
FORMAL SPECIFICATION-BASED MONITORING,

REGRESSION TESTING AND ASPECTS

LIANG HUI

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48631453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgement

First and foremost, I would like to express my sincere gratitude and respect to my
supervisor, Dr. DONG Jin Song, for supporting me with guidance, encouragement,
inspiration, patience and everything else I needed as a student throughout my
Ph.D. study. It would not be possible to complete this thesis without his constant
support. Dr. Dong has provided me with lots of technical and professional advice.
This makes working with him a true privilege; and there is no doubt that I will
benefit from his instructions throughout my career.

I owe many thanks to my co-supervisor, Dr. SUN Jing, for his constructive and
supportive feedbacks to the work presented in this thesis, his suggestions on all
aspects of research and his continuous encouragement.

I am indebted to Dr. Roger Duke, Dr. Rudolph E. Seviora and Dr. Dines Bjørner
for many helpful discussions and their insightful feedbacks on the work presented
in this thesis. Their perspectives enlarged my view and helped improve the work.

I am deeply grateful to Dr. Khoo Siau Cheng and Dr. Bimlesh Wadha for the
valuable comments and constructive suggestions for the improvement of this thesis.

I am also grateful to the external examiner and many anonymous reviewers who
have reviewed this thesis and my papers, on which this thesis is based, and provided
valuable feedbacks and comments that have contributed to the clarification and
improvement of many of the ideas presented in this thesis.

I would like to thank all the past and present members of our research group.
Despite the span of research topics that we have been exploring, there have always
been great feedbacks and supports from all of them. I want to thank all the
members in the Software Engineering Lab for providing a nice, friendly and quite
environment.

My gratitude also goes to the National University of Singapore for providing fi-
nancial supports for my Ph.D. study. The School of Computing provided me with
grants for presenting papers in several conferences overseas. For all of these, I am
very grateful.

I would also like to take this opportunity to thank all the administrative and
technical support staffs at the School of Computing. It is only because of them
that everything - from fixing problems with the network connection to organizing
a conference travel - seemed so easy.

A large group of friends have also made an invisible but valuable contribution to
this thesis by being there. The weekly badminton games with some of them raised
the state of my mind and body.

Last but not least, I am sincerely grateful to my family. My parents and younger
brother are always there for me whenever I need encouragements and supports.

Contents

1 Introduction 1

1.1 Motivation and Goals . 1

1.2 Thesis Outline . 6

1.2.1 Chapter 2 . 6

1.2.2 Chapter 3 . 6

1.2.3 Chapter 4 . 7

1.2.4 Chapter 5 . 7

1.2.5 Chapter 6 . 7

1.2.6 Chapter 7 . 8

1.2.7 Chapter 8 . 9

1.3 Publications . 9

i

CONTENTS ii

2 Background and Related Work 11

2.1 Formal Specification Languages . 12

2.1.1 Z . 13

2.1.2 TCOZ . 15

2.2 Software Monitoring . 17

2.3 Regression Testing . 20

2.4 AOSD and Formal Methods . 23

3 Formal Specification-based Software Monitoring 27

3.1 Introduction . 28

3.2 Specification Animation . 30

3.3 Formal Specification-based Software Monitoring 31

3.3.1 Overview of the Technique 32

3.3.2 A Prototype . 33

3.3.3 Technical Challenges . 36

3.4 Discussion . 44

3.4.1 Merits . 44

3.4.2 Limitations . 46

CONTENTS iii

3.4.3 Impacts on Software Testing 47

3.5 Conclusion . 49

4 Monitoring System Case Studies 51

4.1 Introduction . 52

4.2 A Railway Control System . 52

4.3 A Robotic Assembly System . 57

4.4 Conclusion . 64

5 AOP-aided Software Evolution 65

5.1 Introduction . 66

5.2 AOP and AspectJ . 68

5.2.1 AOP . 68

5.2.2 AspectJ . 69

5.3 AOP-aided Software Evolution . 70

5.3.1 Determine Differences . 71

5.3.2 Construct Aspects . 73

5.3.3 Weave Constructed Aspect with Original Class 74

5.4 Monitor Aspect-oriented Programs 75

CONTENTS iv

5.5 A Case Study . 76

5.6 Conclusion . 81

6 Formal Specification-based Regression Test Suite Construction 83

6.1 Introduction . 84

6.2 Classes Specified in TCOZ Notation 86

6.3 Representation for Classes Specified in TCOZ 88

6.3.1 Testchart . 89

6.3.2 Coverage Criteria . 91

6.4 Regression Test Suite Construction 93

6.4.1 Overview of the Technique 94

6.4.2 Modifications to TCOZ Specification 94

6.4.3 Impacts of Modifications on Test Cases 97

6.4.4 Regression Test Selection Algorithm 98

6.4.5 A Case Study . 100

6.5 TCOZ-based Regression Test Suite Construction System 103

6.6 Conclusion . 105

CONTENTS v

7 Formal Specification Notation for AOSD 107

7.1 Introduction . 108

7.2 Overview of a Simple Telephone System 110

7.3 AspecTCOZ - an Extension of TCOZ 112

7.3.1 Join Point . 113

7.3.2 Pointcut . 114

7.3.3 Advice . 118

7.3.4 Inter-type Declaration . 121

7.3.5 Aspect . 123

7.4 Formal Specification-based Aspect Conflict Detection 124

7.5 Conclusion . 127

8 Conclusion 129

8.1 Main Contributions of the Thesis 130

8.2 Future Work Directions . 132

8.2.1 Further Development of Monitoring Technique 132

8.2.2 Formal Methods for AOSD 133

A Specification of Railway Control System in Z Notation 155

CONTENTS vi

B Implementation of Railway Control System in Java 157

C Specification of Robotic Assembly System in Z Notation 159

D Implementation of Robotic Assembly System in Java 163

Summary

With the sound mathematical basis and well-defined semantics and syntax of formal
languages, the formal specification of a software system provides deep insight into
and precise understanding of system requirements. It also provides a powerful basis
for software verification and validation. This thesis explores parts of the potential
of formal specifications in contributing to high quality software.

A formal specification-based software monitoring approach is proposed in this the-
sis. Based on formal specification animation and program debugging, the proposed
software monitoring approach dynamically and continuously checks the confor-
mance of concrete implementations to formal specifications, explicitly recognizes
undesirable behaviors in the target system, and responds appropriately in a timely
manner as the target system runs.

Frequently, the formal specification of a software system has to change according
to the changes of system requirements. Correspondingly, the implementation of
the software system has to be changed in order to keep conformance with the
formal specification. Taking advantage of aspect-oriented programming technique,
we propose an approach for handling the evolution of core classes in object-oriented
programs when the formal specification of a system has changed.

After the software has evolved according to the changes of the formal specification,
regression testing has to be performed to ensure that the changed parts of the
software behave as intended and that the unchanged parts have not been adversely
affected by the modifications. To reduce the cost of regression test and deal with
the conditions that cannot be handled by code-based regression test selection tech-
niques, a formal specification-based regression test suite construction approach is
proposed in this thesis.

Aspect-oriented software development (AOSD) is a new promising methodology.
However, validation techniques for aspect-oriented programs are still far from suf-
ficient. With the expectation that formal methods could be applied to aspect-
oriented programs in the future, we extend the integrated formal notation Timed
Communicating Object-Z (TCOZ) with the mechanisms for formally specifying
those aspect-oriented constructs, providing a starting point for future research work
on the development of formal methods for aspect-oriented software development.

CONTENTS viii

List of Tables

7.1 Formal notations for join point model of AspectJ 114

7.2 Formal notations for pointcut designators of AspectJ 115

ix

LIST OF TABLES x

List of Figures

2.1 Queue in Z notation . 14

2.2 TimedQueue in TCOZ notation . 16

3.1 Formal specification-based software monitoring system 29

3.2 Debugging mode . 34

3.3 Running mode . 35

3.4 Queue in Z notation . 37

3.5 Matching between concrete implementation and formal specification 38

3.6 Class Queue in Java . 40

3.7 Inconformity occurs . 41

3.8 Handle nondeterminism. 43

4.1 Track line signalling . 53

4.2 Monitor a railway control system 55

xi

LIST OF FIGURES xii

4.3 Robotic assembly system . 58

4.4 Monitor a robotic assembly system 62

5.1 Difference determination . 72

5.2 Aspect construction . 73

5.3 TimedQueue in TCOZ notation . 77

5.4 Modified TimedQueue in TCOZ notation 78

5.5 Aspect for ineligible element rule 79

5.6 Monitoring aspect-oriented program 80

5.7 Correct advice . 80

6.1 TimedQueue in TCOZ notation . 90

6.2 Testchart for TimedQueue . 92

6.3 Formal specification-based regression test selection algorithm 99

6.4 Modified TimedQueue . 101

6.5 Testchart for modified TimedQueue 102

6.6 TCOZ-based regression test suite construction system: TcozRts . . 104

7.1 The Connection class . 111

7.2 The Customer class . 112

LIST OF FIGURES xiii

7.3 An after advice . 120

7.4 TimingBilling aspect in AspecTCOZ notation 124

Chapter 1

Introduction

1.1 Motivation and Goals

Nowadays, we are going into a ubiquitous computing world where software per-

meates many aspects of our society, such as transportation, commerce and so on.

Therefore, software quality is becoming critically important to the whole world.

With the sound mathematical basis and well-defined semantics and syntax of for-

mal languages, the formal specification of a software system provides a powerful

basis for software verification and validation. In this thesis, potentials of formal

specifications in contributing to high quality softwares will be explored.

To improve software quality, many researchers have concentrated on the methods of

analysis and validation for software systems, especially for the softwares deployed

in safety critical areas such as avionics and medicine. Lots of progress has been

1

1.1. MOTIVATION AND GOALS 2

achieved in the area of formal verification. However, complete formal verification is

still widely considered to be prohibitively expensive to apply to nontrivial real-life

systems. The growth of software size and complexity always exceeds the advances

in verification technology. Moreover, the results of verification apply to formal

models of these systems, but not to the system implementations. This means that

the reliability and correctness of a particular implementation of a system can not

be assured by the formal verification of the system’s model.

Alternatively, software engineers resort to testing to verify the conformance of im-

plementation with design. Compared with formal verification, testing is a less rig-

orous method for validating the correctness of software systems, but it is feasible to

test large and complex systems in terms of cost. However, testing is usually incom-

petent to provide guarantees about the correctness of a particular implementation

on all possible input sequences. Hampered by the need to independently compute

and verify the expected outputs for each test case, testing is usually conducted

with a reasonable pre-determined subset of all possible input sequences.

Consequently, the correctness of a system can not be guaranteed by the two vali-

dation methods that have been discussed above.

With the capabilities of detecting, diagnosing and recovering from software faults,

software monitoring provides additional defense against software failure. It can be

used as a complement to formal verification and software testing so that higher

reliability of software systems will be achieved.

Therefore, the first goal of this thesis is to propose a formal specification-based

1.1. MOTIVATION AND GOALS 3

software monitoring approach, which can not only dynamically and continuously

monitor the behaviors observed in the target system but also explicitly recognize

undesirable behaviors in the target system with respect to the formal specifications

of the system. With the proposed formal specification-based software monitoring

technique, we aim to provide an approach that can be used as a complementary

technique to formal verification, and can support software testing in effective test

execution and automatically checking whether actual output of the program under

test is equivalent to the expected output.

Oftentimes, the specification of a software system has to be changed because new

requirements emerge or the running environment changes. Whenever the speci-

fication of a software system has changed, the corresponding modifications have

to be made to the implementation. As a promising methodology, aspect-oriented

programming (AOP) [53, 64, 100] provides a model to modify a software system

after it has been released and installed, which greatly eases the maintenance and

evolution of software systems.

The second goal of this thesis is to investigate how AOP techniques can contribute

to the evolution of core classes in a system that is implemented in object-oriented

programming language, when the formal specification of the system has changed.

Furthermore, AOP not only brings a unique set of benefits, but also introduces a set

of challenges, such as new problems with respect to the verification and testing of

systems developed with AOP. By far, validation techniques for aspect-oriented pro-

grams are still far behind expectation. Because the expressive power that aspects

1.1. MOTIVATION AND GOALS 4

unleash heightens the potential for insidious errors, finding cost-effective valida-

tion techniques that address aspect-oriented programs is especially important to

aspect-oriented software development. In order to validate the program resulting

from AOP-aided evolution, we try to extend the formal specification-based mon-

itoring approach that we have proposed so that it can work with aspect-oriented

programs. By doing this, we provide an approach for aspect-oriented program

validation.

After the software has evolved according to the changes of the specification or re-

quirement of the software system, regression testing has to be performed to provide

the confidence that the changed parts of the software system behave as intended

and that the unchanged parts have not been adversely affected by the modifica-

tions. Most of the existing regression test selection techniques [9, 19, 59, 84, 106,

110, 48, 85, 109, 37] are strictly code-based. They select test cases for the regression

testing, from the original test suites, only using the information gathered by code

analysis. Thereby, they cannot deal with the conditions where the specifications

of the software system have been changed, but the code modifications that are

necessary to implement the changed specifications have not been made.

Therefore, the third goal of this thesis is to propose a formal specification-based

regression test suite construction technique, which can serve as a complement to the

existing code-based regression testing selection techniques, so that more effective

and more comprehensive software regression testing can be achieved.

Aspect-oriented software development(AOSD) [33] is an emerging technology that

1.1. MOTIVATION AND GOALS 5

supports the encapsulation and modularization of concerns which crosscut the pri-

mary decomposition of a software system. The research in AOSD has achieved a

lot in the design and implementation of aspect-oriented programming languages.

However, the techniques for validating aspect-oriented programs are still far from

sufficient. Meanwhile, existing formal methods can not be applied to AOSD di-

rectly because new concepts and constructs, such as pointcut, advice, inter-type

declaration and aspect, are introduced to aspect-oriented programs.

With the expectation that the existing formal methods could be extended and

applied to aspect-oriented programs, the fourth goal of this thesis is to extend the

integrated formal notation TCOZ (Timed Communicating Object-Z) [66, 70] with

the mechanisms for formally specifying those aspect-oriented constructs, to provide

a starting point for future research work on the development of formal methods for

aspect-oriented software development.

Meanwhile, in AOP, multiple aspects are allowed to be superimposed on the same

join point. Consequently, undesired or incorrect behavior may emerge due to un-

expected conflicts between aspects. The development of effective mechanisms for

detecting those conflicts between aspects is critical to the maturity of AOP. Fur-

thermore, early detection of those conflicts will make it possible to reduce the

development cost while promising a high quality software system. Therefore, as

part of the fourth goal, we try to propose an approach for the early detection of

conflicts between aspects, based on the formal specification of an aspect-oriented

software system.

1.2. THESIS OUTLINE 6

1.2 Thesis Outline

This section presents an overview of the structure of this thesis.

1.2.1 Chapter 2

Chapter 2 introduces background information on formal specification languages and

software development/maintenance techniques covered by this thesis, and surveys

related work.

1.2.2 Chapter 3

Chapter 3 presents a formal specification-based monitoring technique. In the pro-

posed monitoring technique, the valuable information about expected dynamic

behaviors of the target system is extracted through animating the formal specifi-

cation of the system. Meanwhile, the information about actual dynamic behaviors

of concrete implementations of the target system is obtained through program de-

bugging. Base on the information obtained from both sides, the judgement on the

conformance of the concrete implementation with the formal specification is timely

made while the target system is running.

1.2. THESIS OUTLINE 7

1.2.3 Chapter 4

Chapter 4 demonstrates the application of the formal specification-based monitor-

ing technique proposed in Chapter 3 with case studies.

1.2.4 Chapter 5

Chapter 5 investigates how AOP (aspect-oriented programming) [53, 64] techniques

can contribute to the evolution of core classes in object-oriented programs when

the formal specification of the system has changed. As a result, an AOP-aided soft-

ware evolution approach is proposed. First, the old and new versions of the formal

specification of a software system are compared to identify the differences. Sec-

ond, aspects are constructed to achieve the expected modifications. After weaving

the constructed aspects with original classes, the required evolution will be accom-

plished. Furthermore, the formal specification-based monitoring system presented

in Chapter 3 is extended to validate the modified software resulting from the AOP-

aided evolution.

1.2.5 Chapter 6

Chapter 6 presents a formal specification-based technique for the construction of

regression test suite. The proposed technique addresses the regression test se-

lection problem and test suite augmentation problem for the regression testing of

classes specified in TCOZ notation. It constructs control flow representations for

1.2. THESIS OUTLINE 8

the classes; then compares the original versions of the representation and the speci-

fication with their respective modified version to figure out the modifications made

to the specification; and sequentially uses the information about the modifications

made to the specification to identify the obsolete test cases, to select the test cases

related to the changed specifications from the original test suite, and to guide the

generation of new test cases for regression testing.

1.2.6 Chapter 7

Chapter 7 presents a formal specification notation for aspect-oriented software de-

velopment. The class schema in TCOZ notation is an eligible candidate for specify-

ing an aspect formally because aspect is the unit of modularity, encapsulation, and

abstraction in AOP, just in the same way as class in OOP. Meanwhile, the strength

of TCSP in modeling process control and real-time interactions, which is preserved

in TCOZ, provides a great mechanism for specifying the temporal order between

pointcut and advice. Therefore, we try to extend TCOZ with the mechanisms

for formally specifying the constructs of join point, pointcut, advice, and inter-

type introduction. Consequently, AspecTCOZ, as an aspect-orientated extension

of TCOZ, provides a starting point for future research work on the development of

formal methods for aspect-oriented software development. Furthermore, Chapter

7 presents a formal specification-based approach for the early detection of conflicts

between aspects when multiple aspects are superimposed on the same joint point.

1.3. PUBLICATIONS 9

1.2.7 Chapter 8

Chapter 8 concludes this thesis with a summary of the main contributions and

discussions about future work directions.

1.3 Publications

Most of the work presented in this thesis has been published in the proceedings of

international conferences.

The work on the formal specification-based monitoring (Chapter 3) has been pub-

lished in The 11th IEEE International Conference on Engineering of Complex

Computer Systems (ICECCS’06, August 2006, Stanford University) [62]. The

work on AOP-aided approach for software evolution and application of formal

specification-based monitoring technique to aspect-oriented programs (Chapter 5)

has been published in The Nineteenth International Conference on Software En-

gineering and Knowledge Engineering (SEKE’07, July 2007, Boston) [61]. The

work on formal specification-based regression test suite construction (Chapter 6)

has been published at The 10th IEEE International Conference on Engineering of

Complex Computer Systems (ICECCS’05, June 2005, Shanghai) [60]. The work

on formal specification notation for aspect-oriented software development and the

formal specification-based approach for aspect conflicts detection (Chapter 7) has

been published in The Nineteenth International Conference on Software Engineer-

ing and Knowledge Engineering (SEKE’07, July 2007, Boston) [63].

Chapter 2

Background and Related Work

This chapter presents the background information on the formal specification lan-

guages and software development/maintenance techniques covered by this thesis,

and discusses how our work relates to other research.

11

2.1. FORMAL SPECIFICATION LANGUAGES 12

2.1 Formal Specification Languages

Formal methods are mathematically precise notations, tools, and techniques used

for the development of software systems. The use of formal methods can result

in software systems with fewer faults. The cornerstone of formal methods is the

specification of the software system which is expressed in a mathematically precise

formal notation. The well-defined semantics and syntax of formal specification

languages make it possible for the formal specification to be validated informally

by expert inspection, or formally using tool-assisted theorem proving techniques.

The resulting specification is usually more precise, unambiguous, and complete

than an informal natural-language specification.

Many formal specification languages have been proposed to depict various aspects

of software systems from different perspectives. For example, VDM [13], Z [93],

Object-Z [92], and B [5] are state-oriented formalisms; ACT1 [32], CLEAR [16],

OBJ [34], and Larch [36] are algebraic formalisms and CSP [46]; TCSP [89],

CCS [77], and LOTOS [15] are process-oriented formalisms. Furthermore, the

design of complex systems requires powerful mechanisms for modeling data, state,

communication, and real-time behavior; and the mechanisms for structuring and

decomposing systems as well. Therefore, efforts have been made to develop in-

tegrated formal specification languages, which combine different formalisms to

capture static and dynamic system properties in a highly structured way. The

achievements in this research area include TCOZ(Timed Communicating Object-

Z) [66, 70], SOFL(Structured Object-oriented Formal Language) [65] and so on.

2.1. FORMAL SPECIFICATION LANGUAGES 13

This section introduces the two formal specification languages that will be used in

this dissertation: Z and TCOZ.

2.1.1 Z

The Z specification language has been a widely accepted formal language for spec-

ifying the behaviours of software and hardware systems. Based on set theory and

first order predicate logic, Z is a model oriented specification language. It models

a system by describing its states and the ways in which the states can be changed.

This modeling style makes Z not only a good match to imperative, procedural pro-

gramming languages but also a natural fit to object-oriented programming [49, 93].

Actually, the Z specification language includes two parts: the mathematical lan-

guage and the schema language [112]. The specification written in Z typically

includes a number of state and operation schema definitions. A state schema en-

capsulates variable declarations and related predicates (invariants). The system

state is determined by values taken by variables subject to restrictions imposed by

state invariants. An operation schema defines the relationship between the ‘be-

fore’ and ‘after’ states corresponding to one or more state schemas. The schema

language can be used to structure and compose the formal descriptions of more

complex operations by using schema calculus, such as sequential composition ‘ o
9 ’,

conjunction ‘∧ ’, disjunction ‘∨ ’ implication ‘⇒ ’, negation ‘¬ ’ and pipe ‘>> ’.

Detailed information about the syntax and semantics of Z notation can be found

in [93, 112].

2.1. FORMAL SPECIFICATION LANGUAGES 14

size == 10

Queue
items : seqN

#items ≤ size

InitQueue
Queue ′

items ′ = 〈〉

Enqueue
∆Queue
item? : N

#items < size

items ′ = items a 〈item?〉

Dequeue
∆Queue
item! : N

#items > 0
item! = head items
items ′ = tail items

DupOneinTail
∆Queue
item! : N

#items > 1 ∧ #items < size
item! ∈ ran items ∧ item! 6= head items

items ′ = items a 〈item!〉

Figure 2.1: Queue in Z notation

As an example, the Z specification shown in Figure 3.4 describes a queue which

is a First In First Out(FIFO) queue in nature, but with the addition of the

DupOneinTail operation. The DupOneinTail schema describes an operation that

selects an item, which is not the first element, from the queue randomly and adds

it to the end of the queue. It is obvious that DupOneinTail is a nondeterministic

operation because there will be more one possible results for the execution of it

when there are more than two items in the queue.

2.1. FORMAL SPECIFICATION LANGUAGES 15

2.1.2 TCOZ

Timed Communicating Object-Z (TCOZ) [66, 70] is an integration and extension of

the formal modeling notations: Object-Z [17, 30, 92] and Timed CSP [89, 90]. It is

built on Object-Z’s strengths in modeling complex data and algorithms, and Timed

CSP’s strengths in modeling process control and real-time interactions. The essence

of the integration is the unification of the concepts of type, class, and process and

the unification of Object-Z operation specification schemas with terminating CSP

processes.

Besides, in TCOZ, the CSP channel plays an independent first-class role. This

allows the communications and control topology of a network of objects to be de-

signed orthogonally to their class structure. Complementary to the synchronizing

CSP channel mechanism, two continuous (asynchronous) interface mechanisms:

sensor and actuator, which are inspired by the process control theory, are intro-

duced in TCOZ [69]. The sensor provides a sampling channel linked to a global

analogue variable. The actuator provides a local-variable linked to a global ana-

logue variable. Besides, the syntactic structure of the CSP synchronization op-

erator is convenient only in the case of pipe-line like communication topologies.

Expressing more complex communication topologies generally results in unaccept-

ably complicated expressions. Therefore, a graph-based approach is adopted in

TCOZ to represent the network topology [67]

Consequently, TCOZ provides a timed, multi-threaded object modeling notation

for the design of complex systems. Detailed introduction to TCOZ and its Timed

2.1. FORMAL SPECIFICATION LANGUAGES 16

[MSG] [messages]

TimedQueue

items : seqMSG
in, out : chan
lost : seqMSG actuator
To : N

Init
items = lost = 〈 〉

RecLost
∆(lost)

items 6= 〈 〉 ⇒ lost ′ = 〈head(items)〉alost
items = 〈 〉 ⇒ lost ′ = lost

Add
∆(items)
i? : MSG

items ′ = items a 〈i?〉

Del
∆(items)
i ! : MSG

items 6= 〈 〉 ⇒ items = 〈i !〉aitems ′

items = 〈 〉 ⇒ items ′ = 〈 〉
Join =̂ [i : MSG] • in?i → Add
Leave =̂ [items 6= 〈 〉] • out !head(items) → Del
Main =̂ µQ • (Join 2 Leave) .{To} (RecLost; Del); Q

Figure 2.2: TimedQueue in TCOZ notation

CSP and Object-Z features may be found in [66, 70]. The formal semantics of

TCOZ is documented in [68].

As an example, the TCOZ specification shown in Figure 2.2 describes a class of a

simple timed message queue system. The Timed Message Queue System can receive

a new message (of type [MSG]) through an input channel ‘in’ or remove a message

and send it through an output channel ‘out ’. If there is no interaction within a

certain time ‘To ’, a message will be lost from the current (items) list and stored

in an asynchronous actuator list (lost) so that other objects (un-specified) with

2.2. SOFTWARE MONITORING 17

a sensor ‘lost ’ can read it at any time. The messages in the queue are removed

in first-in-first-out manner. Note that the operations Join, Leave and Main are

defined in terms of CSP processes while the operations Add, Del and RecLost are

defined in form of the operation schemas. The state variables in and out are of

type chan, and they will serve as the channel that connect the queue system and

the environment.

2.2 Software Monitoring

Runtime software monitoring has been used for profiling, performance analysis,

software optimization as well as for the purpose of detection, diagnosis, and re-

covery from software faults. It provides evidence that program behavior complies

or does not comply with specified requirements during program execution. While

other verification techniques, such as testing, model checking, and theorem prov-

ing, aim to ensure universal correctness of programs, the intention of runtime soft-

ware monitoring is to determine whether the current execution preserves specified

properties. Thus, software monitoring can be used to provide additional defense

against catastrophic failure and to support test by exposing state information. The

increasing complexity and ubiquitous nature of software systems and the limitation

and inadequacy of current formal verification and software testing techniques have

inspired renewed interest in the field of software monitoring [27].

Techniques and tools have been proposed for runtime software monitoring for tra-

2.2. SOFTWARE MONITORING 18

ditional softwares. Java PathExplorer (JPaX) [38, 39, 40] is a runtime monitoring

technique developed for sequential and concurrent Java programs. It facilitates

logic-based monitoring and error pattern analysis. Formal requirement specifica-

tions are written in a linear temporal logic or in the algebraic specification language

Maude [23, 22]. JPaX instruments Java byte code to transmit a stream of relevant

events to the observation module that performs two kinds of analysis: logic-based

monitoring (checking events against high-level requirements specification) and error

pattern analysis (searching for low-level programming errors). Maude’s rewriting

engine is used to compare the execution trace to the specifications.

Monitoring and Checking (MaC) [54, 55, 56] provides a framework for runtime

monitoring of real-time systems written in Java. In Mac, a monitoring script is

used to monitor objects and methods; a filter maintains a table that contains names

of monitored variables and address of corresponding objects, acting as an observer

that communicates the information that is to be checked by the runtime monitor.

Monitoring points are inserted automatically since the monitoring script specifies

which information needs to be extracted. The event handler can emit a signal, or

steer the program based on violation of specified conditions and actions which are

provide by the users.

Java with Assertions (Jass) [11] is a general-purpose monitoring approach that

is implemented for sequential, concurrent, and reactive systems written in Java.

A precompiler translates annotations to programs written in Java into pure Java

code. Compliance with the specified annotation is dynamically tested during run-

2.2. SOFTWARE MONITORING 19

time. Assertions extend the design by contract approach that allows specification

of assertions in the form of method pre and postconditions, class invariants, loop

invariants, and additional checkers to be inserted at any part of the program code.

ProTest[88] is an automatic test environment for B specifications. After generating

a set of test cases, ProTest simultaneously performs animation of the B machine

and the execution of the corresponding implementation in Java, and assigns ver-

dicts on the test results. This is kind of similar to our formal specification-based

monitoring technique. However, in ProTest, the relevant and important informa-

tion of specifications and implementations are extracted through invoking their

respective probing operations which perform queries on the state variables. The

probing operations at the abstract level as well as at the concrete level have nothing

to do with the functionalities of the system, and they only extract out important

state aspects by querying the system state. The probing operations are actually

instrumentations to both specifications and implementations.

The formal specification-based monitoring technique proposed in this thesis gets

required information about dynamic behaviors of the formal specification and con-

crete implementation of the target system through animating and debugging re-

spectively, rather than by embedding any instrumentation code into the target

system or by annotating the concrete implementation with extra formal specifica-

tions. Consequently, our formal specification-based runtime monitoring technique

will not alter the running environment and the dynamic behaviours of the target

system which is being monitored. Moreover, our monitoring technique realizes the

2.3. REGRESSION TESTING 20

clear separation between the implementation-dependent description of monitored

object and the highly abstract formal specification of it, which allows the reuse of

the formal requirement specification when changes happen to the implementation

of the target system.

2.3 Regression Testing

Regression testing is the process of validating modified software to provide con-

fidence that the changed parts of the software behave as intended and that the

unchanged parts of the software have not been adversely affected by the modifica-

tions [37]. It is an important and expensive software maintenance activity.

Typically, the regression test proceeds as follows [35], where P is a program, P′ is

a modified version of P, and T is a test suite for P.

1. Select T′ ⊆ T, a set of test cases to execute on P′.

2. Test P′ with T′, establishing the correctness of P′ with respect to T′.

3. If necessary, create T′′, a set of new functional or structural test cases for P′.

4. Test P′ with T′′, establishing the correctness of P′ with respect to T′′.

5. Create T′′′, a new test suite and test execution profile for P′, from T, T′, and

T′′.

2.3. REGRESSION TESTING 21

The process of regression testing involves a few problems: namely, regression test

selection (step 1), test suite augmentation (step 3), test suite execution (steps 2

and 4) and test suite maintenance (step 5).

One characteristic that distinguishes regression testing from development testing is

the availability of existing test suite that was used to test the original version of the

system. Reusing the existing test suite can reduce the cost and effort required by

regression testing. However, rerunning all of the test cases in the existing test suite

may take pretty high cost because the original test suite could be large, and the time

and effort required to rerun all the test cases may be excessive. Moreover, some

of the test cases in the existing test suite may be obsolete to the modified version

of the system and cannot be used for regression testing. Consequently, during the

process of regression testing, the foremost problem which needs to be addressed is

the regression test selection problem [37], i.e., to restrict testing efforts to a subset

of the existing test suite. A solution to this problem is to apply regression test

selection techniques to select a proper subset of the test suite for regression testing.

A safe regression test selection technique is one that, under certain assumption,

selects every test case from the original test suite that can expose faults in the

modified program [83].

To date, several safe regression test selection techniques have been developed for

retesting software developed with procedural programming languages or object-

oriented programming languages [9, 19, 59, 84, 106, 110, 48, 85, 109, 37]. Rothermel

et al. [85] presented a regression test selection technique for C++ software. The

2.3. REGRESSION TESTING 22

technique constructs control flow representations for classes and programs that use

classes and handles both structural and nonstructural modifications and processes

multiple modifications with a single application of the algorithm. Rothermel and

Harrold also had presented a regression test selection for C++ software based on

walks of program dependence graphs in [82]. This technique is more efficient than

which is presented in [82]. Harrod et al. [37] presented the first safe regression

test selection technique that handles the features of Java language. Compared to

Rothermel, Harrold and Dedhia’s technique for C++ [85] and White and Abdul-

lah’s firewall technique [109], the technique presented in [37] is more precise, can

be applied to incomplete programs, handles exception-handling constructs, and

provides a new method for handling polymorphism. Wong et al. [111] proposed

a technique that combines modification, minimization and prioritization-based se-

lection using a list of source code changes and the execution traces from test cases

run on previous versions. This technique seeks to identify a representative subset

of all test cases that may result in different output behavior on the new software

version.

These existing techniques are code based. They select test cases for the regression

testing, from the original test suites, using the information gathered by code anal-

ysis. The main difference between our formal specification-based approach and

those existing techniques is that our approach is strictly specification-based and

independent of the programming language that is used to implement the specifica-

tion. Therefore, it is capable of selecting test cases for the detection of faults caused

2.4. AOSD AND FORMAL METHODS 23

by the conditions where the specifications for the software have been changed, but

the code modifications necessary to implement the changed specifications have not

been made.

2.4 AOSD and Formal Methods

Aspect-oriented software development(AOSD) is a promising technology that sup-

ports multi-dimensional separation of concerns throughout the software develop-

ment cycle [33, 50, 100].

As software systems become increasingly large, complex and distributed, tradi-

tional development techniques cannot effectively modularize the global concerns

of the systems, such as synchronization, distribution, security, coordination and

persistence. These concerns normally cut across several parts of the systems, and

often overlap. AOSD addresses the crosscutting concerns by providing means for

systematic identification, separation, representation and composition. Crosscut-

ting concerns are encapsulated in separate modules, known as aspects, so that

localization can be promoted. The main benefit of AOSD is that it improves sys-

tem modularization, by reducing scattered and tangled code, avoiding the typical

mixing between functional and extra-functional properties, enabling a better code

evolution management. This results in the remarkable reduction of development,

maintenance and evolution costs.

A few methodologies for aspect-oriented requirement analysis, architecture de-

2.4. AOSD AND FORMAL METHODS 24

sign, and graphical visualizations have been proposed [10, 86, 94, 113]. Theme

approach [10] provides support for aspect-oriented development at requirement

level and design level. Theme/Doc provides views of requirements specification

text, exposing the relationship between behaviors in a system at requirement level.

Theme/UML allows a developer to model features and aspects of a system, and

specify how they should be combined at the design level. Interaction diagram-based

Join Point Designation Diagrams (JPDDs) [95] have been proposed as a modeling

approach especially dedicated to the graphical representation of join point selec-

tions. In particular, the notation provides graphical means to visualize joint point

queries based on the lexical properties of program elements as well as based on the

dynamic and structural context they occur in. However, comprehensive technique

supports for modeling and design are still far from sufficient, and more improve-

ments are in demand.

Among the efforts aiming to provide a suitable design notation for the design of

aspect-oriented programs, most of them are proposals to extend UML to present

graphical notations. The first proposal to extend the UML with concepts for the

design of aspect-oriented programs comes from Suzuki and Yamamoto [98]. In

their approach, a new UML meta-class named “aspect” is introduced, which is

related to base classes using a UML realization relationship. Clarke et al. [20, 21]

extended the UML with a new design concept - composition patterns. Composition

patterns are UML templates for UML packages which are bound to actual classes

and operations by means of a special binding compositional relationship. Stein

2.4. AOSD AND FORMAL METHODS 25

et al. [94] presented aspect-oriented design model (AODM), which extends the

UML with the aspect-oriented design concepts as they are specified in AspectJ.

It provides suitable representations for all components of an aspect as well as for

the aspect by extending existing UML concepts using UML’s standard extension

mechanisms. It also implements AspectJ’s weaving mechanism in the UML and

specifies a new relationship signifying the crosscutting effects of aspects on their

base classes.

Some researchers also have tried to extend mathematics and/or logic based formal

specification notations to support aspect-oriented program design and verification.

Ubayashi and Nakajima [104] employed the feature-oriented modeling method and

the VDM-based formal design with the notion of the aspect and proposed As-

pectVDM. AspectVDM is aspect-oriented extension to VDM, following the idea

of Join Point Model in AspectJ. Zhao and Rinard [116] proposed Pipa, which is

a behavioral interface specification language tailored to AspectJ. As a simple and

practical extension to the Java Modeling Language(JML), Pipa uses the same basic

approach as JML to specify AspectJ classes and interfaces, and extends JML to

specify AspectJ aspects with a few new constructs. The work most close to ours is

what have been proposed by Yu et al.. They proposed AspectZ [115], an aspect-

oriented extension to Z. In a similar way, Yu et al. [114] introduced the concept

of join point, pointcut, advice and aspect to Object-Z. AspecTCOZ, the formal

specification notation proposed by us, is different from the work by Yu et al. in

two main ways. Firstly, in AspecTCOZ, advice is defined with the assistance of

2.4. AOSD AND FORMAL METHODS 26

operation schema, which provides the system designers with the ability to abstract

and encapsulate the description of what to do at the join point, and the ability to

reuse this formal description. Secondly, with the strength of TCSP in modeling

process control and real-time interactions, which is preserved in TCOZ, the tem-

poral order between pointcut and advice can be described clearly and concisely in

AspecTCOZ notation.

Chapter 3

Formal Specification-based

Software Monitoring

In this chapter, a formal specification-based software monitoring technique is pre-

sented.

27

3.1. INTRODUCTION 28

3.1 Introduction

Software monitoring technique analyzes and determines whether the observed soft-

ware behavior complies with specified requirements. With the capabilities of detect-

ing, diagnosing and recovering from software faults, it provides additional defense

against catastrophic software failure.

Recently, there has been increasing attention from the research community to the

development of techniques and tools for runtime monitoring of traditional soft-

wares [11, 40, 56]. In order to monitor software system, some of the existing

monitoring techniques add instrumentation codes to the target program to collect

required data about dynamic behaviors of the target program while it is running.

Others achieve monitoring by annotating the concrete implementation with ex-

tra formal specifications to obtain required dynamic information about the target

program.

There are a few disadvantages in adding instrumentation codes to target program

and annotating target program with extra formal specifications. Adding instrumen-

tation code is itself a difficult task involving all the complexities of programming.

Moreover, it generally leads to changes in the program; it raises the possibility that

through collecting information to analyze target system behavior, the monitoring

system is actually altering that behavior of the target system. Annotating the

concrete implementation with extra formal specifications leads to the lack of sep-

aration between the concrete implementation of target systems and the high-level

3.1. INTRODUCTION 29

requirements specification of them.

Formal

Specification

Inconformity
report

&

User’s decision

Execution
sequences

Specification-based Monitoring

Specification
Animator

Debugging

Module

Concrete
Implementation

Analyzer

Module

Controller

Module

Monitoring

Module

Figure 3.1: Formal specification-based software monitoring system

In this chapter, we propose a novel formal specification-based software monitoring

technique. The key idea of our approach is to build a linking system (monitor-

ing module) which connects a specification animator and a program debugger. As

shown in Figure 3.1, in our specification-based monitoring approach, a specification

animator is used to exhibit the dynamic behavioural properties of the formal speci-

fication; a debugger is used to extract the information about the dynamic behavior

of the concrete implementation. The monitoring module controls the specification

animator and the debugging module so that the concrete implementation will run

in parallel with the animation of the formal specification. Meanwhile, based on the

information obtained from the specification animator and the debugging module,

the monitoring module will dynamically check the conformance of the concrete

implementation with the formal specification.

3.2. SPECIFICATION ANIMATION 30

The proposed formal specification-based software monitoring technique does not

embed any instrumentation codes to the target system, neither does it annotate

the target system with any formal specifications. It can detect errors in a timely

manner, prevent the errors from propagating, and help the developers and users

of the system to take recovery actions before critical failure happens. With the

ability of continuously monitoring and checking a running system with respect to

its formal specification, the software monitoring technique is a good candidate to be

used as a complementary technique to traditional formal verification and software

testing.

The remainder of this chapter is organized as follows. Section 3.2 introduces specifi-

cation animation. Section 3.3 presents an overview of the formal specification-based

software monitoring technique; describes a prototype that we have developed for

demonstrating the software monitoring technique; and discusses a few technical

challenges that we have encountered in the development of the prototype. Section

3.4 analyzes the merits and limitations of the formal specification-based monitoring

technique and discusses the impacts of it on traditional software testing. Finally,

section 3.5 concludes this chapter.

3.2 Specification Animation

Specification animation exhibits the dynamic behaviourial properties of formal

specification. It not only gives the specification designers a way to test whether

3.3. FORMAL SPECIFICATION-BASED SOFTWARE MONITORING 31

their specifications behave as expected, but also validates the behavior of formal

specifications with the end users. The specification animation technique has been

used to assist systematic validation of formal specifications [75, 76].

In the last decade, several animation tools have been developed for executing and

interpreting formal specifications automatically. For example, PiZA [43] is an an-

imator for Z, and Possum [41, 42] is an animator for Z and Z-like specification

language.

The animation tool used in our prototype monitoring system is Jaza [105]. It is an

animator for Z, which has a strong support for quantifiers and various less-often-

used Z constructors(such as µ, λ, θ terms). It provides more efficient and convenient

evaluation of schemas on ground data values; and it has the ability to search for

example solutions of a schema or predicate. Jaza supports at least twelve different

representations of set. And this makes it more advanced in its execution than other

animators for Z. Moreover, Jaza can handle not only unpredictable performance

characteristics but also nondeterministic schemas.

3.3 Formal Specification-based Software Monitor-

ing

This section presents the formal specification-based software monitoring technique

that we have proposed. Section 3.3.1 presents an overview of the proposed monitor-

ing technique. Section 3.3.2 describes a prototype monitoring system that we have

3.3. FORMAL SPECIFICATION-BASED SOFTWARE MONITORING 32

developed for demonstrating the technique. Section 3.3.3 discusses a few technical

challenges that we have encountered in the development of the prototype and the

ways that we have surmounted them.

3.3.1 Overview of the Technique

Given the concrete implementation and the formal specification of a system, our

formal specification-based monitoring technique will dynamically check the confor-

mance of the concrete implementation with the formal specification.

The overview picture of the monitoring technique has been shown in Figure 3.1.

With the specification animator, our specification-based monitoring technique gets

the information about the dynamic behavioural properties of the formal specifica-

tion through specification animation; and with the debugging module, the infor-

mation about the dynamic behavior of the concrete implementation is gathered

through program debugging. Taking the execution sequences provided by the user

as input, the monitoring module controls the specification animator and debugging

module so that the concrete implementation will run in parallel with the animation

of the formal specification. Meanwhile, based on the information obtained from

the specification animator and debugging module, the monitoring module provides

judgement on the conformance of the concrete implementation with the formal

specification. If any inconformity is found, it will be reported to the user. With

the inconformity report, the user needs to make a decision about how to deal with

such an inconformity. Then, the monitoring system will continue its work according

3.3. FORMAL SPECIFICATION-BASED SOFTWARE MONITORING 33

to user’s decision.

In our monitoring technique, the monitoring module functions as an external ob-

server of the target system. Moreover, the monitoring module is designed to mon-

itor the target system and respond in a timely manner while the target system is

running. This means that our monitoring technique not only gathers information,

but also dynamically interprets the gathered information and responds appropri-

ately.

3.3.2 A Prototype

To demonstrate our formal specification-based monitoring technique, we have im-

plemented a prototype monitoring system. The prototype monitoring system works

with the formal specification written in the Z formal language and the concrete

implementation programmed in Java programming language. In our monitoring

system, the animator used for animating the formal specification is Jaza [105], the

debugger used for extracting required information from the execution of Java pro-

gram is jdb [3]. jdb is the debugger supplied by Sun in the Java Developer’s Kit

(JDK); and it is implemented using the Java Debugger API.

The monitoring system can work in two different modes: debugging mode and run-

ning mode. After the formal specification and concrete implementation have been

loaded to the monitoring system, the system will extract the operations and state

variables defined in the formal specification, and the methods and class variables

3.3. FORMAL SPECIFICATION-BASED SOFTWARE MONITORING 34

defined in concrete implementation. With the assistance from users, the moni-

toring system will match the operations defined in the formal specification with

corresponding methods defined in the concrete implementation; and it will also

perform similar matching for the state variables and corresponding class variables.

Then, the user needs to decide whether the monitoring system will work in the

debugging mode or the running mode.

Figure 3.2: Debugging mode

In the debugging mode, as shown in Figure 3.2, after matching the operations/state

variables in specification with methods/class variables in implementation, the user

inputs all of the methods which are expected to be executed into the monitoring

system as a whole sequence; and the system will automatically generate the se-

quence of corresponding running commands for the animator. Then, the system

starts the dynamic checking of the conformance between behavior of the concrete

implementation and the behavior of the formal specification animation . In the de-

bugging mode, our specification-based monitoring system can serve as an effective

3.3. FORMAL SPECIFICATION-BASED SOFTWARE MONITORING 35

dynamic test execution and test result checking tool.

Figure 3.3: Running mode

In the running mode, as shown in Figure 3.3, after matching the operations/state

variables in the specification with the methods/class variables in the implementa-

tion, the user manipulates the monitoring system by indicating the methods to be

executed and inputting parameters (if necessary) in a one-by-one way rather than

inputs all of the methods which are expected to be executed into the monitoring

system as a whole sequence, as in the debugging mode. The commands for exe-

cuting corresponding operations will be automatically generated for the animator.

The monitoring system will then check the running result of the implementation ex-

ecution with the corresponding specification animation result to figure out whether

there is an inconformity.

In the running mode, the user indicates what will be executed next in a step-by-step

way. Thus, the system can achieve the on-the-flying monitoring of concrete imple-

3.3. FORMAL SPECIFICATION-BASED SOFTWARE MONITORING 36

mentations against formal specifications. In the running mode, the user guided

execution sequence selection can be easily adapted to connect to a runtime execu-

tion system to achieve the monitoring of reactive safety-critical systems.

3.3.3 Technical Challenges

Matching of structural elements between concrete implementation and

formal specification

There exist structural and semantic gaps between formal specification and program-

ming languages. On the one hand, the formal specification of a software/hardware

system usually describes the system at a high level of abstraction with a formal

language. Generally, the formal specification is very expressive and includes many

rich abstract data types. Those abstract date types have no data representation

specified, and the implementations of their operations are also kept abstract [87].

On the other hand, to implement the specification, those abstract data types must

be implemented by the existing data types in the programming language. There

may be various potential concrete representations in the implementation for a cer-

tain abstract data type in the specification. We take the queue that we have

introduced in Chapter 2 as an example. In the specification of the queue which

is redisplayed in Figure 3.4, the type of state variable items is sequence. Suppose

the programming language we use to implement the queue is Java, we may use the

java.util.Vector classes to implement the abstract data type sequence. And, al-

ternatively, we can also use ArrayList to achieve the implementation successfully.

3.3. FORMAL SPECIFICATION-BASED SOFTWARE MONITORING 37

size == 10

Queue
items : seqN

#items ≤ size

InitQueue
Queue ′

items ′ = 〈〉

Enqueue
∆Queue
item? : N

#items < size

items ′ = items a 〈item?〉

Dequeue
∆Queue
item! : N

#items > 0
item! = head items
items ′ = tail items

DupOneinTail
∆Queue
item! : N

#items > 1 ∧ #items < size
item! ∈ ran items ∧ item! 6= head items

items ′ = items a 〈item!〉

Figure 3.4: Queue in Z notation

Therefore, to check whether the concrete implementation is conformable with the

formal specification, the first thing that needs to be done is to match the vari-

ables, data types and operations in formal specifications with their corresponding

counterparts in concrete implementations. This matching must take into account

differences in the level of abstraction in the formal specification language and pro-

gramming language, because formal specifications do not address many of the de-

tails addressed by the implementation. As shown in Figure 3.5, our monitoring

3.3. FORMAL SPECIFICATION-BASED SOFTWARE MONITORING 38

Figure 3.5: Matching between concrete implementation and formal specification

system automatically extracts the operations and state variables defined in the

formal specifications, and the methods and class variables defined in concrete im-

plementations. For any operation or state variable appointed by the user, the

system lists all the possible matching candidates for it. For operations, the match-

ing candidate methods are selected in terms of signatures (i.e., number and type

of parameters) of methods and operations. For state variables, the matching can-

didate class variables are selected in terms of the types of the state variables and

class variables. In this way, the system reduces remarkably the effort required for

the user to find the right matches. Thus, the users can finish the matching based

on their knowledge of both formal specification and the concrete implementation

more efficiently.

3.3. FORMAL SPECIFICATION-BASED SOFTWARE MONITORING 39

Inconformity of concrete implementations to formal specifications

If the concrete implementation is not conformable with the formal specification,

the monitoring system will detect and report such an inconformity. What should

the monitoring system do after an inconformity has been revealed? If we let the

animator keep running, all of the subsequent judgement will apparently be inaccu-

rate due to the carry-over of inconformity from the previous execution. Therefore,

we propose two choices to the user. The first choice is to stop the monitoring

process whenever an inconformity is detected, and let the user to fix the problem

in the implementation. However, this choice will reduce the effectiveness of the

system as only one inconformity can be found at one execution round. The second

choice is to reinitialize the animator with the corresponding execution result from

the implementation to keep the animation and the implementation in the same

state before the next operation/method is executed. This choice is based on the

assumption that the execute result of the implementation is correct.

For example, the Java code shown in Figure 3.6 is supposed to implement the queue

which is specified by the Z specification displayed in Figure 3.4. After loading the

specification and implementation to the monitoring system and finishing necessary

matching between the specification and the implementation, we start the moni-

toring process. As shown in Figure 3.7 , after the execution of the operation of

deleting an item from the queue, the monitoring reports an inconformity and points

out that the operation Dequeue is not implemented correctly. When we checked the

Java code, we found that the method deQueue actually deletes the last item from

3.3. FORMAL SPECIFICATION-BASED SOFTWARE MONITORING 40

class Queue {

private Vector queue;

Queue (){queue = new Vector();}

public void enQueue (Object item) {

queue.addElement(item); }

public Object deQueue () {

Object obj = null; int last;

if (! queue.isEmpty()) {

obj = queue.lastElement();

last = queue.size();

queue.removeElementAt(last-1);

} return obj;

}

public Object dupOneinTail() {

int n, i; Object obj = null;

n = queue.size();

if(n>1){

i = (int)(n*Math.random());

obj = queue.elementAt(i);

queue.addElement(obj);

} return obj;

}

}

Figure 3.6: Class Queue in Java

the queue, while the specification demands that the operation Dequeue delete the

first item from the queue. When the monitoring system reports an inconformity,

it provides the two choices:(1) stop monitoring, (2) reinitialize the animator with

the corresponding execution result from the implementation, as shown in Figure

3.7. If we choose to reinitialize the animator, the state variable items will be set

to 〈6, 7, 8, 9, 10〉 before the next operation is executed and the monitoring system

can continue working. Alternatively, we can choose to stop monitoring, and fix the

problem in the implementation.

3.3. FORMAL SPECIFICATION-BASED SOFTWARE MONITORING 41

Figure 3.7: Inconformity occurs

Nondeterministic operations in the formal specification

An issue that complicates the matter is specification nondeterminism, i.e., the spec-

ification may involve the definition of nondeterministic operations, the execution

of which may lead to more than one possible results. When encountering a non-

deterministic operation in the specification, the animator will present a legal but

stochastic result.

However, the implementation is always deterministic. It may present a result that

is legal to the specification but different from that of the animator. If the monitor

only performs simple comparison of the two results, it will definitely make a wrong

judgement. Therefore, how to make the monitoring system judge correctly in a

nondeterministic situation is one of the major challenges of the formal specification-

based monitoring technique. A possible solution for handling such nondeterminism

3.3. FORMAL SPECIFICATION-BASED SOFTWARE MONITORING 42

is to make the animator present all the possible legal results and let the monitoring

system take all of them into consideration when comparing the results between

the implementation and the specification to avoid misjudgement. However, this

approach may be time consuming and may considerably increase space complexity

when the number of possible results is large.

Our specification-based monitoring system provides a mechanism for the user to

indicate whether the operation is deterministic or nondeterministic when matching

an operation in the specification with a method in the implementation. When a

nondeterministic operation is encountered in the process of monitoring, the speci-

fication animator will be demanded to present one possible result at a time. The

monitoring module compares the result from specification animation with the cor-

responding result from implementation execution. If they are conformable, the

monitoring system will decide that the implementation of this operation is cor-

rect. If not, the specification animator will continue to present another different

possible result, the monitoring system will perform another comparison, and the

monitoring system will repeat the above process till the results from both sides are

conformable or all of the possible animation results are presented. In the latter

case, where the result from implementation is not conformable with any of the

possible results from the animator, the system will make the judgement that the

operation is not implemented correctly with respect to the formal specification.

In the Z specification of a queue shown in Figure 3.4, there is a nondeterministic

operation – DupOneinTail . Based on the semantics of the Z formal language, we

3.3. FORMAL SPECIFICATION-BASED SOFTWARE MONITORING 43

Figure 3.8: Handle nondeterminism.

can figure out that there would be more than one possible results for a single exe-

cution of the operation DupOneinTail . In Figure 3.8, it can be seen that method

dupOneinTail, which is supposed to implement the operation DupOneinTail , ap-

pears twice in the execution sequence. When it is executed for the first time,

it selects “9”, which is the fourth element of the queue, and attaches it to the

tail of the queue. This is feasible according to the formal specification and the

specification animator certainly finds a corresponding result that matches it. The

monitoring system will not report any inconformity. It only changes the color of the

result in the window to indicate that the operation DupOneinTail is nondetermin-

istic. However, when the method dupOneinTail is executed for the second time, it

selects “6”, which is the head of the queue, and attaches it to the tail of the queue.

This is infeasible according to the formal specification. The specification animator

exhausts all the possible legal results and could not find a match. Therefore, the

3.4. DISCUSSION 44

monitoring system concludes an inconformity at this time, and reports it to the

user.

By examining the original implementation displayed in Figure 3.6, we find that

the inconformity is indeed caused by the dupOneinTail method which does not

implement one of the preconditions (i.e., the selected item cannot be the head of

the queue) in the specification.

3.4 Discussion

The proposed formal specification-based software monitoring technique aims at

providing a feasible and affordable approach for the improvement of software relia-

bility and quality. It provides assurance that the target system is running correctly

with respect to its formal specification by checking the correctness of the execution

of the target program at runtime. Now, we analyze the merits and limitations of

it and discuss the impacts of it on software testing.

3.4.1 Merits

The formal specification-based monitoring technique proposed in this chapter gets

required information about dynamic behaviors of the formal specification and con-

crete implementation of the target system through specification animating and

program debugging respectively. It does not embed any instrumentation code into

the target system, therefore, it will not alter the running environment and the

3.4. DISCUSSION 45

dynamic behaviors of the target system which is being monitored. Meanwhile, it

does not annotate the concrete implementation with any extra formal specifications

neither. Consequently, it allows the reuse of a highly abstract formal requirement

specification when changes happen to the implementation the target system.

Furthermore, the formal specification-based monitoring technique always monitors

the current state of the system, continuously checks the conformance of implemen-

tation with formal specification and reports any detected inconformity immediately

whenever any failures happen. Therefore, by ensuring that the current execution

is conformable with its requirements at runtime, formal specification-based mon-

itoring can provide the developers and users with much higher confidence in the

software than traditional testing. Besides, although the formal specification-based

monitoring technique is weaker than formal verification in terms of the ability to

guarantee software correctness, it provides a dynamic verification technique by

checking that the actual execution of a system is conformable with the expecta-

tion described by the formal specifications. Rather than checking that the design

model of the system satisfies some properties, as formal verification does, the formal

specification-based monitoring checks that the results of particular computations

when the system is executed are correct with respect to the formal specification.

Thus, formal specification-based monitoring escapes from the state-space explosion

problem that limits the scalability of formal verification techniques. Therefore, the

formal specification-based monitoring technique can serve as a complement to tra-

ditional testing and formal verification techniques in software quality assurance.

3.4. DISCUSSION 46

3.4.2 Limitations

The limitation of the proposed formal specification-based monitoring approach is

often related to the capabilities of the specification animator. It is very likely that

some aspects of the formal specification can not be simulated by the animator. For

example, Jaza, the animator that we used, does not support the type of bag and

generic constructs in Z notation. It can not handle user-defined infix/prefix/postfix

functions or relations neither.

There are also limitations resulting from the manner in which specifications are

expressed. State-based specification languages such as Z and VDM do not allow the

developer to easily express temporal and concurrent properties of a system, while

process-oriented specification languages such as CSP and CCS are generally poor

at expressing the structure and state of a system. So far, we focus on working with

state-based specification languages. In the future, the formal specification-based

monitoring system that we have developed will be extended to verify temporal and

concurrent aspects of software systems.

Furthermore, the description granularity of the formal specification languages de-

termines the granularity of inconformity detection that the proposed formal specification-

based approach can achieve. For example, the Z specification language specifies a

system by describing its state and the way in which the states can be changed. The

formal specification of a system in Z notation consists of a sequence of state schema

and operation schemas. Therefore, the monitoring system which works with speci-

fications in Z notation can only detect which operation schema in the specification

3.4. DISCUSSION 47

is not implemented as expected, but can not determine which predicate in the

specification is violated. Moreover, there are syntactic and semantic gaps between

specification and programming languages. Usually, implementations address much

more details than formal specifications do. Consequently, the proposed monitoring

approach can detect which method in the program is not implemented correctly

with respect to the corresponding operation schema in the formal specification,

but can not precisely locate the particular statement in the implementation that

contains the error.

Additionally, some kinds of properties of a system can not be verified at runtime

with the proposed monitoring approach. For example, safety properties which state

that something bad will never happen can not be verified for infinite state systems

because the monitoring system can only check finite state traces.

3.4.3 Impacts on Software Testing

Software monitoring has some appealingly positive impacts on traditional software

testing. Software testing activities typically include four main steps: generating

testing inputs, creating expected outputs, running software with test inputs, and

verifying actual outputs. To reduce the burden of manually creating test inputs,

some test input generation tools [4, 2, 24] are used to generate test inputs auto-

matically. However, the expected outputs for these test inputs are still missing,

and it is almost infeasible for developers to create expected outputs for the large

number of generated test inputs. Even if developers are willing to invest efforts in

3.4. DISCUSSION 48

generating expected outputs, it is expensive to maintain these expected outputs

since some of the expected outputs need to be updated whenever the program is

changed [51, 73].

Without the expected outputs available, it is often expensive and prone to error for

developers to manually verify the actual outputs and it is limited in exploiting the

automatically generated test inputs by only checking whether the program crashes

or throws uncaught exceptions. Although, in regression testing, the actual outputs

of a new version can be compared with the actual outputs of its previous version,

behavioral differences between the two versions might not be propagated to the

observable outputs that are compared between versions.

On all accounts, traditional software testing is hampered by the need to indepen-

dently compute and verify the expected outputs for each test case.

By assisting traditional software testing with runtime monitoring, there is no need

to compute expected outputs before test executions or verify the actual outputs

after test executions because, with specific inputs, the monitor system will make

a judgement on the correctness of the actual outputs based on the results from

the animation of formal specifications. Furthermore, the reinitialization mecha-

nism, which is designed to handle the situation where an inconformity is detected,

enables continuous testing in which the system can keep running until the test

input sequence ends rather than stops when an error is detected. Consequently,

the formal specification-based runtime monitoring technique has the potential of

greatly reducing the cost of testing and significantly increasing the effectiveness

3.5. CONCLUSION 49

of testing. The reason is that, with the assistance of runtime monitoring system,

testing is no longer limited to small sets of test inputs, to which expected outputs

are available, and can detect more than one error with a test input sequence and

one round execution of the system which is under test.

3.5 Conclusion

This chapter presents a formal specification-based software monitoring technique.

With the formal specification and concrete implementation of the target system,

our specification-based monitoring technique uses a specification animator to ex-

hibit the dynamic behavior of the formal specification, uses a program debugger

to extract required information about the dynamic behavior of the concrete imple-

mentation, and checks the conformance of the concrete implementation with the

formal specification, based on the information from the animator and the debugger.

Our monitoring technique gets required information about dynamic behaviors of

the formal specification and concrete implementation of the target system through

animating and debugging respectively, rather than by embedding any instrumen-

tation code into the target system or by annotating the concrete implementation

with extra formal specifications. Consequently, our formal specification-based run-

time monitoring technique will not alter the running environment and the dynamic

behaviors of the target system which is being monitored. Moreover, our monitor-

ing technique realizes the clear separation between the implementation-dependent

3.5. CONCLUSION 50

description of monitored object and the highly abstract formal specification of it,

which allows the reuse of the formal requirement specification when changes happen

to the target program.

Moreover, as an runtime monitoring technique, our formal specification-based mon-

itoring technique dynamically gathers required information, interprets the gathered

information and responds appropriately in a timely manner as the target system

runs. Therefore, it is competent for monitoring reactive safety-critical systems.

To sum up, our formal specification-based monitoring technique can contribute to

the dependability, correctness and robustness of the target system; and it also can

contribute to effective dynamic test execution and test result checking.

Chapter 4

Monitoring System Case Studies

In this chapter, the application of the formal specification-based software monitor-

ing technique is demonstrated with case studies.

51

4.1. INTRODUCTION 52

4.1 Introduction

In this chapter, we first demonstrate the application of our specification-based

monitoring technique with the railway track line automatic blocking scheme [14] of

a railway control system. Due to the inherent characteristics of a reactive safety-

critical system, it should be monitored by an independent monitoring system which

can make quick and precise determination whether the observed behaviours are

acceptable or not. We will illustrate that our monitoring system satisfies the above

requirement, and can be applied to ensure the continuous correct behaviours of a

reactive safety-critical system.

Furthermore, we also demonstrate the application of our specification-based moni-

toring technique with the verification of a robotic assembly system which has been

studied in [6, 7, 28] and extended to be used for the assembly of spacecrafts in

outer space during NASA’s ANTS mission [25, 26, 44].

4.2 A Railway Control System

In the railway system, in order to avoid that the trains which run in the same

direction on the same track crash into one another “from behind”, the track is

divided into segments with visible signals at the segment connections. The trains

may pass a signal if there are no trains in the approaching segment (signal is set to

green), or if it is some while ago that a previous train passed the segment (signal is

then set to yellow). Otherwise, if the approaching segment is occupied by another

4.2. A RAILWAY CONTROL SYSTEM 53

train, the current train is blocked as the signal is set to red.

Station X Station Y
sigYX 1

S
1

sigYX
i-1

sigXY
i-1

sigYX
i

sigXY
i

sigYX
i+1

sigXY
i+1

sigXY
n

S
i-1

S
i

S
i+1

S
n

Figure 4.1: Track line signalling

As shown in Figure 4.1, line l which connects exactly two stations: station X and

station Y, is usually divided into segments l = 〈s1, s2, ..., si−1, si , si+1, ..., sn〉. A line

l can be in one of three possible states: OpenXY, OpenYX and Close. Each segment

can be in two states: Free or Occupied. Segment si is in the state of Free when no

train is detected in the segment. Otherwise, segment si is in the state of Occupied.

For each inner segment si , where i = 〈2, ..., n−1〉, there are two signals sigXYi and

sigYXi which are for the two opposite directions of travel. Each signal is associated

with four possible states: Red, Yellow, Green and Off.

Signal sigXYi is in Red state when line l is in OpenXY state and segment si is in

Occupied state. It is in the Green state when line l is in OpenXY state and both

segment si and si+1 are in Free state. It is in Yellow state when line l is in the

OpenXY state, segment si is in Free state and segment si+1 is in Occupied state.

It is in the Off state, when line l is in OpenYX or Closed state. Correspondingly,

it is easy figure out the situations when signal sigYXi will be in the four different

states.

For the first segment s1 and the last segment sn , there is only one signal sigYX1

4.2. A RAILWAY CONTROL SYSTEM 54

and signal sigXYn , respectively. The signals in the opposite directions (sigXY1 and

sigYXn) are controlled manually, or by interlocking in the station [14].

The main body of the formal specification that describes the railway track line

automatic blocking scheme in Z notation is shown as follows. A complete version

of the formal specification is displayed in Appendix A.

trnOneEnter
∆Track

trnOne.pos = OffTrack ∧ status = OpenAB ∧ trnOne.dir = MoveAB

segA.sigAB = Green ∨ segA.sigAB = Yellow

segA′.status = Occupied ∧ segA′.sigAB = Red

trnOne ′.pos = A∧ trnOne ′.dir = trnOne.dir

trnTwo ′ = trnTwo ∧ status ′ = status ∧ segB ′ = segB

trnTwoEnter
∆Track

trnTwo.pos = OffTrack ∧ status = OpenAB ∧ trnTwo.dir = MoveAB
segA.sigAB = Green ∨ segA.sigAB = Yellow

segA′.status = Occupied ∧ segA′.sigAB = Red

trnTwo ′.pos = A∧ trnTwo ′.dir = trnTwo.dir

trnOne ′ = trnOne ∧ status ′ = status ∧ segB ′ = segB

trnOneMovetoB
∆Track

trnOne.pos = A ∧ status = OpenAB ∧ trnOne.dir = MoveAB
segB .sigAB = Green ∧ segA′.status = Free
segA′.sigAB = Yellow ∧ segB ′.sigAB = Red ∧ segB ′.status = Occupied
trnOne ′.pos = B ∧ trnOne ′.dir = trnOne.dir
trnTwo ′ = trnTwo ∧ status ′ = status

trnTwoMovetoB
∆Track

trnTwo.pos = A ∧ status = OpenAB ∧ trnTwo.dir = MoveAB
segB .sigAB = Green ∧ segA′.status = Free
segA′.sigAB = Yellow ∧ segB ′.sigAB = Red ∧ segB ′.status = Occupied
trnTwo ′.pos = B ∧ trnTwo ′.dir = trnOne.dir
trnOne ′ = trnOne ∧ status ′ = status

4.2. A RAILWAY CONTROL SYSTEM 55

Figure 4.2: Monitor a railway control system

The Java programming language displayed in Appendix B is supposed to implement

the railway track line automatic blocking scheme. To check the conformance of the

implementation with the formal specification, we load the formal specification and

concrete implementation of the railway track line automatic blocking scheme to

our specification-based monitoring system. As shown in Figure 4.2, the monitoring

system works in running mode where the user will indicate what will be executed

next in a step-by-step way. Figure 4.2 also shows that the monitoring system finds

an inconformity and reports that operation trainTwoMovetoB is not implemented

correctly. By checking the operation sequence, we know that the second train

enters a segment while the first train is already on it. This is not allowed by the

railway line automatic blocking scheme. The part of the formal specification which

describes the above property of the railway system is shown as follows.

4.2. A RAILWAY CONTROL SYSTEM 56

trainTwoMovetoB
∆Track

trainTwo.position = A∧ status = OpenAB
trainTwo.direction = MoveAB

segmentB .signalAB = Green ∨ segmentB .signalAB = Yellow

segmentA′.status = Free ∧ segmentA′.signalAB = Yellow

segmentB ′.signalAB = Red ∧ segmentB ′.status = Occupied

trainTwo ′.position = B ∧ trainTwo ′.direction = trainOne.direction
trainOne ′ = trainOne ∧ status ′ = status

By checking the concrete implementation in Java, it is found out that the cause

of the inconformity is in method twoAtoB. As shown by the following code, the

method twoAtoB which is supposed to implement the operation trainTwoMovetoB

defined in the formal specification, does not correctly implement the checking of

signal as described by the specification. In the if statement of method twoAtoB,

there should have been a substatement which checks the variable corresponding to

the signal at the segment connection.

public void twoAtoB(){

if(status == TrackState.OpenAB

&& trainTwo.position == TrainPosition.A

&& trainTwo.direction == TrainDirection.MoveAB)

{

segmentA.status = SegState.Free;

segmentA.signalAB = SigState.Yellow;

segmentB.signalAB = SigState.Red;

segmentB.status = SegState.Occupied;

trainTwo.position = TrainPosition.B;

}

}

4.3. A ROBOTIC ASSEMBLY SYSTEM 57

4.3 A Robotic Assembly System

A robotic assembly system has been studied in [6, 7, 28]. As shown in Figure 4.3,

the assembly unit consists of a robot system, a conveyor belt, and an assembly-

tray. The conveyor belt normally carries the objects to be assembled. The objects,

n of each kind, are placed on the conveyor belt and the robot may pick up an

item from the conveyor belt at a prespecified location. It is expected that for any

arbitrary placement of the objects, n of each kinds, on the conveyor belt the robot

would assemble the objects in order and produce n assemblies. The robot system

consists of two arms, a vision system and a stack. The vision system can recognize

the objects to be assembled and record the number of the objects of each kind

that have been recognized. The stack is for temporarily storing the objects. The

vision system is continuously focused on the conveyor belt so that the scanning and

recognition begins when the objects on the conveyor belt enters the camera’s view

and the belt is stopped. When the vision system recognizes an object, the left arm

or the right arm is activated so as to pick that item from the belt. Initially, the

arms are free and the stack is empty. Whenever both arms are free and the stack is

empty, and the vision system recognize an object then the left/right arm picks up

the item from the conveyor belt and begins the process of assembly. If the object

on the left/right arm is the same as a part of the half-assembled product, the object

on the left/right arm will be pushed into the stack; otherwise, the object will be

assembled. If the left/right arm is free but the stack is not empty and the top item

of the stack is not same as any part of half-assembled product, the left/right arm

4.3. A ROBOTIC ASSEMBLY SYSTEM 58

C
onveyor B

elt

Assembly Tray

S
tack

Robot Arms

Vision System

Robot System

Figure 4.3: Robotic assembly system

picks up (pops) an object from the stack. If the assembly of one piece of product

has been completed, the product will be released and placed on an assembly-tray.

Autonomous Nano-Technology Swarm (ANTS) mission [25, 26, 44] is one of NASA’s

future space exploration missions which use intelligent swarms of spacecrafts [102,

103]. During the ANTS mission, a transport spacecraft launched from the earth

towards the Lagrangian point carries an assembling laboratory. The autonomous,

pico-class, low-power, and low-weight spacecrafts that will explore the asteroid

belt for asteroids with certain scientific characteristics will be assembled in that

laboratory. Each spacecraft is equipped with a solar sail, which means it relies

primarily on power from the sun, using only tiny thrusters to navigate indepen-

dently. Also, each spacecraft has onboard computation, artificial intelligence, and

heuristics mechanism for control at the individual and team levels, and it has com-

municating mechanism for the communication within swarm and the data transfer

4.3. A ROBOTIC ASSEMBLY SYSTEM 59

back to the earth, too. Moreover, approximately 80 percent of the spacecrafts will

be workers. The workers will carry a single specialized instrument, such as a mag-

netometer and an X-ray, gamma-ray, visible/IR, or neutral mass spectrometer, for

the collection of a specific type of date from asteroids in the belt [44, 45].

The correct assembly of spacecrafts is crucial to the ANTS mission. We reuse the

framework of the robotic assembly system which has been studied in [6, 7, 28], and

extend it so that it can be used for the assembly of spacecrafts in ANTS mission. As

introduced before, the spacecraft consists of five main parts, namely, power system,

navigation system, control system, communication system and specialized instru-

ment (i.e. magnetometer or spectromenter). After the extension of the robotic

assembly system framework, the left arm of the robot will be responsible for in-

stalling power system, navigation system and control system while the right arm

will be in charge of the installation of communication system and the specialized

instrument.

The main body of formal specification which describes the way how the left arm

and the right arm work in the process of assembling the spacecraft is shown as

follows. A complete version of the formal description of the robot system in Z

notation is displayed in Appendix C.

4.3. A ROBOTIC ASSEMBLY SYSTEM 60

LeftArmPick
∆RobotSystem
part? : Part

tempstack = 〈〉 ∨ head tempstack ∈ dom currentproduct ∨
head tempstack 6∈ {PowerSys ,NavigationSys ,ControlSys}
part? ∈ {PowerSys ,NavigationSys ,ControlSys}
leftarm = 〈〉 ∧ leftarm ′ = 〈part?〉
tempstack ′ = tempstack ∧ rightarm ′ = rightarm
currentproduct ′ = currentproduct

LeftArmGetFromStack
∆RobotSystem

#tempstack > 0 ∧ #leftarm = 0
head tempstack 6∈ dom currentproduct
head tempstack ∈ {PowerSys ,NavigationSys ,ControlSys}
leftarm ′ = 〈head tempstack〉 ∧ rightarm ′ = rightarm
currentproduct ′ = currentproduct ∧ tempstack ′ = tail tempstack

LeftArmRelease
∆RobotSystem
part ! : Part

#leftarm = 1 ∧ leftarm(1) 6∈ dom currentproduct
part ! = leftarm(1) ∧ leftarm ′ = 〈〉
leftarm(1) = PowerSys ⇒

currentproduct ′ = currentproduct ∪ {part ! 7→ 1}
leftarm(1) = NavigationSys ⇒

currentproduct ′ = currentproduct ∪ {part ! 7→ 2}
leftarm(1) = ControlSys ⇒

currentproduct ′ = currentproduct ∪ {part ! 7→ 3}
tempstack ′ = tempstack ∧ rightarm ′ = rightarm

LeftArmPushToStack
∆RobotSystem
parttopush! : Part

#leftarm = 1 ∧ leftarm(1) ∈ dom currentproduct
parttopush! = leftarm(1) ∧ leftarm ′ = 〈〉
tempstack ′ = 〈parttopush!〉a tempstack
rightarm ′ = rightarm ∧ currentproduct ′ = currentproduct

4.3. A ROBOTIC ASSEMBLY SYSTEM 61

RightArmPick
∆RobotSystem
part? : Part

tempstack = 〈〉 ∨ head tempstack ∈ dom currentproduct ∨
head tempstack 6∈ {CommunicationSys , SpectroMeter ,MagnetoMeter} ∨
dom(currentproduct B {5}) ∪ {head tempstack} =

{SpectroMeter ,MagnetoMeter}
part? ∈ {CommunicationSys , SpectroMeter ,MagnetoMeter}
rightarm = 〈〉 ∧ rightarm ′ = 〈part?〉 ∧ tempstack ′ = tempstack
currentproduct ′ = currentproduct ∧ leftarm ′ = leftarm

RightArmGetFromStack
∆RobotSystem

#tempstack > 0 ∧ #rightarm = 0
head tempstack 6∈ dom currentproduct
dom(currentproduct B {5}) ∪ {head tempstack} 6=

{SpectroMeter ,MagnetoMeter}
head tempstack ∈ {CommunicationSys , SpectroMeter ,MagnetoMeter}
rightarm ′ = 〈head tempstack〉 ∧ leftarm ′ = leftarm
currentproduct ′ = currentproduct ∧ tempstack ′ = tail tempstack

RightArmRelease
∆RobotSystem
part ! : Part

#rightarm = 1 ∧ rightarm(1) 6∈ dom currentproduct
dom(currentproduct B {5}) ∪ {rightarm(1)} 6=

{SpectroMeter ,MagnetoMeter}
part ! = rightarm(1)
rightarm(1) = CommunicationSys ⇒

currentproduct ′ = currentproduct ∪ {part ! 7→ 4}
(rightarm(1) = MagnetoMeter ∨ rightarm(1) = SpectroMeter) ⇒

currentproduct ′ = currentproduct ∪ {part ! 7→ 5}
rightarm ′ = 〈〉 ∧ tempstack ′ = tempstack ∧ leftarm ′ = leftarm

RightArmPushToStack
∆RobotSystem
parttopush! : Part

#rightarm = 1 ∧ (rightarm(1) ∈ dom currentproduct ∨
dom(currentproduct B {5}) ∪ {rightarm(1)} =

{SpectroMeter ,MagnetoMeter})
parttopush! = rightarm(1) ∧ rightarm ′ = 〈〉
tempstack ′ = 〈parttopush!〉a tempstack
leftarm ′ = leftarm ∧ currentproduct ′ = currentproduct

4.3. A ROBOTIC ASSEMBLY SYSTEM 62

The Java program displayed in Appendix D is supposed to implement the robot

system. In order to check whether the Java code implements the formal specifica-

tion correctly, we load both of them to our specification-based monitoring system.

As shown in Figure 4.4, the system start monitoring with a sequence of methods i.e.

leftArmPick(“PowerSys”); leftArmRelease(); leftArmPick(“ControlSys”); leftArm-

Release(); rightArmPick(“MagnetoMeter”); rightArmRelease(); rightArmPick(“C-

ommunicationSys”); rightArmRelease(); rightArmPick(“SpectroMeter”); rightArm-

Release(); leftArmPick(“NavigationSys”); leftArmRelease();. After method rightArm-

Release() is executed for the second time, which installs the communication system

to the spacecraft, the monitoring system detects an inconformity and reports to

the user that operation schema RightArmRelease is not implemented correctly.

Figure 4.4: Monitor a robotic assembly system

The operation schema, RightArmRelease, which is the counterpart of method

rightArmRelease() in the formal specification and specifies how the right arm will

4.3. A ROBOTIC ASSEMBLY SYSTEM 63

install components to the spacecraft, is shown as follows.

RightArmRelease
∆RobotSystem
part ! : Part

#rightarm = 1 ∧ rightarm(1) 6∈ dom currentproduct
dom(currentproduct B {5}) ∪ {rightarm(1)} 6=

{SpectroMeter ,MagnetoMeter}
part ! = rightarm(1)
rightarm(1) = CommunicationSys ⇒

currentproduct ′ = currentproduct ∪ {part ! 7→ 4}
(rightarm(1) = MagnetoMeter ∨ rightarm(1) = SpectroMeter) ⇒

currentproduct ′ = currentproduct ∪ {part ! 7→ 5}
rightarm ′ = 〈〉 ∧ tempstack ′ = tempstack ∧ leftarm ′ = leftarm

According to the semantics of Z notation, the operation schema RightArmRelease

specifies that if the right arm is holding an item and the held item is not identical to

any existing component of the spacecraft-to-be, the right arm will install the item

to a designate position, for example, communication system to the fourth socket.

When we check the Java code in Appendix D, it is found out that method rightArm-

Release() as shown follows, which corresponds to the operation schema RightArm-

Release, actually puts the communication system to the second socket. Thus, an

error in the program has been localized.

public void rightArmRelease() {

if(!rightarm.isEmpty())

{ Object releasedPart = rightarm.get(0);

if (!currentproduct.contains(releasedPart))

{ if(releasedPart == "CommunicationSys")

{ currentproduct.setElementAt(releasedPart, 1);}

else if (releasedPart == "MagnetoMeter"||

releasedPart == "SpectroMeter")

{currentproduct.setElementAt(releasedPart, 4);}

rightarm.clear();

}

}

}

4.4. CONCLUSION 64

If we choose to continue the monitoring, when the method rightArmRelease() is

executed for the third time installing a spectrometer to spacecraft, the monitor-

ing system detects another inconformity. To localize the cause of the inconfor-

mity, we revisit the formal specification and the Java code. The operation schema

RightArmRelease specifies that only one specialized instrument (i.e. magnetometer

or spectrometer) will be installed and there is no way to replace it with another

one if a specialized instrument has been included in the spacecraft. However, in

the Java code, there is no statement for checking whether a specialized instrument

has been included in the spacecraft when the right arm tries to install a special-

ized instrument to the spacecraft. Thereby, another error in the program has been

figured out. Furthermore, when the monitoring system proceeds with the methods

sequence leftArmPick(“NavigationSys”); leftArmRelease(); the error in the method

leftArmRelease() will be dug out too.

4.4 Conclusion

This chapter demonstrates the application and effectiveness of the formal specification-

based monitoring system with case studies. It has been manifested that the formal

specification-based monitoring system can dynamically and continuously checks

the conformance of concrete implementations to formal specifications, explicitly

recognizes undesirable behaviors in the target system, and responds appropriately

in a timely manner as the target system runs.

Chapter 5

AOP-aided Software Evolution

In this chapter, an AOP-aided approach is proposed to handle the evolution of core

classes in object-oriented programs when the formal specification of a system has

changed. Moreover, the formal specification-based monitoring system presented in

Chapter 3 is extended to address the validation of aspect-oriented programs.

65

5.1. INTRODUCTION 66

5.1 Introduction

After the software has been deployed, new requirements may emerge; the run-

ning environment may change; and the performance or reliability may have to be

improved. Accordingly, the specification of the system will change. Even in the

process of software development, the events that are mentioned above might well

happen too. In order to keep conformance with the specification and satisfy the

system requirements, changes have to be made to the implementation of the sys-

tem. This is called software evolution. Software evolution is widely recognized as

one of the most important problems among software development technologies, and

it is an inevitable and critical stage in the life cycle of any type of software sys-

tems, particularly, those serving highly volatile business domains such as banking

and telecommunications [74].

Aspect-oriented programming (AOP) has been proposed as a new methodology and

a complement to traditional procedural and object-oriented programming (OOP) to

improve the separation of concerns in software systems [53, 64, 100]. Traditionally,

the focus of AOP is to identify cross-cutting behavior and develop appropriate

code that can be added to the base program to realize the cross-cutting behavior.

Actually, beyond the improvement of concerns separation, AOP also provides a

model to modify a software system after it has been released and installed, which

greatly eases the maintenance and evolution of software systems. Therefore, we

try to exploit this model and the infrastructure that has been developed for AOP

technique for software evolution.

5.1. INTRODUCTION 67

In this chapter, we investigate how aspect-oriented programming technique can

help handle the evolution of core classes in object-oriented programs, when the

formal specification of a system has changed. We consider two contributions of

AOP as important for the evolution of software systems: first, weaving allows an

application to be modified at runtime; second, pointcuts provide a mechanism to

specify where the code modifications must be applied. Based on them, we proposed

an AOP-aided evolution approach. In the proposed approach, the original and new

versions of the formal specification of a software system are compared to determine

the difference between the two versions of the specification and to identify the

changes made to the specification. Then, aspects are constructed to achieve the

expected modifications. After the constructed aspects are woven with original

classes, the required modification to the implementation will be accomplished.

Furthermore, except the benefits, the introduction of AOP also brings some chal-

lenges to software development and maintenance. One of them is the validation

of aspect-oriented software systems. The techniques for validating aspect-oriented

systems are far behind expectations. In the latter part of the chapter, we extend

the formal specification-based monitoring system presented in Chapter 3 so that

it can work with aspect-oriented programs. By doing this, we not only provide

an approach for aspect-oriented program validation, but also illustrate that our

formal specification-based monitoring technique can contribute to the regression

test of software systems after evolution has been achieved.

The example presented in this chapter is formally specified with TCOZ notation,

5.2. AOP AND ASPECTJ 68

and implemented in Java/AspectJ programming language, but the concepts pre-

sented in this chapter are not tied to any specific formal specification language or

programming language and can be applied in other contexts as well.

The remainder of the chapter is organized as follows. Section 5.2 introduces AOP

and AspectJ briefly. Section 5.3 presents an AOP-aided evolution approach that

handles the evolution of core classes in object-oriented programs, when the formal

specification of the system has changed. Section 5.4 discuss the feasibility of apply-

ing the formal specification-based monitoring technique proposed in Chapter 3 to

aspect-oriented programs. Section 5.5 illustrates the proposed evolution approach

and validates the resulting aspect-oriented program with the formal specification-

based monitoring technique. Section 5.6 concludes this chapter.

5.2 AOP and AspectJ

5.2.1 AOP

The essential idea of aspect-oriented programming (AOP) is that all concerns

should be treated as modular units regardless of the limitations of the implemen-

tation languages. The primary mechanism for defining solutions to cross-cutting

concerns is the aspect. Aspects encapsulate behaviors and states of those crosscut-

ting concerns whose implementations must span across the core concerns that form

the subject matter of a system. By placing these crosscutting concerns separately

in an aspect, the core concerns are made more cohesive since their implementations

are relieved of the burden of managing concepts unrelated to their purpose. The

5.2. AOP AND ASPECTJ 69

effective modular decomposition facilitates the development of complex systems

and makes it easier to understand, maintain and evolve the systems developed.

5.2.2 AspectJ

AspectJ [1, 52, 57] is an implementation of aspect-oriented programming method-

ology. As a simple and practical aspect-oriented extension to Java, it adds to Java

some new concepts and associated constructs such as join points, pointcuts, advice,

inter-type declarations and aspects.

Join point in AspectJ is an essential concept in the composition of an aspect with

other classes. It is a well-defined point in the execution of a program, such as a

call to a method, an access to attribute, an object initialization, or an exception

handler.

Pointcut is a set of points that optionally expose some of the values in the execution

of the join points. AspectJ defines several primitive pointcut designators that can

identify all types of join points. Pointcuts in AspectJ can be composed and new

pointcut designators can be defined according to these combinations.

Advice is a method-like mechanism used to define certain code that executes before,

after, or around a pointcut. The around advice execute in place of the indicated

pointcut, which allows the aspect to replace a method. An aspect can also use

an inter-type declaration to add a public or private method, field, or interface

implementation declaration into a class.

Inter-type declaration is a static crosscutting instruction that introduces changes

5.3. AOP-AIDED SOFTWARE EVOLUTION 70

to classes, interfaces and aspects of the system. It provides definitions of fields,

methods, and constructors which makes static changes to the target modules that

do not directly affect their behavior but support the implementation of dynamic

crosscutting.

Aspects are modular units of crosscutting implementation. In AOP, aspects are the

primary mechanism for defining solutions to cross-cutting concerns, which encap-

sulate behaviors and states of those crosscutting concerns. Aspects are defined by

aspect declarations, which have similar forms of class declarations. Aspect declara-

tions may include pointcut, advice, and inter-type declarations, as well as method

declarations that are permitted in class declarations.

5.3 AOP-aided Software Evolution

AOP provides the basis for an effective software evolution approach. The mecha-

nism of weaving allows a program to be modified at runtime; moreover, pointcuts

provide a mechanism to specify where the code modifications must be applied.

Therefore, crosscutting concerns that correspond to the required changes can be

added to original programs without making any invasive modifications.

In this section, we present an AOP-aided software evolution approach that handles

the evolution of core classes in object-oriented programs when the formal specifica-

tion of the system has changed. In this chapter, we assume the system is specified

in TCOZ notation and implemented in Java/AspectJ programming language.

5.3. AOP-AIDED SOFTWARE EVOLUTION 71

5.3.1 Determine Differences

First of all, the changes to the original system specification, which is corresponding

to the changes of the system requirement, should be identified.

Given the new and original versions of the formal specification of a system, there is

a function which figures out the differences between two versions and outputs the

sets of added members (state variables/fields and operations/methods), removed

members, and modified members. The algorithm behind the function is shown in

Figure 5.1.

Taking the two versions of the formal specifications as inputs, the function first

figures out the set of the state variables that are common to the original and new

versions, ComnSV (Line 1); the set of the state variables that are newly added

to the specifications, AddSV (Line 2); and the set of the state variables that are

removed from the specifications, RmvSV (Line 3). For every state variable that

is common to the two versions of the formal specification, if the type of the state

variable is different in the two version of specifications, it is identified as a modified

variable and put into the set of modified state variables, MdfSV (Line 4-9). Then,

the function figures out the set of the operations that are common to the original

and new versions, ComnOP (Line 10); the set of the operations that are newly

added to the specifications, AddOP (Line 11); and the set of the operations that

are removed from the specifications, RmvOP (Line 12). For every operation that

is common to the two versions of the formal specification, if the operation schema

or CSP process that is used to defined this operation is different in the two version

5.3. AOP-AIDED SOFTWARE EVOLUTION 72

of specifications, the operation is identified as a modified operation and put into

the set of modified operations, MdfOP (Line 13-18).

Algorithm SpecDiff (OldSpec, NewSpec): AddSV, RmvSV,MdfSV, AddOP,
RmvOP, MdfOP

input:
OldSpec : old version of the system’s formal specification
NewSpec : new version of the system’s formal specification

output:
AddSV: the set of added state variables
RmvSV: the set of removed state variables
MdfSV: the set of modified state variables
AddOP: the set of added operations
RmvOP: the set of removed operations
MdfOP: the set of modified operations

global:
ComnSV: the set of state variables that are common to the original

and new versions of the specification
ComnOP: the set of operations that are common to the original

and new versions of the specification

1. ComnSV ←− OldSpec.StateVariables ∩ NewSpec.StateVarialbes
2. AddSV ←− NewSpec.StateVariables \ ComnSV
3. RmvSV ←− OldSpec.StateVariables \ ComnSV
4. for each Sv ∈ ComnSV do
5. opdiff ←− Compare(NewSpec.Sv.Type, OldSpec.Sv.Type)
6. if opdiff then
7. MdfSV ←− MdfSv ∪ {NewSpec.SV}
8. end if
9. end for
10. ComnOP ←− OldSpec.OP ∩ NewSpec.OP
11. AddOP ←− NewSpec.OP \ ComnOP
12. RmvOP ←− OldSpec.OP \ ComnOP
13. for each Op ∈ ComnOP do
14. opdiff ←− Compare(NewSpec.Op, OldSpec.Op)
15. if opdiff then
16. MdfOP ←− MdfOP ∪ {NewSpec.Op}
17. end if
18. end for

Figure 5.1: Difference determination

5.3. AOP-AIDED SOFTWARE EVOLUTION 73

5.3.2 Construct Aspects

After the difference between the original and new versions of the formal specifi-

cation has been identified, we can construct the aspects that would modify the

original system without invasive modifications on it. The approach to construct

the aspect is described in the algorithm shown in Figure 5.2.

Algorithm CtrAspect (AddSV, MdfSV, AddOP, MdfOP): NewAspect
input:

AddSV: the set of added state variables
MdfSV: the set of modified state variables
AddOP: the set of added operations
MdfOP: the set of modified operations

output:
NewAspect: an aspect crosscutting the original class

1. declare NewAspect, an aspect crosscutting the original class
2. for each Sv ∈ AddSV ∪ MdfSV do
3. inter-type declaration Dlr sv is added to NewAspect
4. end for
5. for each Op ∈ AddOP do
6. inter-type declaration Dlr op is added to NewAspect
7. end for
8. for each Op ∈ MdfOP do
9. pointcut PC op: call(Op) is added to NewAspect
10. around-advice AD op is added to NewAspect
11. end for

Figure 5.2: Aspect construction

With the information about the difference between the original specification and

the new specification as input, the algorithm will construct an aspect, NewAspect,

which will crosscut the original class (Line 1). For each new state variable, an

inter-type declaration Dlr sv, which declares and initializes a new field and targets

5.3. AOP-AIDED SOFTWARE EVOLUTION 74

the original class, will be added to NewAspect. Meanwhile, the modification that

can be made to the state variable is the change of type. We can take it as an

introduction of a new state variable. Therefore, for each modified state variable, an

inter-type declaration Dlr sv, which declare the corresponding class variable with

the new type and initializes it, is added to NewAspect (Line 2-4). For each new

operation, an inter-type declaration Dlr op, which declares a method corresponding

to the new operation, is introduced to NewAspect (Line 5-7). For each modified

operation, PC op, a pointcut which captures all the calls of the corresponding

method is constructed; meanwhile, AD op, an around-advice which implements

the functions described by the modified operation is constructed and bound with

the pointcut PC op (Line 8-11).

5.3.3 Weave Constructed Aspect with Original Class

After construct the aspect, we remove class variables corresponding to state vari-

ables that are removed and modified in the new version of the specification from

the original implementation. We also remove the methods corresponding to oper-

ations that are removed in the new version of the specification, using the weaving

mechanism provided by aspect-oriented programming technique. Then, the aspect

we have constructed will be woven with the original implementation. As a result, a

new version of the implementation can be generated and an AOP-aided evolution

is achieved.

5.4. MONITOR ASPECT-ORIENTED PROGRAMS 75

5.4 Monitor Aspect-oriented Programs

On the one hand, AOP is proposed as a new methodology and a complement

to traditional object-oriented programming (OOP) to improve the separation of

concerns in software systems. The effective modular decomposition facilitates the

development of complex systems and makes it easier to understand, maintain and

evolve the systems developed.

On the other hand, just as with the introduction of OOP, AOP not only brings a

unique set of benefits, such as high modularity and low maintenance burden; but

also introduces a set of challenges, such as new problems with respect to the verifi-

cation and test of the systems developed with AOP. By far, research in AOSD has

focused mostly on the activities of problem analysis and language implementation.

The techniques for validation and verification are still far behind expectation and

what has been achieved for the static analysis of procedural and object-oriented pro-

grams, although they are being developed for aspect-oriented systems. Because the

expressive power that aspects unleash heightens the potential for insidious errors,

finding cost-effective verification techniques that address aspect-oriented software

is especially important to AOP.

In Chapter 3, we have proposed a formal specification-based monitoring approach.

In the proposed technique, the formal specification of a system is animated to

exhibit the expected behaviorial properties of the target system. The valuable in-

formation about desired dynamic behaviors of the system is extracted from the

5.5. A CASE STUDY 76

animation. And, the information about dynamic behaviors of concrete implemen-

tations of the target system is obtained through program debugging. Base on the

attained information from both sides, the judgement on the conformance of the

concrete implementation with the formal specification is timely made when the

system is executed.

We illustrated the capability of the monitoring technique with object-oriented

programs in Chapter 3. The underlying idea can work with aspect-oriented pro-

grams too. With the runtime monitoring technique, we will be capable of check-

ing whether the software system resulting from the AOP-aided software evolution

technique behaves as expected by the system requirements which are described in

formal specification notations.

We have integrated the mechanism for animating TCOZ specification developed by

Sun et al. [97] into the prototype monitoring system and extended the monitoring

system so that it can work with aspect-oriented programs. We will illustrate the

monitoring of an aspect-oriented program with an example in the next section.

5.5 A Case Study

In this section, we demonstrate the proposed AOP-aided evolution approach and

runtime monitoring technique with a case study.

We take the Timed Message Queue System introduced in Chapter 2 as an example

and customized the type [MSG] as natural number. The formal specification is

redisplayed in Figure 5.3.

5.5. A CASE STUDY 77

TimedQueue

items : seqN
in, out : chan
lost : seqN actuator
To : N

Init
items = lost = 〈 〉

RecLost
∆(lost)

items 6= 〈 〉 ⇒ lost ′ = 〈head(items)〉alost
items = 〈 〉 ⇒ lost ′ = lost

Add
∆(items)
i? : N

items ′ = items a 〈i?〉

Del
∆(items)
i ! : N

items 6= 〈 〉 ⇒ items = 〈i !〉aitems ′

items = 〈 〉 ⇒ items ′ = 〈 〉
Join =̂ [i : MSG] • in?i → Add
Leave =̂ [items 6= 〈 〉] • out !head(items) → Del
Main =̂ µQ • (Join 2 Leave) .{To} (RecLost; Del); Q

Figure 5.3: TimedQueue in TCOZ notation

The TCOZ specification in Figure 5.4 describes a queue which has evolved from

what is described in Figure 5.3. They are similar except that, in the new version, a

new state variable ineligibleElement is introduced and there is an ineligible element

rule which demands that any element added to the Timed Message Queue System

should not equal to ineligibleElement.

While the difference between the original and new versions of the specification

has been identified, an aspect is constructed following the algorithm in Figure 5.2.

As shown in Figure 5.5, the IneligibleElementRuleAspect aspect introduces a data

member ineligibleElement of type Object into the original Queue class. Mean-

5.5. A CASE STUDY 78

TimedQueue

items : seqN
ineligibleElement : N
in, out : chan
lost : seqN actuator
To : N

Init
items = lost = 〈 〉
ineligibleElement = 10

RecLost
∆(lost)

items 6= 〈 〉 ⇒ lost ′ = 〈head(items)〉alost
items = 〈 〉 ⇒ lost ′ = lost

Add
∆(items)
i? : N

i? 6= ineligibleElement

items ′ = items a 〈i?〉

Del
∆(items)
i ! : N

items 6= 〈 〉 ⇒ items = 〈i !〉aitems ′

items = 〈 〉 ⇒ items ′ = 〈 〉
Join =̂ [i : MSG] • in?i → Add
Leave =̂ [items 6= 〈 〉] • out !head(items) → Del
Main =̂ µQ • (Join 2 Leave) .{To} (RecLost; Del); Q

Figure 5.4: Modified TimedQueue in TCOZ notation

while, through two pieces of advice, the IneligibleElementRuleAspect aspect modi-

fies the execution behavior of the original Queue class in the following way: firstly,

whenever a new object of Queue class is created, the date member ineligibleElement

will be initialized as 10; secondly, before a new item is added to the queue, check

whether it is an eligible element for the queue; if not, then nothing will be added

to the queue and an exception will be thrown. The IneligibleElementRuleAspect

aspect implements the ineligible element rule and cuts across the class which is a

correct implementation of the specification displayed in Figure 5.3. After weaving

the IneligibleElementRuleAspect aspect with the original Queue class, the evolution

5.5. A CASE STUDY 79

public aspect IneligibleElementRuleAspect {

private Object Queue._ineligibleElement;

after(Queue queue):

execution(Queue.new(..)) && this(queue) {

queue._ineligibleElement = "10";

}

before(Queue queue, Object item)

throws IneligibleElementException :

execution(* Queue.enQueue(*))&& this(queue) && args(item) {

if (item == queue._ineligibleElement) {

throw new IneligibleElementException(

"This item is ineligible for this queue");

}

}

}

Figure 5.5: Aspect for ineligible element rule

required by the new version of specification is supposed to achieve.

Now, we try to verify whether the program achieved through the AOP-aid evolution

behaves as expected by the new version specification using our monitoring tech-

nique. After load the monitoring system with the new version of specification, the

class Queue and the aspect IneligibleElementRuleAspect and finish configuration,

we input the sequence of methods: enQueue(“5”); enQueue(“15”); enQueue(“10”),

and enable the monitoring system to work. When the method enQueue(“10”) is

executed, the monitoring system reports an inconformity as show in Figure 5.6, in-

forming the user that the operation Add is not implemented correctly, and provides

the user with two choices for what to do next. Checking the AspectJ code in Fig-

ure 5.5, we can find out that the last advice in aspect IneligibleElementRuleAspect

only throws an exception but not prevents the operation that adds an item into the

queue from being invoked. To fix this problem, the advice should be changed to

5.5. A CASE STUDY 80

Figure 5.6: Monitoring aspect-oriented program

void around(Queue queue, Object item):

execution(* Queue.enQueue(*))

&& this(queue) && args(item) {

if (item.euqals(queue._ineligibleElement)) {}

else{proceed(account, amount);}

Figure 5.7: Correct advice

the one shown in Figure 5.7. With the around advice, the aspect IneligibleElemen-

tRuleAspect modifies the execution behavior of the Queue module in a way that an

item is not allowed to be added into the queue if it equals the ineligibleElement.

This is exactly what is described by the new version specification shown in Figure

5.4. With the correct aspect loaded to the monitoring system, no inconformity

is reported. It reassures the user that, after woven, the aspect IneligibleElemen-

tRuleAspect and the class Queue implement the specification as expected.

5.6. CONCLUSION 81

5.6 Conclusion

This chapter presents an AOP-aided evolution approach that can handle the evo-

lution of core classes in object-oriented programs, when the formal specification of

the system has changed. In the proposed approach, the original and new versions

of the formal specification of a software system are compared to determine the

difference between the two versions of the specification and to identify the changes

made to the specification. Then, aspects are constructed to achieve the expected

modifications. After the constructed aspects are woven with original classes, the

required modification to the implementation will be accomplished.

Furthermore, the formal specification-based monitoring system presented in Chap-

ter 3 is extended to work with aspect-oriented programs. By doing this, we not

only provide an approach for aspect-oriented program validation, but also illus-

trate that our formal specification-based monitoring technique can contribute to

the regression test of software systems after evolution has been achieved.

Chapter 6

Formal Specification-based
Regression Test Suite
Construction

In this chapter, a formal specification-based regression test suite construction tech-

nique is presented. It addresses both the regression test selection problem and the

test suite augmentation problem, is presented.

83

6.1. INTRODUCTION 84

6.1 Introduction

After the software has evolved according to the changes of the specification or

requirement of the software system, regression testing has to be performed on the

modified software to provide the confidence that the changed parts of the software

behave as intended and that the unchanged parts have not been adversely affected

by the modifications.

In order to reduce the cost and effort required by regression testing, the test suite,

which was used to test the original version of the software, are reused for regres-

sion testing. However, rerunning all test cases in the original test suite can be

prohibitively expensive; and some test cases in the original test suites may be ob-

solete to the modified version of the system. Therefore, regression test selection

techniques are required for efficient regression testing. Most of the existing regres-

sion test techniques [9, 19, 59, 84, 106, 110, 48, 85, 109, 37] are strictly code-based.

They select test cases for the regression testing, from the original test suites, only

using the information gathered by code analysis.

However, if the specifications for the software have been changed while code mod-

ifications necessary to implement the changed specifications have not been made,

such a fault can only be detected by specification-based test case selection which

selects the test cases related to the changed specifications [85]. Thereby, when se-

lecting test cases for regression testing, specification-based techniques are required

as well as code-based techniques.

6.1. INTRODUCTION 85

Furthermore, new test cases might well be required in regression testing because

of the changes made to the software systems or the new functionalities introduced

to the systems. This is the test suite augmentation problem [37]. With the solid

mathematical bases, formal specification provides a good starting point to address

the test suite augmentation problem, and to systematically generate new test cases

that are required for the testing of new functionalities or certain changed parts of

software systems.

In this chapter, a formal specification-based regression test suite construction tech-

nique, which works with the formal specifications written in Timed Communicating

Object-Z (TCOZ) notation [66, 70], is proposed. The proposed technique addresses

not only the regression test selection problem but also the test suite augmentation

problem for the regression testing of classes in object-oriented programs. It first

constructs the two versions of control flow representations for the classes, according

to the original and changed versions of the classes’s formal specification. Then, it

compares the original control flow representation and the original formal specifi-

cation with their respective modified version to figure out the modifications made

to the specification. And, sequentially, it uses the information about the modifi-

cations made to the specification to identify the obsolete test cases, to select the

test cases related to the changed specifications from the original test suite, and to

guide the generation of new test cases for regression testing.

The proposed regression test suite construction technique is strictly specification-

based. No complex static or dynamic code analysis is required for it to work.

6.2. CLASSES SPECIFIED IN TCOZ NOTATION 86

Therefore, it is independent of the programming language that is used to implement

the classes described by the formal specifications and it can be automated. In

the latter part of this chapter, a TCOZ specification-based regression test suite

construction system named TcozRts, which implements our formal specification-

based technique for the regression test suite construction, is presented.

The rest of the chapter is organized as follows. In the next section, the distinct

characteristics of the way in which classes are specified in TCOZ notation are dis-

cussed. In Section 6.3, a graphic representation for the class which is specified in

TCOZ notation is proposed. The formal specification-based regression test suite

construction technique for the class specified in TCOZ notation is presented in

Section 6.4. In Section 6.5, a TCOZ specification-based regression test suite con-

struction system is described in details. Finally, Section 6.6 concludes this chapter.

6.2 Classes Specified in TCOZ Notation

As introduced in Chapter 2, the basic structure of a TCOZ document is the same

as that of an Object-Z document, consisting of a sequence of class definitions, and

some type and constant definitions in the usual Z style. However, TCOZ varies

remarkably from Object-Z in the definition of class schemas.

Firstly, in TCOZ notation, operation schemas (both syntactically and semanti-

cally) is identified with (terminating) CSP processes that perform only state up-

date events. Active classes are identified with non-terminating CSP processes; and

the Main process determines the behaviour of the objects of an active class after

6.2. CLASSES SPECIFIED IN TCOZ NOTATION 87

initialization. Therefore, in TCOZ, operation schemas and CSP processes occupy

the same syntactic and semantic category. It means that operation schema ex-

pressions may appear wherever processes may appear in CSP and CSP process

definitions may appear wherever operation definitions may appear in Object-Z. In

fact, all operation definitions in TCOZ are considered as the definitions CSP pro-

cesses. Furthermore, it is natural to allow to define TCOZ operations in terms of

CSP primitives as well as through the schema calculus. By allowing an operation

to consist of a number of events, it becomes feasible to specify its temporal prop-

erties when describing the operation. Meanwhile, operation schemas take on the

syntactic role of CSP processes, so they may be combined with other schemas and

even CSP processes using the standard CSP process operators. Thus it becomes

possible to represent true multi-threaded computation even at the operation level.

Secondly, in TCOZ notation, the class state-schema convention is extended to allow

the declaration of communication channels. If c is to be used as a communication

channel by any of the operations of a class, then it must be declared in the state

schema to be of type chan. Channels are type heterogeneous and may carry

communications of any type. Contrary to the conventions adopted for internal

state variables, channels are viewed as global rather than as encapsulated entities.

This is an essential consequence of their roles as communications interfaces between

objects. The introduction of channels to TCOZ reduces the need to reference other

classes in class definitions, thereby further enhancing the modularity of system

specifications.

6.3. REPRESENTATION FOR CLASSES SPECIFIED IN TCOZ 88

Lastly, in TCOZ notation, the state-guard which is a CSP operator is used to

block or enable execution of an operation on the basis of an object’s local state.

For example, the operation [a ≥ 0] • [∆(a) | a ≥ 0 ∧ a ′ =
√

a] will replace

the state variable a with its square root if a is positive otherwise it will deadlock,

that is be blocked from executing. The blocking or enabling of this operation

is achieved by the state guard [a ≥ 0] • and not by the precondition a ≥ 0

within the operation schema. If the operation schema alone is invoked with a

negative, it will diverge rather than block. The difference between deadlock and

divergence is that a divergence may be refined away by making an operation more

robust, while a deadlock can never be refined away. An additional function of

state guards is as a substitute for CSP’s indexed external choice operator. The

process [n : N | 0 ≤ n ≤ 5] • c?n → P(n) may input any value of n between

0 and 5 (from channel c) as chosen by its environment. CSP’s indexed internal

choice is replaced by the operation schema and sequential composition. The process

[n! : N | 0 ≤ n! ≤ 5]; c!n → P(n) may output any value of n between 0 and 5

according to its own designs.

6.3 Representation for Classes Specified in TCOZ

The characteristics discussed in the previous section make it possible to construct

a graphic representation for the classes that are specified in TCOZ notation, ac-

cording to the semantics of TCOZ. We develop such a graphic representation and

name it testchart. In this section, an overview of testchart is presented; and the

6.3. REPRESENTATION FOR CLASSES SPECIFIED IN TCOZ 89

interaction coverage criterion, which is proposed based on the testchart and will be

used in our regression testing technique, is also introduced.

6.3.1 Testchart

The testchart for a class depicts all the possible interactions among the operations of

a class and the order in which the operations can be invoked, just like a control flow

graph of program statically represents all possible program paths. It is developed

for TCOZ specification-based class testing where it is used for test case generation

and coverage evaluation. In regression testing, the testchart serves as the base

for detecting modifications made to the specification of a class. By representing

a class with a testchart, the original and modified versions of the testchart can

be compared to reveal the modifications made to the control flow structure of the

specification of a class and the information about the modifications will be used to

identify the obsolete test cases and to guide the generation of new test cases for

regression testing.

Formally, a testchart for a class is a 3-tuple 〈S ,T , s0〉 where

1. S is a finite, non-empty set of vertices. Each vertex in S represents an op-

eration of the class. Each of the operations that appear in the definition

of process Main, Main itself included, has a corresponding vertex in the

testchart.

2. T ⊆ S × S is a set of directed edges between vertices. An edge (A, B) ∈

T if and only if it is permissible for a client module to invoke the operation

6.3. REPRESENTATION FOR CLASSES SPECIFIED IN TCOZ 90

represented by A followed by operation represented by B.

3. s0 ∈ S is the vertex that represents the Init operation of the class.

The state-guards in TCOZ specification [67] are used to label the corresponding

edges in the testchart.

[MSG] [messages]

TimedQueue

items : seqMSG
in, out : chan
lost : seqMSG actuator
To : N

Init
items = lost = 〈 〉

RecLost
∆(lost)

items 6= 〈 〉 ⇒ lost ′ = 〈head(items)〉alost
items = 〈 〉 ⇒ lost ′ = lost

Add
∆(items)
i? : MSG

items ′ = items a 〈i?〉

Del
∆(items)
i ! : MSG

items 6= 〈 〉 ⇒ items = 〈i !〉aitems ′

items = 〈 〉 ⇒ items ′ = 〈 〉
Join =̂ [i : MSG] • in?i → Add
Leave =̂ [items 6= 〈 〉] • out !head(items) → Del
Main =̂ µQ • (Join 2 Leave) .{To} (RecLost; Del); Q

Figure 6.1: TimedQueue in TCOZ notation

In Chapter 2, we introduced a Timed Message Queue System to illustrate the way

that classes are specified in TCOZ notation. In this chapter, we revisit the Timed

Message Queue System as shown in Figure 6.1, and take it as an example to show

how our formal specification-based regression testing technique works.

6.3. REPRESENTATION FOR CLASSES SPECIFIED IN TCOZ 91

Following the definition of testchart and the semantics of TCOZ notation, the

testchart constructed for the Timed Message Queue System is shown in Figure 6.2.

In the TCOZ specification of the Timed Message Queue System shown in Fig-

ure 6.1, the Main process is defined as follows:

Main =̂ µQ • (Join 2 Leave) .{To} (RecLost; Del); Q

According to the semantics of TCOZ , the system will make a choice between

operation Join and Leave , if neither of them is invoked within a certain time ‘To ’

then operation Reclost will be invoked followed by operation Del. Therefore, in the

testchart for the Timed Message Queue System, there are directed edges from Main

to Join, Leave and RecLost respectively and also a directed edge from RecLost to

Del. Since Main is a recursively-defined process, there are directed edges from

Join, Leave and Del to Main. In the definition of operation Leave, there is a state

guard [items 6= 〈〉]; so the directed edge from Main to Leave will be labelled by

]items > 0 which is a variant of items 6= 〈〉. As a result, we get the corresponding

testchart as Figure 6.2 shows.

6.3.2 Coverage Criteria

Coverage criteria specify the set of elements to be covered in testing and guide

the selection of test cases. They provide stopping rules for testing (i.e., the rules

to determine whether sufficient testing has been performed and the test can be

stopped) and the measurements of test-suite quality (i.e., the degree of adequacy

6.3. REPRESENTATION FOR CLASSES SPECIFIED IN TCOZ 92

Init

Main

Join Leave RecLost

Del

#items>0

Figure 6.2: Testchart for TimedQueue

associated with a test suite) [117].

There have been some well-known coverage criteria for code-based testing, such

as statement coverage, condition coverage, branch coverage, path coverage, muta-

tion coverage, c-use coverage, p-use coverage, all-uses coverage and du-paths cover-

age [12, 47, 81]. Mathur and Wong [71] conducted an empirical study to compare

the difficulty and costs of satisfying the data flow based all-uses criterion and a mu-

tation based criterion. They also provided a theoretical comparison between the

c-use, p-use, and all-uses coverage criteria and a mutation based criterion in [72].

For specification-based testing, a few coverage criteria have been proposed too.

For instance, Offutt and Liu et al. [78, 79] defined four criteria at different levels of

abstraction on the specifications for the test generation from state-based specifica-

tions, namely, transition coverage, full predicate coverage, transition-pair coverage

and complete sequence. Andrews and France et al. [8] proposed test adequacy cri-

teria, based on UML model elements, for testing executable forms of UML models.

6.4. REGRESSION TEST SUITE CONSTRUCTION 93

Class testing typically involves the invocation of sequences of operations (methods)

in various orders on the objects of the class. The set of test sequences, which satis-

fies the test requirement for the class-level testing, demands that all the interactions

between methods be covered. The directed edges in the testchart correspond to

the interactions between the methods specified in TCOZ specifications. Therefore,

based on the testchart, we propose interaction coverage criterion and we will use

it in our regression test technique to guide regression test selection and test cases

generation.

Interaction Coverage – A set TS of test sequences satisfies the interaction cov-

erage criterion if only if for all directed edges (a, b) ∈ T, there is at least one test

sequence t ∈ TS such that t contains (a, b).

6.4 Regression Test Suite Construction

In this section, we present a TCOZ specification-based test suite construction tech-

nique for the regression testing of classes in object-oriented programs. The presen-

tation begins with an overview of the technique. Next, we itemize the modifications

to the formal specification that we will take into consideration in the proposed re-

gression testing technique and discuss the impacts of those modifications on the

original test cases. Then, a regression test selection algorithm is presented. Finally,

we illustrate the proposed technique with an example.

6.4. REGRESSION TEST SUITE CONSTRUCTION 94

6.4.1 Overview of the Technique

Our regression test suite construction technique functions on testcharts to select

the test cases related to the changed specifications from the existing test suite

and to generate new test cases for regression testing. It performs the following

five main steps: (1) it parses the original and modified versions of specifications

to identify modified operations, (2) it constructs testcharts to represent the origi-

nal and modified versions of the class’ specifications respectively, (3) it compares

the two versions of the testchart to identify the added/deleted operations and the

added/deleted interactions, (4) based on the information obtained through steps 1

and 3, it identifies the obsolete test cases and selects the test cases related to the

changed specifications, from the original test suite, for reuse in the regression test-

ing, (5)based on the information obtained through step 3, it generates test cases for

testing the new operations and interactions that are added to the modified version

of the specification, so that the interaction coverage criterion will be satisfied in

the regression testing of the class.

6.4.2 Modifications to TCOZ Specification

In our TCOZ specification-based regression test suite construction technique, we

consider the following kinds of modifications that had been made to the specifica-

tion of a class.

• Modified operation: We assume that an operation has a unique name and

is not renamed across the different versions of the class’ specification unless

6.4. REGRESSION TEST SUITE CONSTRUCTION 95

it does’t exist in the modified version. In TCOZ, the operations of a class

can be defined in the form of operation schema (e.g. Add in Figure 6.1)

or in the form of CPS process (e.g. Join in Figure 6.1). The change of

an operation may result from the addition/deletion of an attribute or the

change of one of the attributes the class can access. In TCOZ specification,

the attributes of a class are declared in the state-schema. An added/deleted

attribute is an attribute that is not declared in the original/modified version

of the specification of a given class, but is declared in the modified/original

version of the specification. A modified attribute is an attribute which exists

in both versions of the specification but with different scope, type, or visibility.

The change of an operation may also result from the change of a precondition

or postcondition when it is defined in the form of operation schema, or the

change of the process when it is defined in terms of CSP process. The modified

operations can be identified automatically by parsing the TCOZ specification

of a class.

• Added/Deleted operation: An added/deleted operation is an operation

that does not exist in the original/modified version of the class’ specification,

but exists in the modified/original version of the specification. As stated

in the definition of testchart which is shown in Section 6.3, each vertex of

a testchart represents an operation of the corresponding class. Thereby,

we assume that the function V (testchart) returns the set of vertices for

the testchart in question; operations-added is the set of added operations;

6.4. REGRESSION TEST SUITE CONSTRUCTION 96

operations-deleted is the set of deleted operations; Testcharto and Testchartm

are the testcharts for the original version and modified version of a class’

specification, respectively. Thus, we can have the following statements.

operations-added ← V(Testchartm) - V(Testcharto)

operations-deleted ← V(Testcharto) - V(Testchartm)

The relative complement of V(Testcharto) relative to V(Testchartm) cor-

responds to the set of operations that are added to the original specifi-

cation. Meanwhile, the relative complement of V(Testchartm) relative to

V(Testcharto) corresponds to the set of operations that are deleted from the

original specification. With the above two statements, the operations that are

added to or deleted from the original version of specification can be identified

automatically based on the testchart.

• Added/Deleted interaction: An added/deleted interaction is an inter-

action between the operations of a class, which does not exist in the ori-

gianl/modified version of the class’ specification but exists in the modi-

fied/original version of the specification. In TCOZ, active classes are identi-

fied with non-terminating CSP processes and the Main process determines

the behaviour of objects of an active class after initialization. The testchart,

which is derived from TCOZ specifications of the class under test as we

discussed in Section 6.3, depicts the control flow relationships among the

operations of the class. The directed edges in the testchart correspond

to the interactions between the operations. Thereby, we assume that the

6.4. REGRESSION TEST SUITE CONSTRUCTION 97

function E (testchart) returns the set of edges for the testchart in question;

interactions-added is the set of added interactions; interactions-deleted is the

set of deleted interactions; Testcharto is the testchart for the original specifi-

cation of a class and Testchartm is the testchart for the modified version of

the specification. Thus, we can have the following statements.

interactions-added ← E(Testchartm) - E(Testcharto)

interactions-deleted ← E(Testcharto) - E(Testchartm)

The relative complement of E(Testcharto) relative to E(Testchartm) cor-

responds to the set of interactions that are added to the original specifi-

cation. Meanwhile, the relative complement of E(Testchartm) relative to

E(Testcharto), corresponds to the set of interaction that are deleted from the

original specification. With the above two statements, the interactions that

are added to or deleted from the original version of specification can also be

identified automatically based on the testchart.

6.4.3 Impacts of Modifications on Test Cases

Following the classification presented by Leung and White [58], we classify original

test sequences into three categories: obsolete, retestable and reusable.

• Obsolete: A test sequence is obsolete if it is an invalid sequence of operations

in the modified version of the class’ specification.

6.4. REGRESSION TEST SUITE CONSTRUCTION 98

• Retestable: A test sequence is retestable if it remains valid in the modified

version of the class’ specification, but one or more of the operations in the

sequence have been modified.

• Reusable: A test sequence is reusable if it is valid and consists of operations

that have remained unchanged in the modified version of the class’ specifica-

tion.

In regression testing, it is necessary to identify the obsolete test sequences and

remove them from the original test suite if any test sequence reuse is desired.

Meanwhile, the retestable test sequences must be rerun to ensure that the regression

testing is safe while the reusable test sequence do not need to be rerun in regression

testing.

Furthermore, it should be noted that, in the specification-based regression testing

of classes, both the addition/deletion of operations and the addition/deletion of

interactions among operations in the specification of the class could make a original

test sequence obsolete.

6.4.4 Regression Test Selection Algorithm

Now, a TCOZ specification-based regression test selection algorithm is presented.

To identify obsolete test sequences and select test sequences from the original test

suite, each test sequence is associated with two bit vectors, Operations-Used and

Interactions-Used. The algorithm is shown in Figure 6.3. It takes a number of pa-

rameters: (1) the original test suite TS, (2) the set of modified operations OpMd,

6.4. REGRESSION TEST SUITE CONSTRUCTION 99

Algorithm TestSelection(TS, OpMd, OpDel, IntrActDel): RTS

input:
TS: original test suite;
OpMd: the set of modified operations;
OpDel: the set of deleted operations;
IntrActDel: the set of deleted interactions

output:
RTS: subset of TS selected for use in regression testing

global:
Obslt: subset of TS obsolete for regression testing

1. Begin
2. Obslt = φ RTS = φ
3. for each (ts ∈ TS) do
4. get bit vector Operations-Used of ts
5. for each (Oi ∈ OpDel)do
6. while (O th

i bit of Operations-Used == 1) do
7. Obslt = Obslt ∪ {ts}
8. endwhile
9. endfor
10. get bit vector Interactions-Used of ts
11. for each (IntrActi ∈ IntrActDel) do
12. while (IntrAct th

i bit of Interactions-Used == 1) do
13. Obslt = Obslt ∪ {ts}
14. endwhile
15. endfor
16. endfor
17. for each (ts ∈ (TS - Obslt)) do
18. get bit vector Operations-Used of ts
19. for each (Oi ∈ OpMd) do
20. while (O th

i bit of Operations-Used == 1) do
21. RTS = RTS ∪ {ts}
22. endwhile
23. endfor
24. endfor
25. End

Figure 6.3: Formal specification-based regression test selection algorithm

6.4. REGRESSION TEST SUITE CONSTRUCTION 100

(3) the set of deleted operations OpDel, and (4) the set of deleted interactions In-

trActDel. It returns RTS, the subset of TS which is selected for use in regression

testing.

The algorithm starts by initializing Obslt, which will hold test sequences that are

obsolete for regression testing, to empty, and initializing RTS to empty. For each ts

from TS, the algorithm attains the bit vector Operations-Used of ts (Line 4). If ts

includes an operation Oi which does not exist in the new version of the specification

(Lines 5, 6), then ts is identified as obsolete (Line 7). The algorithm continues

by attaining the bit vector Interactions-Used of ts (Line 10). If ts includes an

interaction IntrActi which does not exist in the new version of the specification

(Lines 11, 12), then ts is identified as obsolete (Line 13). Having identified all

the obsolete test sequences, for each ts that is an element of TS but not an element

of Obslt, the algorithm attains the bit vector Operations-Used of ts (Line 18). If

ts includes an operation Oi which is modified in the new version of the specification

(Lines 19, 20), then ts must be selected for regression testing (Line 21).

6.4.5 A Case Study

To demonstrate the formal specification-based regression test suite construction

technique, we apply it to the Timed Message Queue System that we have introduced

before. The specification of the original Timed Message Queue System has been

shown in Figure 6.1. The specification of a modified version of Timed Message

Queue System is presented in Figure 6.4. By parsing the two versions of the

6.4. REGRESSION TEST SUITE CONSTRUCTION 101

Flag ::= In | NotIn

ModifiedTimedQueue

items : seqMSG
in, out : chan
To : N

Init
items = 〈 〉

Add
∆(items)
i? : MSG

items ′ = 〈i?〉aitems a 〈i?〉

Find
i? : MSG
flag ! : Flag

i? ∈ item ⇒ flag ! = In
i? 6∈ item ⇒ flag ! = NotIn

Del
∆(items)
i ! : MSG

items 6= 〈 〉 ⇒ items = 〈i !〉aitems ′

items = 〈 〉 ⇒ items ′ = 〈 〉
Join =̂ [i : MSG] • in?i → Add
Leave =̂ [items 6= 〈 〉] • out !head(items) → Del
Main =̂ µQ • (Join 2 Leave 2 Find) .{To} Del ; Q

Figure 6.4: Modified TimedQueue

specification, it can be identified that operation Add has been modified. In the

modified version of the specification, given an i of type MSG, operation Add will

attach it to both head and tail of the list. Add appears in the definition of operation

Join; the semantics of operation Join is modified due to the modification to Add.

As a result, we obtain the set

operations-modified = {Add, Join}

6.4. REGRESSION TEST SUITE CONSTRUCTION 102

Init

Main

Join Leave Find Del

#
it
em

s>
0

Figure 6.5: Testchart for modified TimedQueue

Furthermore, Figure 6.2 and 6.5 show the original version and modified version

of the testchart for the Timed Message Queue System, respectively. The original

Timed Message Queue System has the following operations: Join, Leave, RecLost

and Del. The modified version has 3 of the 4 original operations; RecLost has been

deleted. A new operation Find is added. Given an i of type MSG, operation Find

will find out whether it is in the queue. In the modified version of the Timed Mes-

sage Queue System, the Main process is defined as follows:

Main =̂ µQ • (Join 2 Leave 2 Find) .{To} Del ; Q

Correspondingly, in the testchart for the modified Timed Message Queue System,

the vertex representing operation RecLost doesn’t exist while a vertex representing

operation Find is added. There are three new directed edges: (Main, Find), (Find,

Main) and (Main, Del). The following four sets can summarize the differences

between the two testcharts:

• operations-added = {Find}

6.5. TCOZ-BASED REGRESSION TEST SUITE CONSTRUCTION SYSTEM 103

• operations-deleted = {RecLost}

• interactions-added = {(Main, Find), (Find, Main), (Main, Del)}

• interactions-deleted = {(Main, RecLost), (RecLost, Del)}

〈Init ; Join; Leave; RecLost ; Del〉, 〈Init ; RecLost ; Del〉, 〈Init ; Join; Leave〉 are

three test sequences from the test suite that is used to test original Timed Mes-

sage Queue System. Since operation RecLost has been deleted, operation sequence

〈Init ; Join; Leave; RecLost ; Del〉 becomes invalid for the modified Timed Message

Queue System and cannot be used for regression testing. Because (Main,RecLost)

has been deleted, operation sequence 〈Init ; RecLost ; Del〉 becomes obsolete and

cannot be used for regression testing. 〈Init ; Join; Leave〉 is selected for regression

testing because it is valid for the modified Timed Message Queue System and one

of the operations it includes, Join, has been modified. Moreover, new operation

Find is added; to satisfy the interaction coverage criterion, new test sequences such

as 〈Init ; Join; Find〉 need to be generated for regression testing.

6.5 TCOZ-based Regression Test Suite Construc-

tion System

In this section, a TCOZ-based regression test suite construction system, which is

named TcozRts, is presented. It is built based on the technique that has been

introduced in the previous sections.

TcozRts takes the original and modified versions of the specification and the original

6.5. TCOZ-BASED REGRESSION TEST SUITE CONSTRUCTION SYSTEM 104

Specification

Comparer

Testchart

Constructor

Testchart

Comparer

Test Case
Classifier

Original
Specifications

Modified
Specifications

Original
Specifications

Modified
Specifications

testchart
Original

Modified
testchart

Operations-modified

Added/Deleted

Added/Deleted

operations

interactions
Added

operations interactions
Added

Coverage

Evaluator

Test Case

Generator

New test
cases

Obsolete

Reusable

Retestable

test cases

Retestable
test cases

Original
test suite

Regression Test Suite

test cases

test cases

Figure 6.6: TCOZ-based regression test suite construction system: TcozRts

test suite as input, and outputs regression test suite which consists of retestable

original test cases and newly generated test cases.

Figure 6.6 shows the architecture of the TCOZ-based regression test suite construc-

tion system, TcozRts, and the interactions between the components of the system.

Specification comparer takes original and modified versions of the specification and

identifies the modified operations by automatically parsing the two versions of the

TCOZ specification. The information about the modified operations is sent to

the test case classifier. Meanwhile, the testchart constructor constructs testcharts

based on the two versions of the specification. The testchart comparer compares

the two versions of the testchart to identify the added/deleted operations and the

added/deleted interactions and sends the information about the modifications to

test case classifier. With the information from specification comparer and testchart

6.6. CONCLUSION 105

comparer, the test case classifier categorizes the original test cases as being obso-

lete, reusable or retestable. The retestable test cases will be used for regression

testing. Moreover, it is likely that new functionalities are added to the system; new

test cases that can be used to test those parts of the system should be developed

for regression testing. In TcozRts, the test generator module is design to generate

new test cases for the testing of those new operations and interactions, in collab-

oration with coverage evaluator, based on the information about new operations

and interactions obtained from testchart comparer.

6.6 Conclusion

In this chapter, a formal specification-based regression test suite construction tech-

nique for classes specified in TCOZ notation is presented. The proposed technique

mainly addresses the regression test selection problem and test suite augmentation

problem involved in a typical selective retest technique. In order to effectively select

test cases for regression testing, a TCOZ specification-based regression test selec-

tion algorithm is presented. It selects test cases related to the parts of specification

that have changed, from the original test suite, based on the changes that have

been made to the original version of the formal specification. To solve test suite

augmentation problem, our technique compares the two versions of the class’ speci-

fication to identify the differences and uses those differences to guide the generation

of new test cases for regression testing. Furthermore, a TCOZ specification-based

regression test suite construction system, TcozRts, is also presented. The technique

6.6. CONCLUSION 106

presented in this chapter is strictly specification-based and it does not require any

complex static or dynamic code analysis. Therefore, it is independent of the pro-

gramming language which is used to implement the specification, and it can be

used as a complement to those code-based regression testing technique to achieve

more effective and more comprehensive regression testing in the development and

maintenance of software systems.

Chapter 7

Formal Specification Notation for
AOSD

With the expectation that the existing formal methods could be extended and

applied to aspect-oriented programs, this chapter proposes a formal specification

notation, AspecTCOZ, for aspect-oriented software development.

107

7.1. INTRODUCTION 108

7.1 Introduction

The intent of aspect-orientation is to allow developers to encapsulate and mod-

ularize system behaviors that would otherwise tangle and scatter across other

concerns; and it is aimed at breaking the hegemony of the dominant decompo-

sition [33, 100]. The research in aspect-oriented software development (AOSD)

areas has extended from the design and implementation of aspect-oriented pro-

gramming languages [52, 57, 99, 18, 108, 107, 96] to the development of techniques

that are required in the early stages of software development such as requirement

engineering and software design [10, 86, 94]. However, comprehensive supports

for aspect-oriented software development are still far from sufficient. Existing for-

mal methods cannot be applied to AOSD directly because new concepts and con-

structs, such as pointcut, advice, inter-type declaration and aspect, are introduced

to aspect-oriented program(AOP).

With the expectation that the existing formal methods could be extended and

applied to aspect-oriented programs, this chapter proposes a formal specification

notation, AspecTCOZ, for aspect-oriented software development. AspecTCOZ is

an aspect-orientation extension to the integrated formal notation TCOZ (Timed

Communicating Object-Z) [66, 70], complying with the semantics of AspectJ.

As introduced in Chapter 2, TCOZ is built on the strength of Object-Z [30, 92] in

modeling complex data and state with the strength of TCSP [89, 90] in modeling

process control and real-time interactions. The class schema in TCOZ notation

7.1. INTRODUCTION 109

is an eligible candidate for specifying aspect formally because aspect is the unit

of modularity, encapsulation, and abstraction in AOP, just in the same way as

class in OOP. Meanwhile, the strength of TCSP in modeling process control and

real-time interactions, which is preserved in TCOZ, provides a great mechanism for

specifying the temporal order between pointcut and advice. Therefore, we try to

extend TCOZ with the mechanisms for formally specifying the constructs of join

point, pointcut, advice, and inter-type introduction. AspecTCOZ, as the result

of the aspect-orientated extension of TCOZ, provides a starting point for future

research work on the development of formal methods for aspect-oriented software

development.

Moreover, in AOP, when multiple aspects are superimposed on the same join point,

undesire or incorrect behavior may emerge due to unexpected conflicts between

aspects. The conflicts resulting from the introduction of aspects are usually im-

plicit and difficult to capture specially when the program control flow is influenced

by those conflicts. The development of effective mechanisms for detecting those

conflicts between aspects is critical to the maturity of AOP. Furthermore, early

detection of those conflicts will make it possible to reduce the development cost

while promising a high quality software system. Therefore, this chapter proposes

an approach for the detection of conflicts between aspects, based on the formal

specification of the system which is written in AspecTCOZ notation, so that the

aspect conflicts can be detected as early as in the phase of system design.

The rest of this chapter is organized as follows. Section 7.2 introduces a simple

7.2. OVERVIEW OF A SIMPLE TELEPHONE SYSTEM 110

telephone system which will be taken as an example in this chapter. Section 7.3

proposes AspecTCOZ notation, which is an extension to TCOZ notation with the

mechanisms for formally specifying the constructs of join point, pointcut, advice,

and inter-type introduction. Section 7.4 proposes an approach for the early detec-

tion of conflicts between aspects, based on the formal specification of the system

which is written in AspecTCOZ notation. Finally, Section 7.5 concludes this chap-

ter.

7.2 Overview of a Simple Telephone System

A simple simulation of a telephony system, which is part of the AspectJ distribu-

tion, will be taken as an example in the following sections. In the simple telephone

system, customers make, accept, and hang-up both local and long distance calls.

The application architecture consists of:

• The basic objects provide basic functionality to simulate customers, calls and

connections (regular calls have one connection, conference calls have more

than one).

• The timing feature is concerned with timing the connections and keeping the

total connection time per customer. Aspect is used to add a timer to each

connection and to manage the total time per customer.

• The billing feature is concerned with charging customers for the calls they

make. Aspect is used to calculate a charge per connection and, upon ter-

7.2. OVERVIEW OF A SIMPLE TELEPHONE SYSTEM 111

STATE ::= pending | complete | dropped

Connection

state : STATE
caller , receiver : Customer

Init
state = pending

Connection
a?, b? : Customer

caller = a?∧ receiver = b?

Complete
∆state

state = complete

Drop
∆state

state = dropped

Figure 7.1: The Connection class

mination of a connection, to add the charge to the appropriate customer’s

bill.

The definition of the Connection class in TCOZ notation is shows in Figure 7.1.

It describes that there should be a caller and a receiver in order to establish a

connection, and that the connection could be pending when the receiver has not

picked up the phone, complete when the caller and receiver finish calling, or dropped

when either caller or receiver drop the phone arbitrarily.

The definition of the Customer class in TCOZ notation is shown in Figure 7.2. The

specification describes that a customer has a name, an area code and a record of

the calls; and he or she can make a call, accept a call and modify the record of the

calls simultaneously. Note that the operations MakeCall, AcceptCall and Main are

defined in terms of CSP processes while the operations AddCall and RemoveCall

7.3. ASPECTCOZ - AN EXTENSION OF TCOZ 112

[NAME]

Customer

name : NAME
areacode : N
calls : PCall
T0 : N

Init
calls = ∅

AddCall
∆(calls)
c? : Call

c? 6∈ calls ∧ c?.Init
calls ′ = calls ∪ {c?}

RemoveCall
∆calls
c? : Call

c? ∈ calls

calls ′ = calls \ {d?}
MakeCall =̂ AddCall ; [c : calls] • c.PickUp; ((c.Connected ; c.Hangup)

2 c.NotConnected .{T0} (c.HangUp; RemoveCall))
AcceptCall =̂ AddCall ; [c : calls] • c.PickUp; c.Connected ; c.HangUp
Main =̂ µQ • (MakeCall 2 AcceptCall); Q

Figure 7.2: The Customer class

are defined in form of operation schemas. Besides, the state variable call is a set

of instances of class Call which is the abstract description of connections between

a caller and receiver who are customers.

7.3 AspecTCOZ - an Extension of TCOZ

Aspect is the central unit of modularity, encapsulation, and abstraction in AOP,

in the same way that class is in OOP. It is defined very much like a class, and can

contain methods, fields, nested class members, and initializers, just like a normal

OOP class. The data members and methods inside aspects function in the same

way they do in classes. The crosscutting concern could manage its state using the

7.3. ASPECTCOZ - AN EXTENSION OF TCOZ 113

data members, whereas the methods could implement behavior that supports the

crosscutting concern’s implementation, or they could simply be utility methods.

Moreover, just like class inheritance in OOP, there is a mechanism for aspects

inheritance with which aspects can not only extend other aspects, but also extend

classes and implement interfaces in AOP. Thereby, the class schema in TCOZ

notation, as presented in Section 2.1.2, might be an eligible candidate for specifying

aspect formally.

However, as the basic units for implementing aspect-oriented crosscutting con-

cerns, aspects must contain the constructs that express the weaving rules for both

dynamic and static crosscutting, such as pointcuts, advice, and inter-type declara-

tions and so on. There are no such mechanisms in TCOZ that can specify those

aspect-orientation constructs properly. Therefore, we extend TCOZ notation with

mechanisms for specifying the constructs introduced by aspect-oriented program-

ming, to provide a starting point for future research work on the development of

formal methods for aspect-oriented software development.

7.3.1 Join Point

Join points are events in the control flow of a program. They are identifiable

points in the execution of a program. In AOP, everything revolves around join

points, since they are the places where the crosscutting actions are woven in. A

join point model determines which events will be exposed as join points, and which

will not. The join points defined by AspectJ include: method and constructor calls

7.3. ASPECTCOZ - AN EXTENSION OF TCOZ 114

Table 7.1: Formal notations for join point model of AspectJ

Join point model Formal notation Example
method call ζ(list of operation/constructor signatures) ζ(AddCall)

constructor call
method execution ξ(list of operation/constructor/handler/ ξ(RemoveCall)

constructor execution advice/object initialization signature)
handler execution
advice execution

object initialization
class initialization

field read access r(list of class member names) r(name)
field write access s(list of class member names) s(areacode)

or executions, field accesses, object and class initializations, handler and advice

executions, and so on [57]. In AspecTCOZ, we introduce formal notation, which is

as show in Table 7.1, for the join point model of AspectJ.

The examples in Table 7.1, namely ζ(AddCall), ξ(RemoveCall), r(name), s(areacode),

describe respectively the join point of calling the method described by the oper-

ation AddCall, executing method described by the operation RemoveCall, getting

the value of the field name, and setting the value of the field areacode.

7.3.2 Pointcut

Join point selections are of great importance in aspect-oriented software develop-

ment. They designate all those relevant points in a program at which aspectual

adaptations need to take place. Different aspect-oriented systems come up with

most various language constructs to specify such selections. For example, in Hy-

per/J [99], match patterns designate method specifications based on their names.

In Sally [80], logic queries select classes based on particular attributes or methods

7.3. ASPECTCOZ - AN EXTENSION OF TCOZ 115

Table 7.2: Formal notations for pointcut designators of AspectJ

Pointcut designator Formal notation Example
control-flow based pointcuts H(executing/calling pointcuts) H(ζ(AddCall))

O(executing/calling pointcut) O(ξ(RemoveCall))
lexical-structure based pointcuts ©(name of class) ©(Customer)

}(name of operation) }(MakeCall)
execution object poincuts ⊕(name of class/object) ⊕(Customer)

¯(name of class/object) ¯(Customer)
argument pointcuts A(type/name of parameters) A(Call)

conditional check pointcuts predicates from TCOZ c? 6∈ calls

that they contain. In JAsCo [29], applicability conditions select objects depending

on the state they are in.

In AspectJ, the language construct for join point selection is pointcut. A pointcut

is a program construct that captures a set of join points by matching certain

characteristics. It acts as a filter, matching join points that meet its specification,

and blocking all others.

In addition to the join points which have been presented in Section 7.3.1, the

pointcut designators in AspectJ can also capture join points based on matching

the circumstances under which they occur, such as control flow, lexical scope, and

conditional checks. Table 7.2 presents the proposed formal notation for pointcut

designators.

Among the examples, H(ζ(AddCall)) describes the pointcut that selects all the join

points in the control flow of the method which corresponds to the operation AddCall

as defined in class Customer, including the call to the method itself. ©(Customer)

describes the pointcut that selects all the join point inside the Customer class’s

7.3. ASPECTCOZ - AN EXTENSION OF TCOZ 116

lexical scope. ⊕(Customer) describes the pointcut the capture all the join points

like methods calls and field assignments where the current execution object is

Customer, or its subclass. A(Call) describes all the join points in all operations

where the argument is of type Call . The predicates of TCOZ act as the same as

what conditional check pointcuts do in AspectJ, therefore, we do not introduce

new formal mechanism for it. c? 6∈ calls describes the pointcut which captures all

the join points where a new call is started.

Complex matching rules can be formed by combining simple pointcuts. Like in

AspectJ, AspecTCOZ provides a unary negation operator ¬ and two binary op-

erators ∧ and ∨ to build powerful pointcuts from the simple building blocks of

existing and primitive pointcuts.

• unary negation operator ¬ allows the matching of all join points except those

specified by the pointcuts.

For example, ¬(©(Customer)) excludes all the join points inside the Cus-

tomer class’s lexical scope.

• ∧ and ∨ are provided to combine pointcuts. Combining two pointcuts with

the ∨ operator causes the selection of join points that match either of the

pointcuts, whereas combining them with ∧ operator causes the selection of

join points matching both the pointcuts.

For example, ¯(Customer) ∧ ζ(Customer .AddCall) describes the pointcut

that captures the join points where the object on which the method called

is an instance of Customer, meanwhile, the method corresponding to the

7.3. ASPECTCOZ - AN EXTENSION OF TCOZ 117

operation AddCall is called.

To provide a sound formal notation, the following two important characteristics of

the construct of pointcut should be noted.

• In AspectJ, pointcuts can be named or anonymous. In AspecTCOZ, we de-

mand that every pointcut has a name. Naming pointcuts provides the soft-

ware designers the ability to abstract, encapsulate and maximize the reusabil-

ity of join point selections in different application contexts. Also, it improves

the clarity of the specification documents.

• A pointcut can also collect context at those join points it selects through

some parameters. In AOP, an advice declaration may contain parameters

whose values can be referenced in the body of the advice. However, because

advices cannot be called by name, or by any other means, parameter values

cannot be explicitly passed by the caller like in method calls. Therefore, the

parameter provided by the pointcut is an essential way for the advice to get

information about context.

In AspecTCOZ, the general form of a pointcut declaration is as follows:

PointcutName [(ParameterTypeList)] $

PrimitivePointcut {¬ | ∧ | ∨ (PrimitivePointcut |PointcutName)}

Literally, the pointcut can have zero or a list of parameters; and it can be a primitive

pointcut or the combination of existing pointcuts and/or primitive poincuts with

operators (i.e. ¬,∧,∨).

7.3. ASPECTCOZ - AN EXTENSION OF TCOZ 118

For example, the following AspecTCOZ statement describes a pointcut that is

named as endTiming and has a parameter which is of type Connection.

endTiming(Connection) $ ¯(Connection)∧ ξ(Connection.Drop)

This pointcut captures the join points where the object, on which the method is

called, is an instance of Connection; meanwhile, the method corresponding to the

operation Drop is executed.

7.3.3 Advice

Advice is a method-like construct that provides a way to express what to do at

the join points that are captured by a pointcut, and it is the action and decision

part of the crosscutting concern. The operation schema in TCOZ work greatly in

describing “what to do”. However, it is not capable enough of formally specifying

advice because each piece of advice must be associated with a pointcut in AOP.

The implicit invocation of advice can happen before the join points matched by its

pointcut, after the join points matched by its pointcut, or around the join points.

Before and after advice are the simple kinds: whereas they can read contextual

information at a join point (such as arguments and return values), they cannot

change it. Around advice is the most powerful form of advice; it can not only read

contextual information but also change it and can even decide whether the original

join point should be executed at all.

Now, we exploit the strength of TCOZ notation to formally specify advice. Firstly,

7.3. ASPECTCOZ - AN EXTENSION OF TCOZ 119

pointcut captures a set of join points by matching certain characteristics while

join points captured by the pointcuts are essentially events in the execution of a

program. Therefore, we can define a process PCprocess for every pointcut PointCut

as follows:

PCprocess = e : PointCut → SKIP

Secondly, as introduced in Section 2.1.2, in TCOZ notation, operation schemas

(both syntactically and semantically) is identified with (terminating) CSP processes

that perform only state update events; and operation schema expressions may

appear wherever processes may appear in CSP. Meanwhile, the strength of TCSP

in modeling process control and real-time interactions, which is preserved in TCOZ,

provides a great mechanism for specifying the temporal order between pointcut and

advice. Therefore, assuming OP is the operation schema describing “what to do”

with the advice and PCprocess is the process corresponding to the relevant pointcut,

we can specify the before advice and after advice as the sequential composition of

two processes, namely PCprocess and OP , as follows:

before advice ⇒ OP ; PCprocess

after advice ⇒ PCprocess ; OP

As an example, the specification in Figure 7.3 describes an after advice named Cal-

culateCost. Following the join point captured by the pointcut endTiming(Connection),

the system is designed to do what is described by the operation schema CalCost .

This advice requires that, after the termination of a connection, the charge for the

7.3. ASPECTCOZ - AN EXTENSION OF TCOZ 120

CalCost
conn? : Connection
time, rate, cost : N

cost = rate ∗ time
conn.payer .cost ′ = conn.payer .cost + cost

CalculateCost = e : endTiming(Connection) → SKIP ; CalCost

Figure 7.3: An after advice

connection is calculated and added the charge to the appropriate customer’s bill.

While specifying advice with AspecTCOZ notation, the following two points should

be noted:

• First, in AspecTCOZ notation, it is compulsory that every advice has a name

associated with it in order that we can achieve the benefit of abstraction and

encapsulation.

• Second, each parameter in the operation schema must appear somewhere in

the definition of the pointcut which is associated with the advice since advice

gets contextual information at a join point through pointcut.

As illustrated by the example in Figure 7.3, this after advice does have a name

which is CalculateCost . Meanwhile, the input parameter of the operation schema

CalCost , i.e. Connection, is indeed included in the parameter list of the pointcut

endTiming(Connection).

7.3. ASPECTCOZ - AN EXTENSION OF TCOZ 121

7.3.4 Inter-type Declaration

Whereas advice is a declaration that an aspect will execute certain behavior in the

program control flow at designated join points, inter-type declarations are state-

ments that an aspect takes complete responsibility for certain capabilities on behalf

of the “targets” of the inter-type declarations.

The most basic forms of inter-type declarations are for methods, fields, and con-

structor. An inter-type declaration inside an aspect looks just like the definition

of a normal method, field in constructor in the aspect. The mechanisms provided

by AspecTCOZ for specifying inter-type declaration of fields, methods and con-

structors are similar to those mechanisms for normal declarations, but with the

exception that the targets of the declarations are attached with sign ‘∝’. There

are two purposes to do so:

1. to distinguish the inter-type declarations from the normal ones;

2. to show clearly what the target modules of the inter-type declarations are.

The the general form of inter-type declaration of state variables in AspecTCOZ is

as follows:

∝
{NameOfVariable ∝ TargetClassName : Type}1

[Predicates on Variables]

As an example, the following AspecTCOZ specification describes the inter-type

declaration that class Connection has an inter-type field, payer, to indicate who

7.3. ASPECTCOZ - AN EXTENSION OF TCOZ 122

initiates the call and therefore is responsible to pay for it, and that class Customer

has an inter-type field, totalConnectioinTime, to store the accumulated connection

time for every customer and an inter-type field, totalCharge, to store the accumu-

lated charge that the customer should pay. The predicate at the bottom of the

schema indicates that the value of the field totalCharge is never less than 0.

∝
payer ∝ Connection : Customer
totalConnectionTime ∝ Customer : N
totalCharge ∝ Customer : R

totalCharge ∝ Customer > 0

The the general form of inter-type declaration of operation in AspecTCOZ is as

follows:

OpName ∝ TargetClassName
[ListOfToBeChanged]
[NameOfVariable ∝ TargetClassName : Type]

[Predicates on Variables]

As an example, the following AspecTCOZ specification declares an inter-type

method which targets Customer class and updates the field totalCharge with the

new charge included and keeps all the other fields of the Customer class unchanged.

addCharge ∝ Customer
∆(totalCharge)
charge? : R

totalCharge ′ = totalCharge + charge?

7.3. ASPECTCOZ - AN EXTENSION OF TCOZ 123

7.3.5 Aspect

The aspect is the central unit of AOP, in the same way that a class is the cen-

tral unit in OOP. It contains the code that expresses the weaving rules for both

dynamic and static crosscutting. Pointcuts, advice, introductions, and declara-

tions are combined in an aspect. Besides, aspects can contain data, methods, and

nested class members, just like a normal class. Moreover, just like class inheri-

tance in OOP, there is a mechanism for aspects inheritance with which aspects can

not only extend other aspects, but also extend classes and implement interfaces in

AOP.

Having proposed the extension to TCOZ notation for formally specifying join point,

pointcut, advice, and inter-type introduction, now we can formally specifying an

aspect with AspecTCOZ notation. The general form of an aspect schema is as

follows.

AspectName
[Inheritance]
[LocalDefinition]
[StateSchema]
[InitialSchema]
[OperationSchema]
[OperationExpressionDefinition]
[PointcutDefinition]
[AdviceDefinition]
[IntertypeStateVariableSchema]
[IntertypeStateVariableInitialSchema]
[IntertypeOperationSchema]

As an example, the specification shown in Figure 7.4 describes an aspect named

7.4. FORMAL SPECIFICATION-BASED ASPECT CONFLICT DETECTION 124

TimingBilling. This aspect will perform the following functions: keeping the total

connection time per customer, and charging customers for the calls they make.

TimingBilling

LocalRate,LongDisRate : R

LocalRate = 3∧ LongDisRate = 10

endTiming(Connection) $ ¯(Connection)∧ ξ(Connection.Drop)

CalCost
conn? : Connection
time, rate, cost : N

cost = rate ∗ time
conn.payer .cost ′ = conn.payer .cost + cost

CalculateCost = e : endTiming(Connection) → SKIP ; CalCost
∝
payer ∝ Connection : Customer
totalConnTime ∝ Customer : N
totalCharge ∝ Customer : R

totalCharge ∝ Customer > 0

IntertypeInit
totalConnTime ∝ Customer = 0
totalCharge ∝ Customer = 0

addCharge ∝ Customer
∆(totalCharge)
charge? : R

totalCharge ′ = totalCharge + charge?

Figure 7.4: TimingBilling aspect in AspecTCOZ notation

7.4 Formal Specification-based Aspect Conflict

Detection

Aspect-oriented software development supports multi-dimensional separation of

concerns throughout the software development cycle. It is a promising method-

ology aiming to enhance the productivity, quality and reusability through the en-

7.4. FORMAL SPECIFICATION-BASED ASPECT CONFLICT DETECTION 125

capsulation of requirements that cut across core concerns. However, there are also

intrinsic and critical issues in aspect-oriented software development. One of them

is the aspect conflicts problem.

In AOP, it is allowed that multiple aspects are superimposed on the same join point.

When multiple aspects are superimposed on the same join point, the aspects might

well interfere with each other in a potentially undesired manner.

This kind of issues are extremely hard to detect, as those aspects are syntactically

sound, and will be compiled without any problems. The conflicts exhibit themselves

only when the composed application executes. It might be caused by the side

effects of behavior of the aspects at the join point, for example, the aspects might

change the state of the base program. Also, it might be caused by the requirements

enforced by the system, for example, the logging aspect may be applied only in the

presence of the encryption aspect because the systems require all logged data to

be encrypted. For the latter case, the conflicts cannot be detected without extra

information about the specific application requirements.

The detection of aspect conflicts has been considered as an important issue to

aspect-oriented software development and has received attention from researchers.

Durr et al. [31] proposed a detecting approach that defines the semantics of advice

in terms of operations on a resource model. After all advice at a shared join point

has been analyzed, the conflicts will be detected based on conflict patterns over

the combinations of operations on these resources. Tessier et al. [101] proposed a

formal way to detect semantic conflicts between aspects based on extended UML

7.4. FORMAL SPECIFICATION-BASED ASPECT CONFLICT DETECTION 126

class diagram model. In their approach, the relationship between aspects and

classes is translated into formal rules through model analysis; then a rule analyzer

evaluate those rules to detect eventual conflicts between aspects.

In this section, we propose an approach for detecting aspect conflicts as early as in

the phase of system design. Our approach is based on the formal specification of

the system, which is written in AspecTCOZ notation.

In AspecTCOZ, the aspect is defined by the association of operation schema and

pointcut. The operation schema describes clearly “what to do” at the join point.

In the operation schema, the input and output parameters are clearly laid out, and

the variables/objects that will be changed by the operation are also explicitly laid

out in the ListOfToBeChanged. Thus, based on the formal specification, we can

figure out whether there might be any data-dependent conflicts between aspects.

Assume that a system has been specified in AspecTCOZ notation, and that there

are some join points which are superimposed by a few aspects. For each join point,

if it is superimposed then for each pair of the aspects superimposing on it (A1,

A2), for each advice a1 which is an advice included in aspect A1, we check whether

there exists an advice a2 in aspect A2 such that advice a2 is the same kind of

advice as a1 and there are variables which are included both in the input variable

list of the operation schema associated with a1 and in the output variable list or

the ListOfToBeChanged of the operation schema associated with a2. If yes, there

will be conflicts between the two aspects A1 and A2. We also check whether there

are common elements between the ListOfToBeChanged of the operation schema

7.5. CONCLUSION 127

associated with a1 and the ListOfToBeChanged of the operation schema associated

with a2. If yes, we declare that there will be conflicts between A1 and A2.

7.5 Conclusion

In this chapter, we propose AspecTCOZ, which is an aspect-orientated extension to

the integrated formal notation TCOZ. Resulting from extending TCOZ notation

with the mechanisms for formally specifying the constructs of join point, point-

cut, advice, and inter-type introduction, AspecTCOZ provides a starting point for

future research work on the development of formal methods for aspect-oriented

software development. Furthermore, we propose an approach for handling aspect

conflicts problem. Based on the formal specification of the system, which is written

in AspecTCOZ notation, our approach can detect data-dependent conflicts between

aspects as early as in the design and modeling phase of system development. It

helps in reducing the development cost while promising a high quality software

system.

Chapter 8

Conclusion

This chapter serves two purposes. Firstly, it summarizes the main contributions of

the whole thesis. Secondly, it provides a discussion on some possible directions for

future research.

129

8.1. MAIN CONTRIBUTIONS OF THE THESIS 130

8.1 Main Contributions of the Thesis

The main contributions of this thesis are summarized as follows:

• A formal specification-based software monitoring technique

Based on formal specification animation and program debugging, our formal

specification-based monitoring technique dynamically gathers required infor-

mation, interprets the gathered information and responds appropriately in

a timely manner as the target system is running. It can not only dynami-

cally and continuously monitor the behaviors observed in the target system,

but also explicitly recognize undesirable behaviors in the target system with

respect to given formal requirement specifications. Our formal specification-

based monitoring technique can contribute to increasing the dependability,

correctness, robustness and security of the target system. It is a good candi-

date to be used as a complementary technique to formal verification. More-

over, it can also support software testing in automatic test execution and in

checking whether actual output of the program under test is equivalent to

the expected output.

• An AOP-aided software evolution approach

Based on the weaving mechanism and pointcuts construct of AOP (aspect-

oriented programming), the proposed AOP-aided evolution approach is ca-

pable of handling the evolution of core classes in object-oriented programs,

when the formal specification of the system has changed.

8.1. MAIN CONTRIBUTIONS OF THE THESIS 131

• A formal specification-based regression test suite construction tech-

nique

The proposed technique mainly addresses the regression test selection problem

and test suite augmentation problem that are involved in a typical selective

retest technique. It selects test cases that will be reused for regression testing,

from the original test suite, according to the changes that have been made to

the original formal specification of the system. To solve test suite augmenta-

tion problem, it guides the generation of new test cases for regression testing

with the differences between the original and new versions of the system’s

formal specification. The proposed technique is strictly specification-based

and it does not require any complex static or dynamic code analysis. It can

be used as a complement to those code-based regression testing technique

to achieve more effective and more comprehensive regression testing in the

development and maintenance of software systems.

• A formal specification notation for AOSD - AspecTCOZ

Resulting from the extension of TCOZ with the mechanisms for formally

specifying the constructs of join point, pointcut, advice, and inter-type intro-

duction, AspecTCOZ provides a starting point for future research work on

the development of formal methods for aspect-oriented software development.

• A formal specification-based aspect conflicts detection approach

Based on AspecTCOZ notation, we propose a formal specification-based as-

pect conflicts detection approach. Our approach can detect the conflicts

8.2. FUTURE WORK DIRECTIONS 132

between aspects as early as in the design and modeling phase of system de-

velopment. It helps in reducing the development cost while promising a high

quality software system.

8.2 Future Work Directions

Based on the work presented in this thesis, there are a few possible directions for

future research, which may further exploit the potentials of formal specification in

benefiting the development and maintenance of various software systems. In this

section, some of those possible directions are discussed briefly.

8.2.1 Further Development of Monitoring Technique

At present, our formal specification-based monitoring technique works at intra-

class level, it can detect the incorrect implementation of methods in the class. To

improve the monitoring technique so that it can work at inter-class level and detect

errors caused by the improper invocations of methods between classes is a part of

future work.

The prototype monitoring system that we have developed makes judgement of the

conformance of implementation with formal specification based on the current value

of class’ data members. It can handle the situation where the return value is of

simple types. It needs to be improved to be able to deal with the situation where

the return value is object.

We have extended the monitoring system to work with aspect-oriented programs.

8.2. FUTURE WORK DIRECTIONS 133

However, currently, it can only detect the errors in the programs resulting from

weaving the aspects with base programs but can not figure out the aspects or

advices that are the cause of the error. To further develop the monitoring technique

so that it can accurately figure out the incorrect implementation of which aspect

or advice leads to the error will be a great contribution to aspect-oriented software

development.

Furthermore, monitoring distributed and parallel system during execution can pro-

vide information that can be used to reconfigure the system, provide visualization

of behavior, or steer its outcome [91]. Therefore, we also intend to extend our

monitoring technique so that it can handle distributed and parallel systems.

8.2.2 Formal Methods for AOSD

In the formal specification notation AspecTCOZ, which is proposed in Chapter 7,

the strength of TCSP in modeling process control and real-time interactions, which

is preserved in TCOZ, is used for specifying before and after advice. However, it is

not capable of formally specifying around advice by far. More delicate mechanism

is required to be introduced for specifying around advice in the future.

Meanwhile, AspecTCOZ complies with AspectJ which shares with other aspect-

oriented languages a common core principle: an aspect contains definition of behav-

iors (advice) and specifications of where the behaviors should be executed (point-

cuts); pointcuts are quantified statements over a program, selecting a set of well-

defined points (joinpoints) during the execution of a program. Therefore, one

8.2. FUTURE WORK DIRECTIONS 134

possible direction to improve AspecTCOZ is to further investigate the underlying

fundamentals of aspect-oriented programming and come up with more abstract

and generic formal constructs for aspect oriented software design. Meanwhile, the

clear and rigorous definition of the semantics of AspecTCOZ needs lots of effort in

future research.

With the formal specification available, the development tool supports for aspect-

oriented software verification and validation will be of great value to aspect oriented

software development. The research in this direction deserves the attentions and

efforts of researchers. The development of an animator for the formal specifications

written in AspecTCOZ would be part of our future work. With an AspecTCOZ

specification animator, the formal specification-based monitoring technique that

we have proposed would work more efficient for the validation of aspect-oriented

programs.

As introduced in Chapter 7, when multiple aspects are superimposed on the same

join point, the aspects might well interfere with each other in a potentially un-

desired manner. We have proposed a conflicts detection approach based on a

system’s formal specification, in Chapter 7. However, the proposed approach can

only detect data-dependent conflicts. To detect more implicit conflicts, a detection

technique which is based on control dependence analysis is required. Detecting

aspect conflicts as early as in the phase of software design and modeling will pre-

vent them from propagating through latter phases of software development, and

reduce the development cost remarkably. Therefore, it is worthwhile to develop

8.2. FUTURE WORK DIRECTIONS 135

a powerful formal specification-based detection technique that can deal with both

data-dependent and control-dependent conflicts.

8.2. FUTURE WORK DIRECTIONS 136

Bibliography

[1] AspectJ. http://www.eclipse.org/aspectj.

[2] JCrasher. http://www.cc.gatech.edu/jcrasher/.

[3] jdb - The Java Debugger. http://java.sun.com/.

[4] Parasoft Jtest. http://www.parasoft.com/jtest.

[5] J. R. Abrial. The B-book: assigning programs to meanings. Cambridge Uni-

versity Press, New York, NY, USA, 1996.

[6] R. Achuthan, V. S. Alagar, and T. Radhakrishnan. An object-oriented

modeling of real-time robotic assembly system. In Proceedings of the 1st

IEEE International Conference on Engineering of Complex Computer Sys-

tems (ICECCS ’95), pages 310–313, 1995.

[7] V. S. Alagar and G. Ramanathan. Functional specification and proof of

correctness for time dependent behaviour of reactive systems. Formal Aspect

of Computing, 3(3):253–283, 1991.

137

BIBLIOGRAPHY 138

[8] A. A. Andrews, R. B. France, S. Ghosh, and G. Craig. Test adequacy cri-

teria for UML design models. Software Testing, Verification & Reliabbility.,

13(2):95–127, 2003.

[9] T. Ball. On the limit of control flow analysis for regression test selection.

In ACM International Sympodium on Software Testing and Analysis, pages

134–142, 1998.

[10] E. Baniassad and S. Clarke. Theme: An approach for aspect-oriented analysis

and design. In Proceedings of the 26th International Conference on Software

Engineering, pages 158–167, 2004.

[11] D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim. Jass - Java with

assertions. In Proceedings of First Workshop on Runtime Verification, RV’01,

2001.

[12] B. Beizer. Software Testing Techniques. Von Nostrand Reinhold, 1990.

[13] D. Bjørner and C. B. Jones, editors. The Vienna Development Method: The

Meta-Language, volume 61 of Lecture Notes in Computer Science. Springer-

Verlag, 1978.

[14] Dines Bjørner. The SE Book: Principles and Techniques of Software Engi-

neering. Springer-Verlag, 2004.

[15] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language

LOTOS. Computer Networks and ISDN Systems, 14:25–59, 1987.

BIBLIOGRAPHY 139

[16] R. M. Burstall and J. A. Goguen. The semantics of CLEAR, a specification

language. Lecture Notes in Computer Science, 86:293–329, 1980.

[17] D. Carrington, D. Duke, R. Duke, P. King, G. Rose, and G. Smith. Object-Z:

An object-oriented extension to Z. In S. Vuong, editor, Formal Description

Techniques, II (FORTE’89), pages 281–296, 1990.

[18] K. Chen, S. C. Weng, M. Wang, S. C. Khoo, and C. H. Chen. A compilation

model for aspect-oriented polymorphically typed functional languages. In

Proceedings of the 14th International Static Analysis Symposium, 2007. To

appear.

[19] Y. F. Chen, D. S. Rosenblum, and K. P. Vo. TestTube: A system for selective

regression testing. In Proceedings of the 16th International Conference on

Software Engineering, pages 211–222, May 1994.

[20] S. Clarke. Composition of Object-oriented Software Design Models. PhD

thesis, Dublin City University, 2001.

[21] S. Clarke and R. J. Walker. Composition patterns: An approach to designing

reusable aspects. In Proceedings of the 23rd International Conference on

Software Engineering, pages 5–14, 2001.

[22] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and

J. F. Quesada. Using Maude. In Proceedings of the Third Internationsl

Conference on Fundamental Approaches to Software Engineering, pages 371–

374, 2000.

BIBLIOGRAPHY 140

[23] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude.

In J. Meseguer, editor, Proceedings of the First International Workshop on

Rewriting Logic, volume 4 of Electronic Notes in Theoretical Computer Sci-

ence, pages 65–89, 1996.

[24] C. Csallner and Y. Smaragdakis. JCrasher: An automatic robustness tester

for Java. Software: Practice & Experience, 34(11):1025–1050, 2004.

[25] S. A. Curtis, J. Mica, J. Nuth, G. Marr, M. L. Rilee, and M. K. Bhat. ANTS

(Autonomous Nano-Technology Swarm): An artificial intelligence approach

to asteroid belt resource exploration. In Proceedings of International Astro-

nautical Federation, 51st Congress, 2000.

[26] S. A. Curtis, W. F. Truszkowski, M. L. Rilee, and P. E. Clark. ANTS for hu-

man exploration and development of space. In Proceedings of IEEE Aerospace

Conference, 2003.

[27] N. Delgado, A. Q. Gates, and S. Roach. A taxonomy and catalog of runtime

software-fault monitoring tools. IEEE Transactions on Software Engineering,

30(12):859–872, 2004.

[28] J. S. Dong, J. Colton, and L. Zucconi. A formal object approach to real-time

specification. In Proceedings of the 3rd Asia-Pacific Software Engineering

Conference (APSEC’96), 1996.

BIBLIOGRAPHY 141

[29] R. Douence, P. Fradet, and M. Südholt. Composition, reuse and interaction

analysis of stateful aspects. In AOSD ’04: Proceedings of the 3rd international

conference on Aspect-oriented software development, pages 141–150, 2004.

[30] R. Duke and G. Rose. Formal Object Oriented Specification Using Object-Z.

Cornerstones of Computing. Macmillan, March 2000.

[31] P. Durr, L. Bergmans, and M. Aksit. Reasoning about semantic conflicts

between aspects. In Proceedings of the First Aspect, Dependencies, and In-

teractions Workshop, pages 10–18, 2006.

[32] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations

and Initial Semantics. EATCS Monographs on Theoretical Computer Science,

6, 1985.

[33] R. E. Filman, T. Elrad, S. Clarke, and M. Akist. Aspect-oriented Software

Development. Addison-Wesley Professional, 2005.

[34] J. Goguen and J. Tardo. An introduction to OBJ: A language for writing

and testing software specifications. In N. Gehani and A. McGettrick, editors,

Software Specification Techniques, pages 391–420, 1985.

[35] T. L. Graves, M. J. Harrold, J. M. Kim, A. Porter, and G. Rothermel. An

empirical study of regression test selection techniques. ACM Trans. Softw.

Eng. Methodol., 10(2):184–208, 2001.

[36] J. V. Guttag and J. J. Horning. Larch: languages and tools for formal spec-

ification. Springer-Verlag New York, Inc., New York, NY, USA, 1993.

BIBLIOGRAPHY 142

[37] M. J. Harrold, J. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha,

S. Spoon, and A. Gujarathi. Regression test selection for Java software. In

Proceedings of the ACM Conference on Object-Oriented Programming, Sys-

tems, Languages, and Applications OOPSLA 2001, pages 312–326, October

2001.

[38] K. Havelund and G. Roşu. Java PathExplorer - a runtime verification tool.

In Proceedings of 6th International Symposium on Artificial Intelligence,

Robotics and Automation in Space, ISAIRAS’01, 2001.

[39] K. Havelund and G. Roşu. Monitoring Java programs with Java PathEx-

plorer. In Proceedings of First Workshop on Runtime Verification, RV’01,

2001.

[40] K. Havelund and G. Roşu. An overview of the runtime verification tool Java

PathExplorer. Formal Methods in System Design, 24(2):189–215, 2004.

[41] D. Hazel, P. Strooper, and O. Traynor. Possum: An animator for the SUM

specification language. In APSEC ’97: Proceedings of the Fourth Asia-

Pacific Software Engineering and International Computer Science Confer-

ence, page 42. IEEE Computer Society, 1997.

[42] D. Hazel, P. Strooper, and O. Traynor. Requirements engineering and veri-

fication using specification animation. In ASE ’98: Proceedings of the Thir-

teenth IEEE Conference on Automated Software Engineering, page 302. IEEE

Computer Society, 1998.

BIBLIOGRAPHY 143

[43] M. A. Hewitt, C. O’Halloran, and C. T. Sennett. Experiences with PiZA,

an Animator for Z. In ZUM ’97: Proceedings of the 10th International Con-

ference of Z Users on The Z Formal Specification Notation, pages 37–51.

Springer-Verlag, 1997.

[44] M. G. Hinchey, Y. S. Dai, C. A. Rouff, J. L. Rash, and M. R. Qi. Modeling

for NASA autonomous nano-technology swarm missions and model-driven

autonomic computing. In AINA ’07: Proceedings of the 21st International

Conference on Advanced Networking and Applications, pages 250–257, 2007.

[45] M. G. Hinchey, C. A. Rouff, J. L. Rash, and W. F. Truszkowski. Require-

ments of an integrated formal method for intelligent swarms. In FMICS

’05: Proceedings of the 10th international workshop on Formal methods for

industrial critical systems, pages 125–133, 2005.

[46] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[47] J. R. Horgan and S. London. Data flow coverage and the c language. In

Proceedings of the symposium on Testing, analysis, and verification, pages

87–97, 1991.

[48] P. Hsia, X. Li, C-T. Hsu D. Kung, L. Li, Y. Toyoshima, and C. Chen. A tech-

nique for the selective revalidation of OO software. Software Maintenance:

Research and Practice, 9:217–233, 1997.

[49] Jonathan Jacky. The Way of Z: Practical Programming with Formal Methods.

Cambridge University Press, 1997.

BIBLIOGRAPHY 144

[50] I. Jacobson and P. W. Ng. Aspect-Oriented Software Development with Use

Cases (Addison-Wesley Object Technology Series). Addison-Wesley Profes-

sional, 2004.

[51] C. Kaner, J. Bach, and B. Pettichord. Lessons Learned in Software Testing.

John Wiley & Sons, Inc., New York, NY, USA, 2001.

[52] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Gris-

wold. An overview of AspectJ. In ECOOP ’01: Proceedings of the 15th Euro-

pean Conference on Object-Oriented Programming, pages 327–353. Springer-

Verlag, 2001.

[53] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Lo-

ingtier, and J. Irwin. Aspect-oriented programming. In Mehmet Akşit

and Satoshi Matsuoka, editors, Proceedings European Conference on Object-

Oriented Programming, volume 1241, pages 220–242. Springer-Verlag, 1997.

[54] M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a run-time assurance

tool for Java. In Proceedings of First Workshop on Runtime Verification,

RV’01, 2001.

[55] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Computational

analysis of run-time monitoring - fundamentals of Java-MaC. In Proceedings

of Second Workshop on Runtime Verification, RV’02, 2002.

BIBLIOGRAPHY 145

[56] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O.V. Sokolsky. Java-MaC:

A run-time assurance approach for Java programs. Formal Methods in System

Design, (2):129–155, 2004.

[57] R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming.

Manning Publications Co., Greenwich, CT, USA, 2003.

[58] H. K. N. Leung and L. J. White. Insights into regression testing. In Proceed-

ings of the International Conference on Software Maintenance, pages 60–69,

1989.

[59] H. K. N. Leung and L. J. White. A cost model to compare regression test

strategies. In Proceedings of the Conference on Software Maintenance ’91,

pages 201–208, October 1991.

[60] H. Liang. Regression testing of classes based on tcoz specification. In Proceed-

ings of the 10th IEEE International Conference on Engineering of Complex

Computer Systems (ICECCS 2005), pages 450–457, 2005.

[61] H. Liang, J. S. Dong, and J. Sun. Evolution and runtime monitoring of

software systems. In Proceedings of the 19th International Conference on

Software Engineering and Knowledge Engineering (SEKE 2007), pages 343–

348, 2007.

[62] H. Liang, J. S. Dong, J. Sun, R. Duke, and R. E. Seviora. Formal

specification-based online monitoring. In Proceedings of the 11th IEEE Inter-

BIBLIOGRAPHY 146

national Conference on Engineering of Complex Computer Systems (ICECCS

2006), pages 152–160, 2006.

[63] H. Liang and J. Sun. Modular specification of aspect-oriented systems and

aspect conflicts detection. In Proceedings of the 19th International Conference

on Software Engineering and Knowledge Engineering (SEKE 2007), pages

77–80, 2007.

[64] K. Lieberherr, D. Orleans, and J. Ovlinger. Aspect-oriented programming

with adaptive methods. Commun. ACM, 44(10):39–41, 2001.

[65] S. Y. Liu, J. Offutt, C. Ho-Stuart, M. Ohba, and Y. Sun. Sofl: A formal

engineering methodology for industrial applications. IEEE Transactions on

Software Engineering, 24(1):24–45, 1998.

[66] B. Mahony and J. S. Dong. Blending Object-Z and Timed CSP: An introduc-

tion to TCOZ. In K. Futatsugi, R. Kemmerer, and K. Torii, editors, The 20th

International Conference on Software Engineering (ICSE’98), pages 95–104.

IEEE Press, 1998.

[67] B. Mahony and J. S. Dong. Network Topology and a Case Study in TCOZ. In

J. Bowen, A. Fett, and M. Hinchey, editors, ZUM’98: The 11th International

Conference of Z Users, volume 1493 of Lecture Notes in Computer Science,

pages 308–327, Berlin, Germany, September 1998. Springer-Verlag.

BIBLIOGRAPHY 147

[68] B. Mahony and J. S. Dong. Overview of the semantics of tcoz. In IFM

’99: Proceedings of the 1st International Conference on Integrated Formal

Methods, pages 66–85, London, UK, 1999. Springer-Verlag.

[69] B. Mahony and J. S. Dong. Sensors and Actuators in TCOZ. In FM

’99: Proceedings of the Wold Congress on Formal Methods in the Develop-

ment of Computing Systems-Volume II, pages 1166–1185, London, UK, 1999.

Springer-Verlag.

[70] B. Mahony and J. S. Dong. Timed Communicating Object Z. IEEE Trans-

actions on Software Engineering, 26(2):150–177, February 2000.

[71] A. P. Mathur and W. E. Wong. An empirical comparison of data flow and

mutation-based test adequacy criteria. Software Testing, Verification and

Reliability, 4(1):9–31, 1994.

[72] A. P. Mathur and W. E. Wong. A theoretical comparison between mutation

and data flow based test adequacy criteria. In Proceedings of the 22nd Annual

ACM Computer Science Conference, pages 38–45, 1994.

[73] A. M. Memon and M. L. Soffa. Regression testing of GUIs. In ESEC/FSE-

11: Proceedings of the 9th European software engineering conference held

jointly with 11th ACM SIGSOFT international symposium on Foundations

of software engineering, pages 118–127, 2003.

BIBLIOGRAPHY 148

[74] T. Mens, J. Buckley, M. Zenger, and A. Rashid. Towards a taxonomy of soft-

ware evolution. Journal of Software Maintenance and Evolution: Research

and Practice (Special Issue on USE), 17(5), 2005.

[75] T. Miller and P. Strooper. A framework for systematic specification anima-

tion. Technical Report 02-35, The University of Queensland, 2000.

[76] T. Miller and P. Strooper. Model-based specification animation using test-

graphs. In ICFEM ’02: Proceedings of the 4th International Conference on

Formal Engineering Methods, pages 192–203. Springer-Verlag, 2002.

[77] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 1982.

[78] A. J. Offutt, Y. W. Xiong, and S. Y. Liu. Criteria for generating specificaiton-

based tests. In Proceedings of the fifth International Conference on Engineer-

ing of Complex Computer Systems, pages 119–131, Las Vegas, 1999. IEEE

Computer Society Press.

[79] J. Offutt, S. Y. Liu, A. Abdurazik, and P. Ammann. Generating test data

from state-based specifications. Software Testing, Verification and Reliability,

13:25–53, 2003.

[80] K. Ostermann, M. Mezini, and C. Bockisch. Expressive pointcuts for in-

creased modularity. In ECOOP’05 - Proceedings of the 19th European Object-

Oriented Programming, pages 214–240, 2005.

BIBLIOGRAPHY 149

[81] S. Rapps and E. J. Weyuker. Selecting software test data using data flow

information. IEEE Transactions on Software Engineering, 11(4):367–375,

1985.

[82] G. Rothermel and M. J. Harrold. Selecting regression tests for object-oriented

software. In Proceedings of the Conference on Software Maintenance, pages

14–25, 1994.

[83] G. Rothermel and M. J. Harrold. Analyzing regression test selection tech-

niques. IEEE Transactions on Software Engineering, 22(8):529–551, August

1996.

[84] G. Rothermel and M. J. Harrold. A safe, efficient regression test selection

technique. ACM Transactions on Software Engineering and Methodology,

6(2):173–210, April 1997.

[85] G. Rothermel, M. J. Harrold, and J. Dedhia. Regression test selection for

C++ software. Journal of Software Testing, Verification, and Reliability,

10(6):77–109, June 2000.

[86] A. Sampaio, R. Chitchyan, A. Rashid, and P. Rayson. Ea-miner: a tool for

automating aspect-oriented requirements identification. In ASE ’05: Proceed-

ings of the 20th IEEE/ACM international Conference on Automated software

engineering, pages 352–355, 2005.

[87] I. Sanabria-Piretti. Data Refinement by Rewriting. PhD thesis, Department

of computer science, Oxford University, 2001.

BIBLIOGRAPHY 150

[88] M. Satpathy, M. Leuschel, and M. J. Butler. ProTest: An automatic test envi-

ronment for B specifications. Electronic Notes Theoretical Computer Science,

111:113–136, 2005.

[89] S. Schneider and J. Davies. A brief history of Timed CSP. Theoretical

Computer Science, 138:243–271, 1995.

[90] S. Schneider, J. Davies, D. M. Jackson, G. M. Reed, J. N. Reed, and A. W.

Roscoe. Timed CSP: Theory and practice. In J. W. de Bakker, C. Huizing,

W. P. de Roever, and G. Rozenberg, editors, Real-Time: Theory in Practice,

pages 640–675. Springer-Verlag, 1992.

[91] B. A. Schroeder. On-line monitoring: A tutoiral. IEEE Computer, 28(6):72–

78, 1995.

[92] G. Smith. The Object-Z Specification Language. Advances in Formal Meth-

ods. Kluwer Academic Publishers, 2000.

[93] J.M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 1989.

[94] D. Stein, S. Hanenberg, and R. Unland. A UML-based aspect-oriented design

notation for AspectJ. In AOSD ’02: Proceedings of the 1st international

conference on Aspect-oriented software development, pages 106–112, 2002.

[95] D. Stein, S. Hanenberg, and R. Unland. Expressing different conceptual

models of join point selections in aspect-oriented design. In AOSD ’06: Pro-

ceedings of the 5th international conference on Aspect-oriented software de-

velopment, pages 15–26, 2006.

BIBLIOGRAPHY 151

[96] M. Sulzmann and M. Wang. Aspect-oriented programming with type classes.

In FOAL ’07: Proceedings of the 6th workshop on Foundations of aspect-

oriented languages, pages 65–74, 2007.

[97] J. Sun, J. S. Dong, J. Liu, and H. Wang. A XML/XSL Approach to Vi-

sualize and Animate TCOZ. In The 8th Asia-Pacific Software Engineering

Conference (APSEC’01), pages 453–460. IEEE Press, 2001.

[98] J. Suzuki and Y. Yamamoto. Extending UML with aspect: Aspect support

in the desgin phase. In Proceedings of the 3rd AOP workshop at ECOOP’99,

1999.

[99] P. Tarr and H. Ossher. Hyper/J User and Installation Manual. IBM Corpo-

ration, 2000.

[100] P. Tarr, H. Ossher, W. H. Harrison, and S. M. Sutton Jr. N degrees of separa-

tion: Multi-dimensional separation of concerns. In International Conference

on Software Engineering, pages 107–119, 1999.

[101] F. Tessier, L. Badri, and M. Badri. A model-based detection of semantic

conflicts between aspects: Towards a formal approach. In Proceedings of

International Workshop on Aspect-Oriented Software Development, 2004.

[102] W. E. Truszkowski, M. G. Hinchey, J. L. Rash, and C. A. Rouff. NASA’s

swarm missions: The challenge of building autonomous software. IT Profes-

sional, 6(5):47–52, 2004.

BIBLIOGRAPHY 152

[103] W. E. Truszkowski, M. G. Hinchey, J. L. Rash, and C. A. Rouff. Autonomous

and autonomic systems: A paradigm for future space exploration mission.

IEEE Transactions on Systems, Man and Cybermetrics, Part C: Applications

and Reviews, 36(3):279–291, 2006.

[104] N. Ubayashi and S. Nakajima. Context-aware feature-oriented modeling with

an aspect extension of VDM. In Proceedings of 22nd Annual ACM Symposium

on Applied Computing, 2007.

[105] M. Utting. Data structures for Z testing tools. In Proceedings of FM-TOOLS,

2000.

[106] F. Vokolos and P. Frankl. Pythia: A regression test selection tool based on

textual differencing. In International Conference on Reliability, Qaulity, and

Safety of Software Intensive Systems, May 1997.

[107] M. Wang, K. Chen, and S. C. Khoo. On the pursuit of staticness and coher-

ence. In Proceedings of the 5th Workshop on Foundations of Aspect-Oriented

Languages (FOAL), 2006.

[108] M. Wang, K. Chen, and S. C. Khoo. Type-directed weaving of aspects for

higher-order functional languages. In Proceedings of the 2006 ACM SIG-

PLAN symposium on Partial evaluation and semantics-based program ma-

nipulation, pages 78–87, 2006.

BIBLIOGRAPHY 153

[109] L. J. White and K. Abdullah. A firewall approach for regression testing of

object-oriented software. In Proceedings of 10th Annual Software Quality

Week, May 1997.

[110] L. J. White and H. K. N. Leung. A firewall concept for both control-flow and

data-flow in regression integration testing. In Proceedings of the conference

on Software Maintenance ’92, pages 262–270, November 1992.

[111] W. E. Wong, J. R. Horgan, S. London, and H. A. Bellcore. A study of effective

regression testing in practice. In Proceedings of the Eighth International

Symposium on Software Reliability Engineering (ISSRE ’97), pages 522–528,

1997.

[112] J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof.

Prentice-Hall International, 1996.

[113] D. X. Xu and K. E. Nygard. Threat-driven modeling and verification of secure

software using aspect-oriented petri nets. IEEE Transactions on Software

Engineering, 32(4):265–278, 2006.

[114] H. Yu, D. Liu, Z. Shao, and X. He. Modeling complex software systems

using an aspect extension of Object-Z. In Proceedings of 18th International

Conference on Software Engineering and Knowledge Engineering, 2006, pages

11–16, 2006.

BIBLIOGRAPHY 154

[115] H. Yu, D. Liu, L. Yang, and X. He. Formal aspect-oriented modeling and

analysis by AspectZ. In Proceedings of 17th International Conference on Soft-

ware Engineering and Knowledge Engineering, 2005, pages 175–180, 2005.

[116] J. Zhao and M. Rinard. Pipa: A behavioral interface specification language

for AspectJ. In Proceedings of Fundamental Approaches to Software Engi-

neering (FASE), pages 150–165, 2003.

[117] H. Zhu, P. Hall, and J. May. Software unit test coverage and adequacy. ACM

Computing Surveys, 29(4):366–427, 1997.

Appendix A

Specification of Railway Control
System in Z Notation

SegmentState ::= Free | Occupied
SignalState ::= Red | Green | Yellow | Off
TrackState ::= OpenAB | OpenBA | Closed
TrainDirection ::= MoveAB | MoveBA | Stop
TrainPosition ::= A | B | OffTrack

Segment
status : SegmentState;
sigAB , sigBA : SignalState

sigAB 6= Off ⇒ sigBA = Off
sigBA 6= Off ⇒ sigAB = Off

Train
pos : TrainPosition
dir : TrainDirection

Track
status : TrackState; segA, segB : Segment ; trnOne, trnTwo : Train

status = OpenAB ∧ segA.status = Free = segB .status
⇒ segA.sigAB = Green

status = OpenAB ∧ segA.status = Occupied ⇒ segA.sigAB = Red
status = OpenAB ∧ segA.status = Free ∧ segB .status = Occupied

⇒ segA.sigAB = Yellow
status = OpenBA ∧ segB .status = Occupied ⇒ segB .sigBA = Red
status = OpenBA ∧ segA.status = Free = segB .status

⇒ segB .sigBA = Green
status = OpenBA ∧ segB .status = Free ∧ segA.status = Occupied

⇒ segB .sigBA = Yellow
status = Closed ⇒ segA.sigAB = Off = segA.sigBA

∧ segB .sigAB = Off = segB .sigBA
trnOne.pos 6= OffTrack ∧ trnTwo.pos 6= OffTrack

⇒ trnOne.pos 6= trnTwo.pos

155

Appendix A. Specification of Railway Control System in Z Notation 156

InitTrack
Track ′

status ′ = OpenAB ∧ segA′.status = Free = segB ′.status
segA′.sigAB = Green = segB ′.sigAB
trnOne ′.dir = MoveAB = trnTwo ′.dir
trnOne ′.pos = OffTrack = trnTwo ′.pos

trnOneEnter
∆Track

trnOne.pos = OffTrack ∧ status = OpenAB ∧ trnOne.dir = MoveAB

segA.sigAB = Green ∨ segA.sigAB = Yellow

segA′.status = Occupied ∧ segA′.sigAB = Red

trnOne ′.pos = A∧ trnOne ′.dir = trnOne.dir

trnTwo ′ = trnTwo ∧ status ′ = status ∧ segB ′ = segB

trnTwoEnter
∆Track

trnTwo.pos = OffTrack ∧ status = OpenAB ∧ trnTwo.dir = MoveAB
segA.sigAB = Green ∨ segA.sigAB = Yellow

segA′.status = Occupied ∧ segA′.sigAB = Red

trnTwo ′.pos = A∧ trnTwo ′.dir = trnTwo.dir

trnOne ′ = trnOne ∧ status ′ = status ∧ segB ′ = segB

trnOneMovetoB
∆Track

trnOne.pos = A ∧ status = OpenAB ∧ trnOne.dir = MoveAB
segB .sigAB = Green ∧ segA′.status = Free
segA′.sigAB = Yellow ∧ segB ′.sigAB = Red ∧ segB ′.status = Occupied
trnOne ′.pos = B ∧ trnOne ′.dir = trnOne.dir
trnTwo ′ = trnTwo ∧ status ′ = status

trnTwoMovetoB
∆Track

trnTwo.pos = A ∧ status = OpenAB ∧ trnTwo.dir = MoveAB
segB .sigAB = Green ∧ segA′.status = Free
segA′.sigAB = Yellow ∧ segB ′.sigAB = Red ∧ segB ′.status = Occupied
trnTwo ′.pos = B ∧ trnTwo ′.dir = trnOne.dir
trnOne ′ = trnOne ∧ status ′ = status

Appendix B

Implementation of Railway
Control System in Java

import java.util.*;
import java.io.*;
enum SegState {Free,Occupied}
enum SigState {Red, Green, Yellow, Off}
enum TrackState {OpenAB,OpenBA, Closed}
enum rainDirection{MoveAB,MoveBA, Stop}
enum TrainPosition{A,B,OffTrack}

class Track {
TrackState status;
Segment segmentA, segmentB;
Train trainOne, trainTwo;
Track(){

status = TrackState.OpenAB;
segmentA = new Segment();
segmentB = new Segment();
trainOne = new Train();
trainTwo = new Train(); }

public void oneEnter(){
if(status == TrackState.OpenAB

&&trainOne.position == TrainPosition.OffTrack
&& trainOne.direction == TrainDirection.MoveAB
&& (segmentA.signalAB == SigState.Green ||

segmentA.signalAB == SigState.Yellow))
{ segmentA.status = SegState.Occupied;

segmentA.signalAB = SigState.Red;
trainOne.position = TrainPosition.A; }}

public void twoEnter(){
if(status == TrackState.OpenAB

&& trainTwo.position == TrainPosition.OffTrack
&& trainTwo.direction == TrainDirection.MoveAB
&& (segmentA.signalAB == SigState.Green ||

segmentA.signalAB == SigState.Yellow))
{ segmentA.status = SegState.Occupied;

segmentA.signalAB = SigState.Red;
trainTwo.position = TrainPosition.A; }}

public void oneAtoB(){

157

Appendix B. Implementation of Railway Control System in Java 158

if(status == TrackState.OpenAB
&& trainOne.position == TrainPosition.A
&& trainOne.direction == TrainDirection.MoveAB
&& segmentB.signalAB == SigState.Red)

{ segmentA.status = SegState.Free;
segmentA.signalAB = SigState.Yellow;
segmentB.signalAB = SigState.Green;
segmentB.status = SegState.Occupied;
trainOne.position = TrainPosition.B; }}

public void twoAtoB(){
if(status == TrackState.OpenAB

&& trainTwo.position == TrainPosition.A
&& trainTwo.direction == TrainDirection.MoveAB)

{ segmentA.status = SegState.Free;
segmentA.signalAB = SigState.Yellow;
segmentB.signalAB = SigState.Red;
segmentB.status = SegState.Occupied;
trainTwo.position = TrainPosition.B; }}

}
class Segment{

SegState status;
SigState signalAB, signalBA;
Segment(){ status = SegState.Free;

signalAB = SigState.Green;
signalBA = SigState.Off; }

}
class Train{

TrainPosition position;
TrainDirection direction;
Train(){ position = TrainPosition.OffTrack;

direction = TrainDirection.MoveAB; }
}

Appendix C

Specification of Robotic Assembly
System in Z Notation

Part ::= PowerSys | NavigationSys | ControlSys | CommunicationSys |
MagnetoMeter | SpectroMeter

RobotSystem
leftarm, rightarm : seqPart
tempstack : seqPart
currentproduct : Part 7→ N

InitRobotSystem
RobotSystem ′

leftarm ′ = 〈〉 ∧ rightarm ′ = 〈〉 ∧ tempstack ′ = 〈〉
currentproduct ′ = ∅

LeftArmPick
∆RobotSystem
part? : Part

tempstack = 〈〉 ∨ head tempstack ∈ dom currentproduct ∨
head tempstack 6∈ {PowerSys ,NavigationSys ,ControlSys}
part? ∈ {PowerSys ,NavigationSys ,ControlSys}
leftarm = 〈〉 ∧ leftarm ′ = 〈part?〉
tempstack ′ = tempstack ∧ rightarm ′ = rightarm
currentproduct ′ = currentproduct

159

Appendix C. Specification of Robotic Assembly System in Z Notation 160

LeftArmGetFromStack
∆RobotSystem

#tempstack > 0 ∧ #leftarm = 0
head tempstack 6∈ dom currentproduct
head tempstack ∈ {PowerSys ,NavigationSys ,ControlSys}
leftarm ′ = 〈head tempstack〉 ∧ rightarm ′ = rightarm
currentproduct ′ = currentproduct ∧ tempstack ′ = tail tempstack

LeftArmRelease
∆RobotSystem
part ! : Part

#leftarm = 1 ∧ leftarm(1) 6∈ dom currentproduct
part ! = leftarm(1) ∧ leftarm ′ = 〈〉
leftarm(1) = PowerSys ⇒

currentproduct ′ = currentproduct ∪ {part ! 7→ 1}
leftarm(1) = NavigationSys ⇒

currentproduct ′ = currentproduct ∪ {part ! 7→ 2}
leftarm(1) = ControlSys ⇒

currentproduct ′ = currentproduct ∪ {part ! 7→ 3}
tempstack ′ = tempstack ∧ rightarm ′ = rightarm

LeftArmPushToStack
∆RobotSystem
parttopush! : Part

#leftarm = 1 ∧ leftarm(1) ∈ dom currentproduct
parttopush! = leftarm(1) ∧ leftarm ′ = 〈〉
tempstack ′ = 〈parttopush!〉a tempstack
rightarm ′ = rightarm ∧ currentproduct ′ = currentproduct

RightArmPick
∆RobotSystem
part? : Part

tempstack = 〈〉 ∨ head tempstack ∈ dom currentproduct ∨
head tempstack 6∈ {CommunicationSys , SpectroMeter ,MagnetoMeter} ∨
dom(currentproduct B {5}) ∪ {head tempstack} =

{SpectroMeter ,MagnetoMeter}
part? ∈ {CommunicationSys , SpectroMeter ,MagnetoMeter}
rightarm = 〈〉 ∧ rightarm ′ = 〈part?〉 ∧ tempstack ′ = tempstack
currentproduct ′ = currentproduct ∧ leftarm ′ = leftarm

Appendix C. Specification of Robotic Assembly System in Z Notation 161

RightArmGetFromStack
∆RobotSystem

#tempstack > 0 ∧ #rightarm = 0
head tempstack 6∈ dom currentproduct
dom(currentproduct B {5}) ∪ {head tempstack} 6=

{SpectroMeter ,MagnetoMeter}
head tempstack ∈ {CommunicationSys , SpectroMeter ,MagnetoMeter}
rightarm ′ = 〈head tempstack〉 ∧ leftarm ′ = leftarm
currentproduct ′ = currentproduct ∧ tempstack ′ = tail tempstack

RightArmRelease
∆RobotSystem
part ! : Part

#rightarm = 1 ∧ rightarm(1) 6∈ dom currentproduct
dom(currentproduct B {5}) ∪ {rightarm(1)} 6=

{SpectroMeter ,MagnetoMeter}
part ! = rightarm(1)
rightarm(1) = CommunicationSys ⇒

currentproduct ′ = currentproduct ∪ {part ! 7→ 4}
(rightarm(1) = MagnetoMeter ∨ rightarm(1) = SpectroMeter) ⇒

currentproduct ′ = currentproduct ∪ {part ! 7→ 5}
rightarm ′ = 〈〉 ∧ tempstack ′ = tempstack ∧ leftarm ′ = leftarm

RightArmPushToStack
∆RobotSystem
parttopush! : Part

#rightarm = 1 ∧ (rightarm(1) ∈ dom currentproduct ∨
dom(currentproduct B {5}) ∪ {rightarm(1)} =

{SpectroMeter ,MagnetoMeter})
parttopush! = rightarm(1) ∧ rightarm ′ = 〈〉
tempstack ′ = 〈parttopush!〉a tempstack
leftarm ′ = leftarm ∧ currentproduct ′ = currentproduct

Appendix C. Specification of Robotic Assembly System in Z Notation 162

ReleaseProduct
∆RobotSystem
producttorelease! : Part 7→ N

#currentproduct = 5
currentproduct(PowerSys) = 1
currentproduct(NavigationSys) = 2
currentproduct(ControlSys) = 3
currentproduct(CommunicationSys) = 4
(currentproduct(MagnetoMeter) = 5 ∨

currentproduct(SpectroMeter) = 5)
producttorelease! = currentproduct ∧ currentproduct ′ = ∅
leftarm ′ = 〈〉 ∧ rightarm ′ = 〈〉 ∧ tempstack ′ = tempstack

Appendix D

Implementation of Robotic
Assembly System in Java

import java.util.*;
public class RobotSystem {

Vector<Object> leftarm, rightarm;
Stack<Object> tempstack;
Vector<Object> currentproduct;
Vector<Object> partsToLeft;
Vector<Object> partsToRight;

RobotSystem() {
leftarm = new Vector<Object>();
rightarm = new Vector<Object>();
tempstack = new Stack<Object>();
currentproduct = new Vector<Object>();
for (int index = 0; index < 5; index++)
{ currentproduct.addElement(""); }
partsToLeft = new Vector<Object>();
partsToLeft.addElement("PowerSys");
partsToLeft.addElement("NavigationSys");
partsToLeft.addElement("ControlSys");
partsToRight = new Vector<Object>();
partsToRight.addElement("CommunicationSys");
partsToRight.addElement("MagnetoMeter");
partsToRight.addElement("SpectroMeter");

}
public void leftArmPick(Object lPart) {

if (leftarm.isEmpty())
{

if(lPart == "PowerSys" || lPart == "NavigationSys" ||
lPart == "ControlSys")

{
if (!tempstack.empty())

{
Object topOfTempstack = tempstack.peek();
if (currentproduct.contains(topOfTempstack) ||

!partsToLeft.contains(topOfTempstack))
{ leftarm.addElement(lPart); }

163

Appendix D. Implementation of Robotic Assembly System in Java 164

}
else

{ leftarm.addElement(lPart); }
}

}
}
public void leftArmGetFromStack() {

if(!tempstack.empty() && leftarm.isEmpty())
{

Object topOfTempstack = tempstack.peek();
if(!currentproduct.contains(topOfTempstack) &&

partsToLeft.contains(topOfTempstack))
{

leftarm.addElement(topOfTempstack);
topOfTempstack = tempstack.pop();

}
}

}
public void leftArmRelease() {

if (!leftarm.isEmpty())
{

Object releasedPart = leftarm.get(0);
if (!currentproduct.contains(releasedPart))
{

if (releasedPart == "PowerSys")
{currentproduct.setElementAt(releasedPart,0);}
else if (releasedPart == "NavigationSys")
{currentproduct.setElementAt(releasedPart,3);}
else if (releasedPart == "ControlSys")
{currentproduct.setElementAt(releasedPart,2);}
leftarm.clear();

}
}

}
public void leftArmPushToStack() {

if(!leftarm.isEmpty())
{

Object itemInRight = leftarm.get(0);
if(currentproduct.contains(itemInRight))
{

tempstack.push(itemInRight);
leftarm.clear();

}
}

}
public void rightArmPick(Object rPart) {

if (rightarm.isEmpty())
{

if(rPart == "CommunicationSys" || rPart == "MagnetoMeter"
|| rPart == "SpectroMeter")

{
if (!tempstack.empty())
{
Object topOfTempstack = tempstack.peek();
if (currentproduct.contains(topOfTempstack)||

!partsToRight.contains(topOfTempstack))
{ rightarm.addElement(rPart); }

Appendix D. Implementation of Robotic Assembly System in Java 165

else if ((topOfTempstack == "MagnetoMeter" &&
currentproduct.lastElement() == "SpectroMeter")||
(topOfTempstack == "SpectroMeter" &&
currentproduct.lastElement() == "MagnetoMeter"))

{ rightarm.addElement(rPart); }
}
else
{ rightarm.addElement(rPart); }

}
}

}
public void rightArmGetFromStack() {

if(!tempstack.empty() && rightarm.isEmpty())
{

Object topOfTempstack = tempstack.peek();
if(!currentproduct.contains(topOfTempstack)&&

partsToRight.contains(topOfTempstack))
{

rightarm.addElement(topOfTempstack);
topOfTempstack = tempstack.pop();

}
}

}
public void rightArmRelease() {

if(!rightarm.isEmpty())
{

Object releasedPart = rightarm.get(0);
if (!currentproduct.contains(releasedPart))
{

if(releasedPart == "CommunicationSys")
{currentproduct.setElementAt(releasedPart, 1);}

else if (releasedPart == "MagnetoMeter"||
releasedPart == "SpectroMeter")

{currentproduct.setElementAt(releasedPart, 4);}
rightarm.clear();

}
}

}
public void rightArmPushToStack() {

if(!rightarm.isEmpty())
{

Object itemInLeft = rightarm.get(0);
if(currentproduct.contains(itemInLeft)||(itemInLeft ==

"MagnetoMeter" && currentproduct.lastElement() ==
"SpectroMeter") || (itemInLeft == "SpectroMeter" &&

currentproduct.lastElement() == "MagnetoMeter"))
{
tempstack.push(itemInLeft);
rightarm.clear();
}

}
}

Appendix D. Implementation of Robotic Assembly System in Java 166

public Vector<Object> releaseProduct() {
Vector<Object> product = new Vector<Object>();
product = currentproduct;
currentproduct.clear();
currentproduct = new Vector<Object>();
for (int index = 0; index < 5; index++)
{ currentproduct.addElement(""); }
return product;

}
}

