode m de la class Callee du Listing A.12 désucrée.

Notre modèle fournit un traitement uniforme de la gestion d’événements et de l’exécu-
tion de méthodes par une modélisation des appels de méthodes comme le déclenchement
d’événements impératifs. La syntaxe standard des méthodes est fournie comme un rac-
courci pour définir à la fois un événement impératif et un gestionnaire d’événement pour
cet événement. Le gestionnaire d’événement contient le corps de la méthode. Concrètement,
la définition de classe du Listing A.12 est du sucre syntaxique pour le Listing A.13. Ainsi,
l’appel d’une méthode d’un objet est équivalent au déclenchement de l’événement impé-
ratif correspondant. Le gestionnaire contenant le corps de la méthode est exécuté dans le
processus de gestion de l’événement déclenché. En d’autres termes, le corps du gestionnaire
d’événement gère l’appel de la méthode correspondante.

Appendix A 179

abstract class AbstractCompositeFigure

extends CompositeFigure

{

void draw(Graphics2D g) {

/* method body */

}

}

abstract class AbstractCompositeFigure

extends CompositeFigure

{

event draw(Graphics2D g);

draw(Graphics2D g) => {

/* method body */

}

}

Listing A.14: Syntaxe standard de méthode à gauche et syntaxe désucrée à droite.

Le Listing A.14 montre une autre exemple. Le côté gauche du Listing A.14 montre
la classe AbstractCompositeFigure définissant une méthode draw. Cette définition de
la classe est équivalente à celle sur le côté droit. Cette dernière définit un événement
impératif draw et un gestionnaire d’événement draw contenant le corps de la méthode.
Quand l’événement draw se produit le corps de la méthode est exécuté avec le code de
tout le reste des gestionnaires de l’événement. Comme il a déjà été expliqué, un appel
de méthode est équivalente au déclenchement de l’événement impératif correspondant et
l’exécution de la méthode associée est équivalente à la gestion de l’événement.

A.4.1.2 Événements avec type de retour

Un gestionnaire d’événement est défini avec un type de retour. Il retourne la valeur qui
résulte de l’évaluation de la dernière expression de son corps. Un événement est également
défini avec un type de retour, ce qui indique que le déclenchement d’un événement impératif
(ou un appel de méthode) renvoie la valeur retournée par le premier gestionnaire exécuté.
Un gestionnaire d’événement peut composer sa valeur de retour avec la valeur retournée
par le reste des gestionnaires d’événements. Cette valeur peut être obtenue en utilisant
l’expression next. L’exécution de next retourne la valeur retournée par le gestionnaire
suivant dans la liste des gestionnaires à exécuter.

1 class Agenda {

2 event List meeting(Date date);

3 List meeting(Date date) {

4 return new ArrayList();

5 }

6 }

7

8 class Employee extends AbstractEmployee {

9 Agenda agenda;

10

11 List meeting(Date date) = agenda.meeting(date);

12 List meeting(Date date) { return next.add(this); }

13 }

Listing A.15: Utilité des événements avec une valeur de retour.

À titre d’exemple, le Listing A.15 met en œuvre un agenda avec un événement meeting
qui représente la planification d’une réunion à une certaine date. Plusieurs employés peuvent
observer cet événement et confirmer leur présence. L’événement meeting renvoie la liste

180 Appendix A

des employés qui peuvent participer à la réunion. Le gestionnaire d’un employé est censé
indiquer si l’employé peut participer à la réunion ou pas. L’alternative a été omise pour
simplifier. À la ligne 12, le gestionnaire utilise l’expression next pour obtenir la liste ren-
voyée par les autres gestionnaires et pour ajouter son objet propriétaire dans la liste. La
méthode add d’une liste retourne la liste résultante.

Un gestionnaire d’événement directement associé à un événement impératif est toujours
le dernier gestionnaire à être exécuté lorsque l’événement est déclenché. En particulier, c’est
le cas des gestionnaires d’événements implicitement définis en utilisant la syntaxe des mé-
thodes. À la ligne 3 du Listing A.15, la classe Agenda définit un gestionnaire d’événement
qui retourne une liste préliminaire vide. Le fait que ce gestionnaire est le dernier ges-
tionnaire à être exécuté fait en sorte que les gestionnaires précédents obtiennent une liste
initiale. Le gestionnaire d’événement de la ligne 3 est un gestionnaire par défaut. Notez
que l’événement meeting et le gestionnaire d’événement meeting auraient pu être définis
en utilisant une méthode.

Le lecteur peut se demander ce qui se passe s’il n’y a pas de gestionnaire associé
à un événement impératif défini avec un type de retour, en particulier, ce qui arrive si
une valeur est attendue lors du déclenchement de l’événement. Dans un langage comme
Java cela pourrait être un problème, par exemple, lorsque l’événement est défini comme
retournant un type primitif comme int. Il est nécessaire d’imposer qu’une classe définissant
un événement impératif avec un type de retour (distinct de void) fournisse un gestionnaire
d’événement par défaut comme à la ligne 3 du Listing A.15. En d’autres termes, dans ce
cas nous devrions être toujours en mesure d’utiliser une syntaxe de méthode.

A.4.1.3 Les événements et les gestionnaires comme membres des objets

Les trois principes suivants, inclus dans notre modèle, assurent un traitement régulier
des événements et des gestionnaires d’événements par rapport aux autres membres des
objets.

Ajouts d’événements et de leur gestionnaires comme des propriétés polymorphes
des objets. Tout d’abord, l’accès à un événement doit être qualifié avec une expression
retournant l’objet propriétaire de l’événement. Deuxièmement, il est possible de faire ré-
férence à un événement sans avoir une connaissance de sa valeur concrète, qui dépend
de l’objet retourné à l’exécution par l’expression de qualification de l’événement. Troisiè-
mement, la définition d’un événement peut faire référence aux membres de son instance
propriétaire et a donc accès au contexte complet de l’exécution. Les mêmes remarques
s’appliquent aux gestionnaires d’événements.

Support pour l’héritage des événements et des gestionnaires d’événements. Les
événements et les gestionnaires d’événements d’une classe sont hérités par les sous-classes.
De même que pour les méthodes, les sous-classes peuvent remplacer les événements et
les gestionnaires d’événements définis dans la superclasse. Lors de la redéfinition d’un
événement ou gestionnaire d’événement, une expression super est disponible pour faire
référence à la définition de l’événement et du gestionnaire d’événement fournie dans la
superclasse.

Dans le contexte d’un événement, un appel à super est considéré comme une expression
d’événement qui rend possible l’accès à la définition d’un événement de la superclasse.
Sa sémantique est similaire à la sémantique d’un accès à un événement standard. Un

Appendix A 181

class Employee2 extends Employee {

Boolean isAvailable;,

event List meeting(Date date) = super.meeting(date) when isAvailable;

}

Listing A.16: Définition d’un événement déclaratif utilisant un appel à super.

appel à super peut être composé avec d’autres expressions d’événements d’une manière
standard. Par exemple, le Listing A.16 montre une sous-classe de la classe Employee du
Listing A.15 qui redéfinit l’événement meeting en attachant une condition à l’événement
de la superclasse.

1 class LabeledConnectionFigure extends ConnectionFigure {

2 transform(AffineTransform tx) => {

3 super.transform(tx)

4 /* rest of the implementation */

5 }

6 ...

7 }

Listing A.17: Héritage des gestionnaires d’événements.

L’héritage des gestionnaires d’événements est équivalent à l’héritage des méthodes. Les
gestionnaires d’événements ont une identité donnée par le nom de l’événement qu’ils mani-
pulent. Cela permet de les remplacer dans les sous-classes comme dans le Listing A.17. La
classe LabeledLineConnectionFigure remplace le gestionnaire transform défini dans sa
superclasse. Le gestionnaire transform est en effet un gestionnaire lié à l’événement impé-
ratif transform défini dans la hiérarchie de la figure. Cette conception fait que la classe a
deux membres de même nom. Aucune ambiguïté n’est produite parce que ces membres sont
accessibles dans des contextes différents. Par exemple, la déclaration super.transform(tx)

à la ligne 3 fait référence au gestionnaire transform défini dans la superclasse et elle ne cor-
respond pas à un déclenchement d’événement. La même expression sans le mot clé super

serait interprétée comme un déclenchement de l’événement transform.

Événements et gestionnaires d’événements abstraits. Les événements et les ges-
tionnaires d’événements peuvent être déclarés abstraits avec le mot-clé abstract, et ainsi
différer leur définition aux sous-classes.

L’importance des événements abstraits est que le comportement réactif d’une appli-
cation peut être entièrement programmé sans aucune connaissance sur la manière dont
les événements vont être concrètement définis. À un stade ultérieur, les différentes ver-
sions d’un logiciel peuvent être facilement instanciées en fournissant différentes définitions
d’événements adaptées à chaque situation, sans modifier le comportement réactif déjà pro-
grammé. À titre d’exemple, la classe Figure du Listing A.6 définit un événement abstrait
changed représentant un changement dans une figure, comme un mouvement, un change-
ment dans sa taille, etc. L’événement changed, comme les méthodes abstraites de la classe,
n’a pas de définition. Les définitions des membres abstraits sont reportées à une étape
distincte dans laquelle des paramètres spécifiques peuvent fournir les détails nécessaires

182 Appendix A

pour appliquer ces définitions.

1 class AbstractEmployee {

2 Agenda agenda;

3

4 event List meeting(Date date) = agenda.meeting(date);

5 abstract List meeting(Date date);

6 }

Listing A.18: Gestionnaire d’événement abstrait.

Un gestionnaire d’événement abstrait oblige les sous-classes concrètes à implementer
l’événement associé. Cela facilite la compréhension des relations entre les objets de l’ap-
plication. À titre d’exemple, le Listing A.18 montre une classe abstraite représentant des
salariés. La classe définit un gestionnaire abstrait à la ligne 5 pour l’événement meeting

de la ligne 4. Puisque cet événement fait référence à l’événement meeting d’un agenda,
le gestionnaire d’événement indique d’une manière appropriée qu’un employé doit gérer
l’événement de l’agenda.

A.4.2 Unification de la gestion des événements et de l’action des greffons

Dans notre modèle, une méthode est donc du sucre syntaxique pour la définition d’un
événement impératif et d’un gestionnaire d’événement associé. Ce gestionnaire contient le
corps de la méthode. Par conséquent, les greffons peuvent être simplement modélisés comme
des gestionnaires d’événements gérant les occurrences du même événement impératif. La
sémantique du modèle assure que le gestionnaire d’événement mis en place par une méthode
est le dernier gestionnaire d’événement à être exécuté lorsque l’événement est déclenché.
Ainsi, le contrôle sera toujours donné aux greffons avant qu’il ne soit donné aux corps de
la méthode. Les greffons peuvent contrôler, de cette manière, l’exécution du corps de la
méthode de la même manière qu’un greffon standard contrôle son point de jonction. Nous
allons décrire ce point plus en détail.

aspect Aspect {

pointcut m() = ca l l(void Callee.m());

void around(): m() {

/* before code */ proceed(); /* after code */

}

}

Listing A.19: Un aspect AspectJ appliqué à l’appel de la méthode m d’une classe Callee.

A.4.2.1 Principe

Les aspects en AspectJ. Étant donné une classe Callee avec une méthode m, l’aspect
AspectJ du Listing A.19 définit un greffon around dont l’exécution remplace l’appel à la
méthode m d’une telle classe. L’instruction proceed permet d’exécuter le point de jonction
au sein du greffon, si nécessaire. En d’autres termes, un greffon around prend le contrôle

Appendix A 183

de l’exécution du point de jonction, ce qui empêche le programme de base de l’exécuter
lorsque proceed n’est pas invoquée.

Si plusieurs greffons around ont été définis pour un appel à m, ils sont composés en
utilisant proceed. Lorsque le premier greffon est exécuté, un appel à proceed exécute
le prochain greffon en son sein. Le greffon suivant fait la même chose, et ainsi de suite.
Lorsque le dernier greffon est exécuté, un appel à proceed exécute le point de jonction. Si
un greffon n’appelle pas proceed, alors le reste des greffons n’est pas exécuté, le point de
jonction non plus.

class Aspect {

Callee callee;

event void m() = callee.m();

void m() => {

/*beforeCode*/

next;

/*afterCode*/

])

Listing A.20: Un aspect avec un événement et un gestionnaire.

Les aspects en EJava Du fait de l’équivalence entre définition de méthode et définition
simultanée d’un événement et de son gestionnaire, une classe peut jouer le rôle d’un as-
pect en définissant un gestionnaire pour l’appel de méthode à observer. Ce gestionnaire se
comporte comme un greffon. L’aspect AspectJ du Listing A.19 peut être exprimé comme
dans le Listing A.20. L’aspect est implementé comme une classe avec un champ callee. Le
point de coupure est implementé comme un événement déclaratif m accédant l’événement
m de callee (l’appel de méthode). Le greffon correspondant est programmé comme un
gestionnaire de l’événement m. En conséquence, deux gestionnaires d’événements sont liés
à un même événement: celui du Listing A.13, contenant le corps de la méthode, et celui du
Listing A.20, contenant le corps du greffon. L’effet de l’aspect AspectJ du Listing A.19
est obtenu parce que le gestionnaire programmé dans l’aspect est exécuté en premier et
donc contrôle l’exécution du corps de la méthode. Ceci est dû au fait qu’un gestionnaire
d’événement associé directement à un événement impératif est toujours le dernier gestion-
naire à être exécuté lorsque l’événement survient. L’expression next dans le gestionnaire
d’événement de l’aspect exécute le gestionnaire d’événement suivant, à savoir le corps de
la méthode, se comportant comme proceed dans l’exemple AspectJ.

A.4.2.2 Événements after et modèle de points de jonction de Masuhara

Notre modèle est compatible avec le modèle de points de jonction de Masuhara et
al. [MEY06], c’est-à-dire que les points de jonction (événements) sont des points d’exécu-
tion atomiques. Le modèle de Masuhara est plus fin que le modèle de points de jonction
d’AspectJ, qui considère un point de jonction en tant que région. Par exemple, cette
région comprend l’exécution du corps de la méthode dans le cas d’un point de jonction
call (voir la figure A.2).

184 Appendix A

m() {
 /* body */
}

callee.m();

caller

call join
point

callee

Figure A.2 – Modèle de point de jonction d’AspectJ.

callee.m();

caller

m() => {
 /* body */
}

callee

handling process
event
m()

event
After(m())

other
handlers

Figure A.3 – Modèle de point de jonction d’EJava.

Dans notre modèle, un appel de méthode correspond a une opération atomique: le dé-
clenchement de l’événement impératif correspondant. La figure A.3 illustre cette opération
par le petit cercle gris du haut. Cette opération atomique est similaire au point de jonction
call du modèle de Masuhara et al. [MEY06]. En réaction à cette opération, un processus
de traitement est démarré. Tous les gestionnaires sont exécutés, le dernier correspondant
au corps de la méthode.

Notez dans la figure A.3, un deuxième cercle gris sous le précédent. Ce cercle représente
un événement after m qui se déclenche une fois que l’événement m a été géré. Cet événement
est appelé un événement after et est équivalent au point de jonction reception du modèle
de Masuhara et al. [MEY06]. Notre modèle introduit des événements after implicitement
pour être en mesure de notifier qu’un événement a été géré. Pour chaque définition de
l’événement, l’événement after associé est mis à disposition. Cet événement peut être utilisé
dans la définition d’autres événements en utilisant le mot-clé after. Les événements after
sont utiles lorsque le traitement d’un événement introduit des changements et que réagir
à ces changements est nécessaire. Par exemple, un événement after peut être utilisé pour
définir l’événement changed d’une figure, déclenché après la gestion d’événements tels que
moveBy.

A.4.3 Aspects asymétriques flexibles

L’intégration de la PPA et la PPO en EJava permet la mise en œuvre d’aspects asymé-
triques qui sont plus flexibles que les aspects asymétrique de langages telles qu’AspectJ.
Par flexibilité nous faisons référence à la possibilité d’instancier librement les aspects (en
fait, les classes faisant fonction d’aspect) et à l’intégration des fonctionnalités de la PPA
discutées précédemment.

Voyons comment EJava permet de mettre en œuvre le patron de conception Média-

Appendix A 185

teur [GHJV94] d’une manière vraiment modulaire. Nous illustrons cela en utilisant un
exemple tiré de la présentation de Classpects [RS09]. Nous avons choisi cet exemple
parce qu’il a déjà servi à illustrer les avantages de l’unification des classes et des aspects.
Nous illustrons l’expressivité d’EJava pour programmer un tel exemple.

L’exemple se compose d’un système intégrant deux types de composants: capteurs de
mouvement et de température et appareils photo. Un appareil photo peut être relié à
plusieurs capteurs et un capteur à plusieurs appareils photo. Quand un certain capteur
détecte un signal chaque appareil photo lié prend une photo. Une fois la photos prise,
chaque appareil réinitialise le capteur afin qu’il puisse à nouveau capter un mouvement ou
un changement de température.

class Sensor {

void movementDetect() { ... }

void temperatureDetect() { ... }

void reset() { ... }

}

class Camera {

void click() { ... }

}

Listing A.21: Classes implémentant des capteurs et des appareils photo.

L’implémentation de ce système en Classpects, présentée dans [RS09], illustre la pos-
sibilité d’utiliser le patron de conception Médiateur [GHJV94]. Une telle solution considère
les classes Sensor et Caméra du Listing A.21, mettant respectivement en œuvre le code du
capteur et de l’appareil photo.

class Mediator {

Sensor s; Camera c;

Mediator(Sensor s, Camera c) {

this.s = s; this.c = c;

addObject(s); addObject(c);

}

after(): execution(void Sensor.movementDetect()) ||

execution(void Sensor.temperatureDetect()): onDetected();

after(): execution(void Camera.click()): onClicked();

onDetected() { c.click(); }

onClicked() { s.reset(); }

}

Listing A.22: Implémentation d’un médiateur entre un capteur et un appareil photo en
Classpects.

La classe Mediator du Listing A.22 modularise la relation entre un appareil photo et
un capteur en Classpects. La classe est instanciée pour un capteur et un appareil photo.
Elle capte l’exécution des méthodes movementDetect ou temperatureDetect du capteur
et déclenche l’appareil photo. De façon analogue, elle capte les exécutions de la méthode
click sur l’appareil et réinitialise le capteur. La conception à l’aide d’un médiateur est un
exemple d’un style de programmation à la AspectJ, maintenant l’ignorance du code de
base vis-à-vis des aspects et l’asymétrie des aspects. L’appareil photo et le capteur peuvent
être considérés comme faisant partie du programme de base, tandis que le médiateur peut

186 Appendix A

être considéré comme l’aspect. Les avantages d’une unification des classes et des aspects
sont évidentes puisque ces médiateurs peuvent être instanciés d’une manière flexible pour
représenter chaque relation individuelle entre plusieurs capteurs et appareils. En AspectJ,
le mécanisme d’instanciation doit être simulé par le programmeur au sein d’un aspect
singleton.

class Mediator {

Sensor s; Camera c;

Mediator(Sensor s, Camera c) {

this.s = s; this.c = c;

}

event onDetected() = after(s.movementDetect() || s.temperatureDetect());

event onClicked() = after(c.click());

onDetect() => { c.click(); next; }

onClick() => { s.reset(); next; }

}

Listing A.23: Implémentation d’un médiateur entre un capteur et un appareil photo en
EJava.

EJava partage avec Classpects l’unification des classes et des aspects qui per-
met de programmer des aspects asymétriques flexibles tels que des médiateurs. Le Lis-
ting A.23 montre l’implémentation de l’exemple précédent en EJava. Comme le médiateur
de Classpects, le médiateur d’EJava est instancié pour un capteur et un appareil photo.
Il observe les événements du capteur afin de déclencher l’appareil photo, en même temps il
observe les événements de l’appareil photo afin de réinitialiser le capteur. Toutefois, EJava
est plus souple que Classpects. D’abord, EJava permet de définir des événements plus
simplement avec une portée plus précise. Deuxièmement, il permet une conception vérita-
blement modulaire en définissant des événements du côté de la source. Ces caractéristiques
sont définies ci-dessous.

Simplicité et portée des définitions d’événements. Un événement est défini en
EJava en utilisant une seule construction. En Classpects, la définition d’un événement
se fait en deux étapes. Tout d’abord, un point de coupure à la AspectJ décrit les points de
jonction à observer dans un programme de base. Deuxièmement, la construction addObject

permet de restreindre l’observation à un ensemble donné d’objets. Par exemple, une ins-
tance de la classe Mediator du Listing A.22 observe l’exécution des méthodes telles que
movementDetect et click restreinte à un capteur particulier et un appareil photo. La
différence dans la façon dont les événements sont définis en EJava et en Classpects a
un impact sur la capacité de ces langages à discriminer entre les événements de différents
objets.

En Classpects il n’est pas facile de distinguer entre les événements de deux objets
du même type. Prenons comme exemple le code EJava du Listing A.24. Il implémente
une classe qui calcule le temps mis par une particule pour aller d’un point à un autre,
en supposant qu’à chaque point il y a un capteur. La classe est instanciée avec deux
capteurs, un pour chaque point. Lorsque le premier capteur détecte la particule, le code

Appendix A 187

class ParticleTracker {

Sensor s1, s2; Long time;

event onDetect1() = after(s1.movementDetect());

event onDetect2() = after(s2.movementDetect());

onDetect1() => {

time = currentTime();

next;

}

onDetect2() => {

report(currentTime() - time);

s1.reset();

s2.reset();

next;

}

}

Listing A.24: Détection double en EJava.

de la classe calcule un temps initial. Lorsque le second capteur détecte la particule, le code
de la classe calcule le temps final. La classe associe un événement et son gestionnaire à
chaque capteur. Cet exemple ne peut pas être mis en œuvre en Classpects d’une manière
directe. La raison est que Classpects ne peut différencier entre événements qu’en termes
des structures statiques des programmes qui génèrent le point de jonction. Puisque dans
cet exemple le point de jonction est généré par la même méthode movementDetected,
Classpects ne peut pas définir deux événements différents.

Une conception à la Open Modules. Dans l’exemple des capteurs et des appareils
photo, une caractéristique importante de la conception présentée est l’absence d’informa-
tion au sein du code des appareils photo et des capteurs sur les hypothèses nécessaires à leur
intégration. Le code d’intégration, qui est une préoccupation transverse, a été déplacé hors
du code des appareils photo et des capteurs. Toutefois, la solution présentée est fragile car
elle ne reflète pas correctement les relations entre le programme de base et le médiateur.
Un programmeur modifiant indépendamment le programme de base n’est pas conscient
d’éventuelles violations des hypothèses nécessaires au bon fonctionnement du médiateur.
Par exemple, la classe Mediator du Listing A.23 suppose que la détection du capteur est
mise en œuvre par les méthodes movementDetect ou temperatureDetect. Il y a de gros
risques qu’une évolution indépendante du code de détection viole cette hypothèse.

L’absence complète de référence aux aspects dans le programme de base (en anglais, on
parle d’obliviousness) n’est pas compatible avec une véritable modularité. Aldrich [Ald05]
a proposé l’idée d’Open Modules comme une conception réellement modulaire en sacrifiant
l’absence de référence aux aspects. L’idée est que le programme de base fournit les points
de coupure que les aspects vont utiliser. Ainsi, la sémantique de ces points de coupure
est maintenue par le programme de base le long de son évolution. Ces points de coupure
appartiennent maintenant à l’interface du programme de base, permettant aux aspects et
au programme de base d’évoluer indépendamment, tout en préservant cette interface. Le
Listing A.25 montre qu’EJava est suffisamment expressif pour fournir une solution à la

188 Appendix A

class Sensor { ...

/* provided event */

event onDetected() = after(movementDetect() || temperatureDetect());

}

class Camera { ...

/* provided event */

event onClicked() = after(click());

}

class Mediator {

Sensor s; Camera c;

event onDetected() = s.onDetected();/* required event */

event onClicked() = c.onClick();/* required event */

onDetected() => { c.click(); next; }

onClicked() => { s.reset(); next; }

}

Listing A.25: Solution asymétrique à la Open Modules.

Open Modules. Notez comment les événements onDetected et onClicked sont maintenant
fournis respectivement par les classes Sensor et Camera. Un objet Mediator peut observer
ces événements en leur associant un gestionnaire.

La définition des points de coupure côté programme de base est déjà possible stati-
quement en AspectJ. L’avantage d’EJava est le fait que les événements sont membres
d’instance à part entière, ce qui contraste avec le caractère statique des points de coupure
d’AspectJ. Notez comment l’objet Mediator observe l’événement onDetected associé à
la bonne instance de Sensor, définie dans le cadre de son interface. Ce n’est pas possible en
AspectJ, qui nécessite de quantifier toutes les instances possibles de Sensor et d’inclure
une déclaration conditionnelle additionnelle dans le greffon pour choisir la bonne instance.

A.5 Conclusion

A.5.1 Discussion

Clarifions maintenant certains points importants de notre modèle. D’abord, nous pré-
cisons les rôles respectifs de l’invocation explicite et de l’invocation implicite dans notre
modèle. Deuxièmement, nous faisons un parallèle entre la nature objet de nos événements
et la nature globale des événements dans les approches basées sur des types d’événements.

A.5.1.1 Invocation explicite et invocation implicite

Les événements sont des implémentations naturelles de l’invocation implicite. Les mé-
thodes sont des implémentations naturelles de l’invocation explicite. Puisque notre modèle
unifie les méthodes et les événements, il est important de préciser comment l’invocation
explicite et l’invocation implicite peuvent coexister dans notre modèle.

Le Listing A.26 implémente une fonction d’un éditeur de figures en EJava. Cette fonc-
tion transforme la figure targetFigure déclarée à la ligne 2, puis elle exécute l’expression

Appendix A 189

1 class SomeTool implements Tool {

2 Figure targetFigure;

3 ...

4 /* code that transforms the target figure */

5 targetFigure.changed();

6 ...

7 }

Listing A.26: Déclenchement d’événements et appel de méthode en EJava.

targetFigure.changed() à la ligne 5. Dans notre modèle, cette expression signifie un dé-
clenchement de l’événement changed de targetFigure. Elle avertit que la figure a changé
après la transformation. L’expression provoque l’invocation implicite de tous les gestion-
naires d’événements associés à l’événement changed.

Lorsque la classe Figure déclare l’événement changed en utilisant une syntaxe de mé-
thode, c’est-à-dire lorsque changed est une méthode, nous pouvons considérer le déclen-
chement de l’événement comme un appel de méthode. Dans ce cas, le programmeur de la
fonction est conscient de l’existence de l’un des gestionnaires d’événements liés à changed:
le corps de la méthode. L’expression signifie l’invocation explicite du corps de la méthode
(connu du programmeur) et, en même temps, l’invocation implicite d’autres gestionnaires
d’événements associés à l’événement (inconnus du programmeur). C’est de cette façon que
l’invocation explicite et l’invocation implicite sont combinées dans notre modèle.

En d’autres termes, le régime d’invocation dépend du protocole décrivant la relation
entre les objets. Quand il y a une notion d’interfaces requises et fournies, le régime d’in-
vocation est explicite, sinon, il est implicite. Cette différence pose certains défis lorsqu’on
combine les aspects et les composants avec des protocoles explicites, combinaison que nous
avons explorée en [NN07]. Cette thèse propose une intégration transparente de ces deux
régimes.

A.5.1.2 Les types d’événements versus les événements des objets

Les interactions entre les objets est l’un des constituants les plus importants d’une
conception par objets. Dans les modèles d’invocation explicite, les objets envoient des
messages aux objets. Dans les modèles d’invocation implicite, tels que le patron de concep-
tion Observateur, les objets indiquent leur intérêt pour certains événements. De même,
dans notre modèle un objet peut indiquer son intérêt pour des événements issus d’objets
qu’il connaît explicitement. Cependant, dans les approches basées sur des types d’événe-
ments, l’interaction entre les objets est indirecte. Un objet indique son intérêt pour des
types d’événements, pas pour des événements issus d’objets particuliers. Quelque chose de
semblable se passe dans la plupart des approches de programmation par aspects. Il y a
une branche complète de la PPE qui est basée sur cette notion [EGD01, RL08, SPAK10].
Il faut donc clarifier comment notre modèle se situe face cette branche.

L’idée de base d’une conception par types d’événements est le découplage des destina-
tions vis-à-vis des sources: les instances d’un type d’événement sont fournies par des objets
que les destinations ne connaissent pas. Cette conception s’éloigne de la conception par
objets utilisant le patron Observateur. Il y a bien interaction entre objets, mais les types
d’événement, de portée globale, viennent s’intercaler entre les sources et les destinations,
qui reçoivent tous les événements d’un type donné, sans distinguer leur source. Si une

190 Appendix A

telle distinction est nécessaire, de l’information supplémentaire, portée par les instances
de types d’événement, doit être passée de la sources aux destinations, qui appliquent des
filtres spécifiques sur cette information pour sélectionner les événements pertinents liés aux
objets pertinents.

Les événements (points de coupure) dans la PPA sont compatibles avec les types d’évé-
nements. Par exemple, un aspect AspectJ peut surveiller les appels à une méthode d’une
classe. L’aspect ne sait pas quels objets déclencheront l’événement. Ce peut être n’im-
porte quelle instance de la classe ou une sous-classe. Un événement défini de cette façon
a l’application pour portée. En d’autres termes, il est statique. Aussi, AspectJ fournit
des désignateurs de point de jonction spécifiques telles que this pour obtenir l’objet qui
est la source de l’événement. Si un événement d’un objet spécifique est attendu un filtrage
spécifique doit être en suite fait dans le code des greffons pour sélectionner la bonne occur-
rence. Le lien entre les types d’événements et les événements de la PPA est rendu encore
plus explicite en IIIA [SPAK10]. Un type d’événement dans cette approche peut être mis
en œuvre par une point de coupure. Les classes peuvent enregistrer des greffons pour des
types d’événements ou fournir des instances de ces types.

Notre modèle de programmation donne une plus grande priorité à la conception par
objets qu’au découplage des destinations vis-à-vis des sources. Dans notre modèle, une
destination s’intéresse aux (ou est notifiée des) événements issus des sources avec lesquelles
elle collabore, à l’instar du patron Observateur. Ainsi, aucun filtrage supplémentaire n’est
nécessaire pour sélectionner les événements pertinents. Un objet n’est notifié que des évé-
nements pertinents.

A.5.2 Contributions

Les principales contributions de cette thèse sont: (1) un modèle de programmation
événementielle avec des événements déclaratifs, (2) une meilleure intégration de la PPE,
de la PPA et de la PPO à travers ce modèle, (3) la concrétisation du modèle sous la forme de
deux langages de programmation réels avec leur implémentation, et grâce à ces prototypes,
la validation du modèle de programmation sur la mise en œuvre d’un éditeur de figures et
d’une ligne de produits domotiques. Nous résumons ces contributions ci-dessous.

Événements déclaratifs Lors du développement de grandes applications, une program-
meur a souvent besoin de définir des événements en termes d’autres événements. Dans plu-
sieurs langages incluant des événements, la composition des événements est programmée
en utilisant des événements impératifs. Les événements composites sont déclenchés sous la
forme d’événements impératifs au sein des gestionnaires d’événements associés aux événe-
ments composés. En conséquence, quand plusieurs événements sont définis de cette façon,
il est difficile de comprendre les différentes relations entre les événements d’une application.
Ceci est source de complexité. Pour pallier à ce problème, notre modèle de programmation
événementiel introduit la notion d’événement déclaratif. Un événement déclaratif exprime
de manière déclarative les relations entre les événements d’une application. Les différentes
relations entre les événements sont plus faciles à comprendre. Des événements impératifs
et déclaratifs peuvent faire partie de l’interface d’un système améliorant sa modularité.

Unification des paradigmes La combinaison de plusieurs paradigmes de programma-
tion est souvent nécessaire pour mettre en œuvre les exigences d’une application complexe

Appendix A 191

et de fournir un logiciel de bonne qualité. La PPE, la PPA et la PPO s’avèrent particu-
lièrement utiles. Ces différents paradigmes sont implémentés en utilisant des abstractions
linguistiques différentes. Ces abstractions sont aussi fournies comme des constructions lin-
guistiques différents. La prolifération des concepts et des constructions linguistiques donne
lieu à des programmes complexes.

Nous avons noté que certains de ces mécanismes ne sont pas si différents les uns des
autres. C’est en contradiction avec les principes de la conception des langages de pro-
grammation mis en avant par MacLennan [Mac95]. Pour résoudre ce problème, nous avons
introduit un modèle de programmation qui intègre la PPE, la PPA et la PPO. Le modèle
est une extension du modèle d’événements déclaratifs décrit précédemment. La pierre an-
gulaire de ce modèle est une unification des méthodes et des événements. Les contributions
de ce modèle sont les suivantes:

– Les mêmes constructions linguistiques peuvent être utilisées pour mettre en œuvre
les deux formes d’invocation, explicite et implicite. Ainsi, la PPE et la PPO peuvent
être réalisées de façon simple et orthogonale par un modèle de programmation qui
équipe les classes avec des champs, des événements et des gestionnaires d’événements.

– Le même mécanisme d’événements et de gestionnaires d’événements peut être utilisé
pour mettre en œuvre des applications événementielles et des aspects. Les événe-
ments et les points de jonction peuvent être unifiés et un greffon peut être mis en
œuvre comme un gestionnaire d’événement. Ainsi, les programmeurs ayant une bonne
compréhension de la PPE peuvent entrer dans la PPA sans efforts supplémentaires.

– Le modèle montre l’avantage de fournir des événements et des gestionnaires d’événe-
ments en tant que membres d’instance à part entière. Il améliore l’intégration entre
la PPE et PPO et, en même temps, l’intégration de la PPA et de la PPO. Nous avons
montré que les aspects et les classes peuvent être fournies sous la forme d’une struc-
ture linguistique unique: une classe (éventuellement aspectuelle). Les mêmes règles
régulières de l’héritage, de l’instanciation et du traitement des membres de la classe
peuvent gouverner la sémantique des classes et des aspects. Ainsi, les programmeurs
ayant une bonne compréhension de la PPO peuvent intégrer plus facilement dans
leur pratique de programmation la PPE et la PPA.

Implémentation et cas d’étude Deux langages concrétisent notre modèle de program-
mation. EJava implémente l’essence du modèle comme une extension de Java. ECaesarJ
combine notre modèle et de la composition de mixins. Les deux langages ont été utilisés
pour valider notre modèle dans la mise en œuvre d’applications réelles. Ils ont amélioré la
implémentation de ces applications. Ces langages sont librement disponibles pour l’expé-
rimentation dans ce domaine.

A.5.3 Perspectives

Traitement formel. Afin de notamment prouver la correction de notre modèle, il est
nécessaire de le formaliser. Dans un premier temps, nous avons utilisé le langage formel
MiniMAO0 [CL05] pour en décrire la syntaxe abstraite.

Un modèle de points de jonction plus riche. Le modèle présenté dans cette thèse
permet de mettre en œuvre des aspects avec un modèle de point de jonction basé sur les
points de jonction de Masuhara et al. [MEY06]. Seulement deux des quatre types de points
de jonction du modèle de Masuhara sont supportés: call et reception. Dans le futur, nous

192 Appendix A

envisageons d’étendre les types de points de jonction pris en charge par notre modèle. Par
exemple, nous aimerions inclure les points de jonction execution et return du modèle de
Masuhara. Cela permettrait la prise en compte des points de jonction execution d’AspectJ.
Puisque dans notre modèle l’exécution d’une méthode (corps de la méthode) correspond
à l’exécution d’un gestionnaire d’événement, nous devrions être en mesure d’introduire les
points de jonction execution en incluant un type d’événement représentant l’exécution d’un
gestionnaire d’événement. Ce type d’événements permettra de mettre en œuvre des aspects
intéressés par l’exécution d’un gestionnaire d’événement particulier.

Gestion des exceptions. Nous traitons les exceptions en adoptant le style des excep-
tions vérifiées de Java, ce qui n’est pas bien adapté aux applications événementielles.
Dans le future nous prévoyons d’étudier d’autres moyens possibles pour faire face aux
exceptions [PH07]. Intuitivement, il semble approprié d’augmenter l’expressivité de notre
modèle pour être en mesure de définir les événements qui représentent des exceptions.
Comme un type d’exception peut être lancé à partir de nombreux endroits dans le code
avec de nombreux objets en jeu, il peut être impropre de quantifier sur la liste de tous les
objets qui peuvent lancer un type d’exception. Dans ce cas, il semble qu’utiliser des types
d’événement soit mieux adapté.

Amélioration des prototypes. Nous avons fourni deux implémentations du modèle,
EJava et ECaesarJ. Ces prototypes peuvent être améliorés, notamment en termes de
performances. L’analyse sémantique des compilateurs d’EJava et ECaesarJ et l’outillage
des langages peuvent aussi être améliorés. En ce qui concerne l’outillage, un plugin Eclipse
initial a été développé en utilisant Spoofax [KV10]. Cependant, il ne permet toujours pas
des fonctionnalités avancées telles que le débogage.

Concurrence. Notre travail a porté sur un cadre séquentiel. Étudier l’applicabilité de
notre modèle à un cadre concurrent reste à mener. La notion d’événement est souvent
utilisé pour coordonner les applications concurrentes en utilisant des modèles tirés des
algèbres de processus. Comme notre modèle est basé sur cette notion le passage à un cadre
concurrent devrait être facilité.

Exploration d’autres choix de conception. Maintenant que nous avons une meilleure
compréhension des implications de nos décisions de conception initiales, nous n’excluons
pas de considérer d’autres choix de conception. En particulier, nous considérons que les
événements polymorphes proposés dans le cadre d’IIIA [SPAK10] sont particulièrement
intéressants et qu’il serait utile d’explorer l’intégration entre les types d’événements et nos
événements liés aux objets.

Une retombée de notre travail a été l’implémentation d’une variante de notre modèle
sous la forme d’une extension de Scala, EScala [GSM+11]. Ce langage implémente notre
modèle d’événements déclaratifs sur le langage Scala. Il y a des différences entre ce lan-
gage et EJava, au niveau du modèle et de l’implémentation. Premièrement, alors que les
opérateurs de composition de base, tels que la disjonction et la conjonction, sont similaires
dans les deux langages, EScala offre des opérateurs qui exploitent le côté fonctionnel de
Scala en offrant une flexibilité supplémentaire. Deuxièmement, EScala n’intègre pas les
événements et les méthodes comme en EJava. Les méthodes et les gestionnaires d’évé-
nement sont des notions distinctes. Même si en EScala un appel de méthode peut être

Appendix A 193

considéré comme un événement, les corps de méthode ne sont pas considérés comme des
gestionnaires d’événements comme en EJava. EScala ne permet pas de mettre en œuvre
un aspect qui empêche le programme de base d’effectuer un appel de méthode. Dans EJava
cette question est juste une question de composition des gestionnaires d’événements. Ainsi,
EScala est un langage événementiel avec une saveur de PPA plutôt que d’un langage qui
intègre à la fois la PPE et la PPA d’une manière transparente comme en EJava. Enfin, la
mise en œuvre d’EScala, faite par Lucas Satabin, est plus efficace que la mise en œuvre
originale de EJava grâce à l’optimisation du processus de notification. La mise en œuvre
d’EJava a emprunté l’optimisation du processus de notification et le traitement des réfé-
rences à des événements à travers des champs mutables. Elle reste toutefois très différente,
par exemple, en ce qui concerne l’instrumentation du code, puisque nous utilisons AspectJ
plutôt qu’un mécanisme spécifique. En ce qui concerne ECaesarJ, EScala ne supporte
pas les machines à états et les mixins.

Scala est un bon langage pour la poursuite des travaux développés dans cette thèse,
grâce à sa combinaison de programmation fonctionnelle et impérative et de fonctionnalités
telles que l’inférence de types. Par exemple, EScala peut être amélioré avec les éléments
présentés dans cette thèse qui n’ont pas encore été considérés comme l’unification des
événements et des méthodes et le support des machines à états.

Bibliography

[ADGI08] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. Effi-
cient pattern matching over event streams. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, SIGMOD ’08,
pages 147–160, New York, NY, USA, 2008. ACM Press.

[AGMO06] Ivica Aracic, Vaidas Gasiūnas, Mira Mezini, and Klaus Ostermann. An
overview of CaesarJ. In Transactions on Aspect-Oriented Software Develop-
ment I, volume 3880 of Lecture Notes in Computer Science, pages 135–173.
Springer-Verlag, February 2006.

[Ald05] Jonathan Aldrich. Open modules: Modular reasoning about advice. In
Black [Bla05], pages 144–168.

[AM97] Mehmet Aksit and Satoshi Matsuoka, editors. ECOOP ’97 - Object-
Oriented Programming - 11th European Conference, volume 1241 of Lecture
Notes in Computer Science. Springer-Verlag, June 1997.

[AMP10] AMPLE. Ample project. http://www.ample-project.net, 2007-2010.

[AN09] Ali Assaf and Jacques Noyé. Flexible pointcut implementation: An interpre-
ted approach. In Bernard Carré, editor, Langages et Modèles à Objets (LMO
2009), pages 45–60, Nancy France, March 2009. Olivier Zendra, Cépaduès-
Editions.

[aos08] Proceedings of the 7th International Conference on Aspect-Oriented Soft-
ware Development, AOSD ’08, Brussels, Belgium, March 2008. ACM Press.

[BC11] Paulo Borba and Shigeru Chiba, editors. Proceedings of the 10th Interna-
tional Conference on Aspect-Oriented Software Development, AOSD ’11,
Porto de Galinhas, Brazil, March 21-25, 2011. ACM Press, 2011.

[BCRD08] Johan Brichau, Ruzanna Chitchyan, Awais Rashid, and Theo D’Hondt.
Aspect-oriented software development: an introduction. In Wah [Wah08].

[BDG+07] Lars Brenna, Alan Demers, Johannes Gehrke, Mingsheng Hong, Joel Os-
sher, Biswanath Panda, Mirek Riedewald, Mohit Thatte, and Walker White.
Cayuga: a high-performance event processing engine. In Proceedings of the
2007 ACM SIGMOD international conference on Management of data, SIG-
MOD ’07, pages 1100–1102, New York, NY, USA, 2007. ACM Press.

[BEG08] Lodewijk Bergmans, Erik Ernst, and Kris Gybels, editors. 6th Workshop
on Software-engineering Properties of Languages and Aspect Technologies
(SPLAT 2008), Brussels, Belgium, March 2008.

[BGL98] J.-P. Briot, R. Guerraoui, and K.-P. Löhr. Concurrency and distribution in
object-oriented programming. ACM Computing Surveys, 30(3), September
1998.

[BJ87] K. Birman and T. Joseph. Exploiting virtual synchrony in distributed sys-
tems. SIGOPS Oper. Syst. Rev., 21(5):123–138, 1987.

195

http://www.ample-project.net

196 BIBLIOGRAPHY

[Bla05] Andrew P. Black, editor. ECOOP ’05 - Object-Oriented Programming, 19th
European Conference, volume 3586 of Lecture Notes in Computer Science,
Glasgow, UK, July 2005. Springer-Verlag.

[Bon04] Jonas Bonér. AspectWerkz - dynamic AOP for Java. In Lieberherr [Lie04],
pages 51–62.

[BPS99] Viviana Bono, Amit Patel, and Vitaly Shmatikov. A core calculus of
classes and mixins. In Proceedings of the 13th European Conference on
Object-Oriented Programming, ECOOP ’99, pages 43–66, London, UK,
1999. Springer-Verlag.

[Bru07] Bruce Eckel. Does Java need checked exceptions? http://www.mindview.

net/Etc/Discussions/CheckedExceptions, 2007.

[BV04] Jonas Bonér and Alexandre Vasseur. AspectWerkz. http://aspectwerkz.
codehaus.org/index.html, February 2004.

[BvdA01] Twan Basten and Wil M. P. van der Aalst. Inheritance of behavior. Journal
of Logic and Algebraic Programming, 47(2):47–145, 2001.

[CL05] Curtis Clifton and Gary T. Leavens. Minimao: Investigating the semantics
of proceed. In Curtis Clifton, Ralf Lämmel, and Gary T. Leavens, editors,
FOAL 2005 Proceedings: Foundations of Aspect-Oriented Languages Work-
shop at AOSD ’05, Chicago, IL, pages 57–67, Ames, IA, 50011, March 2005.
TR 05-05, Dept. of Computer Science, Iowa State University.

[CM08] Brian Chin and Todd Millstein. An extensible state machine pattern for
interactive applications. In Vitek [Vit08].

[Coo89] S. Cook, editor. Proceedings of the Third European Conference on Object-
Oriented Programming, 1989 (ECOOP ’89), Kaiserslautern, Germany,
1989. Cambridge University Press.

[DFS04] Rémi Douence, Pascal Fradet, and Mario Südholt. Composition, reuse and
interaction analysis of stateful aspects. In Lieberherr [Lie04].

[DHW94] Umeshwar Dayal, Eric N. Hanson, and Jennifer Widom. Active database
systems. In Modern Database Systems, pages 434–456. ACM Press, 1994.

[Dij79] E. Dijkstra. Programming considered as a human activity, pages 1–9. Your-
don Press, Upper Saddle River, NJ, USA, 1979.

[DLBNS06] Rémi Douence, Didier Le Botlan, Jacques Noyé, and Mario Südholt.
Concurrent aspects. In Proceedings of the 4th International Conference on
Generative Programming and Component Engineering (GPCE ’06), pages
79–88. ACM Press, October 2006.

[Dro09] Sophia Drossopoulou, editor. ECOOP ’09 - Object-Oriented Programming,
23rd European Conference, Genoa, Italy, July 6-10, 2009. Proceedings, vo-
lume 5653 of Lecture Notes in Computer Science. Springer, 2009.

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Computing Surveys,
35(2):114–131, 2003.

[EGD01] Patrick Th. Eugster, Rachid Guerraoui, and Christian Heide Damm. On
objects and events. In Proceedings of the 16th ACM SIGPLAN confe-
rence on Object-oriented programming, systems, languages, and applica-
tions, OOPSLA ’01, pages 254–269, New York, NY, USA, 2001. ACM Press.

http://www.mindview.net/Etc/Discussions/CheckedExceptions
http://www.mindview.net/Etc/Discussions/CheckedExceptions
http://aspectwerkz.codehaus.org/index.html
http://aspectwerkz.codehaus.org/index.html

BIBLIOGRAPHY 197

[EJ09] Patrick Th. Eugster and K. R. Jayaram. EventJava: An extension of Java
for event correlation. In Drossopoulou [Dro09], pages 570–594.

[Eri11] Erich Gamma and Jochen Quante and Wolfram Kaiser. JHotDraw as open-
source project. http://sourceforge.net/projects/jhotdraw/, 2011.

[Ern99a] Erik Ernst. gbeta - a language with virtual attributes, Block Structure, and
Propagating, Dynamic Inheritance. PhD thesis, Department of Computer
Science, University of Aarhus, Denmark, 1999.

[Ern99b] Erik Ernst. Propagating class and method combination. In Guerraoui
[Gue99], pages 67–91.

[Ern01] Erik Ernst. Family polymorphism. In Knudsen [Knu01], pages 303–326.

[FECA05] Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet Akşit, editors.
Aspect-Oriented Software Development. Addison-Wesley, 2005.

[FF05] Robert E. Filman and Daniel P. Friedman. Aspect-oriented programming is
quantification and obliviousness. In Filman et al. [FECA05], pages 21–35.

[FH02] Robert E. Filman and Klaus Havelund. Realising aspects by transforming
for events. In Kris De Volder, Kim Mens, Tom Mens, and Roel Wuyts, edi-
tors, Proc. Workshop on Declarative Meta Programming to Support Software
Development, September 2002.

[FMG02] Ludger Fiege, Gero Mühl, and Felix C. Gärtner. Modular event-based sys-
tems. Knowl. Eng. Rev., 17(4):359–388, 2002.

[GB03] Kris Gybels and Johan Brichau. Arranging language features for more
robust pattern-based crosscuts. In AOSD ’03: Proceedings of the 2nd inter-
national conference on Aspect-oriented software development, pages 60–69,
New York, NY, USA, 2003. ACM Press.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[GN91] David Garlan and David Notkin. Formalizing design spaces: Implicit invo-
cation mechanisms. In Proceedings of the 4th International Symposium of
VDM Europe on Formal Software Development (VDM ’91) [vdm91], pages
31–44.

[GNNM11] Vaidas Gasiūnas, Angel Núñez, Jacques Noyé, and Mira Mezini. Product
line implementation with ECaesarJ. In Awais Rashid, Jean-Claude Royer,
and Andreas Rummler, editors, Aspect-Oriented, Model-Driven Software
Product Lines - The AMPLE Way. Cambridge University Press, October
2011.

[Gre75] Irene Greif. Semantics of communicating parallel processes. Technical Re-
port 154, Massachusetts Institute of Technology, Project MAC, September
1975.

[GS94] David Garlan and Mary Shaw. An introduction to software architecture.
Technical Report CMU-CS-94-166, Carnegie Mellon University, January
1994.

[GSM+11] Vaidas Gasiūnas, Lucas Satabin, Mira Mezini, Angel Núñez, and Jacques
Noyé. EScala: modular event-driven object interactions in Scala. In Borba
and Chiba [BC11], pages 227–240.

http://sourceforge.net/projects/jhotdraw/

198 BIBLIOGRAPHY

[Gue99] R. Guerraoui, editor. Proceedings of the 13th European Conference on
Object-Oriented Programming (ECOOP ’99), volume 1648 of Lecture Notes
in Computer Science, Lisbon, Portugal, June 1999. Springer-Verlag.

[Har87] David Harel. Statecharts: A visual formulation for complex systems. Science
of Computer Programming, 8(3):231–274, 1987.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor
formalism for artificial intelligence. In Proceedings of the 3rd international
joint conference on Artificial intelligence, pages 235–245, San Francisco,
CA, USA, 1973. Morgan Kaufmann Publishers Inc.

[Hew10] Carl Hewitt. Actor model for discretionary, adaptive concurrency. CoRR,
abs/1008.1459, 2010.

[Hir02] Robert Hirschfeld. AspectS - aspect-oriented programming with Squeak.
In M. Aksit, M. Mezini, and R. Unland, editors, Objects, Components, Ar-
chitectures, Services, and Applications for a NetworkedWorld: International
Conference NetObjectDays, NODe 2002, volume 2591 of Lecture Notes in
Computer Science, pages 216–232. Springer-Verlag, 2002.

[HO09] Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based and
event-based programming. Theoretical Computer Science, 410(2-3):202–
220, February 2009.

[Hoa78] C.A.R. Hoare. Communicating sequential processes. Communications of
the ACM, 21(8):666–677, 1978.

[ics05] Proceedings of the 27th International Conference on Software Engineering,
St. Louis, MO, USA, May 2005. ACM Press.

[IEE08] IEEE Standard for the Functional Verification Language e. IEEE Computer
Society, August 2008. IEEE Std 1647TM-2008.

[IEE09] IEEE Standard for SystemVerilog - Unified Hardware Design, Specification,
and Verification Language. IEEE Computer Society, December 2009. IEEE
Std 1800TM-2009.

[JBo10] JBoss AOP. JBoss AOP reference manual. version 2.0. http://docs.

jboss.org/jbossaop/docs/index.html, 2010.

[JF88] R. E. Johnson and B. Foote. Designing reusable classes. Journal of Object-
Oriented Programming, 1(2):22–35, June/July 1988.

[JHD+10] Rod Johnson, Juergen Hoeller, Keith Donald, Colin Sampaleanu, Rob Har-
rop, Alef Arendsen, Thomas Risberg, Darren Davison, Dmitriy Kopylenko,
Mark Pollack, Thierry Templier, Erwin Vervaet, Portia Tung, Ben Hale,
Adrian Colyer, John Lewis, Costin Leau, Mark Fisher, Sam Brannen, Ram-
nivas Laddad, Arjen Poutsma, Chris Beams, Tareq Abedrabbo, and Andy
Clement. The Spring Framework - Reference Documentation 3.0.RC3.
SpringSource, 2010. http://static.springsource.org/spring/docs/3.

0.x/spring-framework-reference/html/.

[JP94] Bengt Jonsson and Joachim Parrow, editors. Proceedings of the 5th Inter-
national Conference on Concurrency Theory (CONCUR ’94), volume 836
of Lecture Notes in Computer Science, Uppsala, Sweden, 1994. Springer-
Verlag.

http://docs.jboss.org/jbossaop/docs/index.html
http://docs.jboss.org/jbossaop/docs/index.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/

BIBLIOGRAPHY 199

[KdRB91] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the
Meta-Object Protocol. MIT Press, 1991.

[Kee89] Sonya E. Keene. Object-Oriented Programming in Common Lisp. Addison
Wesley, Reading, Mass., 1989.

[KHH+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W.G. Gris-
wold. An overview of AspectJ. In Knudsen [Knu01], pages 327–353.

[Kic02] Gregor Kiczales, editor. Proceedings of the 1st International Conference
on Aspect-Oriented Software Development (AOSD ’02), Enschede, The Ne-
therlands, April 2002. ACM Press.

[KL89] D. Kafura and K.H. Lee. Inheritance in actor based concurrent object-
oriented languages. In Cook [Coo89].

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loing-
tier, and J. Irwin. Aspect-oriented programming. In Aksit and Matsuoka
[AM97], pages 220–242.

[Knu01] Jørgen Lindskov Knudsen, editor. ECOOP ’01 - Object-Oriented Program-
ming, 15th European Conference, number 2072 in Lecture Notes in Com-
puter Science, Budapest, Hungary, June 2001. Springer-Verlag.

[KP88] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-
view controller user interface paradigm in smalltalk-80. J. Object Oriented
Program., 1(3):26–49, 1988.

[KS04] Christian Koppen and Maximilian Störzer. PCDiff: Attacking the fragile
pointcut problem. In Kris Gybels, Stefan Hanenberg, Stephan Herrmann,
and Jan Wloka, editors, European Interactive Workshop on Aspects in Soft-
ware (EIWAS), September 2004.

[KV10] Lennart C. L. Kats and Eelco Visser. The Spoofax language workbench.
Rules for declarative specification of languages and IDEs. In Martin Ri-
nard, editor, Proceedings of the 25th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA ’10, October 17-21, 2010, Reno, NV, USA, pages 444–463, 2010.

[Lie04] Karl Lieberherr, editor. Proceedings of the 3rd International Conference on
Aspect-Oriented Software Development (AOSD ’04), Lancaster, UK, March
2004. ACM Press.

[Luc97] David C. Luckham. Rapide: a language and toolset for simulation of dis-
tributed systems by partial orderings of events. In Proceedings of the DI-
MACS workshop on Partial order methods in verification, pages 329–357,
New York, NY, USA, 1997. AMS Press, Inc.

[Luc01] David C. Luckham. The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2001.

[Mac95] Bruce J. MacLennan. Principles of Programming Languages: Design, Eva-
luation, and Implementation. Oxford University Press, 2nd edition, 1995.

[Mey89] N. Meyrowitz, editor. OOPSLA ’89, Conference Proceedings, New Orleans,
Louisiana, USA, October 1989. 24(10).

200 BIBLIOGRAPHY

[MEY06] Hidehiko Masuhara, Yusuke Endoh, and Akinori Yonezawa. A fine-grained
join point model for more reusable aspects. In Proceedings of 4th Asian
Symposium on Programming Languages and Systems (APLAS ’06), volume
4279 of Lecture Notes in Computer Science, pages 131–147, Sydney, Aus-
tralia, November 2006. Springer-Verlag.

[Mil82] R. Milner. A Calculus of Communicating Systems. Springer-Verlag, 1982.

[MK06] J. Magee and J. Kramer. Concurrency: State Models and Java. Wiley, 2nd
edition, 2006.

[MMP89] O. L. Madsen and B. Møller-Pedersen. Virtual classes: A powerful me-
chanism in object-oriented programming. In Meyrowitz [Mey89], pages
397–406. 24(10).

[Moo86b] David A. Moon. Object-oriented programming with flavors. In Conference
proceedings on Object-oriented programming systems, languages and appli-
cations, OOPLSA ’86, pages 1–8, New York, NY, USA, 1986. ACM.

[MW08] Antoine Marot and Roel Wuyts. Composability of aspects. In Bergmans
et al. [BEG08].

[ND66] K. Nygaard and O.-J. Dahl. Simula - an ALGOL-based simulation language.
Communications of the ACM, 9(9), September 1966.

[ND78] Kristen Nygaard and Ole-Johan Dahl. The development of the Simula
languages. 13(8):245–272, 1978.

[NN07] Angel Núñez and Jacques Noyé. A seamless extension of components with
aspects using protocols. In Reussner et al. [RSW07].

[NN08] Angel Núñez and Jacques Noyé. An event-based coordination model for
context-aware applications. In Doug Lea and Gianluigi Zavattaro, editors,
Coordination Models and Languages (COORDINATION ’08), volume 5052
of Lecture Notes in Computer Science, pages 232–248. Springer Berlin /
Heidelberg, 2008.

[NnNG09] Angel Núñez, Jacques Noyé, and Vaidas Gasiūnas. Declarative definition of
contexts with polymorphic events. In International Workshop on Context-
Oriented Programming, COP ’09, pages 2:1–2:6, New York, NY, USA, 2009.
ACM Press.

[OMB05] Klaus Ostermann, Mira Mezini, and Christoph Bockisch. Expressive point-
cuts for increased modularity. In Black [Bla05].

[Par69] David L. Parnas. On simulating networks of parallel processes in which
simultaneous events may occur. Communications of the ACM, 12(9):519–
531, 1969.

[PH07] Jan Ploski and Wilhelm Hasselbring. Exception handling in an event-driven
system. In Proceedings of the The Second International Conference on Avai-
lability, Reliability and Security, pages 1085–1092, Washington, DC, USA,
2007. IEEE Computer Society.

[Pre97] Christian Prehofer. Feature-oriented programming: A fresh look at objects.
In Aksit and Matsuoka [AM97], pages 419–443.

[RL08] Hridesh Rajan and Gary T. Leavens. Ptolemy: A language with quantified,
typed events. In Vitek [Vit08].

BIBLIOGRAPHY 201

[RS05] Hridesh Rajan and Kevin J. Sullivan. Classpects: Unifying aspect- and
object-oriented language design. In Proceedings of the 27th International
Conference on Software Engineering [ics05], pages 15–21.

[RS09] Hridesh Rajan and Kevin J. Sullivan. Unifying aspect- and object-oriented
design. ACM Transactions on Software Engineering and Methodology,
19(1), August 2009.

[RSW07] Ralf Reussner, Clemens Szyperski, and Wolfgang Weck, editors. WCOP
2007 - Components beyond Reuse - 12th International ECOOP Workshop
on Component-Oriented Programming, July 2007.

[RW97] David S. Rosenblum and Alexander L. Wolf. A design framework for
internet-scale event observation and notification. In Proceedings of the 6th
European SOFTWARE ENGINEERING conference held jointly with the
5th ACM SIGSOFT international symposium on Foundations of software
engineering, ESEC ’97/FSE-5, pages 344–360, New York, NY, USA, 1997.
Springer-Verlag New York, Inc.

[Sam08] Miro Samek. Practical UML Statecharts in C/C++, Second Edition: Event-
Driven Programming for Embedded Systems. Newnes, Newton, MA, USA,
2008.

[SC95] Aamod Sane and Roy H. Campbell. Object-oriented state machines: Sub-
classing, composition, delegation and genericity. In OOPSLA ’95, Tenth An-
nual Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 17–32, Austin, TX, USA, October 1995. ACM Press.

[Sch78] J. William Schmidt. Introduction to simulation modeling. In WSC ’78:
Proceedings of the 10th conference on Winter simulation, pages 3–12, Pis-
cataway, NJ, USA, 1978. IEEE Computer Society.

[SGC02] Kevin Sullivan, Lin Gu, and Yuanfang Cai. Non-modularity in aspect-
oriented languages: integration as a crosscutting concern for AspectJ. In
Kiczales [Kic02], pages 19–26.

[SMU+04] Kouhei Sakurai, Hidehiko Masuhara, Naoyasu Ubayashi, Saeko Matsuura,
and Seiichi Komiya. Association aspects. In Lieberherr [Lie04], pages 16–25.

[SPAK10] Friedrich Steimann, Thomas Pawlitzki, Sven Apel, and Christian Kästner.
Types and modularity for implicit invocation with implicit announcement.
ACM Transactions on Software Engineering and Methodology, 20(1), July
2010.

[Sun97] Sun Microsystems. Javabeans(tm) specification. version 1.01. http://

java.sun.com/javase/technologies/desktop/javabeans/docs/spec.

html, 1997.

[Tan08] Éric Tanter. Expressive scoping of dynamically-deployed aspects. In Pro-
ceedings of the 7th International Conference on Aspect-Oriented Software
Development, AOSD ’08 [aos08], pages 168–179.

[TOHS99] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. N
degrees of separation: multi-dimensional separation of concerns. In Procee-
dings of the 21st International Conference on Software Engineering, pages
107–119, Los Angeles, CA, USA, May 1999. ACM Press.

http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html

202 BIBLIOGRAPHY

[US94] Andrew C. Uselton and Scott A. Smolka. A compositional semantics for
statecharts using labeled transition systems. In Jonsson and Parrow [JP94],
pages 2–17.

[vdBCC05] K.G. van den Berg, J.M. Conejero, and R. Chitchyan. AOSD ontology 1.0
- public ontology of aspect-orientation, May 2005. AOSD-Europe-UT-01.

[VdBdJKO00] M. G. T. Van den Brand, H. A. de Jong, P. Klint, and P. A. Olivier. Efficient
annotated terms. Softw. Pract. Exper., 30:259–291, March 2000.

[vdBL89] Jan van den Bos and Chris Laffra. PROCOL: a parallel object language
with protocols. In Meyrowitz [Mey89], pages 95–102. 24(10).

[vdBL91] Jan van den Bos and Chris Laffra. PROCOL: A concurrent object-oriented
language with protocols, delegation and constraints. Acta Informatica,
28(6):511–538, 1991.

[vdBSVV02] Mark G. J. van den Brand, Jeroen Scheerder, Jurgen J. Vinju, and Eelco
Visser. Disambiguation Filters for Scannerless Generalized LR Parsers.
In CC ’02: Proceedings of the 11th International Conference on Compiler
Construction, pages 143–158. Springer-Verlag, April 2002.

[vdm91] Proceedings of the 4th International Symposium of VDM Europe on Formal
Software Development (VDM ’91), Springer-Verlag, 1991.

[Vis97a] Eelco Visser. Scannerless Generalized-LR Parsing. Technical Report P9707,
Programming Research Group, University of Amsterdam, July 1997.

[Vis97b] Eelco Visser. Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam, September 1997.

[Vis01] Eelco Visser. Stratego: A Language for Program Transformation Based on
Rewriting Strategies. In RTA, pages 357–362, 2001.

[Vis04] Eelco Visser. Program Transformation with Stratego/XT. Rules, Strategies,
Tools, and Systems in Stratego/XT 0.9 . Technical Report UU-CS-2004-011,
Department of Information and Computing Sciences, Utrecht University,
2004.

[Vit08] Jan Vitek, editor. Proceedings of the 22nd European Conference on Object-
Oriented Programming (ECOOP ’08), volume 5142 of Lecture Notes in
Computer Science, Paphos, Cyprus, July 2008. Springer-Verlag.

[Wah08] Benjamin W. Wah, editor. Wiley Encyclopedia of Computer Science and
Engineering. John Wiley & Sons, Inc., 2008.

[WC96] Jennifer Widom and Stefano Ceri, editors. Active Database Systems: Trig-
gers and Rules For Advanced Database Processing. Morgan Kaufmann,
1996.

[WDR06] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex
event processing over streams. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, SIGMOD ’06, pages 407–
418, New York, NY, USA, 2006. ACM.

[WM01] Robert J. Walker and Gail C. Murphy. Joinpoints as ordered events: To-
wards applying implicit context to aspect-orientation. In Workshop on Ad-
vanced Separation of Concerns in Software Engineering. In Proceedings of
ICSE ’01, 2001.

Un modèle de programmation intégrant

classes, événements et aspects

Angel Rodrigo Núñez López

Résumé

Le paradigme de la programmation par objets (PPO) est devenu le paradigme de programmation le plus
utilisé. La programmation événementielle (PE) et la programmation par aspects (PPA) complètent la PPO
en comblant certaines de ses lacunes lors de la construction de logiciels complexes. Les applications actuelles
combinent ainsi les trois paradigmes. Toutefois, la POO, la PE et la POA ne sont pas encore bien intégrées.
Leurs concepts sous-jacents sont en général fournis sous la forme de constructions syntaxiques spécifiques
malgré leurs points communs. Ce manque d’intégration et d’orthogonalité complique les logiciels car il réduit
leur compréhensibilité et leur composabilité, et augmente le code d’infrastructure.
Cette thèse propose une intégration de la PPO, de la PE et de la PPA conduisant à un modèle de program-
mation simple et régulier. Ce modèle intègre les notions de classe et d’aspect, les notions d’événement et de
point de jonction, et les notions d’action, de méthode et de gestionnaire d’événements. Il réduit le nombre
de constructions tout en gardant l’expressivité initiale et en offrant même des options de programmation
supplémentaires.
Nous avons conçu et mis en œuvre deux langages de programmation basés sur ce modèle : EJava et ECaesarJ.
EJava est une extension de Java implémentant le modèle. Nous avons validé l’expressivité de ce langage par la
mise en œuvre d’un éditeur graphique bien connu, JHotDraw, en réduisant le code d’infrastructure nécessaire
et en améliorant sa conception. ECaesarJ est une extension de CaesarJ qui combine notre modèle avec de
la composition de mixins et un support linguistique des machines à états. Cette combinaison a grandement
facilité la mise en œuvre d’une application de maison intelligente, une étude de cas d’origine industrielle dans
le domaine de la domotique.

Mots-clés : programmation par objets, programmation événementielle, programmation par as-
pects, langages de programmation

A Programming Model Integrating

Classes, Events and Aspects

Abstract

Object-Oriented Programming (OOP) has become the de facto programming paradigm. Event-Based Program-
ming (EBP) and Aspect-Oriented Programming (AOP) complement OOP, covering some of its deficiencies
when building complex software. Today’s applications combine the three paradigms. However, OOP, EBP and
AOP have not yet been properly integrated. Their underlying concepts are in general provided as distinct
language constructs, whereas they are not completely orthogonal. This lack of integration and orthogonality
complicates the development of software as it reduces its understandability, its composability and increases
the required glue code.
This thesis proposes an integration of OOP, EBP and AOP leading to a simple and regular programming
model. This model integrates the notions of class and aspect, the notions of event and join point, and the
notions of piece of advice, method and event handler. It reduces the number of language constructs while
keeping expressiveness and offering additional programming options.
We have designed and implemented two programming languages based on this model: EJava and ECaesarJ.
EJava is an extension of Java implementing the model. We have validated the expressiveness of this language
by implementing a well-known graphical editor, JHotDraw, reducing its glue code and improving its design.
ECaesarJ is an extension of CaesarJ that combines our model with mixins and language support for state
machines. This combination was shown to greatly facilitate the implementation of a smart home application,
an industrial-strength case study that aims to coordinate different devices in a house and automatize their
behaviors.

Keywords: object-oriented programming, event-based programming, aspect-oriented program-
ming, programming languages

	Cover
	Front matter
	French Abstract
	English Abstract
	Dédicace
	Acknowledgements
	Table of Contents

	Body of the Dissertation
	1 Introduction
	2 State of the Art
	2.1 Event-Based Programming
	2.1.1 The Notion of Event
	2.1.2 Event-Based Design
	2.1.3 Language Support
	2.1.4 Complex Event Processing
	2.1.5 Summary

	2.2 Aspect-Oriented Programming
	2.2.1 Introduction
	2.2.2 Behavioral Aspects
	2.2.3 Structural Aspects
	2.2.4 AOP Approaches
	2.2.5 Obliviousness, Quantification and Modularity
	2.2.6 Summary

	2.3 Advanced OOP
	2.3.1 Virtual Classes and Propagating Mixin Composition
	2.3.2 CaesarJ Mixins vs. Structural Aspects

	2.4 Conclusion

	3 Problem Statement
	3.1 EBP and OOP
	3.1.1 Regularity of Events
	3.1.2 Orthogonality of Events and Methods

	3.2 EBP and AOP
	3.2.1 Orthogonality of Advising and Event Handling
	3.2.2 Incomplete Integration Efforts
	3.2.3 Advantages of an Integration

	3.3 AOP and OOP
	3.3.1 Orthogonality and Regularity of Aspects and Classes
	3.3.2 Incomplete Integration Efforts

	3.4 Conclusion

	4 A Model of Declarative and Polymorphic Events
	4.1 Motivation
	4.2 Imperative Composition of Events
	4.3 A Programming Model with Declarative Events
	4.3.1 Events and Event Handlers as Properties of Objects
	4.3.2 Imperative Events and Runtime Events
	4.3.3 Declarative Events
	4.3.4 Informal Operational Semantics
	4.3.5 Conclusion

	4.4 A Concrete Syntax with EJava
	4.4.1 Examples of Basic Features
	4.4.2 Local Event Variables and Anonymous Parameters
	4.4.3 Quantification
	4.4.4 Exception Handling
	4.4.5 Deployment

	4.5 Related Work
	4.6 Conclusion

	5 Integrating EBP and OOP
	5.1 Motivation
	5.2 Programming Model
	5.2.1 Unification of Event Handling and Method Execution
	5.2.2 Events as Regular Instance Members
	5.2.3 Conclusion

	5.3 OO Features of EJava
	5.3.1 Features
	5.3.2 Example

	5.4 Related Work
	5.5 Conclusion

	6 Integrating EBP and AOP
	6.1 Motivation
	6.2 Programming Model
	6.2.1 Unification of Event Handling and Advising
	6.2.2 After Events and Point-in-time Model

	6.3 AOP Support of EJava
	6.3.1 Simple AO Examples
	6.3.2 After Events
	6.3.3 Telecom Example

	6.4 Related Work
	6.5 Conclusion

	7 Integrating AOP and OOP
	7.1 Motivation
	7.2 Programming Model
	7.2.1 Principles
	7.2.2 Advantages

	7.3 EJava Integrating AOP and OOP
	7.3.1 Flexible Asymmetric Aspects
	7.3.2 Symmetric Aspects

	7.4 Related Work
	7.5 Conclusion

	8 Mixins, Implicit Invocation and Stateful Behavior
	8.1 Motivation
	8.2 Extensible State Machines
	8.2.1 Example
	8.2.2 Implementation in Java
	8.2.3 Implementation in CaesarJ
	8.2.4 Comparison

	8.3 The ECaesarJ Language
	8.3.1 Principles
	8.3.2 Pattern-based Implementation of State Machines
	8.3.3 Pattern-based Implementation of Hierarchical State Machines
	8.3.4 Language Support for Stateful Behavior
	8.3.5 Stateful Aspects

	8.4 Related Work
	8.5 Conclusion

	9 Case Study
	9.1 Mini JHotDraw
	9.1.1 Listeners versus Events
	9.1.2 Eliminating Crosscuting Concerns
	9.1.3 Improving Expressiveness

	9.2 The Smart Home Case Study
	9.2.1 Structural Dimension
	9.2.2 Behavioral Dimension

	9.3 Conclusion

	10 Implementation
	10.1 Implementation of EJava
	10.1.1 Principle
	10.1.2 EJava Interpreter
	10.1.3 Generated Infrastructure
	10.1.4 Optimizations

	10.2 Implementation of ECaesarJ
	10.3 Final Remarks

	11 Conclusion
	11.1 Summary
	11.2 Discussion
	11.2.1 Explicit and Implicit Invocation
	11.2.2 Event Types versus OO Events
	11.2.3 Technical Issues

	11.3 Contributions
	11.3.1 Declarative Events
	11.3.2 Unification of Paradigms
	11.3.3 Join-Point Model
	11.3.4 Concrete Implementation and Case Studies
	11.3.5 Experimentation with Applications

	11.4 Perspectives
	11.4.1 General Improvements
	11.4.2 EScala

	Appendixes
	A Résumé
	A.1 Introduction
	A.1.1 La programmation par événements
	A.1.2 Programmation par aspects

	A.2 Problématique
	A.2.1 La PPE et la PPO
	A.2.2 La PPE et la PPA
	A.2.3 La PPA et la PPO

	A.3 Un modèle d'événements déclaratifs et polymorphes
	A.3.1 Motivation
	A.3.2 Événements et gestionnaires propriétés des objets
	A.3.3 Événements impératifs et occurrences d'événements
	A.3.4 Événements déclaratifs
	A.3.5 Gestionnaires d'événements

	A.4 Intégration des paradigmes
	A.4.1 Unification des événements impératifs et des appels de méthode
	A.4.2 Unification de la gestion des événements et de l'action des greffons
	A.4.3 Aspects asymétriques flexibles

	A.5 Conclusion
	A.5.1 Discussion
	A.5.2 Contributions
	A.5.3 Perspectives

	Bibliography

	Back cover

