
Supporting Source Code Feature Analysis Using

Execution Trace Mining

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Mohammad Asif A. Khan

c©Mohammad Asif A. Khan, October/2013. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should

be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

Software maintenance is a significant phase of a software life-cycle. Once a system is developed the main

focus shifts to maintenance to keep the system up to date. A system may be changed for various reasons

such as fulfilling customer requirements, fixing bugs or optimizing existing code. Code needs to be studied

and understood before any modification is done to it. Understanding code is a time intensive and often

complicated part of software maintenance that is supported by documentation and various tools such as

profilers, debuggers and source code analysis techniques. However, most of the tools fail to assist in locating

the portions of the code that implement the functionality the software developer is focusing. Mining execution

traces can help developers identify parts of the source code specific to the functionality of interest and at the

same time help them understand the behaviour of the code.

We propose a use-driven hybrid framework of static and dynamic analyses to mine and manage execution

traces to support software developers in understanding how the system’s functionality is implemented through

feature analysis. We express a system’s use as a set of tests. In our approach, we develop a set of uses that

represents how a system is used or how a user uses some specific functionality. Each use set describes a

user’s interaction with the system. To manage large and complex traces we organize them by system use

and segment them by user interface events. The segmented traces are also clustered based on internal and

external method types. The clusters are further categorized into groups based on application programming

interfaces and active clones. To further support comprehension we propose a taxonomy of metrics which are

used to quantify the trace.

To validate the framework we built a tool called TrAM that implements trace mining and provides

visualization features. It can quantify the trace method information, mine similar code fragments called

active clones, cluster methods based on types, categorise them based on groups and quantify their behavioural

aspects using a set of metrics. The tool also lets the users visualize the design and implementation of a system

using images, filtering, grouping, event and system use, and present them with values calculated using trace,

group, clone and method metrics. We also conducted a case study on five different subject systems using

the tool to determine the dynamic properties of the source code clones at runtime and answer three research

questions using our findings. We compared our tool with trace mining tools and profilers in terms of features,

and scenarios. Finally, we evaluated TrAM by conducting a user study on its effectiveness, usability and

information management.

ii

Acknowledgements

Firstly, I would like to express my profound gratefulness and honor to my supervisors Dr. Kevin Schneider

and Dr. Chanchal Roy, for their continuous support, advice and care throughout my entire duration of study.

Their endless patience, scholarly guidance, continual encouragement, constant and energetic supervision,

constructive criticism, valuable advice, at all stages have made it possible to complete this thesis. I would

like to express my gratitude to all the members of my advisory committee: Dr. Ralph Deters, Dr. Gord

McCalla and Dr. Nurul A. Chowdhury for their valuable suggestions.

Also, I would like to appreciate the assistance of Ms. Jan Thompson and Ms. Gwen Lancaster, at the

Department of Computer Science, University of Saskatchewan, for their support and generosity.

Thanks to all students of the Software Research Lab (SRLab) for their friendship and support. I would

also like to extend my gratitude to the members of the MADMUC lab for their continual support. I am

grateful to the members of the DISCUS lab for extending their hands too.

Finally, I would like to express my deepest affection and gratefulness to my beloved wife, Shomoyita Jamal

without whom the journey would not have been possible, my parents, and in-laws for the unconditional love

and support throughout this period.

iii

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition . 3
1.3 Contribution . 4

2 Background and Related Work 6
2.1 Software Maintenance . 6
2.2 Program Comprehension . 6

2.2.1 Bottom-up Model . 6
2.2.2 Top-down Model . 7
2.2.3 Integrated Model . 7

2.3 Reverse Engineering . 7
2.4 Software Testing . 8
2.5 Dynamic Analysis . 9
2.6 Runtime Data Collection . 9

2.6.1 Aspect Oriented Programming . 10
2.7 Trace Analysis Tools . 14

2.7.1 Shimba . 14
2.7.2 ISVis(Interaction Scenario Visualizer) . 16
2.7.3 Ovation . 16
2.7.4 Program Explorer . 17
2.7.5 SCENE (SCENario Environment) . 18
2.7.6 AVID(Architecture Visualization of Dynamics in Java Systems) 19
2.7.7 JInsight . 20
2.7.8 Extravis . 21
2.7.9 SEAT(Software Exploration and Analysis Tool) . 22
2.7.10 Collaboration Browser . 23
2.7.11 Salah et al. 24

2.8 Profiling Tools . 25
2.9 Source Code Feature Analysis . 26
2.10 Code Clones . 27

2.10.1 Definition . 27
2.10.2 Reasons for Code Clones . 29
2.10.3 Harmfulness of Code Clones . 30
2.10.4 Code Clone Evolution . 30

2.11 Application Programming Interface (API) . 31
2.11.1 What is an API? . 31
2.11.2 Benefits of an API . 33

iv

2.11.3 API Studies . 33

3 Framework 36
3.1 Introduction . 36
3.2 Terminology . 37

3.2.1 Use . 37
3.2.2 Use Set . 37
3.2.3 User Activity . 37

3.3 Testing Framework . 37
3.4 Analysis Framework . 38

3.4.1 Static Analysis . 39
3.4.2 Dynamic Analysis . 41
3.4.3 Trace Mining . 42

3.5 Trace Mining Framework . 42
3.5.1 Clone and Method Mapping . 44
3.5.2 Metrics Calculation . 45
3.5.3 Analysis Selection . 47

3.6 Test Design . 48
3.7 Trace Mining Data Organization . 48

3.7.1 Model Schema . 48

4 Trace Analysis and Management-from Design to Implementation 53
4.1 Introduction . 53
4.2 Visualization Architecture . 53
4.3 Feature-specific Architecture . 54

4.3.1 Filtering . 54
4.3.2 Searching . 55
4.3.3 Categorization . 55

4.4 Presentation-specific Architecture . 56
4.4.1 Main Panel . 57
4.4.2 Image Thumbnail . 59
4.4.3 Image and Code Viewer . 59
4.4.4 Metric Viewer . 60

4.5 Tool Comparison . 63
4.5.1 Feature Based Comparison . 63
4.5.2 Discussion . 66
4.5.3 Scenario Based Comparison . 67

4.6 Comparison with Profilers . 69
4.7 Tool Evaluation . 71

4.7.1 User Study . 72
4.7.2 Task Design . 73

4.8 Findings . 74
4.9 Expert Opinion . 78

5 Source Code Clones at Runtime: An Exploratory Study 80
5.1 Introduction . 80
5.2 Finding Active Clones . 81
5.3 Study Approach . 83
5.4 Summary . 93

6 Conclusion and Future Work 95

References 98

v

List of Tables

4.1 Summary of Features Supported by TrAM . 62
4.2 A Comparison of Trace Analysis Tools Based on Features . 65
4.3 Summary of Strength of Tools Based on Scenarios . 68
4.4 A Summary of Comparison of TrAM with Profilers . 70
4.5 Summary of Tasks . 73
4.6 Summary of the Features Analysed . 78

5.1 Subject Software Systems . 82
5.2 Sample Tests . 82
5.3 Method Clone Metrics . 83
5.4 Test Based Metrics for Active Clones . 83
5.5 Lines of Code and Number of Files Associated With Traces, Clones and Active Clones 84
5.6 Active Clones by Type of User Interface Event for Each Test 85
5.7 Frequently Executed Active Clones by System . 87
5.8 Overview of Clone Genealogies . 89
5.9 Number of Genealogies of Active and Non-Acitve Clones by Type 92

vi

List of Figures

2.1 Testing Information Flow . 8
2.2 AOP Compilation . 10
2.3 Example of Aspect Constructs . 12
2.4 Implementation of AspectJ . 12
2.5 Summary of Join Point Category . 13
2.6 Diagram of Shimba Showing Execution Path of a Method Using a Sequence Diagram 14
2.7 Diagram of ISVis Showing Scenario View . 15
2.8 Diagram of Ovation Showing Communication Between Classes Using a Class Diagram 16
2.9 Diagram of Program Explorer Showing Interactions Using an Object Graph 17
2.10 Diagram of SCENE Showing a Call Summary . 18
2.11 Diagram of AVID Showing a Cel for Visualization . 19
2.12 Diagram of JInsight Showing an Execution View . 20
2.13 Diagram of Extravis Showing View of Execution Trace . 21
2.14 Diagram of SEAT Showing a GUI . 22
2.15 Diagram of Collaboration Browser Showing Interaction Between Objects 23
2.16 Diagram of Salah et al. Showing Module Interactions . 24
2.17 Type 1 Clone Fragments . 27
2.18 Type 2 Clone Fragments . 28
2.19 Type 3 Clone Fragments . 28
2.20 Type 4 Clone Fragments . 28
2.21 Method Invocation . 32
2.22 API Inheritance . 32

3.1 Overview of the Study . 36
3.2 Testing Framework . 38
3.3 A Sample NiCad Clone File . 40
3.4 Analysis Framework . 40
3.5 An Interface of Trace Annotation . 42
3.6 Diagram of a Sample Trace . 43
3.7 Trace Mining Framework . 43
3.8 A Taxonomy of Metrics Classification . 45
3.9 An Entity Relationship Diagram of the Data Organization of TrAM 49

4.1 Diagram of the Trace Panel of TrAM . 54
4.2 Diagram of the Filtering Feature of TrAM . 54
4.3 Dialog Box for the Searching Feature of TrAM . 55
4.4 Diagram of the Group Feature of TrAM . 56
4.5 Diagram of the Image and Code Viewer . 60
4.6 Comparison of Two Different Coding Style . 61
4.7 Diagram of the Metric Viewer . 62
4.8 Effectiveness of TrAM to Meet Users’ Requirement During Program Comprehension 75
4.9 User Response for the Difficulty of Feature Use . 76
4.10 User Response for the TrAM Features (a) Most Popular Features of TrAM and (b) Features

Requiring Improvement . 77
4.11 Comparison of User Responses for the TrAM Features . 77
4.12 Presentation of Information in TrAM for the Users to Interpret and Analyse 77

5.1 Static Change: Active Versus Non-Active . 89
5.2 Consistent Change: Active Versus Non-Active . 90
5.3 Inconsistent Change: Active Versus Non-Active . 90

vii

5.4 Code Snippets from JHotDraw Showing Clone Fragments in Two Versions: (a) Version 7.0.6
and (b) Version 7.4.1 . 91

5.5 Code Snippets from JHotDraw Showing Clone Fragments in Two Versions: (a) Version 7.0.6
and (b) Version 7.5.1 . 92

viii

Chapter 1

Introduction

1.1 Motivation

Software engineering is a multidisciplinary area comprising phases of design, development, testing and main-

tenance of a system. Once a system is developed, the main focus and challenge lie in the maintenance phase.

The objective of this phase is to support the continuous change requirements during the evolution of soft-

ware. Such changes are inevitable and can be triggered in order to fix bugs or optimize code. Customers

often change their requirements which may require changes both at the design and implementation levels,

but may also propagate to the maintenance phase. It has been found that 50% to 75% [106] of software cost

is dedicated to the maintenance phase.

Before making any change in a software system, it is required to comprehend it well enough. This

ensures successful integration of the required changes. However, studies show that program comprehension

is an intensive and time consuming process, occupying 50-60% [7, 10, 15] of software engineering efforts.

Developers [49] must go through the time consuming task of knowing and gathering a variety of underlying

information about the system before changing it. Since the demand of maintenance, reuse and re-engineering

has grown over time, program comprehension has become a challenge for engineers. Comprehension includes

identifying a system’s building blocks, their interrelationships and even their behaviour in terms of context

of use. We define context as the objectives of an implementation of a specific portion of code. In this thesis,

we consider methods as the building blocks of an implementation of a software feature and therefore, we

determine their context by analysing features in order to support program comprehension. A method can

be defined as a named block associated with a type, with or without parameters and enclosing a set of

statements, expressions or variables. Every method is responsible for performing a certain functionality.

Maintenance engineers often resort to analysing documentation, studying the source code or running the

system for revealing the underlying structure and functionality. For instance, consider a scenario when a

developer is given the task of adding a new feature to a system developed by someone as requested by a

client. The options he may look for, to understand the system is to ask the developers to explain the design

and implementation of the system, to look at the documentation or to utilise other source code analysis

techniques. In number of cases the developer will be unavailable to ask. In the case of legacy systems, the

process becomes even more difficult due to the lack of proper and updated documentation caused during

1

the evolution of a system over time and having passed through many developers. This makes maintenance

more problematic and difficult. In other words, we can say that the system needs to be reverse engineered or

re-documented. Although comprehension can be aided by the use of profilers or debuggers, the process itself

becomes too time-consuming and painstaking where a lot of different variables and program states need to

be taken care of at the same time.

One way to support program comprehension is to understand what features are implemented, how they

are implemented and where they are located which we together term as feature identification. Every feature

when aggregated and connected together results in a system that is usable for the user. Evolution of a system

due to routine maintenance activities results in certain impacts on the features. Every feature is a collection

of methods that are tied together during the implementation. Portions of code executing during runtime

depend solely on the choice of uses made by the users corresponding to specific features in the systems.

These features when used result in the execution of methods that implemented them. Therefore, identifying

underlying portions of code that implements specific features and gathering their behavioural information

through mining can assist with comprehension. Locating and understanding how the method blocks specific

to features have been implemented can contribute to the maintenance task such as the addition of new

code (statements, function call and so on),the deletion of code or the optimization of the existing block or

method with new code. Now, locating only the method blocks cannot provide insights into why the specific

portions of code have been implemented. Therefore, directing the developers in knowing the objective of the

implemented code can assist them analyse and understand the code further.

Linking code associated with specific features can be achieved through dynamic analysis. Runtime data,

called execution traces, containing sequences of method calls collected during the execution of a system when

mined can help in providing deep insights into the implementation level. Execution traces, if generated based

on system use can make the comprehension clearer and even modular with every module containing a set of

method calls representing a specific feature. Such modular or segmented traces can be collected using the

notion of software testing [31]. By definition testing is a form of dynamic analysis that requires execution

of a system with a set of inputs called tests and examining the result to get a specification of the actual

program behaviour.

Software systems often contain similar code fragments, also known as code clones [74]. Existing clone

detection tools can identify code fragments that are textually similar but fail to provide the context in which

they are used. Knowing the portion of code specific to features can help us in understanding how syntactically

similar code fragments behave and in what contexts they have been used. For instance, a clone class can

contain a number of similar fragments but they may be used in different contexts. The code fragments may

be syntactically the same but may provide different functionality, such as drawing a rectangle and drawing

a square. This opens the avenue for mining execution traces in order to determine the context of use of

duplicated code. On the other hand, clone management is an active software engineering research area that

has contributed a diverse set of tools and algorithms to aid in the management and maintenance of software.

2

Code duplication is a common programming practice. Programmers use code duplication to increase the

speed of the software development process by using similar codes to implement common functionalities.

However, if the copied code is not tested for bugs it will lead to their propagation and eventually render the

system more defective and vulnerable. Fixing a bug in one clone fragment may require reviewing and perhaps

applying a similar fix to its other clone fragments. Any inconsistency in making a change in a set of clone

fragments may introduce new bugs. Consequently, clone management being a subset of software maintenance

will become too complicated in the course of time. Mining runtime information of duplicated code fragments

using a set of metrics and analysing their behaviour can further assist in prioritizing inspection of clones

during the maintenance phase.

1.2 Problem Definition

Analysing execution traces to support software maintenance [62, 37, 38] and trace visualization tools [91, 44,

48, 94] have been studied before by many authors. A number of techniques and tools have been developed as

well. However, due to the complex nature of the execution traces that are obtained, the analysis is challenging

and difficult. As a result, there is a demanding need for more meaningful and informative analysis techniques

that can help in program comprehension and the maintenance task in hand. A number of trace mining

metrics [26], a compression technique [27] and a trace partitioning technique [89, 66, 67, 68] have already

been proposed. From the literature we have identified that:

1 Once a system is reverse engineered using dynamic analysis, the execution pattern is recorded in the

form of execution traces containing method calls. Although traces provide us with a sequence of method

calls, understanding the context in which they are used can make comprehension easier and simpler.

Traces when mined further using metrics can enhance comprehension by providing behavioural aspects

of the features executed by a user.

2 Although a number of trace mining metrics [26] have been proposed, no study on assessing the dynamic

behaviour of similar code fragments, called clones has been attempted. Therefore, to what extent clones

are active and how they can be used in maintenance has not been studied before. It is indeed a necessary

and an important aspect to highlight the presence of clones and mine their information with new sets

of metrics. Clones do have impact on maintenance activity and although there are a lot of detection

techniques, there is little work in discovering their run time effect on the system with respect to the

context in which they are used.

3 Execution traces are a highly useful and informative way of analysing a system to support compre-

hension and debugging. However, the main challenge when dealing with such dynamic information is

its sheer volume and diversity. A small system with only a few hundred lines of code when instru-

mented provides a considerable amount of traces (method calls). Trace management thus plays a vital

3

role in such a situation. Trace measurement techniques in the form of metrics [26] followed by trace

comprehension techniques have been proposed but there is still scope for further mining to make them

more understandable. Although trace partitioning using user interface events has also been proposed

in [89], tool support with trace exploration facilities in a more precise and modular way with features

incorporating interface screen shots, filtering, categorization in a simple and interactive way would add

benefit to users during feature analysis.

1.3 Contribution

The main intent of this thesis is to support program comprehension by using traces to locate features, their

corresponding source code and mining the traces to extract feature based dynamic information of the system.

We adapt a use-driven hybrid approach of static and dynamic analyses to mine a system’s runtime data and

traces to determine the implementation detail of a system. We use a use-driven approach and express a

system’s use as a set of tests. In our approach we develop a set of uses that represents how a system is used

or how the user uses some specific functionalities. Each use set describes a user’s interaction with the system.

To manage large and complex traces, they are modularized through segmentations based on system use,

tests and user interface events. The segmented traces are clustered based on internal and external methods.

The clusters are further categorized into external groups called application programming interface and active

clones. To further support the comprehension process the trace components are quantified using a set of

active metrics such as trace, method, clone and group metrics which we have proposed.

To validate the framework we built a tool called TrAM that implements the trace mining and the visualiza-

tion aspects. It can quantify the trace method information, mine similar code fragments called active clones,

cluster methods based on types, categorise them based on groups and quantify their behavioural aspects

using a set of metrics. The tool also lets the users visualize the design and implementation of a system using

images, filtering, grouping, event and system use selection, and present them with values calculated using

trace, group, clone and method metrics. The tool would assist the developers/maintainers in the following

ways:

a. Allow the developers to understand the implementation details of a system’s functionalities by running

the system based on system use, tests and events. Each time the developers try to study the system,

they can create their own system use and collect the run time data accordingly. The trace segmentation

based on system use, tests and events supported through the process of annotation will help them to

understand the context of use of the implemented code and guide them towards code modifications.

b. Allow the developers to understand the contexts in which clone fragments have been used and their

behaviour in terms of metrics. For instance, a clone class contains clone fragments and the developer

wish to find out in how many tests a particular clone fragments have executed or how active are the

clone classes. All the fragments belonging to a class may execute or only a few of them may be active.

4

c. Allow the developers to find the consumption of APIs and figure out the most frequently used ones

based on contexts. For instance, a developer might want to know which type of API (String, IO, or

Util) have been used most and in which contexts.

d. Allow the developers to map high level view, for example user interface, with the source code easily

using snapshot view, code view and trace exploration technique. For instance, a developer wish to

know about the start and the end of a particular feature execution with the sequences of method

calls contained in it. The developer may also want to know only the method calls associated with a

particular button click that performs a certain function. This will allow them to understand how a

particular feature corresponding to that specific button has been implemented. Therefore, if any change

is required to be made, only these method calls associated with the button needs to be focused on.

e. Allow the developers to analyse the behaviour of a system using a set of metrics based on system use,

events, methods and groups. For instance, a developer may wish to know the total number of files

invoked, total time consumed by the method calls and so on for a particular test or event such as a

button click event during a draw triangle test. A developer may want to know about the total time

consumed in the execution of a certain functionality which can be determined through the segmentation

of trace based on tests and events.

We also conducted a case study on five different subject systems using the framework to determine the

dynamic properties of the source code clones at runtime and answer three research questions: a) To what

extent are clones active during run time? b) How active are the active clones and c) Does the active clone

identification support software maintenance activities?. The results of our study did answer the research

questions. The findings indicated that for each system we were able to find a considerable amount of clones

as active and occupying a major portion of CPU time. The active clone genealogy, when considered over

versions for each system also indicated that the active clones change more inconsistently. A detailed insight

into the active clone genealogy revealed that clone inspection during clone management could be prioritized

based on clone types such that Type 3 clones should be managed first followed by Type 2 and Type 1 clones.

We also compared our tool with other existing trace mining tools and profilers in terms of features and

scenarios. We found that our tool is stronger for locating features in terms of trace segmentation, snapshot

view, code view, calculating metrics and categorization. Finally, a brief user study was accompanied by the

evaluation of TrAM on its effectiveness, usability and information management.

The rest of the thesis is organized as follows: Chapter 2 provides a brief overview of the background and

the related studies. Chapter 3 describes the framework of our study, taxonomy of metrics, frameworks the

schema model of our tool TrAM. Chapter 4 describes the implementation of TrAM followed by its evaluation

using a comparison of features and scenarios with other existing trace analysis tools, profilers and user

feedbacks. Chapter 5 presents the the empirical study on the runtime source code clone and answers to the

research questions. Finally the thesis is concluded by a discussion and indication of future work.

5

Chapter 2

Background and Related Work

This chapter presents the background and research relevant to the thesis. Since this thesis proposes a

hybrid automated framework for collecting and analysing execution traces in terms of the source code, APIs

and clones; the concept of software testing, execution traces, APIs and clones are discussed.

2.1 Software Maintenance

Software maintenance is a continuous process that commences right after software is delivered to the customers

and is subdivided into four categories as follows:

a. Corrective Maintenance involves fixing the system caused due to bugs or faults in it.

b. Preventive Maintenance involves prevention of system failure beforehand to ensure that no faults could

cause the system to fail.

c. Adaptive Maintenance involves bringing modifications in a system to meet the new requirements of the

customers.

d. Perfective Maintenance involves in the improvements of the existing system so that further modifications

such as addition of new features can be easily done.

2.2 Program Comprehension

Software maintenance, being a major process as mentioned in the previous section, requires vivid under-

standing about the system. The more a system could easily and simply be understood, the more effectively

it can be maintained and utilised. Thus, a program can be understood based on the four strategies [100]

mentioned in the following subsection:

2.2.1 Bottom-up Model

Bottom-up model is a technique in which a software engineer builds an abstract model of the source code

for its comprehension. This process involves reading the source code and mentally grouping together low-

6

level programming details, called chunks, in the form of higher-level domain concepts. The whole procedure

continues until an adequate understanding of the program is achieved.

2.2.2 Top-down Model

The main idea behind the top-down comprehension process is that it is totally dependent on hypothesis.

During this approach, the software engineer first creates a hypothesis about the functionality of the system

and then verifies the validity of it. Eventually a hierarchy of hypothesis is created until the low level hierarchy

is matched with the source code. Such type of comprehension technique is usually performed by engineers

who have a good knowledge about the functionality of the system.

2.2.3 Integrated Model

The integrated model is a hybrid one combining both the bottom-up and the top-down approaches. A number

of studies were conducted on maintenance activities including adaptive, corrective and re-engineering. The

results revealed that the software engineers have the tendency to switch among the comprehension strategies

based on their expertise on the system and the code under investigation.

2.3 Reverse Engineering

Reverse engineering a process in which the subject system under investigation is analysed to determine its

components and discover the inter-relationships among the components to create a representation of the

system in another form of higher level of abstraction. It does not alter the structure of the subject system

but facilitates the process of examination of the system. The three basic activities of the reverse engineering

technique are:

. Data gathering: It is the initial step which involves collecting data in one of the following ways such

as source code analysis using parsing, dynamic analysis using profilers and informal extraction of data

using interview. The data obtained assists in identifying the system components and relationships

among them.

. Knowledge organization: The raw data that are obtained must be represented in such a way so that

program comprehension is achieved by allowing analysis of the components with the relationships among

them and reflecting the users’ perspective about the characteristic of the system. The representation

is achieved using a data model that captures the static and dynamic information of an application

required to support the data-related activities.

. Information exploration: This phase is the key contributor of the program comprehension. Once the

data is collected and organized using a data model there must be a way for navigation so that the

7

subject system can be analysed. The navigation is based on domain and presentation specific criteria

which signifies the information.

2.4 Software Testing

Software testing is an important process done to ensure the quality of software. The main intent of testing is

to locate errors or faults during the software development life cycle. The testing activities [31] are composed

of designing test cases, executing the software with the test cases and examining the result obtained through

the execution of the software. The output thus obtained provides a specification of the actual program

behaviour. Figure 2.1 shows the process of software testing that is adopted during the software maintenance.

The model consists of a configuration of test inputs including test case design and creation, execution of

software with the test inputs and finally evaluation of software based on the output of the execution. In the

initial step, test configuration and software configuration are the two key aspects of the initial testing phase.

Test configuration includes designing of test case, which technique to adopt and what tools to use. However,

selection of test case depends on which type of techniques are used for testing. Software configuration consists

of requirement specification, design specification, source code and so on. In the second phase, the output of

the tests are evaluated based on the expected results which are termed as test oracles. It includes simulated

result, hand calculated values and design specifications. After the evaluation phase, the final phase includes

debugging and reliability prediction. During the debugging phase, the errors identified at the evaluation

phase are taken into consideration and necessary corrections are done. At the same time the error rate data

is used to predict the reliability of the software.

Figure 2.1: Testing Information Flow (taken from [53])

8

2.5 Dynamic Analysis

Dynamic analysis [85, 36, 5] is a technique of understanding the behaviour of a system by putting the system

under execution. It is the only analysis technique [14] that reveals the actual behaviour of the system down

from class level to architectural level. The main limitation of dynamic analysis is that it cannot prove that

a program satisfies a particular property, however it can identify discrepancies in the properties and provide

insights to the programmers about the behaviour of their programs. This technique requires three steps as

follows: a)what inputs to provide, b) how to execute the system and c) what to look for in the analysis? It

is an active analysis method that are often used during reverse engineering and program comprehension.

Dynamic analysis has its advantages and disadvantages [19]. The main advantages are: a) it is precise

because unlike static analysis it can work without abstraction or approximation such as a particular sequence

of statements in a path may execute or not and thus dynamic analysis provides a clear picture of it. Above

all, it does provide the actual scenario of the control paths executed, values computed, memory consumed and

so on. On the other hand, dynamic analysis suffers from incomplete program executions [20, 5]. A program

may contain a number of execution paths connected by conditional statements (switch, if-then-else). As a

consequence, all the branches will not logically execute at a time because they are mutually exclusive. In such

cases execution of each branch will require different input sets. So this does not guarantee that a program

executed using a particular set of inputs is representative of all the possible executions of the program. The

prime challenge in dynamic analysis is choosing a good set of test suites with wide range of coverage that

will exercise all the possible branches present in the program structure. However, through this one can easily

relate the inputs used, the behavioural changes of the internal program and its output since it is straight

forward and directly linked with the program execution.

2.6 Runtime Data Collection

One of the prime challenges in dynamic analysis is to collect runtime informations. The strategies followed

for collections of data are: a) code instrumentation and b) profiling and debugging.

One of the techniques for collecting run time data is by instrumenting the source code. In source code

instrumentation, probes are inserted into the source code. For example print statements may be inserted in

various locations so that when the system runs the output of the print statements are logged in a file. In the

case of an object-oriented system probes can be inserted at the entry and exit of every method to identify the

start and the end of the method execution. The instrumentation process usually is done automatically. The

second technique used to collect run time data is by instrumenting the system’s execution environment such

as Java Virtual Machine to generate logs based on user’s interest [29]. For instance, JVMPI (Java Virtual

Machine Profiler Interface)[50] is a binary function call interface between JVM and a profiler agent. A profiler

agent, on the other hand connects JVM and the profiler front-end. Profilers such as hprof make use of the

9

JVM environment to generate events, stack traces, CPU usage, call graph and so on. The main advantage

of this technique is that source code can be kept as it is with no further modifications. However, it provides

only a fixed set of interfaces and often reduces performance. DTrace [107], a dynamic tracing framework

allows logging of various behaviour of a system such as memory usage, CPU time, filesystems and so on. It

defines various types of probes (module, function, name, provider) that can be used at the command line to

instrument a system. Besides, debuggers [29] can also assist in the collection of run time data for analysis.

The program to be tested must be executed under the control of the debugger that is available through any

software development kit such as Eclipse, Netbeans and so on. To collect data breakpoints needs to be set

at desired locations such as entry and exit of methods. This technique has its own advantages where both

the source code and the runtime environment requires no modifications. However, the only disadvantage is

that the execution of the system can be slowed down considerably.

Figure 2.2: AOP Compilation (taken from [24])

2.6.1 Aspect Oriented Programming

Aspect Oriented programming [42, 34] is a technique used to separate the cross-cutting concerns in software

systems. A concern is a requirement or functionality implemented in the code to achieve a particular goal.

A system may have numerous concerns implemented in it for the system to meet the user requirements. All

the programming implementations have the notion of modularizing the code or design into units or functions

which collectively help to produce a complete software. Such modules are often termed as components and

each concern of a system is encapsulated into components. As a result they allow the developers to achieve

modularity and thus reduce complexity during maintenance. In case of object-oriented programming, the

modularity is achieved through encapsulating data and the concerns into a conceptual unit called object.

Although object-oriented programming has advantages such as inheritance, polymorphism and code reuse it

has its own disadvantages.

10

The main disadvantage of OOP [34] is that although it provides a hierarchical structure for modularity

some concerns are unable to be modularized in complex systems. Examples of which include logging, error

handling, or synchronization and their implementations are spread over multiple modules i.e., number of

methods and number of classes. Such types of concerns are said to be cross-cutting across the systems

and the concerns are termed as cross-cutting concerns. AOP thus provides a means to program the cross-

cutting concerns in a modular way which in turn helps to achieve the benefits of modularity. AOP provides

modularity of code by removing code tangling and code scattering [24]. Aspect mining is a technique that

is used to identify the cross-cutting concerns in a system. A number of techniques exists for mining the

cross-cutting concerns and to evaluate their strengths and weaknesses an empirical study on three different

subject systems has been conducted by Roy et al. [80].

Code tangling is a phenomenon when too many concerns are implemented into one module while code

scattering is the scenario where one concern is implemented over various modules. Such implementation

further induces situations like a) poor traceability - causing poor mapping between the concern and the

implementation, b) decreased productivity - a developer has difficulty concentrating on one concern, c)

provides less code reuse - a single module implements more than one concern tangled with each other such

that a single concern of interest cannot be used, d) poor code quality - where debugging becomes difficult

and the implementation carries bugs that may not be identified, and e) difficult evolution - situation when

changes in one concern may produce side effects on other modules. Thus, AOP tends to solve these problems

by separating the cross-cutting concerns into separate modules called aspects.

Implementation

One implementation of AOP in Java is achieved by coding concerns using a language called AspectJ [42].

Figure 2.2 shows the AOP implementation process. The AspectJ program contains base code and aspect

code. The base code contains classes, interfaces, and other constructs that implements a given concern

required by a system while the aspect code comprises of constructs needed to implement the cross-cutting

concerns. The AOP compiler often known as weaver takes the base program and the aspect program as

inputs and compiles them to weave the aspect concerns into the base program. The weaving [46] can be

achieved in three different ways: a) source weaving, b) binary weaving, and c) load-time weaving.

Source weaving which is done during compile time takes the source code of the aspect and the base

program to produce a byte code which is compliant with the Java byte code. In such case all the source code

must be present together. In binary weaving the inputs to the weaver are in the byte code form. The byte

codes are compiled separately using a Java or AspectJ compiler. For instance jar files or the class files can

be used as an input to the weaver. However, unlike the source and binary weaving, load time weaving uses

classes, aspects and configuration files defined in XML format. The load time agent can be of any of the

form such as Java Virtual Machine Tool Interface (JVMTI) [46] agent, a classloader, or a Virtual Machine

and application server-specific preprocessor.

11

Language Constructs

Figure 2.3: Example of Aspect Constructs (taken from [61])

Figure 2.4: Implementation of AspectJ (taken from1)

The AspectJ language [42] as shown in Figure 2.41 is mainly based on the concept of the joint point

model. A joint point is the reference which allows the definition of structure of the cross-cutting concern in

aspect modules. It is a well defined points in program where the aspects and the components join. The AOP

further consists of four constructs: a) pointcut, b) advice, c) aspects, and d) inter-type declaration.

1cs.uwindsor.ca/ jlu/440/440AOP1-2011.pptx

12

Figure 2.5: Summary of Join Point Category (taken from [47])

Pointcuts are constructs that identify the subsets of join points defined in the program. The AspectJ

language [24] supports a number of different types of join points such as method call, constructor call, and

field access call as shown in Figure 2.5. Once the join points are identified, pointcuts are then used to select

them using the designator x(joinpointsignature) where x represents type of pointcuts containing the join

point within it. For instance a method execution join point can be stated as execution(signature) where

the signature can be defined as (type of methodclass.method name(parameterlist)). Wild cards such as

(*) and (..) can also be used while defining the designators to give them a type of property based on the

pointcut. The (*) indicates all and (..) indicates any existing parameters in the method regardless of return

types, declaring types, method names, and method parameters. A number of pointcuts can be combined

together using the AND, OR and NOT operators to form an anonymous and a named user-defined composite

pointcuts.

An advice defines the code to execute upon reaching the join points selected by the associated pointcut. It

can be classified into three types such as before, after and around. Before() and after() advices are responsible

for such that at which point during the join point computation they should execute. For instance, before()

executes as the join point is reached. It has no additional matching criteria nor does it have any capability

to alter the join point context. On the other hand, after advice executes after the join point is reached and

all the processing within the method is completed. Again after() advice can further be classified into three

types: unqualified which runs no matter what the outcome of the join point is, after throwing executes if

the join point ends by throwing exception, and after returning executes only when the join point execution

is successful and returns normally with no errors. Unlike before and after advice the around advice is a

pre-emptible one which has the capability to stop at the join point and continue execution just after the

join point. In summary, an advice answers the question of what to execute, when to execute and where to

execute. Figure 2.3 illustrates the structure of an aspect, join point, pointcut and an advice in an AspectJ

implementation while Figure 2.5 illustrates different kinds of join points in the program that are targeted by

the aspects.

13

Aspects are the modular units of cross-cutting concerns that consists of join point, pointcuts and advice.

An inter-type declaration is a static cross-cutting concern that can modify the static structure of classes,

interfaces and aspects in the system.

2.7 Trace Analysis Tools

This section provides an overview of dynamic analysis tools and profilers that assist in trace collection, trace

management and visualisation.

Figure 2.6: Diagram of Shimba (taken from [92]) Showing Execution Path of a Method Using a
Sequence Diagram

2.7.1 Shimba

Shimba presents a reverse engineering environment [92] to comprehend Java system behaviours using a hybrid

approach of static and dynamic analysis. The benefit of static analysis is that it permits the selection of

components that will be used further using the analysis dynamically. It is assumed that tracing of the whole

system is not required, if the engineers only tend to analyse a specific portion of it. The principal functioning

of the environment is that it extracts system components such as class, interface, method, constructor,

variable and static initialization blocks. It also picks interdependencies among the components, inheritance

14

relationships, containment relationships (e.g., a class contains a method), call relationships and so on. These

information are then fed into another reverse engineering tool called Rigi where the components and the

interdependencies are visualised using a directed graph containing nodes and directed edges respectively.

Rigi also allows the users to be selective in node investigations by including only those that are of interest to

them by running scripts.

So far, we have the environment to do the analysis, the component extractor and therefore, there is a

need for a trace analyser. This is accomplished by the forward engineering tool SCED [45]. It provides a

basis for constructing scenario diagrams, state diagrams and synthesis of state machines from them. Figure

2.6 provides an overview of the representation of the execution path of a method using a sequence diagram.

The repeated sequence of identical events called behaviour patterns are also adapted by SCED using a

string matching algorithm. Two types of patterns are identified: contiguous sequence due to loops shown as

repetition constructs and the non-contiguous ones shown using sub-scenario constructs with boxes containing

the events associated with the patterns. Out tool, TrAM adapts both the static and dynamic analysis to

extract static and dynamic information separately. Using static analysis we mine the source code to extract

the methods and detect similar code fragments called clones. We also mine the source code to extract all the

APIs that are been used by a developer. Through dynamic analysis we collect traces based on the system

use.

Figure 2.7: Diagram of ISVis (taken from [37, 38]) Showing Scenario View

15

2.7.2 ISVis(Interaction Scenario Visualizer)

ISVis [37, 38] is a visualization tool that provides analysis and comprehension of system at the architectural

levels for C program. It has several graphical views that provide a platform to identify the components

(major units) and the connectors (their interactions). The benefit of this tool is that, it too deploys both

static and dynamic techniques and allows a user to get an overall picture of the system’s architecture so that

it is clear to them where in the system to bring about a change as a solution to any problem. Moreover, tasks

such as design recovery, architecture localization, design or implementation validation, and re-engineering

are also supported by this tool. The execution trace visualization is achieved using two types of diagrams:

information mural and temporal message-flow diagram. The two diagrams are complementary to each other

which after combining produces a scenario view (Figure 2.7). The information mural provide ways to create

representation of large trace into concise form containing repeated patterns. The temporal message-flow

diagram assists in viewing the detailed contents of the trace. In contrast our framework provides a platform

to make the traces more manageable and meaningful by providing two level annotations. This annotation

process segments the traces based on use. The uses are again segmented based on events. This assists the

developer in understanding the context of use of specific or groups of method calls.

Figure 2.8: Diagram of Ovation (taken from[63]) Showing Communication Between Classes Using a
Class Diagram

2.7.3 Ovation

This visualization tool [63] utilizes the execution traces to construct a tree based on view called the execution

pattern view as shown in Figure 2.8. It allows the developers to view the program’s execution pattern at

different levels of abstraction. They can utilize the navigational, visual and analytical techniques of the tool

to go over to the complex and lengthy traces. The main difference compared to Shimba [92] and ISVis [37]

is that Ovation presents the view to the users based on the tree structure known as execution pattern view

(Figure 2.8) which is less complicated than the UML sequence diagrams. It simplifies the visualization and its

16

unidirectionality in the axes and makes the representation more understandable and easier than interaction

diagrams. With the view in hand the users can navigate through various features such as expand the subtree,

zoom in and zoom out panels, manage repetitive sequence of method calls using colour code, select messages

sent to particular object and so on. The matching criteria that are used to detect two patterns as equivalent

are: identity, class identity, depth limiting, repetition and polymorphism. Our approach also incorporates the

tree like structure to manage traces but in terms of context of use. On every click on a node a developer can

understand what that node represents. Besides managing traces our approach also determines the behaviour

of the trace nodes further using a set of metrics.

Figure 2.9: Diagram of Program Explorer (taken from [48]) Showing Interactions Using an Object
Graph

2.7.4 Program Explorer

The tool [48] uses the combination of the static information and the execution data to produce a view of

the system. It is mainly designed for the C++ language but it can be generalised for any object-oriented

platform. It provides views for interaction among the objects and the classes using an object-oriented model

and notation. Interactions among the objects are modelled using a three tuple directed graph called the

interaction graph. The nodes of the graph represents objects and the connections between the graph show

the interactions among the objects. One of the important features of Program Explorer is that, it can provide

a basis for search space reduction using techniques such as merging, pruning and slicing. Merging of arcs

17

and methods can be achieved using object graphs as shown in Figure 2.9 fwhere multiple arcs of identical

methods among objects are merged, and class graphs where objects of the same class are merged together.

Pruning allows removal of unwanted nodes, arcs and activation path entering and going out of from the

graphs, a process known as object pruning. Method pruning is identical to object pruning excepting the fact

that only methods are removed rather than the objects while in class pruning the inheritance comes into play

and any method in the inheritance hierarchy can be removed. On the other hand, slicing refers to keeping all

the paths that are active in the program and dropping the rest that are infeasible. Our approach allows the

developers to collapse and expand the traces all at once based on the developers need. It also implements a

filtering option that permits analysis based on external and internal methods. This allows the developers to

focus on only a single type of method and understand their behaviour. Moreover, the categorization feature

provides further filtering based in groups of application programming interface and active clones.

Figure 2.10: Diagram of SCENE (taken from [44]) Showing a Call Summary

2.7.5 SCENE (SCENario Environment)

As its name signifies SCENE produces scenario diagrams from the dynamic event traces of the object-oriented

systems [44]. Scenario diagrams are a representation of the components such as objects, modules and processes

and the interaction flows such as messages, procedure calls and events between them. The speciality of the

tool is that it incorporates the concept of active text framework to provide hyper-text facilities. Moreover,

the platform allows the users to look for other documents such as source code, class interfaces, class diagrams

and call metrics besides the scenario usage. The tool itself is dedicated to focusing on problems allowing the

users to navigate only those parts which they are interested in. Call compression, partitioning, projection

and removal, and single-step mode are the techniques used to solve the problem. Call compression allows

to collapse the internal invocations which on a mouse click expands them all as shown in Figure 2.10, and

18

partitioning divides the internal calls into smaller parts so that each part can fit into the screen and users

can click on individual parts independently. Projection and removal offers the flexibility of choosing only

a particular object and method involved in it while in single-step mode only one event is visible at a time

and subsequent ones are revealed by clicking the next button. In our approach we provide more fine grained

analysis by quantifying the traces using a taxonomy of metrics proposed by us. We also incorporate the UI

thumbnail view and an enlarged snapshot view associated with every event of the trace. Clicking on the

thumbnail provides enlarged picture of the UI. Each UI is also presented with a code viewer that displays

the source code associated with it.

Figure 2.11: Diagram of AVID (taken from [94, 28]) Showing a Cel for Visualization

2.7.6 AVID(Architecture Visualization of Dynamics in Java Systems)

It is an off-line visualization tool [94, 28] that makes use of dynamic information to represent the operation

of the object-oriented systems at the architectural level. The visualization of events can be viewed sequence

by sequence in cels (Figure 2.11) which show dynamic information both at a certain point and the history of

execution. The representation is done in the form of an annotated box containing methods invoked within

it with arcs labelled to show the method invocation made between the source and destination classes. It

also contains a summary view which shows all the interactions. The filtering technique is further reduced by

applying sampling during which the user can select and analyse a specific sample of a trace. For instance,

a section of a trace can be considered at a specific timestamp in the history. Our approach makes use

of execution traces to represent a system’s structure at the implementation level. We take into account the

19

method calls as the building blocks of the functionalities of a system and mine them to extract their behaviour.

The thumbnail and image view panels permits the developers to see how a particular user interface behaves

and helps them to map the method calls with the snaphots to understand the system’s implementation.

Figure 2.12: Diagram of JInsight (taken from [62]) Showing an Execution View

2.7.7 JInsight

JInsight [62] is a tool mainly designed for performance analysis, debugging and other tasks such thread and

garbage collector activity, deadlocks and so on. It assists the users analysis through a number of different view

layouts. The histogram view is used to detect the performance bottleneck in terms of resource consumption

for classes, methods and instance usages. The hot spots are revealed shown in coloured rectangles. Reference

pattern view tends to simplify the interactions between the objects by removing the information overhead.

It uses the pattern matching algorithm to identify the recurring events in the object invocation and their

relationships. Execution view as shown in Figure 2.12 provides the users with the program’s sequence of calls

20

that may allow them to detect the hot spots and performance deadlock. The call tree view gives more precise

view in numerical format such as total time taken for the execution of a particular task. A four dimensional

model is used to represent an event that corresponds to object construction, destruction, method calls and

return. To deal with the large overhead of information the concept of call frame is used which considers a set

of events of communication patterns among objects as a one small unit. Our approach also allows analysis

of traces not only through identifying features but also enhances the understanding of features through a

set of filtering and categorization. It also provides the developers to gather more in-depth analysis of the

features using a taxonomy of metrics. To manage the traces further the concept of active clones has been

incorporated into our approach which reveals not only their context of use but also their dynamic behaviour.

Figure 2.13: Diagram of Extravis (taken from [15]) Showing View of Execution Trace

2.7.8 Extravis

Extravis [15] is a highly scalable trace visualization tool that assists the user in program comprehension tasks

such as trace exploration, feature location and top-down analysis with domain knowledge. It presents the

users with two different types of views: circular bundle view and massive sequence view which is depicted in

Figure 2.13. Circular bundle view provides view of the system’s entities and their interrelationships among

them. To provide an interactive and detailed navigation of the high level structural entities, Extravis offers

features to collapse specific portions to have better view on it. It also provides visualization facility for

traces corresponding to a specific snapshot in time. However, unlike the circular bundle view, the massive

sequence presents the users with views of all the consecutive method calls in a chronological order. To

21

enhance the comprehension process the method calls are colour coded using a gradient. In addition to it, if

any segment of execution trace needs closer examination the tool offers options for zooming into it. Above

all, the synchronization between the two views provides the user to look into both of them while interacting

with only one of the views. The thumbnail view, enlarged image view and the code viewer in our approach

helps the developers understand the nature of the graphical user interface. It provides a linkage between the

trace, the snapshots and the associated code all together in a single environment.

Figure 2.14: Diagram of SEAT (taken from [30]) Showing a GUI

2.7.9 SEAT(Software Exploration and Analysis Tool)

SEAT[30] is a trace exploration tool as shown in Figure 2.14 that assists the users to navigate through the

traces and understand a system’s implementation. The traces collected are represented using CTF (Compact

Tree Format) which are displayed to the user using a set of visualization techniques in a tree-like structure.

SEAT incorporates a number of different trace analysis techniques such as filtering techniques that allows

the user to comprehend useful information. The graphical user interface is based on the Eclipse platform

containing a multiple page trace editor along with a number of dependent editors. The trace is displayed

in the trace editor while statistics and execution patterns are presented in the helping window. SEAT also

22

implements a number of metrics to quantify traces and offers feature to map traces with source code. It

also supports features for searching of specific components using wild-cards. SEAT also provides provision

for analysing execution pattens using colour coded techniques for distinguishing among different patterns.

Our approach also displays the traces in a tree-like structure in a large main panel where the developers can

analyse them by clicking on the nodes. Groups of method calls are clustered into events and groups of events

are bundled into system use. This provides the context of use of the methods and can help in identifying the

features.

Figure 2.15: Diagram of Collaboration Browser (taken from [70]) Showing Interaction Between
Objects

2.7.10 Collaboration Browser

Collaboration Browser [70] provides a platform for the users to visualize the interactions and collaborations

(Figure 2.15). It deploys dynamic analysis and iterative approach to facilitate the design recovery and

understand the dynamic behaviour through analysing the collaborations. The collaborations are formulated

based on dynamic information, pattern matching and an iterative process. Dynamic information records the

flow of control from one class to another in the form of execution traces while pattern matching detects the

similar execution patterns in the traces and groups collaboration instances into collaboration patterns. To

refine the analysis of collaboration further, an iterative process offers querying the dynamic information. The

23

tool provides the users with the options of dynamic information querying, editing of dynamic information

through filtering and finally representing the result in the form of interaction diagrams. In our approach

groups of method calls are represented in the form of call graph under events and system use.

Figure 2.16: Diagram of Salah et al. (taken from [85]) Showing Module Interactions

2.7.11 Salah et al.

Salah et al. [85] proposed an approach for locating specific features in the source code. Their approach adapts

dynamic analysis to reveal views of software system at different levels of abstraction. It relies solely on the

use cases used to run the system. The execution traces which are obtained are further processed to locate the

software features in the form of use cases, module interactions and class interactions as shown in Figure 2.16.

Their architecture is composed of data collection, storing of data in the repository and visualization. The data

collection module collects runtime data through code instrumentation using Microsoft C++ compiler’s /Gh

option. The data repository stores the program entities, relationships, and runtime events that are gathered

from the subject system and the visualization represents data to the users in the form of views. Here graphs

are used to display the visualizations where navigations among the different views can be achieved by selecting

nodes that are used to represent the graphs. The views are constructed hierarchically where the topmost

level represents the use case views, the second level indicates class relationships and the lowest level gives the

interactions among the modules. In our approach we identify features by annotating groups of method calls

under events and system use. The annotation process segments the traces so that they can be made more

24

manageable and at the same time make them more meaningful by qualifying them with their context of use.

UI thumbnail, image snapshot and code view feature complements the feature comprehension task further.

Navigation through the image snapshots can help the developers to compare the implementation of one UI

from another.

2.8 Profiling Tools

Profiling is the technique used to identify system’s performance, resource utilization and its behaviour.

Djprof [64] is a Java profiling tool implemented using AspectJ that can instrument code for the profiling

of system as desired. The tool supports profiling such as heap usage (memory consumed), object lifetime

(time between creation and garbage collection), wasted time (time between creation and first use) and time

spent (time spent in each method). Hprof [50] is a command line profiling tool that is dedicated for heap

and CPU profiling. It can be loaded dynamically with the JVM process at the command line and provides a

textual or binary format output. The users can select from various heap and CPU profiling features in it. The

implementation is based on JVMPI [50] (Java Virtual Machine Profiler Interface) which is a bi-directional call

interface between the JVM and the profiler agent. Gprof [64] on the other hand, provides a call graph view of

the system and utilises gcc to instrument the code. It produces result in two different formats: flat format in

which the time of execution of each function call is shown and the call graphs show the results in hierarchical

form with times spent in each parent and child methods. Gilk [65] which is also an instrumentation tool for

Linux Kernel allows addition of instrumentation code at runtime. It is achieved using code splicing where

a branch instruction is added at the instrumentation point. The overwritten code is relocated into a code

patch which is targeted by the code splice. Ltrace and strace are linux based tools which are used to trace

library system calls of a process. The strace command can collect traces either by running a new command

or attaching itself to already running program. Similarly, ltrace is used to collect trace for dynamic library

calls to provide method timings and number of executions they have executed.

JRat (Java Runtime Analysis Toolkit)2 is an open source profiler that measures performance of open

source java systems. It instruments a source code and monitors the behaviour of the running application

and profiles performance measurements. The performance output of a system can be viewed and analysed in

a graphical user interface facilitated with a number of view controls. JMP (Java Memory Profiler)3 is used

to profile execution of java system and provide object usage and method timing. JMP has the capability

to provide the user to analyse heap in order to detect memory leaks. It also provides statistics for method

timing, number of calls and time take in methods called. The call graph generated also supports the caller and

callee representation. On the other hand, JIP (Java Interactive Profiler)4 is similar to hprof and is shipped

with JDK. Unlike hprof that uses JVMPI, it uses aspects to instrument code for every method of every

2http://jrat.sourceforge.net/
3http://www.khelekore.org/jmp/
4http://jiprof.sourceforge.net/

25

class. It provides a call graph and allows the users to filter classes by class names and packages. JProfiler5

is a tool with wide range of features to support profiling and monitoring of java systems. Its UI allows the

users to track performance bottleneck, analyse issues with threads and find memory leaks in the system. It

deploys dynamic slicing technique to analyse execution traces for program debugging and understanding. In

our approach we adapted aspect oriented programming to instrument code and gather run time data in the

form of execution traces. We also mine source code to extract all the methods, API used and use NiCad

[77, 13, 12] to detect clones. Our approach allows the developers to analyse the run time information through

a taxonomy of metrics at various levels such as system use, events and methods. Our approach also allows

the developers to analyse the behaviour of different graphical user interfaces of a system used during the

runtime.

2.9 Source Code Feature Analysis

Advances in software re-engineering and program comprehension have also been achieved using dynamic

analysis. Research on execution trace based analysis is used to manage, comprehend, and quantify large

amounts of method traces obtained during the program execution. Sutherland and Schneider [89] proposed

an approach that can aid in the maintenance of interactive software systems with user interface traces.

In their study they presented an approach for navigating the architecture and source code of interactive

software applications based on actions that occur in the user interface. Contributions by Hamou-Lhadj and

Lethbridge [26, 27], Eisenbart et al. [17], Asadi et al. [2], Zaidman and Demeyer [98], Zaidman et al. [99], Lo

et al. [51], Voigt et al. [93], Thomas et al. [25] all aim to make the trace data more manageable by mining

important features and concepts from them for program comprehension.

Fischer et al. [22] proposed a technique to study the evolution of systems of different versions using the

execution trace. They developed a tool called EvoTrace that uses probe insertion as a method of code instru-

mentation. It can track high level module views and report findings in three kinds of visualizations. Safyallah

and Sartipi [81] took feature specific task scenarios into consideration and proposed a new methodology to

identify groups of core functions implementing software features. Lo et al. [51] used execution traces to mine

temporal information of arbitrary length to reveal the invariants for assisting the developers to understand

the downstream applications such as verifications. In our approach we perform both trace management and

feature identification. We deploy an intermediate layer called annotation during the program instrumentation

process. This help in managing traces by segmenting them into modules that signifies the context of use

of the groups of method calls. We also cluster the traces based on method types(internal or external) and

further classify them into groups of API and active clones. Developer can analyse the runtime data based

on groups or method types. To enhance the feature identification the thumbnail view, image snapshots and

code viewer helps to support the feature identification easily.

5http://www.ej-technologies.com/products/jprofiler/overview.html

26

2.10 Code Clones

This section presents a brief overview of the concept of clones, terminologies and state of research. Clones

are also a part of this dissertation and we have applied its concept in the study as well.

2.10.1 Definition

Code clones are fragments of code that are identical or similar to each other. A code fragment is a set of

lines of code that starts and ends at a specific positions in the code. It can be represented using a three tuple

notation such as cf = (f, s, e) where f is the filename, s is the start line and e is the end line. It can be any

sequence of code in a file i.e., it could be a either a method or a block. Two code fragments that are similar

to each other form a clone pair and a group of clone fragments that are similar to each other are clustered

together into clone a class. The similarity between code fragments are based on two kinds of measures:

textual similarity or functional similarity. Textual similarity refers to the notion of the representation of text

in code fragment and are of three types: Type 1, Type 2 and Type 3.

Type 1 clones which are also known as exact clones are exactly similar to each other in terms of textual

representation except variations in comments, whitespaces and layout. Therefore, the clone class into which

they fall into is known as Type 1 clone class which is shown in Figure 2.17.

Figure 2.17: Type 1 Clone Fragments

Type 2 clones are fragments that are exactly similar in structure but with variations in identifier names,

comments, types, layouts and literals. In the Figure 2.18 fragment1 and fragment2 are Type 2 clones with

identifiers in fragment2 represented in red colour have been renamed.

Type 3 clones are the ones in which the fragments are modified such that more statements are added,

deleted or changed further in addition to variations in comments, identifiers, layouts, literals, types and

whitespaces. Type 2 and Type 3 clones fragments are often known as near-miss clones. From Figure 2.19

we can observe that in fragment2 besides variations in identifier names, layouts, whitespace and comments a

new line has been added which is represented in blue colour.

27

Figure 2.18: Type 2 Clone Fragments

Figure 2.19: Type 3 Clone Fragments

Type 4 clones are classified based on the functionality of the code fragments. Therefore, a Type 4 code

fragments exhibit identical functionality but possess different textual representations. Type 4 clones are also

known as semantic clones. Two code fragments that calculates a factorial of a number but are represented

one using a loop and another using recursion is an instance of Type 4 clones as shown in Figure 2.20.

Figure 2.20: Type 4 Clone Fragments

28

2.10.2 Reasons for Code Clones

Code clones do not occur in systems by themselves and cloning through copy-paste is a common practice

undertaken by the developers. The amount of clones in a system may vary depending upon the domain and

the origin of software system. One of the reasons for code cloning is the copy paste activity done by the

developers in order to speed up the development process for meeting the deadline. There are several factors

as well identified by the researchers and a classification of them into four categories has been proposed by

Roy and Cordy [74, 75]. The four classifications are as follows:

1. Development Strategy: Code clones are introduced into a system due to various development strate-

gies such as copy-paste due to code reuse, design, logic and functionality. Reusing code through copy-

paste is the fastest and the simplest way for reusing the syntactic and the semantic constructs. On the

other hand, design, logic and functionalities can be reused when there are similar solutions available.

Cloning is also dependent on the programming approaches such as merging of two systems having sim-

ilar functions, using generative programming approaches where the tools use templates to implement

similar functionalities or delay caused by the programmers in restructuring the code.

2. Maintenance Benefit: Clones are often encouraged in the system to assist the maintenance activities.

Modifying a system by adding new functionalities requires implementation and then testing to ensure

proper functioning of the system. Once new functionalities are added, then there exists a risk for errors

in the code fragments which may make the system vulnerable. So in that case developers are usually

asked to copy paste code fragments that perform similar functionalities. Cloning also helps in providing

a way to keep the architecture clean and comprehensible. Since clones are also independent of each

other, evolution can take place at great speed and help in accelerating the maintenance process.

3. Overcoming Underlying Limitations: There are several limitations regarding the languages and

the programmers for which code clones are introduced in the system. From programmer’s point of view,

factors such as a developer may have difficulty in understanding the system, a specific time constraint

has been assigned, measurement method (lines of code) used to determine a programmer’s performance

or developer’s lack of knowledge on a problem domain and lack of ownership of the reused code all

encourage cloning to take place. However, developers also face problems where language limitation do

not permit them to write reusable codes and even if they do so it might be error-prone and detrimental

to the existing system.

4. Cloning by Accident: In this case cloning takes place when two programmers working on the same

logic coincidently end up with similar implementations independent of each other. It might also happen

that developers are influenced by their memory in which they are unintentionally tempted to repeat

common solutions to problems with common patterns in their memory for that particular problem.

Such cases give rise to clones that the developers are not aware of it.

29

2.10.3 Harmfulness of Code Clones

Although code clones are beneficial in terms of development strategy, maintenance benefits, and overcoming

underlying limitations they have their own disadvantages as well. Since cloning is inevitable, large systems

do contain clones which have severe effects on the quality of the systems. Some of the harmfulness of code

clone in the system can be described as follows:

a. Bug Propagation: Although the practice of copy-paste assists in accelerating development process, it

tends to put the system into risk as well. For instance, if a code fragment contains a bug and it is being

copied into various locations then the bug will also propagate with the copied code in every direction.

b. Inconsistent Code Modification: Code fragments often need to be modified later as a part of

maintenance activity in order to fix inherent bugs or to add new functionalities. If a system contains

a lot of clones then each cloned fragments needs to be modified to establish the consistency. Oth-

erwise the unchanged code fragment will contain bugs making the system inconsistent or even cause

malfunctioning.

c. Increased Maintenance Effort: One of the major impact of code cloning is code inflation. Copy-

paste activity not only increases the size of the codebase but also enhances the maintenance effort. A

change in one fragment must also be propagated to other fragments which requires additional effort to

understand the system and thereby apply the similar set of changes to them.

d. Increased Resource Consumption: Since code cloning increases the size of codebase the require-

ment of storage grows as well. Although this does not cause any problem for some domains, it also

poses severe impacts on devices such as telecommunication switches where hardware upgrades have to

be done in accordance with the cloning in software. Moreover, cloning also impacts compilation process

as more code needs to be translated.

e. Impact on Design: Cloning also impacts on design where it might introduce bad design, poor inher-

itance structure or abstraction. As a result code reuse becomes difficult in future. When the system

gets incorporated with poor design, then maintainability of a system becomes hard as well.

2.10.4 Code Clone Evolution

Software evolves due to various reasons such as bug fixing, increasing reliability, improving performance,

and adding new features to meet customers’ requirements. Clone evolution analysis is concerned with un-

derstanding not only the changes of clones, but also the causes and the effects of those changes. Results of

such analysis can help us to infer about cloning, improve software processes for managing clones, support

developers in copy-paste programming practices and allow maintenance engineers to make informed decisions

about removing clones.

30

The evolution of a clone fragment over versions with respect to other clone fragments in a clone class is

known as clone genealogy [83]. Six change patterns are identified based on the changes of code snippet and

the number of clone fragments in the same clone class in two consecutive versions. The change patterns are

as follows:

Let CCi be a clone class in revision Ri is mapped with CCi+1 in revision R(i+ 1) by a clone genealogy

extractor. Now the change patterns can be described as follows:

a. Same: The clone fragments in CCi are present in CCi+1 and no additional clone fragment is added in

CCi+1.

b. Add: One or more clone fragments are added to CCi+1 that were not in CCi.

c. Delete: One or more clone fragments of CCi do not appear in CCi+1.

d. Static: The clone fragments in CCi+1 that were part of CCi, have not changed.

e. Consistent Changes: All fragments in CCi have been changed consistently, thus, all of them are again

part of CCii+1 in Ri. However, a clone class may disappear after being changed consistently, if

fragments become smaller than the minimum clone length of the clone detection tool.

f. Inconsistent Changes: All clone fragments in CCi have not been changed consistently. Here we should

note that as lines can be added or deleted from Type 3 clones, all the clone fragments of a particular

clone class could still form the same clone class in the next revision even if one or more fragments of

that class have been changed inconsistently. The dissimilarity between clone fragments in a clone class

depends on the heuristics or similarity threshold of clone detection tools.

2.11 Application Programming Interface (API)

2.11.1 What is an API?

An Application Programming Interface (API)[23] is a set of commands, functions, and protocols which a

programmer uses to build an application. It provides a short cut way for the programmers to use the

functionalities of the system instead of developing the same functions from scratch. It serves as an interface

between two software programs and facilitates interaction between the software unlike a user interface which

allows interaction between humans and computer. In general an API is a software to software interface. The

vital role of an API is creating communication between the systems so that the users can get the required

functionalities and information from the system. An API can be used in one of two ways in an object-oriented

system: method invocation or inheritance.

31

Figure 2.21: Method Invocation

Figure 2.22: API Inheritance

API use via Method Invocation

In this technique the API methods are called directly or through object instantiation. The Figure 2.21

illustrates the method. For example in the Figure v is an object of the class type Vector and the methods

elementAt() and remove() in the class Vector have been called via invocation.

API Use via Inheritance

Figure 2.22 illustrates how an API can be used by inheritance. By definition, inheritance is a way of reusing

code of existing objects. It is implemented by using the keyword extends. The inherited class is called

the superclass and the inheriting class is called the subclass. In the figure the class MyJFrame inherits the

JFrame class using the extends keyword. The setForeground(), setBackground() and getContentPane.add()

are the methods that are inherited from the JFrame class and thus they are used in the MyJFrame class

without object instantiation.

32

2.11.2 Benefits of an API

There are a number of benefits provided by using an API. They are:

• Provides an interface to the programmer to access certain functionality without requiring them to write

the code from the scratch.

• Allows programmers to save time through code reuse.

• APIs do not expose the underlying code to the programmer. As a result changes to the other parts of

the program do not affect the code associated with the API.

• APIs provide a medium for accessing certain underlying operating system functionality that are not

accessible without them. Such functions include access to device drivers, handling interrupt service

routines of the operating system, accessing the registry and so on.

2.11.3 API Studies

With increase in availability of data and growing demand of service, software development has become a

challenging area. At the same time maintenance of software is also getting more of a noticeable concern.

Once software is developed and ready for commercial use it needs to be maintained at regular intervals. The

maintenance task includes software upgrades, addition of new functionalities and fixing of bugs. Typically

the larger software is, the greater the maintenance cost will be. Consequently, the question is how large and

complex software could be. The answer to this question depends on various factors ranging from the type

of the system, customer requirements, platform and the implementation style. Previously it was obvious

that developing a system required considerable amount of coding from the scratch. However, with the rapid

growth of software development technology and sophisticated programming platforms the task of coding has

become very easy and simple. The programmers are able to quickly adapt themselves to the platform and

carry on with the development process. One of the major breakthroughs in this technique is the support

of interfaces allowing the developers to do coding through code reuse. Such reuse is provided by built-

in interfaces known as an API (Application Programming Interface). With the rapid progress of software

engineering reusable components, frameworks, APIs and libraries have been developed. As a result the process

of system development has shifted considerably where the programmers can keep the size and complexity

of the program small and simple without having to sacrifice functionality. Studies [54] show that the Java

Standard API consists of about more than 3000 classes and 20000 methods. The same study has revealed

that only about 50% of the classes in the Standard API are used at all, and around 21% of the methods are

used.

Large APIs [86] like Microsoft’s .NET Framework or the Java APIs have grown to thousands of classes

with tens of thousands of methods, and grow larger with each successive release. Previous studies show that

Microsoft has created and supported many different application programming interfaces (APIs) that are in

33

wide use today. The .NET framework APIs alone include more than 140,000 methods and property fields

and are shared by a collection of programming languages including C#, VB.NET and C++.

The usability of an API is very important for the productivity of the programmers and software coding.

The usability of an API is of much talked about issue nowadays. Although there are enormous numbers

of APIs and libraries packaged within programming language software with diverse functionalities there is

still a need for proper documentation for the programmers to understand and use them accurately. The

programming skill, efficiency and performance of software depends how optimally code is used to achieve the

desired functionalities. There comes the usability issue of an API. Knowing how well to use APIs depends

how well they are documented. Little research has been attempted to address the usability of an API in

terms of difficulty and the extent of the number of APIs used in the development of software.

A number of studies have been conducted on API usability which can be classified as research in design

issues, tool support, API migration, and API usability measurement techniques. Stylos et al. [88] in their

research concentrated on API design decisions. They focused on defining what are the factors that must be

considered in designing a good and powerful API. They also proposed a mapping of API design decision space

with API quality attributes and identified different metrics for arriving at the decision. In another research,

Stylos et al. [87] raised the issue of combining the initial and the new users requirements for redesigning

APIs. They performed a case study on SAP BRPlus which is a business rule engine. They did a usability

evaluation on a user-centric design of an API wrapper to assess the value of addressing specific use cases by the

application-level developers. Similarly they also carried a comparative study on the usability of API design

by considering the programmers preferences on using APIs with parameters or without parameters. They

concluded that more preference was towards APIs without parameters instead of the those with parameters.

Bartolumoi et al. [6] studied API migration between two different XML APIs. They applied the process

of API migration on two different Java platform XML APIs. These APIs were further investigated to find

the differences with measurement and identify of classification based on usability.

Kawrykow et al. [41] did extensive research on the effective use of APIs. They identified the fact that

though APIs are intended for simplicity and code reuse, however in some cases the programmers are not

using the APIs built in the software package. They rather try to re-invent the code and use them in their

development. Such scenarios are defined as inefficient API usage. To address this issue they have created a

tool which can automatically detect such inefficient API patterns. On applying their tool on Java projects

they found that around 4000 cases were among the victims of inefficient API usage that required improvement.

Dekel et al. [16] did research on improving the documentation to convey the hidden information in it to

the interested reader which may get ignored within the long text. They have built an eclipse plug-in called

eMoose to highlight those hidden directives.

Feilkas et al. [21] worked on identifying whether an API client complies with the API developers assump-

tions of the domain abstraction. They developed a framework for expressing the assumptions that restricts

the clients in not complying with the expectations of the provider.

34

Arnold [1] and Henning [33] pointed out that creating a useful API depends on API design and human

factors. Bloch [8] and McLellan [55] et al. suggested a number of guidelines for building a good and usable

API. On the other hand, Ellis et al. [18] conducted a comparative study on the usability of factory patterns

and the constructors on the instantiation of objects. They found that factory patterns are harmful to API

usability and concluded that more time is required by the user to construct objects with using a factory

pattern.

Measuring API usability is also of great importance and Clarke and Becker [11] defined 12 cognitive

dimensions for measuring usability of an API while Bore et al. [9] contributed in proposing seven different

measures in order to profile API usability. Wu et al. [95] proposed a tool called CoDecent which can

automatically link API documents and create a diagram for the users to understand the use of an API.

MAPO is another tool developed by Xie et al. [35] which mines API usage patterns while Stratcona [96]

is another specialized tool that can aid in example matching between API source code and the source code

repository containing the API. Catch-up [32] and Diff Catch-up [97] provide support to the users during the

code change caused during the evolution of the APIs contained in the code.

35

Chapter 3

Framework

3.1 Introduction

Program comprehension is one of the vital activities in software maintenance and it is a part of the develop-

ment process that enables knowledge gathering about software system. A system when in need of maintenance

must be accompanied by a good program comprehension technique. Proper maintenance depends on how

well a maintenance engineer can understand the existing system. Software development, maintenance and

program comprehension are inter-related. Program comprehension by nature is a very difficult activity be-

cause of the rapid evolution of software due to frequent changes in customer requirements. Therefore, it

demands attention for development of easy, simple, automated and informative comprehension techniques.

In this thesis, we present a framework that supports developers and provides guidance for program

comprehension. The framework consists of an interface which will allow the developers/maintenance engineers

to navigate through the entities of the system and gather their usage in terms of the context. In this regard

our framework as shown in Figure 3.1 consists of three phases as follows:

P1. Source Code Mining: This is the initial phase of our study. After selecting a system, the source

code is mined using static and dynamic analyses for collection of data. Static analysis extracts method,

clone and API data from the source code. and the dynamic analysis collects runtime data of the system

using a set of inputs.

P2. Trace Collection and Mining: Dynamic analysis is used to instrument the source code and the

testing framework is used to collect run time data. Once the data are collected, they are mined for

clustering, categorizing and calculating behavioural information using a set of proposed metrics.

P3. Output: Once the results are computed they are presented to the user in a viewable format with user

interface where they can navigate using controls according to their need and choice of analysis.

Figure 3.1: Overview of the Study

36

3.2 Terminology

This section provides a set of definitions related to the users using a system.

3.2.1 Use

A use is a set containing a number of tests. For instance, a use such as “draw object” can include a set of

tests such as drawing a rectangle, a triangle, and a square. The tests together are termed a drawing test

suite for the use “draw object”. Each system use is associated with a number of user activities.

3.2.2 Use Set

A use set is a set containing a number of system uses. For instance, a “draw rectangle” use can include uses

such as creating a rectangle, adjusting the shape, filling the rectangle with colour, and modifying the line

width. Similarly, another use called “draw a circle” can include uses creating a circle, adjusting the shape,

filling the circle with colour, and modifying the line width. Together the uses “draw rectangle” and “draw

circle” belong to a set and can be termed as “Manage object” use set.

3.2.3 User Activity

A user activity is referred to as sequences of interactions performed by a user on the interface while performing

a particular use of a system. For instance, user activities on a interface during drawing a rectangle may involve

events such as mouse actions, keyboard actions, display updates, thread signals and so on.

3.3 Testing Framework

Our interest is in studying interactive systems with graphical user interfaces (GUIs) and so we developed a

testing framework shown in Figure 3.2 that accommodates tests corresponding to a user interacting with the

system. Four layers are identified in the framework: the test layer, the user interface layer, the functional

layer and the source code layer. The framework connects user activities defined in use sets and tests to

the source code. As a result, a system’s use can be visualized as a sequence of user interactions within

the interface carried out by a user in order to execute a particular feature. Each individual interaction is

associated with a number of user events. For instance, mouse actions, keyboard actions, display updates,

thread signals and so on are categorized as user interface (UI) events. Such UI events generated during the

use of a system are denoted in Figure 3.2 as Event i where i = 1, 2, .., n. Each individual event in turn

corresponds to sub-programs that handle the event, denoted in the Figure 3.2 as Si. A sub-program may be

executed by more than one test.

A trace is a sequence of method invocations executed during a particular test. The methods are invoked

in response to the user activities. An execution trace can be further processed to mine meaningful resource

37

Figure 3.2: Testing Framework

information, such as CPU and memory usage. We are also able to segment the execution trace by user

interface event to help manage the size and complexity of the trace data.

Our study in this thesis adapts a hybrid approach that blends both the static and the dynamic analyses.

From the static point of view we are deploying clone and method detection and API extraction from the

source code, while using dynamic analysis we are instrumenting the source code to extract active methods

from the trace. Now, let us assume that Z is a set of all the methods in the systems and T be the set of

all the methods that are invoked in the trace during the testing phase. So, the relationship between Z and

T can be inferred such that T ⊂ Z where Z = {m1,m2,m3, ...,mn} and mi = ith method of the codebase.

Similarly T is a set of methods in trace such that T = {mt
1,m

t
2,m

t
3, ...,m

t
n} where mi

t is an ith invoked

method in trace t, for instance m5 in Figure 3.2, also known as active methods.

3.4 Analysis Framework

In this section we will describe the framework for analysing a software system. Our framework is a blend of

both static and dynamic analyses as shown in the Figure 3.4. It incorporates four phases: clone and method

detection, code instrumentation, API extraction, and finally trace mining. Each phases are described in

detailed as follows:

38

3.4.1 Static Analysis

Static analysis [19] is useful for mining specific information from a codebase without executing the software

and it has been used for detecting clones in this thesis. An advantage of using a static technique is that we

can often obtain information from the source code even if there is incomplete code. Furthermore, it is neither

necessary to run the software nor does the software needs to be executable. The static analysis phase in our

study is divided into two sub-processes: (a) Clone and Method Detection and (b) API Extraction which are

as follows:

(1). Clone and Method Detection

In this phase we use a static analysis tool, the NiCad clone detector [77, 13, 12], to detect clones in the

codebase. NiCad has been shown to be highly accurate with respect to both precision [76, 77] and recall

[76, 79, 90] in the detection of copy/pasted near-miss clones. In our study we consider all non-empty methods,

and blocks of at least five lines in pretty-printed format. We then use size-sensitive UPI (Unique Percentage

of Items) thresholds [77] to find exact and near-miss clones. For example, if the UPI threshold (UPIT) is

0%, we detect only exact clones; if UPIT is 10%, we detect two code fragments as clones if at least 90% of

the pretty-printed text lines are the same (i.e., if they are at most 10% different). Besides detecting clones,

NiCad [77] also provides us with a set of methods and code blocks corresponding to them extracted from the

codebase. Each code block is the portion of the code contained within the starting and ending curly braces.

Once the clones are detected, clone metrics are calculated using the tool VisCad [3]. The clone metrics will

further help in the trace mining process to derive the active clone metrics. Similarly in this phase, system

metrics are also obtained using a line of code calculator called cloc1. Figure 3.3 shows a snapshot of the

NiCad’s XML file format for storing clone information. Here every clone fragment is enclosed within a class

with a class id, number of lines, and number of fragments while each method is identified using a file name,

starting and ending line number. Each clone fragment belongs to a particular types of classes such as Type

1, Type 2 and Type 3.

(2). API Extraction

In the second part of the static analysis we are considering all the APIs that have been used in the system. By

API we mean all the external method calls that have been utilised by a developer during the implementation.

Therefore, external APIs are those method calls belonging to a particular class and package shipped with the

IDE from industry. The external method calls are accessed by declaring the packages in the import list at

the beginning of the source code file. We then further parse each file of the codebase to extract the import

lists from them. They are used to determine the external APIs, i.e. packages, classes and methods that

1cloc.sourceforge.net

39

Figure 3.3: A Sample NiCad Clone File

Figure 3.4: Analysis Framework

40

implement certain functionalities provided by the IDE itself. The import lists are further processed to get

the class names from them which are further processed to extract the methods in them.

3.4.2 Dynamic Analysis

Dynamic analysis [14] is the technique of analysing the data collected from a running program. The advantage

of using dynamic analysis is that it exposes the system’s actual behaviour. However, the drawback of it is

that only partial picture of a system is revealed and the obtained information are dependent on the inputs

used to exercise the system’s functionalities. Dynamic analysis is used in a variety of applications such as

software testing, performance analysis, and program comprehension through reverse engineering. We are

interested in collecting a system’s behavioural information in the form of execution traces. This can be done

by instrumenting the code, monitoring the execution environment, or as is the case in our approach, by

dynamically weaving aspects to log runtime information. A challenge is to have an adequate set of tests (use

sets) or recorded user activities to collect relevant behavioural information.

The first part of our dynamic analysis approach is to instrument the code for collecting the execution

traces. We use aspect-oriented programming [42] and dynamic loading to log method calls. This allows us

to generate a sequence of execution traces that will later enable us to identify the component interactions,

call graphs and metrics using trace mining. To capture the execution traces, the system is run using a set

of tests corresponding to the activity we wish to analyse. By focusing on a single maintenance task, the test

corresponds directly to the user interaction that is being investigated.

As part of the code instrumentation step of the dynamic analysis phase, we use an AspectJ [42] imple-

mentation to describe and capture the interface actions that occur in a target application. We have written

a tracing aspect that weaves with the program and records when any method in the target application is

invoked. The advantage of using an AspectJ implementation is that it does not turn off the just-in-time

compiler, and enables access to any component (method, parameter, constructor, etc.) in a software system.

To aid in program comprehension, we also segmented the execution trace into meaningful segments called

user interface (UI) traces [89]. In this regard, we have categorized traces into two levels of segments called

test segment and event segment. An event segment contains UI traces that belong to events such mouse

events, mouse clicks, keyboard events, display updates events, thread signal events and launch events. A

mouse event is an event by which we mean any sort of mouse actions such as movement of mouse cursor

(mouseEntered or mouseExited) over any part of a component. However, a mouse click event signifies events

associated with clicks on any button in the user interface. Similarly, a thread signal corresponds to any new

threads spawned to carry out a particular functionality while a display update event fires when changes to

display in the screen is done.

On the other hand, a test segment contains traces corresponding to a particular test from a use set to run

the system. A test segment contains a set of events and each event contains a set of methods. To achieve

this process we have developed a technique called annotation as shown in Figure 3.5. It allows us to mark

41

Figure 3.5: An Interface of Trace Annotation

the start and end of a test a user is performing during the runtime of the system. Figure 3.6 shows a sample

output trace which is collected during the instrumentation process. As we can see the trace file contains

sequences of method calls segmented under the tag ”Start of the Activity” and ”End of the Activity” for a

particular test. The tagged block is further segmented for the associated events with tag ”Start of the Event”

and ”End of the Event”. Each trace in the block is accompanied by a hashcode, a unique identifier for the

trace, arrow to denote the call graph of (−− > means start of execution, < −− means end of execution).

The method calls are represented by the type of method, their absolute path, the type and the parameters

lists. Therefore, traces are enclosed under the event blocks which are enclosed under the test blocks.

3.4.3 Trace Mining

This is the final phase of our framework which involves the end-users. It is triggered by user’s selection on

what they want to know about a system’s characteristic in order to understand the implementation. The

run time data and the static data are together used to help users understand the system’s implementation,

their interactions and the dynamics on how they behave using a set of different types of metrics.

3.5 Trace Mining Framework

To explore the nature of the traces and to reveal how a system is implemented we have divided the mining

process into three sub-processes as shown in Figure 3.7. They are as follows: 1) Method and clone mapping

2) Metrics calculation, and 3) Analysis selection.

42

Figure 3.6: Diagram of a Sample Trace

Figure 3.7: Trace Mining Framework

43

3.5.1 Clone and Method Mapping

This step marks the initial process of the trace mining. It maps the trace information with the source code.

In case of clone mapping for each method in the trace, if it contains a clone fragment in the source code,

the corresponding clone class/pair is marked as ‘active’. This step determines which clone classes are active

corresponding to a test. First, using dynamic analysis we record the traces of the system put into execution

using each individual test. Each trace record in the trace files consists of the full class name, class type,

method name, and parameter types. Second, we get all the clones of the subject system returned by NiCad

[77] clone detector. Third, we determine whether the trace related code contains any clone fragments. For

clone mapping, we created a script to extract all the method names from the NiCad XML file. The clone

fragments for which we get a match in the trace are called active clone fragments, and then we retrieve the

corresponding clone classes to which the active clone fragments belong to. These clone classes are treated

as active clone classes. Figure 3.3 shows a sample file generated by the clone detector in the XML format.

A set of of similar fragments are grouped together into a class with a unique identifier called class id. Each

fragment is also associated with starting and ending line numbers. The approach of method mapping is

similar to our approach of clone mapping. This stage determines which of the internal and external methods

are active. That is, we consider all the extracted methods and their enclosing classes to mark them as active

if they are found in the trace. This applies to both the external and the internal methods. The methods that

are found in the trace are known as active methods while the set of packages, classes and methods together is

termed as active API. Once the active methods are marked the mapping also yields the code block associated

with the internal methods.

As part of the mining process we have clustered the method calls in the traces into two types: External

methods and Internal methods. Internal methods are the ones that are developed by the developers with

a user defined method names with or without parameters and return values that belong to a user defined

packages and classes for the purpose of implementing a certain functionality. On the other hand, external

methods are those methods that are provided by the development environment such as Netbeans, Eclipse

and so on with the same representation as the internal methods with parameters, and return values. They

are accessed through the declaration of packages and classes at the import list. The main difference with

the internal methods is that in case of external ones the source code is not available. In our case we term

external methods to those methods that have a prefix of ‘java’ or ‘javax’. For instance, a method with

the name ‘readline()’ belonging to the class ‘BufferedReader()’ and the package ‘java.io’ is considered as an

external method because it can be expressed as java.io.BufferedReader.readLine() which has a prefix of ‘java’.

Once the methods are clustered they are further processed and categorized to tag them into groups. The

external methods are categorised into groups by application programming interface and the internal methods

into active clones.

44

Figure 3.8: A Taxonomy of Metrics Classification

3.5.2 Metrics Calculation

We use metrics to quantify aspects of both static and dynamic analyses. Some of the metrics we have

proposed in this thesis and some are adapted from relevant empirical studies [26]. Metrics are defined for

both method and block clones. To assist in the mining process we have classified metrics into static and

dynamic metrics. Static metrics are composed of system and clone metrics while active metrics is a collection

of active clone metrics, method metrics, group metrics and trace metrics. Static metrics are those metrics

that calculates the components at the source code level. Active metrics on the contrary is dependent on the

execution traces. It calculates the behaviour of the collected components as traces after a system is executed.

The taxonomy of the metrics are, therefore, depicted in Figure 3.8.

System Metrics

• LTOTAL: total number of lines of code in a system.

• FTOTAL: total number of files in a system.

• MTOTAL: total number of methods in a system.

• BTOTAL: total number of blocks in a system (minimum of 5 LOC).

Clone Metrics

• NCLONE : number of clones in a system.

45

• CC: number of clone classes in a system.

• %MCLONE : percent of methods that contain a clone.

%MCLONE= NCLONE/MTOTAL

• %BCLONE : percent of blocks that contain a clone.

%BCLONE = NCLONE/BTOTAL

• FCLONE : number of files that contain a clone.

• %FCLONE : percent of files that contain a clone.

%FCLONE = FCLONE/FTOTAL

• LCLONE : lines of code that are part of a clone.

• %LCLONE : percent of lines that are part of a clone.

%LCLONE = LCLONE/LTOTAL

• BCC : number of tests into which a clone class is active.

Group Metrics

• CPUGROUP : total CPU time consumed by methods in a particular group.

• Nm: number of active methods in a group.

• EGROUP : total number of executions of active methods in a group.

• BrGROUP : number of tests into which a group is active.

Trace Metrics

• Np: total number of files invoked in a trace. When a method from a package is invoked the package is

considered to be invoked.

• Nc: total number of classes invoked in a trace. When a method from a class is invoked the class is

considered to be invoked.

• Nint: total number of distinct internal methods invoked in a trace.

• Next: total number of distinct external methods invoked in a trace.

• %Fint: percent of packages containing internal methods invoked in a trace.

%Fint = Np/FTOTAL

46

• %Fext:percent of classes containing external methods invoked in a trace.

%Fext = Nc/FTOTAL

• CPUX : total CPU time consumed by X. Here X corresponds to system use, test and event.

• %CPUX : percent of CPU time consumed by X.

%CPUX : = CPUX/CPUTOTAL

Method Metrics

• CPUMETHOD: total CPU time consumed by a particular method in a trace. The method can belong

to any event, tests and system use.

• ETOTAL: total number of times a particular method executed over all the tests.

• %CPUMETHOD: percent of CPU time consumed by a particular method during the system runtime.

%CPUMETHOD = CPUMETHOD/CPUTOTAL

• BrMETHOD = total number of tests in which a particular method is invoked.

• LMETHOD = total number of lines of code for a particular invoked internal method.

Active Clone Metrics

• NACLONE : total number of active clone fragments.

• CCACLONE : total number of clone classes that contain at least one active clone fragment.

• %MACLONE : percent of invoked methods that contain at least one active clone fragment.

%MACLONE= NACLONE/Nint

• FACLONE : number of files that contain at least one active clone fragment.

%FACLONE = FACLONE/FTOTAL ∗ 100

• LACLONE : lines that are part of an active clone fragment.

%LACLONE = LACLONE/LTOTAL ∗ 100

3.5.3 Analysis Selection

This phase is one of the important phases that triggers the trace mining and is controlled by the end

users. Once a user selects the type of analysis the mining occurs accordingly. The selection of analysis thus

corresponds to one of the features in the TrAM being activated by the user. The features include choices

based on selecting, filtering, searching, grouping, interface snapshots and corresponding code viewing. The

users are also able to choose and analyse information of the trace on different levels of granularity such

47

as tests, events and methods. Once an analysis is selected the corresponding information of test, events,

methods, snapshots and metrics are displayed as an output to the user.

3.6 Test Design

The main objective of testing in maintenance is to assess the quality of a system. To do so, a maintenance

engineer must have a set of test suites. A test suite thus will contain a number of test cases and each test case

will correspond to what features of the system are tested. Assessing the quality of a system means finding

how its functionalities confer with the customer requirements and how reliable it is in terms of bugs. To

achieve this a good set of test suites with broader coverage is desired. The more methods are executed the

more features can be located and better comprehension can be achieved. Our objective here is not to find

bugs or asses the quality of a system, but to exercise as much methods in the system in order to understand

the implementation of the features. In our study we have used both synthetic and actual test suites. We have

studied all the features of a system from the documentation provided. For instance, in case of JHotDraw we

have collected all the features associated with a system use drawing. That is, what are the possible objects

for the system use ‘draw a object’ such as circle, rectangle, polygon and so on which corresponds to tests.

Each test is used as an input to the system and the traces are recorded for analysis.

3.7 Trace Mining Data Organization

3.7.1 Model Schema

In order to organize our trace mining data we have represented them as an entity relationship diagram.

A total of eight entities are required in order to organize the whole set of information. The entities are

subject system, system use, test, event, method invoked, group, group element, and method. An entity is

a table in the database and the attributes qualify an entity. The entities are related to each other using a

relationship. A relationship can be of four types: one-to-one, one-to-many, many-to-one and many-to-many.

In our model, the relationships are such that every subject system will contain a number of system uses and

therefore a one-to-many relationship exists between them. Every system use may again contain a number of

events making them one-to-many as well and every event will contain more than one invoked methods and

thus creating a one-to-many relationship between them as well. Every subject system will also contain more

than one groups making that a one-to-many and every subject system is also comprised of multiple methods

and a one-to-many relationship between them too. The entity method and group element also behave as

one-to-many as a single method can also belong to multiple methods. The group and group element are tied

together with a one-to-many relationship since a single group will hold more than one methods. Similarly a

single method in the method entity may be invoked in a series of different events, therefore a one to many

relationship also exists between them. Each entity contains a number of attributes as follows:

48

Figure 3.9: An Entity Relationship Diagram of the Data Organization of TrAM

a. subject system : 〈systemid, systemname, systemtype, systemmetrics, clonemetrics, totals〉

b. system use = 〈systemid, systemuseid, systemusename, descriptions, totals〉

c. test = 〈systemuseid, testid, testname, description, totals〉

d. event = 〈testid, eventid, eventname, imagepath, description, totals〉

e. method invoked = 〈eventid,methodname, totaltime〉

f. group = 〈systemid, groupid, groupname, totalelements, description, type〉

g. group element = 〈groupid,methodname〉

h. method = 〈systemid,methodtype,methodname, lineofcode, class, package,methodblock〉

Entity: subject system

This entity holds the information of all the detailing of a system such as JHotDraw, HSQLDB and so on.

a. system id: identifies each of the subject system with an id (1, 2, 3)

b. system name: holds the name of the system (JHotDraw, HSQLDB, argoUML)

c. system type: holds the type (game, graphics, database, editor)

49

d. system metrics: the metrics that qualifies the systems such as total lines of code, total number of

methods, total number of files, total number of blocks, total imported packages.

e. clone metrics: metrics that qualifies the similar code fragments such as number of clones, clone class,

clone line of code and so on.

f. totals: stores the trace metrics as follows:

. totalsystemuse: holds the value for the total number of test suites used in the system for testing

. totalinvoked internalmethods: total number of internal methods invoked in the trace

. totalinvoked externalmethods: total number of external methods invoked in the trace

. totalinvoked internalclass: total number of internal class invoked in the trace

. totalinvoked externalclass: total number of external class invoked in the trace

. totalcputime: holds the total number of cpu time consumed by all of the invoked methods

. totallineofcode: holds the total lines of code active in the system

Entity: system use

This entity carried the information of all test suites used in the system during program execution.

a. system id: again this signifies the system identification

b. systemuse id: unique identifier for each use of the system

c. systemuse name: holds the name of the system use (systm use1, system use2)

d. description: stores any further comments about each record in the table.

e. totals: stores the trace metrics and is the same as totals in the entity subject system.

Entity: test

Stores the information about the tests corresponding to each test suite

a. systemuse id: uniquely identifies the system use

b. test id: uniquely identifies the tests

c. test name: holds the name of the tests (draw a circle, change line color)

d. description: stores any further comments about each record in the table.

e. totals: stores the trace metrics.

50

Entity: event

Stores the information of every user event activated during the execution.

a. test id: uniquely identifies the tests

b. event id: uniquely identifies the events within each test case. Each event id is generated automatically

during program execution. Same events will have different event id when activated at some other point

of time during the execution. For instance a thread signal may be in two different test cases such as

draw a circle and change fill colour. Though they are exactly the same in behaviour they are identified

as a different event with different event id.

c. eventname: holds the name of the events (launch, thread signal, mouse click)

d. image: the absolute path of the corresponding image. Each image is identified using the event id.

e. description: any comments that would describe the record.

e. totals: stores the trace metrics.

Entity: group

This entity stores the information of the groups of methods. Each internal and external contains a number

of groups.

a. group id: uniquely identifies each group

b. groupname: names of the groups of internal and external methods. For instance internal methods may

have groups of string, io, swing and so on while internal methods may have groups of classes such

colorIcon, PalletteMenuItem and so on.

c. totalelements: holds the information of the total number of elements contained in each group.

d. description: any comments that would describe the record.

e. type: holds the information about the type of group such as if the group belongs to a clone class one

then type will be Type 1, Type 2, Type 3 and if any other group the type will be Type 0.

Entity: method invoked

This entity organizes data of the methods invoked in the trace.

a. event id: unique identifier for the events

b. methodname: holds the names of the methods invoked in the trace

c. time invoked: time when a certain method was invoked

d. time exited: time when a certain method finished execution

51

Entity: group element

This entity further qualifies the group table

a. group id: uniquely identifies the groups

b. methodname: names of methods contained in the group

Entity: method

Stores data of groups that qualifies it in terms of clone types

a. system id:

c. method type: indicates the type of methods (internal or external)

d. lineofcode: holds the number of lines of code for each method

e. class: it identifies to which class the methods belong to

f. package: it identifies the packages (for instance packages found at import list for external methods, and

file names to which a method belong to signifies package for internal methods)

52

Chapter 4

Trace Analysis and Management-from Design to Im-

plementation

4.1 Introduction

In this chapter, we would present our tool, TrAM (Trace Analysis and Management). Our tool presents the

information about a systems implementation and its dynamics to the user easily in a meaningful and concise

way. The initial phase that comprises the trace mining, processes all the data and makes them available to

provide insight of the system at the implementation level, a challenge often encountered by the developers

during the maintenance activity. Therefore, the presentation of information marks the second phase of

our tool. After the trace mining phase, the mined information can be viewed and analysed using different

navigation and filtering techniques. The visualization phase not only supports the users in understanding

how a system is being implemented and how to identify a specific feature in it but it also provides ways

to observe any part of the program execution at various levels of detail such as tests, events and methods.

One of the major problems with a large volume of execution traces is that the analysis is cumbersome and

difficult. Often the users get overwhelmed and out of focus with the trace data in hand. TrAM thus permits

modular yet detailed view of program implementation using selective controls in its interface.

4.2 Visualization Architecture

The prototype incorporates various features such as filtering, searching, grouping (i.e., categorization), image

and code viewing, and metrics viewing that allow users to investigate the behaviour of methods (external and

internal). How useful a tool is depends on what features does it provide, how the information is presented to

the users, and how accessible the tool is in terms of its use. Based on these three criteria we have classified

the architecture of our tool as follows: feature-specific architecture and presentation-specific architecture.

53

Figure 4.1: Diagram of the Trace Panel of TrAM

Figure 4.2: Diagram of the Filtering Feature of TrAM

4.3 Feature-specific Architecture

Feature specific architecture signifies what features are available in the interface and what are their function-

alities. Manipulating traces is a challenging task due to the sheer volume of data which in turn makes the

mining task difficult. Thus trace management is one of the key factors that impacts program comprehension.

Traces are very rich in information and the basis for an immense data warehouse. If mined they can help us

understand a system’s runtime behaviour. Besides the challenge of managing traces, a good way of presenting

the information and techniques of making them easily accessible to the users need to be available. Therefore,

in our tool we have implemented the following features to facilitate the users in navigating through traces:

filtering, searching and categorizing.

4.3.1 Filtering

As part of trace management, we have sub-divided the method calls in traces into two categories: External

methods and Internal methods. Internal methods are the ones that are developed by the developers with

54

Figure 4.3: Dialog Box for the Searching Feature of TrAM

an user defined method names with or without parameters and return values that belong to a user defined

package and class for the purpose of implementing a certain functionality. On the other hand external

methods are those methods that are provided by the development environment such as Netbeans, Eclipse

and so on with the same representation as the internal methods with parameters, and return values. They

are accessed through the declaration of packages and classes through imports during program development.

The main difference with the internal methods is that in case of external ones the source code is not available.

In our case we term external methods to those methods that have a prefix of ‘java’ or ‘javax’.

To implement the feature as in Figure 4.2 the distinctions between types of methods is done using radio

buttons. The buttons allow the users to filter the trace based on the selections. As a result, filtration can be

achieved in three different ways such as internal, external and both. On selecting the internal button only

traces with internal methods are displayed and the external button shows only the external methods in the

trace. However, both buttons display the complete trace containing the external and the internal methods.

4.3.2 Searching

One of the main challenges in dynamic analysis is the sheer volume of traces that are collected during the run

time. To understand a system’s implementation, a user also needs the location of the implemented methods

i.e., to which event and test the method was invoked. A method may be invoked a number of times in the

same event of the system use (tests in our case) or in different events in different system uses. Therefore,

instead of looking for other methods a user may try to know about a particular method and the events where

it is invoked. To facilitate this, a search feature has been added containing a text field and a button. The text

field allows the user to enter any method name they wish to locate in the trace. Once the search is executed

the entire trace is parsed and the methods appear in the display for analysis. The search option as shown in

Figure 4.3 is to complement the feature analysis with more precise location of the methods according to user

requirement.

4.3.3 Categorization

To facilitate more in the comprehension process, our tool incorporates the categorization feature as shown

in Figure 4.4. During a system’s development, developers use the application programming interfaces that

are packaged by the development environment. It is therefore interesting to know about the APIs that are

being used in the development and at the same time what APIs have been invoked during the run time while

executing a particular use. Group wise information about the API would inform the developers about the

55

Figure 4.4: Diagram of the Group Feature of TrAM

most popular APIs being invoked. It will also enable them to find out the context wise usage of APIs in a

visual format. The categorization is achieved through grouping to categorize the method calls by application

programming interface, and to group internal method calls as being active clones or not. For example, a

method call to a math library (e.g., min(...), abs(...), or round(...)) would be automatically tagged as an

external method call and part of group Math. If a call to an internal method is a clone, it is tagged as an

active clone and tagged with its active clone class. API and clone categorization are done automatically using

static analysis techniques. Groups allow us to filter traces and metrics by group or clone class, by simply

selecting the groups or classes of interest in the group/clone panel. Figure 4.4 shows the categorization of

external methods and the internal methods. They are represented using two different tabbed panes, ‘Groups’

and ‘Active Clone’. The ‘Groups’ tabbed pane shows the list of groups of external methods while the ‘Active

Clone’ tabbed pane represents the active clone classes and the total fragments contained in it.

4.4 Presentation-specific Architecture

Presentation-specific architecture signifies the organization of the tool. The usability of a tool depends on

how easily a user can use the system and at the same time how well the information is organized. The more

presentable and informative the visuals are the more helpful will it be for the users to interpret the result

and understand a system’s implementation. Based on the design implication the tool includes the following

four panels as shown in Figure 4.1:

F1 Main panel

F2 Image thumbnail panel

F3 Total metrics panel

F4 Groups panel

56

4.4.1 Main Panel

The main panel is the largest area which includes the display of the mined traces collected during the runtime.

The traces are organized into a hierarchical tree-like structure. The hierarchy is composed of four different

levels including system use, test, events and methods. Each system use is composed of multiple test cases,

each test case includes multiple events and each event contains a number of invoked methods. The invoked

methods contain both the internal and the external methods which can be further filtered out using the type

filtration buttons. The panel is designed over the idea of tree table where each row represents the hierarchy

of system use, tests, events and methods. The columns hold the values that qualify the invoked methods

further.

The y-axis of the panel is occupied by a series of columns that hold values for each individual levels of

traces in the hierarchy. The columns are systemuse, test, event, method, path, type, cputime, loc, group,

groupid, and totalexec. The systemuse holds the information of all the system use of a particular system

such as ’manage a triangle’ which includes tests in the test column such as ’Draw a triangle’, ’Save file’ and

so on. Events constitute the information of the actions that are performed such as to ’Draw a triangle’ or

’Save file’ and methods contain the series of method calls within the event. These sequences of method calls

together are termed as call graph which also show the caller-callee relationship. The column path shows class

to which each method belongs to. For internal methods the path gives the information of the absolute path

name of the file to which the methods belong and in case of external methods the path is the whole package

name of the method. For instance, let us consider an internal method ’getContainer()’ that has a path

information of C:\Jhotdraw7.2.6\src\org\jhotdraw\draw\DefaultDrawingView. It means that the method

’getContainer’ belongs to the class ’DefaultDrawingView’. Similarly an external method ’iterator’ having a

path information of java\util\HashSet means that the method ’iterator’ belongs to the class ’HashSet’. The

column ’type’ further qualifies the invoked method with the information of whether it belongs to any type

or not. The type information is applicable to internal methods only and more specifically to those internal

methods that are part of a clone class. The clone detector NiCad organizes the clone data as a group of

methods within a clone class. Each clone class therefore corresponds to a type (e.g. type 1, type 2, and type

3). In the main panel a method belonging to clone class shows the type information while a method that

does not belong to any clone class has the type value of ’No Type’. In case of external methods the type

remains blank. The runtime data such as time spent during execution of method and number of times a

method is invoked is displayed by the columns cputime and totalexec. column. On the other hand in order

to further enhance the property information of a method, each method is again tagged with a group and

groupid information. However, the group is applicable fully for the external methods and partially to the

internal methods. In case of internal methods if a method belongs to a active clone class then its group value

will be ’clone class’ otherwise it will be ’No Name’. External methods will have the values that will reveal to

which class they belong to such as ’String’, ’Util’, IO’ and so on. Each group also contains a groupid and for

the external methods the groupid will be any unique arbitrary value but for the internal ones the groupid

57

will be the active clone class id which they belong to. If none of the methods belong to any active clone class

then the id information will be ’No ID’.

Panel Operation

As described in the previous section the main panel offers a wide two dimensional view in the screen with a

set of values displayed in the columns the quantifies the traces in four different levels of granularities (system

use, test, event and method). Besides providing a clear wide screen for the users to see and analyse data,

the main panel also supports various operations allowing users to operate from. The main motivation behind

the wide screen for the main panel is to provide a complete view of the trace and at the same time offer a

simple interface to allow the users to navigate through the various levels of granularities as chosen by them.

To achieve this we have incorporated the operations in the main panel which are follows:

F1 Selecting

F2 Collapsing

F3 Column manipulation

Selecting

This is the primary and the most important option that provides flexibility to the end users to choose their

desired level of traces in order to carry out their analysis. It is the starting point of the mining that initiates

the analysis process. To facilitate the navigation process the traces are managed in a tree-like structure.

First, once the traces are loaded the users get a concise view of the topmost level (i.e., system use). The

tree structure containing a root handle allows further navigation into the deep level of the hierarchy by just

clicking on it. The root handle facilitates both the opening and the closing of the tree at the desired level. At

some point in the hierarchy the handle disappears indicating the last level containing the invoked methods.

Collapsing

One of the main challenges in dealing with traces is its immense volume. Even a smallest segment of code

when executed produces immense amount of lines of text that makes difficult to manage and comprehend.

Once the traces are loaded in the main panel each node of a tree represents a system use. At some point in

the evolution of software more features may be added and thus more test. This will ultimately pose threat to

the tree-like structure at the main panel making it more intense and occupying a greater portion of the screen

as well. Moreover, at the same time a user may have to navigate though the different levels of structural

hierarchies by opening a large number of tree nodes. Thus walking through the tree nodes may make the

screen too much crowded with information. In such case a user may try to restart the navigation. This can

be achieved by closing all the nodes individually which also is a cumbersome task. To ease the process we

have provided a feature to collapse and expand the tree using a checkbox. Once the checkbox is selected

58

all the tree nodes get expanded and when it is deselected the nodes get collapsed in the screed space. Once

all the nodes are collapsed the user then can start over the navigation by choosing their desired nodes for

analysis.

Column Manipulation

The main panel presents a series of columns with information that quantifies the traces which are packed

together. Therefore, the value of one column may get overlapped by the other column hiding the information.

To facilitate the viewing of the values of all the columns the design provides a way for column manipulation.

The users can select the columns of their choice to keep in the screen and remove the rest from the view.

This way the screen allows the flexibility to close the columns that are not required for the task at hand

during the analysis.

4.4.2 Image Thumbnail

Feature identification is one of the important requirements in program comprehension. The first thing a user

will want to know about a system’s implementation is the portion of code that corresponds to a particular

functionality. To provide a way for clear understanding of the portion of code that executed an image

thumbnail panel is created. The panel can accommodate more than one thumbnails all ordered sequentially.

The panel is populated with the thumbnail views based on selection of events in the main panel. The order

of thumbnails corresponds to the order of events in the main panel. The main motivation behind keeping the

thumbnail panel is to allow the users to have a glimpse of the images and provide them with the flexibility

to start analysis by clicking on any one of the thumbnails.

4.4.3 Image and Code Viewer

Once a thumbnail is selected from the thumbnail viewer by double clicking, a new big screen called the image

viewer is opened containing the detailed view of the thumbnail. From the Figure 4.5 we can see that the

image viewer displays only one image at a time and it might be interesting for the user to navigate through

all of the thumbnails in the thumbnail panel and at the same time view the enlarged image in the image

viewer. To synchronise the process the image viewer offers two sets of buttons called the ’Back’ and the

’Next’ button. These two buttons will allow the users to navigate through the selected thumbnails by moving

back and forth as desired by them. As a result they will be able to have clear view of the images in details

and at the same time can compare each image from one another. Once the user switches to the image viewer

screen they also need to recall to which event, test and system use the images belong to. One way to do

so could be to switch back to main panel and see the selected events. To ease the switching back and forth

between the main panel and the image panel, the image panel displays the whole path of the hierarchy in

the X− >Y− >Z format at the top of the screen in the form of caption. Here X, Y and Z represents system

use, test case and event respectively. For instance Manage Triangle− >Draw Triangle− >MouseEvent.

59

Figure 4.5: Diagram of the Image and Code Viewer

After knowing the trace and the images associated with the events one would certainly like to know about

how the user interface corresponding to the feature is implemented. Although they already get to know about

this using the methods invoked but the actual code written by a developer and in what way the methods are

implemented would be the last thing that they would put emphasis on towards understanding the system.

The main panel gives the call graphs of the methods invoked contained within the events. These call

graphs correspond to executed methods that may or may not include every path of execution during the

runtime of the system. For example, a method block contains an if-else block, but during the runtime only

one of the paths will be traversed at a time. Therefore, to assist in understanding the portions of the code,

our tool incorporates a code viewer in conjunction with the image viewer. The code viewer which is attached

to the image viewer displays the block of code corresponding to the methods invoked in the call graph. The

code contained in it is the concatenation of all the method blocks corresponding to the methods invoked in

a particular event. The code viewer is dependent on the image viewer and is updated when a user navigates

back and forth through different images loaded in the image viewer using the ’Back’ and ’Next’ button.

4.4.4 Metric Viewer

The metric viewer panel (Figure 4.7) provides space for displaying properties of traces using a set of metrics.

Program comprehension can be further enhanced by the use of metric values on the system. One of the

60

Figure 4.6: Comparison of Two Different Coding Style (taken from [41]) (a) Code Snippets of an
Inefficient Coding Style (b) Code Snippets of an Efficient Coding Style

main notions towards using dynamic analysis is also to profile the behaviour of the system by mining useful

information from the traces. Profiling a system’s use combined with systematic organization of traces and

snapshots of interfaces would benefit the users and ease their comprehension. Once a user gets to locate

their desired functionalities for analysis they may also want to know about how that portion of the code

behaves. Therefore, metrics will allow them to take a glimpse of the code’s behaviour and analyse each

feature individually. For instance CPU time and total execution of an invoked method can lead to findings of

bugs, vulnerabilities or improper use of API in the code segment. A greater number of execution of an API

for a particular code segment if compared over versions may provide an insight for focusing only on those

ones with high priority. Similarly, too much CPU time consumption may indicate that the portion of code

needs to be reprogrammed in an optimized way to reduce the time.

Let us consider two code segments a an b in Figure 4.6 having two different implementation. In Figure

4.6(a) the method gettingURLResponse() has been written in more verbose format showing every detail of

the parameter declaration and object creation. However, in Figure 4.6(b) we can observe that the same

method can be reimplemented in just one line of code. Both the functions give the same output but the only

difference could be the time taken by them to execute. Therefore, CPU time metric value can indicate the

users to switch the implementation of a method such as from Figure 4.6(a) to Figure 4.6(b).

The metric viewer thus will assist the users to understand the dynamics of the underlying code by

providing more in-depth knowledge about a system. The viewer is populated with trace, method, group and

active clone metrics when a user selects items from any of the main panel and the group panel. Since the

main panel offers selection of items for the system use, tests, events and methods, the metrics at the metric

viewer are displayed accordingly. Once the user selects any of the items such as an event from the main

panel then the trace metrics: total number of package (Np), total number of class (Nc), total number of

invoked internal methods (Nint), total number of invoked internal methods (Next), total number of active

clones (NACLONE), percentage of CPU time consumed by clone (%CPUMETHOD), percentage of active clone

file (%FACLONE), and total number of active clone class (CCACLONE) and total active clone line of code

(LACLONE) are populated in the viewer. Same metrics are also displayed when a user selects a system use

or a test from the panel. However selecting any method within the event produces a different set of metrics

61

Figure 4.7: Diagram of the Metric Viewer

such as method breadth (BrMETHOD), total line of code for active method (LMETHOD), total CPU time

consumed (CPUMETHOD), and total execution (ETOTAL). These metrics will allow the users to identify

the popularity of methods and APIs used in implementing a functionality. For instance a method being an

active clone will let the users to understand how dispersed it is in the system and what is its impact.

The metric viewer is also populated with values when a user selects any item from the group panel such

as ’Groups’ and ’Active Clone’. The ’Groups’ tabbed panel is enabled when a user selects external or both

radio buttons to filter trace based on types. Similarly, the ’Active Clone’ tabbed panel is activated when

the user filters the trace based on internal type. Once it is enabled the users can navigate around the active

clone classes. The panel supports both the single and multiple selection of classes. These selections update

the traces in the main panel and at the same trigger display of metrics in the metrics panel. The metrics are

clone class breadth, total number of active clone, total line of code and total CPU time.

Table 4.1: Summary of Features Supported by TrAM

Features Supported Features

Search Method

Segmentation System use, test, event

Visualization Real Image captured as screenshots, tree-like organization of traces

Filtering External, internal, both

Code viewer Method calls belonging to a particular segment (event)

System’s Feature Implementation Method calls and their call graphs

Metrics System, trace, clone, method, groups

Type of subject system Java

Categorization External groups, active clones

62

4.5 Tool Comparison

Tables 4.1, 4.2 and 4.3 show the features supported by our tool, TrAM and its comparison with other trace

analysis tools both in terms of supported features and their strengths for solving the requirements of the

developers. To compare TrAM with other trace analysis tools we have considered the comparison into two

facets: a) Feature based comparison and b) Scenario based comparison.

4.5.1 Feature Based Comparison

In the feature based as shown in Table 4.2 TrAM is compared with other trace analysis tools in terms of

supported features and techniques. The criteria some of which are adapted from [28] and then extended for

the tool comparison are as follows:

a. Trace Modelling

b. Trace Filtration

c. Trace Exploration

d. Trace Modularization

e. Categorization

f. Granularity

g. System Interface View

h. Trace Quantification

i. Trace to Source Code Mapping

Trace Modelling

Trace modelling is an important feature that is necessary to represent the traces in a meaningful and un-

derstandable manner by managing their excessive volume and size. Several ways are used to represent the

traces such as a tree or a graph.

Trace Filtration

This feature is a complement of trace modelling and allows reduction or compression of the traces. The main

intent of filtering is to remove some components of the traces in order to abstract out its content. In data

collection, techniques are applied during the collection of traces both at the system or the component level.

In the system level technique, a maintenance engineer is unaware of the methods used to develop a certain

functionality. On the other hand, component level collection requires the engineer to know in advance about

63

the components they wish to instrument and analyse. Pattern matching technique involves the reduction

of execution traces by grouping the similar patterns using a number of matching criteria such as setting a

parameter or setting the depth at which traces should be compared. In sampling only a portion of the traces

are selected for analysis using sampling parameters which pose threat when one setting may not work for

another different sample. Architecture level filtering allows trace reduction by showing interaction among

components at the architectural level instead of the objects and classes. However, the main drawback is that

the technique is solely dependent on the presence of the system’s architecture.

Trace Exploration

Once the traces are structured in the main panel using trace modelling techniques they must be made usable

to the users using exploration techniques so that they can navigate through the traces. Trace exploration at

the basic level offers the engineers to scan through the structure using clicks, search, browse, and animate

the components of the desired interests.

Trace Modularization

Besides the immense volume of traces, another problem which the developers encounter while analysing

them is interpreting the textual representations containing a series of method calls. Modularization of the

traces can far ease the process of understanding them especially when one wants to know which system use

the segments of traces belong to. Moreover, further modularization based on events can also add enhanced

meaningful information to locate which user interface activity the traces belong to.

Categorization

Categorization allows the maintenance engineers to study the content of the traces by clustering the method

calls generated during the execution based on groups and active clones. This feature lets the engineers to get

a more focused view of the components of the traces.

Granularity

Granularity signifies the levels at which systems can be viewed for analysis. Object and class level granularities

can assist engineers to view a system’s implementation. Object level provides the scope for visualizing the

interaction of method calls among the objects while class level on the other hand is a high-level representation

of the classes implementing a particular feature.

User Interface View

Execution traces can be visualised using interaction diagrams such as graphs or trees. However, a live

capture of the interface image on which an engineer is working can enhance the comprehension of a system’s

implementation further. Screenshots corresponding an event can let the users grasp the system design easily.

64

Table 4.2: A Comparison of Trace Analysis Tools Based on Features (taken from [28]) and then
extended

Trace Analysis Feature

Type Features S
h

im
b

a[
92

]

IS
V

is
[3

7,
38

]

O
va

ti
on

[6
3]

J
in

si
gh

t[
62

]

P
ro

gr
am

ex
p

lo
re

r[
48

]

A
V

ID
[9

4,
28

]

S
ce

n
e[

44
]

C
ol

la
b

or
at

io
n

B
ro

w
se

r[
7
0
]

S
E

A
T

[3
0
]

T
rA

M

E
x
tr

av
is

[1
5
]

S
a
la

h
et

a
l.

[8
5
]

Trace Modelling
Tree Structure X X X X X X X

Graph X X X X X X

Trace Filtering

Data Collection X X X

Architecture Level Filtering X

Sampling X X

Pattern Matching X X X X X

Trace Exploration Basic X X X X X X X X X X

Trace Modularization
Segmentation by system use X X

Segmentation by events X

Categorization
Group X

Active Clone X

Granularity
Object X X X X X

Class X X X X X X X X

System Interface View Snapshots X

Trace Behaviour Analysis Metrics X X X X

Trace to Source code Mapping Source Code Viewer X X X X

65

Trace Quantification

One of the ways towards understanding the behaviour of components of a system is through studying the

traces which can be achieved using a set of metrics. Metrics calculated on the execution traces, can allow

engineers to analyse various properties such as CPU time, execution, and so on of the components that

implemented a specific feature.

Trace to Source Code Mapping

The source code view helps the users to visualize the original code of the system in conjunction to the image

and the invoked methods. The mapping allows the users to compare the method calls in the traces with

their actual implementation in the source code. This way they can analyse which methods have been called

and which ones did not. The users can also get an overview of the various branching such as if-else or case

statements within the method block.

4.5.2 Discussion

Table 4.2 shows the comparative features of the trace analysis tools in the form of matrix where the ‘X’ denotes

the feature implemented by the tools. We can see that trace modelling using any of the tree structure or graph

is adapted by all the tools with AVID an Jinsight using both of the techniques. Our tool TrAM adapats

the tree structure because our intention was to let the users navigate through the entire execution trace.

In case of trace filtering, pattern matching is a common feature implemented by Shimba, ISVis, Ovation,

Collaboration Browser and SEAT. On the other hand, TrAM makes use of the data collection technique

to collect traces at the system level and filter them based on segmentation both by system use and events.

This provides more organized way of representing trace and enhances greater understanding towards feature

location. Trace exploration is also supported by the tools regardless of the trace modelling techniques (tree

structure or graph) and we can see that TrAM also incorporates the technique. Trace mining is further

enhanced using the categorization feature by grouping external methods based on API and internal methods

as active clones. TrAM has the capability to facilitate the users browse through the category and study group

wise use of methods and their behaviour using a set of metrics. System interface view which provides live

snapshots of the interfaces is only offered by TrAM which provides the advantage of reducing the cognitive

load of the users for thinking what could the actual implementation would look like by viewing the trace.

Trace to source code mapping is another added feature of the tools where the actual source code is also

displayed so that the users get a glimpse of how a particular feature of a system is implemented which is

supported by ISVis, SEAT, TrAM and Extravis.

66

4.5.3 Scenario Based Comparison

Comprehending a program’s implementation is a challenging and a complicated process during software main-

tenance. It consumes an integral part of the maintenance activity. The better a system can be understood,

the more precise and quick the changes can be made. Every tool has their own strengths and weaknesses

and each of them even though is designed for understanding a system’s implementation, has its own way

of exposing the underlying details. However, the available tools need to be evaluated through comparisons

among themselves. This will let the developers to select the right tools to use for the right purpose. The

fact that the tools need to be evaluated is further aggravated due to the absence of any evaluation criteria or

representative benchmarks. Since tools deploy different techniques, approaches and parameters, establishing

a universal criteria is difficult. Therefore to overcome this difficulty and to compare the trace analysis tools

more uniformly we have adapted a predictive, scenario-based approach which are as follows:

S1: A user wants to know the implementation details for a particular feature of a system and the events

(thread signal, button clicks, display updates, mouse events and so on) associated with it. For instance,

a user wants to know the method calls for a button click event such as the feature ‘save file’.

S2: A user wants to know the implementation details for a particular feature of a system using interactions

between objects and classes. For instance, a user wants to know the number of instances of objects

created and exited for the invoked classes.

S3: A user wants to know the implementation details for a particular use of a system using execution

patterns containing class and method calls. For instance, a user wants to know the call graph of the

series of methods invoked for a particular use such as drawing a rectangle.

S4: A user wants to know more details about the runtime behaviour of a system using metrics. For instance,

a user wants to know the CPU time consumed or number of times a method, or groups of methods

invoked for a particular use such as drawing a circle.

S5: A user wants to know more details about the runtime behaviour of a system using metrics, view

snapshots of the user interface and at the same time see the original source code of the feature.

S6: A user wants to know more fine grained details of the features by categorization into groups of appli-

cation programming interface, internal methods or clone methods. For instance, a user wants to know

details of an active clone class such that in what contexts the active fragments are used, times invoked,

CPU time consumed and so on. Similarly, a user can also analyse the context of use and dynamic

behaviour of groups of API such as ‘String’, ‘io’, ‘Util’ and so on.

Moreover, to qualify each scenario, the tools that are able to fulfil, we have set three types of qualifiers.

Each qualifier describes the degree to which the tools are capable to meet the scenario requirement. The

qualifiers are classified as ‘can analyse’, ‘partially analyse’ and ‘cannot analyse’. The qualifier ‘can analyse’

67

Table 4.3: Summary of Strength of Tools Based on Scenarios

• can analyse � partially analyse ◦ cannot analyse

Tools S
ce

n
a
ri

o
1

S
ce

n
a
ri

o
2

S
ce

n
a
ri

o
3

S
ce

n
a
ri

o
4

S
ce

n
a
ri

o
5

S
ce

n
a
ri

o
6

Shimba • • � ◦ ◦ ◦

ISVis ◦ • • ◦ ◦ �

Ovation � • • � ◦ ◦

Jinsight • • • � � ◦

Program Explorer ◦ • • ◦ ◦ �

AVID ◦ • • � ◦ ◦

Scene • • � � � �

Collaboration Browser • • � ◦ ◦ ◦

SEAT ◦ ◦ • � • ◦

TrAM • � • • • •

Extravis • • • � � �

Salah et al. � • � � ◦ ◦

signifies that the tool satisfies all the conditions of a scenario and provides a complete details of the system

according to the user requirement. ‘Partially analyse’ means that a tool satisfies a few of the scenario

conditions but in a different way without fulfilling all of the conditions. This means that few things such

as parameter, values, or other information relevant to the scenarios are missing. However,‘cannot analyse’

means that the tools infrastructure does not allow the users to look for what they want in order to understand

a system.

Table 4.3 depicts the specialities of the tools on the scenario basis as described by the qualifiers. For

scenario 1 all the tools support the analysis with the exception of Program Explorer and SEAT. Ovation

and the approach proposed by Salah et al. can partially allow the users to analyse a system’s feature

implementation by classifying the traces into segments by event types. We can observe that most of the tools

available so far are designed for the scenario 2 as well. Scenario 2 is a situation where users want to know

a system’s details using interactions at the class or method levels. An interaction means communication

between two components such as class or method. All the tools except TrAM and SEAT qualifies for this

purpose. The interactions among the components are represented using diagrams with horizontal lines,

vertical lines and other notations using boxes and arrows. However, TrAM produces a call graph of method

calls from which the interaction among the classes such that the caller-callee dependencies can be derived.

Knowing the method calls and the pattern of their execution also provide added information towards program

68

comprehension. How and when the methods are called and what patterns do they follow lets the users get

more insight about the flow of program execution. Interestingly, from the literature survey we also came

across that all the tools have the ability to solve the users’ purpose for the scenario 3 except Shimba, Scene,

Collaboration Browser and Salah et al. where they do provide inter-class information but fail to assist in

showing the execution patterns.

Metrics are one of the important means in making the comprehension process more informative by quan-

tifying the dynamic behavioural aspects of a system. This is represented as scenario 4 and the majority of the

tools implements the basic dynamic metrics such as total number of calls and CPU time unlike TrAM. TrAM

implements six kinds of metrics categories such as system metrics, clone metrics, group metrics, active clone

metrics, method metrics and trace metrics. Scenario 5 further complements the comprehension process by

letting the users to locate the features more precisely and explicitly. Besides providing information through

metrics a live view at the snapshots of the user interfaces and the corresponding original source code at the

same time will assist in pin pointing the nature and the portion of the code of a feature in the system accu-

rately. SEAT and TrAM are fully capable of fulfilling this with Jinght, Scene and Extravis are partially able

to handle the situation such that none of them displays the snapshots of the user interface. Finally, scenario

6 portrays a situation when a user might want to further focus on their analysis on particular methods,

API or similar fragments such as clones. Only TrAM qualifies for this scenario and it provides an extended

feature of letting the users to manipulate the API, internal methods and clones to gain insights about their

implementation details and associated dynamic behaviour. Few tools such as ISVis, Program Explorer, Scene

and Extravis do provide focused view through categorization partially.

In summary, we can conclude that the majority of the trace analysis tools are designed for analysis of

a system with emphasis on the interactions of the modules such as class and methods and the execution

patterns of the method calls. Some of them also highlight the use case scenarios and give insights to the

context of use of a system. If we walk from scenario 1 to scenario 6 the tools gradually fail to reveal the

dynamic behaviour of a system in terms of metrics and also fall behind in specifying the snapshots of the

user interface of the system being analysed with the underlying source code. They also lack the features

of enhanced information browsing for methods, API and clones through filtering and categorization. On

the other hand, TrAM implements the necessary features that fulfils all the scenarios with an exception of

scenario 2 where it does not offer complete analysis of the interactions between the modules.

4.6 Comparison with Profilers

In this section, we also provide a comparison of TrAM with other profiling tools. Since each tool has its

own strengths and weaknesses, a comparative study we provide a deep and clear insight about its specialized

area. We have considered both UI based as well as command line based profilers. JRat, JProfiler, JIP, and

JMP are the UI based profilers while DJProf, HPROF, and gprof are the command line based profilers. For

69

Table 4.4: A Summary of Comparison of TrAM with Profilers

Profilers Feature Identification
Metrics

Call Graph
UI Snapshot and

Code View

Categorization

Trace Method
Active

Clone
Group

Method

Graphs
Clones

JRat No No Yes No No Yes No No No

JProfiler No Yes Yes No Yes Yes Yes Yes No

JIP No Yes Yes No No Yes No No No

JMP No No Yes No No Yes No Yes No

DJProf No No Yes No No No No No No

HPROF No No Yes No No No No No No

gprof No No Yes No No Yes No No No

TrAM Yes Yes Yes Yes Yes Yes Yes Yes Yes

comparison we have considered five categories: feature identification, metrics, call graph, UI snapshots &

code view, and categorization. From Table 4.4, we can notice that all the tools excepting TrAM fail to locate

features which mean they do not provide insight into which portions of code are responsible for a particular

feature. Although method calls are represented, they do not provide the context in which they are used.

TrAM satisfies this requirement through segmentation of trace both in terms of system use, tests and events.

The system use signifies the purpose of use of a system such as drawing objects, tests signify types of use

such as drawing a rectangle, and events signify user interactions with the interface such as button click. In

case of metrics, we have considered our taxonomy of metrics trace, method, active clone and groups which

we proposed.

If we observe closely, we can find that all the tools are capable of calculating the method metrics such as

total execution, and total CPU time. For trace metrics, TrAM calculates all the metrics and provides detail

information about trace such as total package, or class executed, total files invoked, and CPU time based

on system use, test and event. However, JProfiler and JIP still fail to provide the CPU time information

based on system use, test and events. Active clone metrics is a new induction into our tool TrAM where we

mine dynamic information of similar code fragments from the trace. Therefore, only TrAM incorporates the

feature of active clone mining and provides more enhanced facility for trace mining. Similarly, JProfiler and

TrAM are the only tools that can calculate the group metrics such as CPU time per group, number of active

methods in a group, number of tests in which a group is active. However, JProfiler fail to distinguish the

existence of group in terms of system use, test and event. Call graph representation is an important feature

that shows how and in what sequences the methods in a system have been called. All the tools except DJProf

and HPROF provide the call graph. One of the main contributions of this thesis is understanding a systems

feature using method calls and each method has a block of code associated with it. The UI Snapshots & code

view feature helps the process of understanding about how a feature is implemented by linking the method

70

calls with the source code. Only JProfiler and TrAM supports this and with an exception of JProfiler where

it does not incorporate the UI snapshot. Finally, in case of categorization, JProfiler, JMP and TrAM can

categorize methods based on groups while in case of categorization through clones only TrAM has the ability

to fulfil it.

4.7 Tool Evaluation

To evaluate the tool we conducted experiments in two phases. The first phase included general evaluation

by a number of users for their opinions and is subdivided into two sections: a) general feedback and b) task

based feedback. The second phase included the actual validation of the outcomes of the tool mining data by

the expert developers.

General Feedback

In this part of the user study, we have set some general questions in order to get feedbacks on the overall

opinions of the users based on their familiarity with software development and various program comprehension

tools they have used. One of the main motivations of this thesis is to build a tool support for understanding

the implementation details of a system. In this part of the user study, our intent was to get the feedback

from the participants about their opinions towards different ways of understanding a system and the tools

they have used to support their comprehension.

From the feedback where 93% of the participants had the experience on modifying or fixing or optimizing

a system developed by other developers, we have come across that when they were asked whether they wrote

any documentation for a system they developed, 14% answered “no”, 29% said “partially” while 36% and

21% replied “yes but did not maintain the documentation” and “yes and maintained the documentation”

respectively. On the other hand, 64%of the participants also did not attempt to use any documentation tools

such as doxygen or javadoc. To further verify their feedback they were asked, if they were given a system

and asked to modify some of its functionalities, then what would they do initially to understand the code?

Interestingly, we came across the fact that 31% were in favour of reading documentations, 22% would ask

the developers to help them out, 22% would run the system and 20% would use an automated tool to them

out. However only 4% would try to create a new documentation of the existing system. To support this we

found that 43% of the participants have experience with profilers or debuggers out of which 38% of them used

to find errors in code, and 31% to understand a specific portion of code. From here we can conclude that

majority of the users were in favour of using documentation followed by other techniques such as discussing

with the developers, run the system or use other automated tools.

71

Task Based Feedback

In this section we will describe how the tool is evaluated based on its usefulness. Generally, the usefulness of

a tool is determined by the following criteria:

C1 How effective our tool is in order to meet users’ requirements during the program comprehension?

C2 How simple and easy the tool is to operate for source code analysis?

C3 How presentable the information is in the tool for the users to interpret and analyse?

We then further conducted an intensive study on three different systems developed in our lab. The results

were presented to the actual developers and their opinions were noted.

4.7.1 User Study

Our main goal is to evaluate the overall usefulness of the tool and for that we had to design a methodology

to conduct the study. The main challenge in this study was availability of the users and the type of users

we had to consider. To fulfil the experiment we have conducted a series of steps starting from experimental

setup to analysis of the result.

Experimental Setup

To evaluate the usefulness of our tool we required a set of participants, a questionnaire, methods of evaluation,

and analysis of the result. We also selected an interactive user interface based subject system to present the

participants with the implementation details to comprehend a system. The following are the steps that

constitutes our setup for the experiment.

1 Design a questionnaire: We have designed a total of 24 questions to cover responses of the par-

ticipants from different perspectives. The questions in the questionnaire are classified into different

sections. The first section of the questionnaire is designed to acquire the background of the partici-

pants with respect to their knowledge about the domain of software development. The second section

extracts information about the common scenarios that they have faced and how they have dealt with

them. This part also allows them to do specific tasks using the tool and answer the related questions.

The questions in this section are solely designed to get user satisfaction level. The satisfaction level

is represented using a likert scale. Five different levels such as strongly agree, strongly agree, neutral,

disagree and strongly disagree defines how satisfied the participants are about the tool’s usefulness after

the tasks are done. Therefore, as a part of the questionnaire design phase we have also put forward a

set of tasks for the participants.

2 Demo session: It is the second phase of our experiment modelling which initiates the user participation

for the study. The users were given introduction about the nature and purpose of the study. Then they

72

were briefed about the tool that they would use and the motivations behind it. We then ran the tool

over a subject system and presented every feature of it. We also described the architecture of the tool

including the visualization and the information management in particular so that the participants can

operate it easily. The participants were then handed with the tool and allowed to operate for a while

to get familiar with it.

3 Task Performance: After the demo session the questionnaire was handed to the participants. Each

individual task was followed by a question that recorded the participants’ opinion based on their level

of agreement on the performed tasks. It was an open discussion session and the participants had

the liberty to ask questions regarding any difficulty they faced during the task completion. All the

participants had to answer the questions on-line. We selected 14 participants with backgrounds in

software development. The study session was carried on Windows 7 workstation on which the TrAM

was installed as a client environment. The client side was connected with the database server to fetch

data from it and complete the mining process.

4.7.2 Task Design

To evaluate our tool and address the three evaluation criteria we have set four tasks that will allow the

participants to express their opinions accordingly. Each task intends to gather statistics about the usefulness

and the usability of the tool. Usefulness signifies how the tool can bridge the gap between the complexity of

a system’s implementation and the program comprehension by the users. Usability portrays how simple and

easy the tool is to operate and therefore assists the users to interpret the result during the comprehension

process. Table 4.5 provide a summary of the task the users were provided with.

Table 4.5: Summary of Tasks

Task Description

Locate feature The participants were provided with a scenario and then were asked to find the portion

of code that was responsible for that particular task.

View Statistics The participants were asked about a scenario such as how the behaviour of a particular

method can be found from the trace.

Filter methods The participants were asked about a scenario such as how specific information about

methods can be obtained using the tool.

Categorize groups The participants were asked about a scenario such as how a group wise information

can be obtained.

73

To address the evaluation criteria we have set different questions specific to those criteria. The participants

were asked questions on usefulness, usability and the design of the tool. The following are the sample questions

that are designed for each criteria.

C1: How effective our tool is in order to meet users’ requirement during program comprehen-

sion?

1 It was very difficult to isolate the feature given a bug using the source code.

2 The tool clearly presented the statistical information of the selected methods.

3 The tool very easily allowed to retrieve the information of active clones in the system.

4 The filtering mechanism was very quick to filter out the methods that was required.

C2: How simple and easy the tool is to operate for source code analysis?

1 What difficulty did you face in using the tool?

2 What features do you think are the most significant in the tool that guided you towards your goal?

3 How satisfied are you with the filtering by type, searching, categorization by groups, categorization by

active clone class, image and code viewer and metrics view?

C3: How presentable the information is in the tool for the users to interpret and analyse?

1 What portion of the tool you think requires improvement?

2 The information in the tool was well organized.

3 Overall the tool was very satisfying.

4 The overall performance (delay when a user clicks on any item) of the tool was very good.

4.8 Findings

After collecting all the data from the 14 participants, we analysed them to refer the three evaluation criteria.

Our first criterion of evaluation was based on effectiveness of the tool in terms of fulfilling 4 tasks performed

by the participants. For the Task 1 we asked the participants to locate a feature given a bug both with or

without the tool. Interestingly, 92% of the participants expressed positive agreement that the tool made it

very simple and easy to identify the feature while 75% had difficulty in locating the feature using the source

code only. Task 2 was a bit different where they were asked to find the statistics of a particular method. All

the participants were able to complete it and strongly agreed what the tool offered them with. This indicates

that the hierarchical tree-like structure made the task so simple that only a click allowed them to see the

74

Figure 4.8: Effectiveness of TrAM to Meet Users’ Requirement During Program Comprehension

statistics of the method in the metric viewer. Task 3 was also dealt with feature identification but from

different perspective. This time they were asked to find the similar fragments and observe their properties.

64% of the participants were strongly familiar with the term code clone and 36% had very little idea about

it. 58% of the participants were able to operate and interpret the output of the active clone classes. The last

task was made to test the performance of the tool in terms of filtering. Since we adapted the hierarchical

tree-like structure each root node represents a test, each test encloses multiple events and each event groups

multiple methods. The structure may become immense in size with abundance of texts. Each event inside

a test node is associated with snapshots. This might put constraint on memory utilization and cause poor

system performance. Switching between the external and internal filtering may allow the user to judge how

quick the tool responds to the request. 75% of the participants were very satisfied with the performance and

strongly agreed that the tool was very quick to filter out the methods. Figure 4.8 shows the overall summary

of the users’ response. We can see that almost more than 45% of the participants agreed that the tool was

very effective in accomplishing the task they were given to. However, we also got a few exceptions where less

than 10% of the participants disagreed with the fact.

The second part of the evaluation criteria was to determine how simple and easy the tool was in terms

of operation. Here the participants were asked for their opinions about the controls of the tool and whether

they assisted them to solve their purpose while performing the tasks. Figure 4.10(a) shows that 33% of the

participants voted for the feature image and 31% was in favour of the navigation through tree-like structure

followed by filtering by group and filtering by method type. On further investigation to the response of 11%

of participants we noticed that it was there industrial experience in using other profiling tools that made

their task easier. However when asked for difficulties they faced in using the tool 36% of the participants

in Figure 4.10(b) pointed out about the complex organization of the architecture. This may be due to the

fact that the main panel provides a complete view of the trace in a two dimensional format in a hierarchical

75

Figure 4.9: User Response for the Difficulty of Feature Use

structure. The y-axis shows the values of the components. At some point a situation may arise when too

many nodes are open making the panel overcrowded with textual information. If we observe Figure 4.9 which

is an overall response of the participants, we can find that majority of the participants were comfortable using

features of the tool for performing the task with few exceptions of participants below 10% who were neutral

and unsatisfied with them.

We wanted to know from the participants about the design implications of TrAM for the controls and the

visualizations. Figure 4.11 shows the overall responses of the participants on individual features of TrAM.

More than 50% of the participants were very satisfied with categorization by groups, active clone class denoted

by catg[group] and catg[ACC] in Figure 4.11, and the image and code viewer feature. It is obvious that the

participants were interested in knowing the locations and the context of the external methods in the code.

Moreover, categorization with active clone class also looked important to them because knowing the similar

code fragments can allow them to visualise how active clones are dispersed in the system. Image and code

viewer had the highest satisfaction level with over 70% because they were able to map the underlying code

with the live snapshot of the interface. This prevented them from thinking about, what and how the interface

could have been for that specific feature, but instead let them explore the implementation specifics of the

features in one place.

To gain more insight about the design another feedback was collected on the level of guidance of the

features to users towards their goal.

Finally, the participants were asked about how presentable the information in TrAM was to interpret and

analyse the result which is shown in Figure 4.12. If we look at Figure 4.12 we can see that more than 40%of

the users strongly agreed that the information was well organized. They also agreed that the tool provided

better performance in terms of delays during the operation of tasks. Filtering, searching and thumbnail

loading were considerably fast as well.

76

Figure 4.10: User Response for the TrAM Features (a) Most Popular Features of TrAM and (b)
Features Requiring Improvement

Figure 4.11: Comparison of User Responses for the TrAM Features

Figure 4.12: Presentation of Information in TrAM for the Users to Interpret and Analyse

77

Table 4.6: Summary of the Features Analysed

System Name Line of Code Total Files Features

TrAM 7799 66
Search

View image detail
View event statistics

VisCad 17772 129
View metrics
View treemap
Browse code

Visualization Tool 19344 119
Search rules

View method by coupling
View method by co-change

4.9 Expert Opinion

Our studies in the previous section was to determine the overall usefulness of our tool in software maintenance

and how usable the tool is in terms of features. This marked the first phase of our evaluation. However,

the question remains on how accurate the tool is in terms of feature identification and statistics calculation.

Locating the correct feature, mapping the exact portions of the source code, calculating the metrics values and

categorizing them by active clone class and external methods contributes to what extent and effectively the

tool can be relied for the maintenance activity. This demands the opinions of the users who are expert in their

domain and have developed at least a system using java. One of the main drawbacks in experimenting with

open source systems is that we are not aware of the domain and not even familiar with their implementation

details. Therefore, only expert opinions of the developers about their own system can assist us to evaluate

the output of our tool.

To begin with we have chosen three subject systems developed in java by developers in our lab. Table 4.6

provides summary of the systems. Before proceeding with the trace collection phase, we first discussed with

the developers about the key features of their system. We assume that there are always certain key features

in systems that are most frequently used by the users and therefore, requires attention during maintenance

activity. We then collected traces for those key features and mined them for the implementation details.

The results were presented to the users and asked to verify them. As part of the evaluation phase three key

features of each system were identified and selected for the trace collection. For each system we presented

them with active clone classes, tests, events, images, underlying codes and metrics. One of the main aspects

of our trace mining approach is method, clone and API mapping. If the tool is able to map them correctly

then it can be inferred that portions of the source code will be located correctly as well. Similarly all other

mining that are dependent on the mappings would be achieved accordingly. The tool was provided to the

developers to verify the outputs. For all the three systems, each developer was satisfied with the results

specially the image to code mapping for a particular feature. The tool was able to locate the exact portions

of the source code responsible for each of the feature. Next, they were asked to verify the categorization of

trace based on external group and the active clone class. Since they were aware of the clones in the system

78

then they also knew which portions of the code they have copy pasted during the implementation. After

inspection of the active clones they were strongly satisfied with the output too. They were also able to

observe the source code to identify the location of the active clones and to what context the cloning has been

done.

79

Chapter 5

Source Code Clones at Runtime: An Exploratory

Study

5.1 Introduction

Code duplication is a common programming practice. Programmers use code duplication to increase the

speed of the software development process by using similar code to implement common functionality. Code

duplication can also reduce the risk of errors, particularly if the copied code has been previously tested and

proven. Similar code fragments are called ‘clones’ and the process is known as ‘cloning’. Different clone

granularities are studied, such as method clones (clones that are methods or functions) and block clones

(clones a few lines in length). In this paper we focus on method clones. Fragments that are not exact copies

of each other, but share a certain level of similarity are known as near-miss clones, in which statements

might be added, deleted, and/or modified in the related fragments. Previous studies revealed that duplicate

code is present in software systems in amounts ranging from 5-15% [74, 73, 72, 104] to as high as 50% [71].

Although cloning is an inexpensive and often productive practice, it introduces complications during software

maintenance. A code fragment may contain a bug, and when copied elsewhere, the bug is also propagated.

As well, a bug may emerge when a clone is used in a new context. Fixing a bug in one clone may require

reviewing and perhaps applying a similar fix to its clones. Any inconsistency in making a change to a set of

clones may introduce new bugs. For large software systems and depending on the extent of the cloning, such

maintenance effort may be expensive. Despite the ongoing debate as to whether code clones are harmful or

not [4, 23, 39, 40, 52, 60, 59, 58, 57, 56], it is believed that clones are unavoidable, and not all clones can or

should be removed [43, 82, 102].

Clone management is an active research area that has contributed a diverse set of tools and algorithms to

aid in the management and maintenance of software. There are also a few novel studies that introduces the

notion of higher level clone management [69] or finding out an optimized scheduling of the candidate clones

for refactoring [101, 103]. However, clone research has not well addressed the runtime implications of source

code cloning. Moreover, clone researches are rich in detecting similar fragments syntactically but the study

to reveal the context in which they are used is still missing. In this paper we investigate source code clones

at runtime, referring to clones as ‘active clones’ if they are invoked when a software system is in use. For

80

example, if a particular use u of a system results in a clone c being invoked, we say that clone c is active with

respect to use u. From this definition and given a set of uses {u1, u2, ...} and clones {c1, c2, ...} we are able to

identify the extent clones are active at runtime, analyze active clone resource use (e.g., CPU time) and define

and calculate a set of active clone metrics. Associated with a particular use u of a system, is an execution

trace, which we denote as tu. An execution trace tu is a sequence of method calls {(1,m1), (2,m2), ...} and

so codomain(tu) is the set of method calls invoked during the use (i.e., codomain(tu) = {m1,m2, ...}). Our

focus is on method clones, and so if method clone c ∈ codomain(tu), then c is an active clone with respect to

use u.

Similarly a clone class that includes at least one active clone fragment is referred to as an active clone

class. For example let us consider three clone classes, c1 with clone fragments (a, b, c), c2 with clone fragments

(d, e), and c3 with clone fragments (f, g, h). Let us assume that using our approach, we found that only g is

the active clone fragment (i.e., the corresponding method was invoked in the trace). Because g ε c3, c3 with

fragments (f, g, h) will be the only active clone class. Execution traces may be collected in the field, however

for our study we used a set of tests to collect execution traces. We consider a test to represent a typical

use of a software system by an end-user, or a typical use of a software system by a developer in support

of a software development or maintenance task. Software developers often use testing to execute a software

system with the intent of locating errors, detecting faults and verifying or validating a system’s qualities and

functionality. If a developer runs the system or designs a test suite for the task at hand, they can use our

approach to identify active clones related to the tests and consequently to the task at hand.

It is clear that the choice of tests effects the extent active clones are discovered. For example, a test suite

may be specifically designed for full coverage and so in such a situation one would expect all clones to be

active. Our interest, however, is in tests that correspond to a particular use of the system. For example,

tests that are specifically designed to exercise a single feature, requirement or use case scenario. Although a

test suite may exercise the entire system, a single test typically is designed to exercise a subset of the system.

A clone, then, is active with respect to a use, a set of uses, a set of tests, or a test suite. It is determining

the method clones that are active when a single test or a small set of tests are run. that we focus on in this

paper. As a result, we are interested in addressing the following three research questions:

RQ1: To what extent are clones active during runtime?

RQ2: How active are the active clones?

RQ3: Does active clone identification support software maintenance activities?

5.2 Finding Active Clones

After running the system with a specific set of test cases and then collecting its dynamic behavior in the

form of trace we perform the clone mapping phase. This step maps the trace information to the codebase.

81

Table 5.1: Subject Software Systems

Domain System No. of Java FilesTotal SizeVersion
Text Editor RText 319 5.76M 2.0.0

Graphics JHotDraw 309 20M 7.0.6
Database Server HSQLDB 513 14M 2.2.6

Point of Sale UnicentaoPOS 486 30.4M 2.5.0
Text Editor jEdit 571 25.5M 4.4.2

Table 5.2: Sample Tests

System Test User Interaction

HSQLDB

Select select * from testtable;
Insert insert into testtable values (‘Current’, 22, ‘2003-11-10’, 18, 3, ‘my

name goes here’), (‘Popular’, 23, ‘2003-11-10’, 18, 3, ‘my name
goes here’), (‘New’, 5, ‘2003-11-10’, 18, 3, ‘my name goes here’),
(‘Old’, 5, ‘2003-11-10’, 18, 3, ‘my name goes here’);

Update update testtable set (astring, firstnum, adate, secondnum, third-
num, aname) = (‘Older’, 5, ‘2003-11-10’, 18, 3, ‘my name goes
’here) where astring = ‘Old’

Delete delete from testtable;
Create table create cached table testtable (aString varchar(256) not null, first-

Num integer not null, aDate date not null, secondNum integer not
null, thirdNum integer not null, aName varchar(32) not null);

JHotDraw
Circle User selects Circle and draws the object.

Rectangle User selects Rectangle and draws the object.
Triangle User selects Triangle and draws the object.

RText Edit Text Write in editor, Save a file, Edit text, Replace text and Find text
in files

jEdit Edit Text Write in editor, Save a file, Edit text, Replace text, Find text in
files, Print File, Close Application

uniCentaoPOS

insert Adding customer data
update updating customer data
delete delete customer data
report generate customer report

For each method in the trace, if it contains a clone in the codebase, the corresponding clone and its clone

class are marked as ‘active’. This step determines which clone classes are active for that particular test case.

First, using dynamic analysis we record execution traces for each individual test case. Each trace record in a

trace file consists of the full class name, the class type, the method name, and the parameter types. Second,

we obtain all the clones of the subject system detected by the NiCad clone detector. Third, we determine

whether the trace related code contains any clones. For clone mapping, we created a script to extract all the

method names from the NiCad XML file. The clones for which we get a match in the trace are called active

clones, and then we retrieve the corresponding clone classes to which the active clones belong. These clone

classes are treated as active clone classes.

82

Table 5.3: Method Clone Metrics

Systems
Files Lines of Code

CCNCLONEMTOTAL%MCLONEFTOTALFCLONE%FCLONELTOTALLCLONE%LCLONE

RText 319 81 25.3 95036 3019 3 80 189 3698 5.5
JHotDraw 309 183 59.22 56420 7565 13.4 231 656 3260 20.1
HSQLDB 513 293 57.11 227545 20467 8.9 503 1323 9825 13.5

jEdit 571 161 28.2 115246 7320 6.4 212 419 7428 5.6
uniCentaoPOS 486 174 35.8 43032 4578 10.6 163 285 4260 6.9

Table 5.4: Test Based Metrics for Active Clones

System Use Set Test Nint Np
Method Clones

NACLONELACLONEFACLONE%MACLONE%CCACLONE

HSQLDB

Search Select 461 89 40 545 22 8.6 6.8
Data Entry Insert 441 87 35 492 22 7.9 6.2

Admin
Update 441 89 35 492 22 7.9 6.6
Delete 441 87 35 506 25 7.9 6.6
Create 442 90 35 492 22 7.9 8.0

JHotDraw Draw
Circle 798 189 58 654 27 7.2 19.9

Rectangle 797 189 56 639 26 7 19.5
Triangle 819 195 60 645 28 7.3 19.5

RText Compose Edit text 591 153 11 265 7 1.8 11.25
jEdit Compose Edit Text 3220 310 220 400 44 5.2 37.7

uniCentaoPOS

Search Select 101 37 5 43 5 4.9 3.2
Data Entry Insert 373 85 17 141 15 14.9 9.2

Admin
Update 76 32 4 55 4 5.2 0.8
Delete 68 28 4 30 4 5.9 0.6

5.3 Study Approach

In this section, we provide a brief description of the subject systems being studied, our approach and the

tests used. All the tests were run on an Intel(R) Core (TM) i7 CPU @2.93 GHz with 4GB RAM. Table 5.1

provides a summary of the systems that were part of our experiment. To bring variation to our study we

considered systems from three different domains: text editing, graphics and database management. We also

selected systems that differed in size, ranging from 5.76M to 30M bytes of code.

In the first step of the static analysis phase, we use NiCad as the clone detector to detect near-miss clones

both at the method level using consistent renaming at a 30% threshold. We use NiCad’s XML output, which

reports clone detection results with similar code fragments grouped into clone classes.

The reports from the clone detector were further analyzed to calculate the system and clone metrics using

a clone analysis and visualization tool called VisCad [3]. NiCad’s clone detection results and the codebase

of the subject systems were used as inputs to VisCad. VisCad assists in calculating a number of metrics in

response to user requests and produces interactive visualizations through which a user can investigate code

clones at different levels of abstraction.

83

Table 5.5: Lines of Code and Number of Files Associated With Traces, Clones and Active Clones

Metrics
System

HSQLDB JHotDraw RText jEdit uniCentaoPOS

%LCLONE 3 13.4 8.9 6.4 10.6

%LACLONE 0.24 1.2 0.31 0.71 0.31

%FCLONE 57.11 59.22 25.3 28.2 35.8

%FTRACE 17.3 61.2 47.9 51.9 17.5

%FACLONE 4.2 9.1 2.3 7.4 3.1

To collect the traces for each system we designed tests for each user interaction. A subset of the tests we

used are listed in Table 5.2. Traces for each test is recorded in text files for subsequent post-processing and

quantitative analysis. For each test the trace generation is triggered by a set of defined inputs also shown in

Table 5.2.

In this section, we present the results of our experiment identifying active clones in five different subject

systems of varying sizes. The study and analysis of each system is presented separately. The research questions

are discussed based on the experimental results shown in Tables 5.3 to 5.8. Table 5.3 provides metrics for

clones, clone classes, files associated with clones, and lines of code for methods. Table 5.4 provides statistics

for each system in terms of active clones and their classes while Table 5.6 lists the percentage of active clones

for each type of user interface event by test and also provides CPU usage for each type of user interface event

along with the percentage of time associated with the active clones. Table 5.5 shows the percentage of active

clones for each test, indicating that clones are involved in each test. It also provides lines of code metrics for

each system, comparing the percentage of clone lines with the percentage of active clone lines. This helps

illustrate that fewer clones need to be considered when only considering active clones. Table 5.5 also shows

file metrics for each system, comparing the percentage of files containing clones with the percentage of files

invoked in the traces and the percentage of files containing active clones. Again, this shows that fewer files

need to be considered when focusing on clones that are active during runtime.

One challenge during software maintenance involving clones is to determine which clones to look at first.

Our study provides information that can help prioritize clone inspection. The tests are intended to correspond

to a maintenance task, and so there is a high chance that clones contained in the implementation of the user

interaction being tested will be executed at some point during the test. If a typical test does not yield active

clones, one may not need to worry about clones for that particular maintenance task. However, in all cases

and for relatively simple tests we were always able to identify active clones. For example, in the case of

HSQLDB, 13.5% (Table 5.3) of the system’s methods contain clones and we found that on average 8.04%

(Table 5.4) of the invoked methods (%MACLONE) contained active method clones. The average lines of

code and files that are active is 0.24% and 4.2% (Table 5.5) while at least 6.5% (Table 5.4) of clone classes

(CCACLONE) are active for each of the tests (i.e., out of 503 clone classes 33 clone classes are active).

84

Table 5.6: Active Clones by Type of User Interface Event for Each Test

System Test UI Event Type UI Traces MI %AC
CPU Time (ns)
Total %AC

HSQLDB

Select
mouseClick (JButton) 3 191 6.8% 8.31E+10 14.8

threadSignal 50 1555 5.2% 2.86E+12 47.6

Insert
mouseClick (JButton) 2 203 6.4% 7.31E+11 14.8

threadSignal 36 1076 7.2% 1.86E+12 51.26

Update
mouseClick (JButton) 2 192 6.8% 3.16E+11 3.12

threadSignal 28 1160 7.2% 2.93E+12 44.44

Delete
mouseClick (JButton) 2 204 6.4% 3.76E+11 3.79

threadSignal 28 885 7.9% 1.93E+10 42.5

Create
mouseClick (JButton) 3 196 11.6% 2.05E+11 4.86

threadSignal 51 1164 7% 1.02E+12 3.12

JHotDraw

Circle
mouseClick (mouse event) 17 397 6.8% 1.66E+12 25.8

mouseClick (Button) 12 89 3.3% 1.34E+10 0.47
threadSignal 1 490 6.1% 9.60E+11 33.8

Triangle
mouseClick (mouse event) 13 375 6.9% 6.03E+11 17.02

mouseClick (Button) 12 89 3.3% 8.60E+10 3.79
threadSignal 1 490 6.1% 1.29E+12 57.09

Rectangle
mouseClick (mouse event) 13 399 6.0% 1.73E+11 7.7

mouseClick (Button) 12 89 3.3% 6.03E+10 3.92
threadSignal 1 490 6.3% 1.00E+12 67.18

RText Edit text

mouseClick (JButton) 1 18 2.2% 8.00E-3 0.001
mouseClick (JMenuItem) 5 18 1.6% 2.50E+6 0.005

displayUpdate 30 124 3.2% 3.65E+7 0.080
threadSignal 11 79 2.5% 4.49E+10 15.5

jEdit Edit text
mouseClick (Timer) 5 18 1.6% 2.39E+12 9.9

displayUpdate 30 124 0% 4.83E+11 0
threadSignal 11 79 2.5% 2.22E+13 85.2

uniCentaoPOS

Select
mouseClick (JButton) 2 71 7.0% 7.43E+10 44.8
mouseClick (Timer) 50 1555 0% 2.86E+12 0

Insert
mouseClick (JButton) 4 203 6.4% 1.61E+11 43.8
mouseClick (Timer) 36 1076 7.2% 1.86E+12 11.9

Update
mouseClick (JButton) 1 51 7.8% 6.50 +9 64.1
mouseClick (Timer) 23 206 12.2% 2.93E+12 44.44

Delete
mouseClick (JButton) 1 29 0 1.15E+10 0
mouseClick (Timer) 53 208 13.9% 1.93E+10 66.2

UI: User Interface MI: Method Invocation AC: Active Clone

This indicates that we are able to identify active clones through testing and that the reduced number of

clones identified holds promise for focusing a software developer’s clone inspection effort. It will be interesting

to validate this assumption with real world maintenance evidence. A concern would be that ignoring other

aspects of the codebase may result in unwanted faults. However, we assume that full regression testing would

occur after any maintenance change and this would help to address any oversight.

Clones are considered harmful for a number of reasons, including: there is the potential for bug propaga-

tion during cloning, cloning increases the size of the codebase, and changes in one clone may require changes

to other clones during maintenance. These issues increase the potential for a higher maintenance effort as

well as may burden the software developer with an additional cognitive load. Dynamic analysis provides a

way to aid in our comprehension of clones. Systems containing clones could be segmented based on testing

to make the maintenance task more modular. As well, runtime information allows us to consider other clone

85

properties. Knowing which clones are the most CPU intensive during a particular set of system uses, could

help identify places where optimizing one clone could be an important improvement to the system as a whole

if we make similar changes to the clones in its clone class.

From Table 5.3 and Table 5.4 we see that for HSQLDB out of 9,825 methods in the system of which

1,323 are clones, we have only 35–40 active clones for each test. For JHotDraw, out of a 3,260 methods in

the system of which 656 are clones, we have only 56–60 for each test, for RText, out of 3,698 methods in the

system of which 189 are clones, we have only 11 active clones for the tests, for jEdit, out of 7,428 methods of

which 419 are clones, we have 220 active clones for the test, and for uniCentaoPOS, out of 4,260 methodds of

which 285 are clones, we have 8 active clones for the test. For HSQLDB, the active clones represent 492–545

lines code, out of 20,467 lines of clone code and a system that is 227,545 lines in size. For JHotDraw, the

active clones represent 639–654 lines of code, out of 7,565 lines of clone code and a system size of 6,420. For

RText, the active clones represent 265 lines of code, out of 3,019 lines of clone code and a 95,036 line system.

For jEdit, the active clones represent 2304 lines of code, out of 7,320 lines of clone code and system line of

code of 115246. For uniCentaoPOS, the active clones represent 55–141 lines of code, out of 4578 lines of code

and a system size of 4,3032 With respect to number of files, HSQLDB has 513 files, 293 with method clones

and between 22–25 with active clones for the uses represented by the use sets. The system JHotDraw has

309 files in the system, 183 with clones and between 26–28 files with active clones, and RText has 319 files,

81 with clones and 7 with active clones. The system jEdit 571 files in the system, 161 with clones and 44

with active clones while uniCentaoPOS contains 486 files, 174 with clones, and 4–15 files with active clones

Also if we compare the percentage coverage of active clones, lines of code, files and clone classes (Table 5.5)

we find that a fewer percentage of clones are active for each individual test.

We can see that although the systems have a high concentration of clones, relatively few of them are

executed. Only those clones that are test specific are active and are shown to be used more often. For

example if we consider the results in Table 5.5 then in the case of JHotDraw the lines of code for method

clones is 13.4% (denoted by %LCLONE)) but only 1.2% (denoted by %LACLONE) of code are containing

active clones and likely requiring attention during maintenance. A similar picture can be seen for HSQLDB,

RText, jEdit and uniCentaoPOS as well. On the other hand from Table 5.5 we can also associate the coverage

of clones over files. For instance in HSQLDB 57% of files are associated with clones where only 17.3% on

average are found in the trace (denoted by %FTRACE) while only 4.2% of file have active clones (denoted by

%FACLONE). For JHotDraw and RText the percentage of files in the trace denoted by %FTRACE are 61.2%

and 47.9% while the percentage of files containing active clones denoted by %FACLONE are 9.1% and 2.3%

respectively. Similarly in case of jEdit and uniCentaoPOS %FTRACE is 51.9% and 17.5% while %FACLONE

is 7.4% and 3.1% respectively.

In summary, active clone detection has the following three characteristics if we just consider line, file

and method metrics. First, tests can be used to identify active clones. Second, identifying active clone

classes allows us to identify not only the clones that are active as a result of the test, but also (using static

86

Table 5.7: Frequently Executed Active Clones by System

System Active Clone
Times CPU Use Clone Class
Invoked (nanosec) Id Size

HSQLDB

readByte() 2509 1.02E+7 398 3
getOrAddInteger() 421 2.48E+6 30 2
writeShort() 43 1.07E+5 464 2
readBoolean() 320 3.20E+4 398 3
getInt() 5 4.09E+5 496 4

JHotDraw

basicGetBounds() 8 2.31E+6 207 6
ensureSorted() 7 1.77E+6 186 2
updateEnabledState() 6 8.05E+5 140 3
fireToolDone() 1 9.56E+6 103 3

RText

getRTextScrollPaneAt() 33 5.10E+5 71 2
createCheckBox() 6 1.51E+6 55 2
windowGainedFocus() 6 1.04E+3 79 2
windowLostFocus() 6 6.90E+3 79 2
setSearchParameters() 1 1.29E+7 25 2

jEdit

getScreenLineStartOffset(int) 911 8.21+E9 196 2
jj 3R 129() 234 3.12E+10 14 4
jj 3R 216() 226 3.92E+9 31 4
EqualityExpression() 90 9.71E+10 8 6
jj 3R 37() 639 7.58E+10 129 6

uniCentaoPOS

readValues(int) 3 8.21+E9 67 2
fireDataContentsChanged 1 2.7E+8 28 3
activate() 1 8.14E+9 97 7
fireDataIntervalAdded () 1 7.57E+6 28 3
getDialog(Component) 1 5.04E+8 69 3

analysis) the clones that are related to the active clones through clone classes and by seeing which clones are

involved with which kind of system uses. It is important to consider all the related clones when performing

maintenance to help ensure we consistently change them. We note that for the systems and uses we studied,

the active clone classes are between 2 and 6 in size. Third, there is evidence that active clones are present

in each test case we exercised. If we observe closely the statistics and comparison of active clones in terms

of lines of code, files, and clone classes with active clones we can clearly see that active clones are very few

in number involving less lines of code and less file coverage. For instance, in the case of HSQLDB a reduced

number of lines of code, files and classes are found active per test. This may help guide a software developer

in prioritizing which clones to look at by giving inspection priorities to active clones and their corresponding

active clone classes instead of looking for every clone in the system.

RQ1: To what extent are clones active during runtime? Analysing our subject systems we see that clones

are active even for simple tests and that with typical modest uses of a system that they are at least an

order of magnitude fewer in number than the number of clones in a system. Active clones could be used to

prioritize clone inspection during maintenance tasks by allowing us to focus on those clones related to the

task at hand.

In addition to the previously discussed metrics, we can also analyze active clone runtime properties related

to the traces, such as frequency of invocation, order of invocation, relation of invocation to typical system

87

uses, and resource utilization (i.e., CPU usage). Table 5.6 shows the active clone characteristic and the CPU

usage of all the systems over each test case based on user interface (UI) events. The column CPU time

denotes the total time consumed by events within the test and the column %Active CPU Time signifies the

percent of CPU time consumed by the active clones executed by the corresponding event within the test.

From the Table 5.6 we see that concentration of active clones in feature implementation denoted by

threadSignal is higher then GUI code with over 7% for HSQLDB for three of the tests and around 6.1%

for JHotDraw which is less than GUI code, and 2.5% for RText which is higher than mouseClick but less

than displayUpdate. Interestingly, if we compare the two mouse click events (buttons and mouse event) in

JHotDraw we notice that there are a greater number of active clones associated with creating figures in the

editor than clicking a button in the system. In case of jEdit threadSignal occupies 2.5% of active clones

while for uniCentaoPOS more than 8% of the active clones are concentrated on the mouseClick (Timer)

event with the exception of the test “Select” where all of the active clones are in mouseClick (JButton).

From the Table 5.6 we can also observe that clones do execute and occupy a significant amount of CPU

time. Thus, CPU time information of the active clones can also be an important parameter to consider

during maintenance activity such as code optimization or determining inconsistent changes in clone. For

instance, lets consider a class containing three clone fragments and all gets executed during a certain use. It

is apparent that all the active clones should spent the same amount of time during execution. Therefore, any

discrepancy in the timing value of the active methods could be an indication of certain method spending more

time for execution. Possible reason could be a bug that have never been fixed here which made the methods

inconsistent with other methods in the same class. In this way CPU time can be utilised to understand the

behaviour of the methods and be used an an indicator of tracking abnormal behaviour of them in the clone

class.

At the same time a segmented active clones can help developers identify which section of the system’s

code to inspect as a part of the maintenance task. Thus, there is a possibility that effort may be reduced

by providing the developer with more detailed, fine grained data on active clones. For instance, if new

features in the GUI are being added or modified as part of the maintenance task then the corresponding UI

events and the associated active clones can help them in program comprehension. Code inspection may be

reduced and the segmented active clones can further provide a way for effective clone management. As an

example, we notice that for a number of uses, active clones are taking up a significant portion of the CPU

time. For example, 33%–67% of the CPU time is involved with active clones for a small set of traces. If we

look at Table 5.7 we can find that active clone methods gets executed in all the tests with higher number of

frequencies and CPU time consumption in all the five systems. Interestingly, we can also observe in case of

HSQLDB, RText and uniCentaoPOS that the fragments in the same clone class gets executed with a higher

number of invocations. For instance, in HSQLDB methods readByte() and readBoolean() belong to the

same clone class 398 and is invoked 2509 and 320 times which is a significant amount. For RText, methods

windowGainedFocus() and windowLostFocus() belonging to the same clone class and gets executed six times

88

Table 5.8: Overview of Clone Genealogies

Domain System Versions
Text Editor RText 1.3.1 - 2.0.7

Graphics JHotDraw 7.0.6 - 7.5.1
Database Server HSQLDB 2.2.0 - 2.2.10

Point of Sale UnicentaoPOS 2.53 - 3.02
Text Editor jEdit 4.3.2-5.00

Figure 5.1: Static Change: Active Versus Non-Active

each while for uniCentaoPOS methods fireDataContentsChanged() and fireDataIntervalAdded() are invoked

once.

RQ2: How active are the active clones? The research question RQ1 addressed the dynamic behaviour

of the active clones involved during the runtime of the systems. It signified that clones do exercise when

a system is used and each feature contains active clones. Since maintenance of a system is a continuous

process, changes in the code is done to meet customer requirements, fix bugs or optimize to make the system

more efficient. Therefore software evolves with time and during which changes are made to the systems.

In our study we are interested to look at how the active clones participate in the maintenance phase when

the developers modify the source code. More specifically we wanted to study how the active clones evolve.

We have adapted the genealogy extractor, called gCAD [83] to extract the genealogy of the systems over a

number of versions as shown in Table 5.8 to detect the change patterns of the systems. We then post processed

the genealogy of the systems to map the active clones and identified their patterns. In our study we have

considered only three types of change patterns : a) static b) consistent and c) inconsistent change patterns.

We then compared the activeness of clones against the active and the non-active code clones. Figures 5.1,

5.2, and 5.3 show the change patterns of the active clones and non-active clones for each systems.

From Figure 5.1 we can observe that both the non-active clones and the active clones change and more

than 60% of the clones play a significant role during the change. In case of HSQLDB, RText, jEdit and

uniCentaoPOS we can see a similar pattern that the difference between the active and non-active code clones

89

Figure 5.2: Consistent Change: Active Versus Non-Active

Figure 5.3: Inconsistent Change: Active Versus Non-Active

90

Figure 5.4: Code Snippets from JHotDraw Showing Clone Fragments in Two Versions: (a) Version
7.0.6 and (b) Version 7.4.1

on an average is less than 10% with an exception of JHotDraw where the difference is around 40% and the

activeness of the non-code clones surpasses the active clones. Therefore, we can conclude that active clones

are significantly active in terms of change as the non-active clones during the static change pattern.

On the other hand, if we look closely at Figure 5.2 for the consistent change, we can see that for the

systems JHotDraw, HSQLDB, jEdit and uniCentaoPOS both the active and the non-active clones change

at the same time and the difference in activeness between them is less than 6% with an exception of RText

where no active clones participate in the change pattern. Therefore, active clones do play a vital role and

have significant impact on the maintenance activity.

Though practice of code cloning speeds up the development process, it also poses threat of bug propagation

due to inconsistently changing the clone fragments. If a clone fragment is changed for bug fixing and at the

same time the corresponding fragments are left unchanged then the bugs will sustain and propagate further.

This may also introduce new bugs later during the use of the software system. Therefore, we also looked

into the comparison of the behaviour of the active and the non-active code clones in terms of inconsistent

changes. If we observe Figure 5.3 we can find that both the active and the non-active clones behave in a

similar fashion such that each system contains clones that are changed inconsistently. Interestingly, we can

also see that active clones are more active than the non-active clones and surpasses the non-active ones. In

case of JHotDraw, HSQLDB, RText and uniCentaoPOS the active clones have changed more inconsistently

than the non-active clones. In case of JHotDraw almost 80% of the active clones are changed inconsistently

compared to non-active clones which is around 15%. Similarly for HSQLDB, RText and uniCentaoPOS

the percentage of inconsistent changes of active and non-active clones are around 15%, 35%, 22% and 10%,

29% and 8% respectively. However in case of jEdit even though the non-active clones have changed more

inconsistently than the active clones we still get some active clones that have changed inconsistently.

To get more insight we randomly picked active clone classes and analysed the source code of the active

clones manually. Our intent was to look into the purpose for which active clones have been changed. The

following Figures 5.4 and 5.5 shows the active clone code snippets from JHotDraw that have been modified

over to the next versions.

Figure 5.4 (a) shows a comparison of the snippets between version 7.0.6 and 7.4.1. In version 7.0.6

the statement isEnabled = realRedoAction.isEnabled()) has been guarded by a second condition. This is

91

Figure 5.5: Code Snippets from JHotDraw Showing Clone Fragments in Two Versions: (a) Version
7.0.6 and (b) Version 7.5.1

Table 5.9: Number of Genealogies of Active and Non-Acitve Clones by Type

System Type
Active Clones Non-Active Clones
Static CC IC Static CC IC

JHotDraw
Type-1 7 2 6 60 43 60
Type-2 1 2 9 53 47 64
Type-3 3 6 31 158 66 193

HSQLDB
Type-1 2 0 0 76 3 5
Type-2 2 1 0 75 6 6
Type-3 25 0 2 283 15 42

RText
Type-1 0 0 1 9 3 2
Type-2 3 0 0 37 2 6
Type-3 4 0 3 75 4 45

jEdit
Type-1 1 0 0 3 0 2
Type-2 25 0 0 41 2 3
Type-3 45 3 2 82 1 21

uniCentaoPOS
Type-1 0 0 0 15 2 1
Type-2 4 0 0 30 12 1
Type-3 6 2 3 76 30 14

a possible indication of bug fixation. Moreover, we also noted that during the evolution process the clone

class has been changed inconsistently with new fragments being added and deleted to the clone classes. On

the other hand, Figure 5.5(b) gives us a different insight about the reason for the modification of the code

snippets. If we take a close look into both the codes of versions 7.0.6 and 7.5.1 we can see that parameter type

from double has been changed to float in the method addAttribute() from version 7.0.6 to version 7.5.1. The

variable double is a 64 bit data type whereas float is a 32 bit data type which is half the storage consumption

of the double.

RQ3: Does active clone identification support software maintenance activities? From our study we see that

awareness of active clones and their runtime behaviour may help support maintenance by allowing developer’s

to focus on similar code fragments whose improvement could benefit the use of the system as a whole and

on clone classes that are involved in system uses related to the task at hand. This is well supported by the

research questions RQ1 and RQ2. The dynamic properties of active clones such as times of invocations, CPU

time, and active clone genealogies can be used to prioritize clone inspection during maintenance activities.

Clones that are invoked a greater number of times and that occupy higher percentage of CPU time can be

put at the highest priority in the list of clone inspection during clone management. Moreover, active clone

92

genealogies can also assist the maintenance engineers to formulate the clone inspection process by selecting

the active clone classes based on their change patterns. Since a clone class contains a number of similar

fragments and the active clone classes being a part of genealogies, both can indicate the engineers to consider

all the fragments in that clone class during modifications. This will also avoid clone fragments that are left

with inconsistent change and eventually prevent further bug propagation.

Previous study [84] on the change patterns on the genealogies of clones show that Type-3 clones are more

inconsistent than the Type-1 and Type-2 clones which require more careful attention during maintenance.

With regards to this, we also tried to conduct a similar study based on our framework to reveal the change

pattern of the active clone types. Table 5.9 shows the comparison of activeness of Type-1, Type-2 and

Type-3 clones between the active and non-active clones. If we observe closely, we can see that the Type-3

clones have a greater tendency to change when compared to Type-1 and Type-2 clones. In all the change

patterns, the Type-3 active clones surpasses that of Type-1 and Type-2 clones. More interestingly, on an

average 31.7% of Type-3 active clones change inconsistently while Type-1 changes slightly less than 29%.

Similarly, for consistent change pattern 4.2% of active clones are Type-3 with no change for Type-1 and

Type-2. On an average for static change, 60.4% of Type-3 clones are static in nature followed by Type-1

which is 49.2% with Type-2 clones standing at 74.6%. We also noticed that Type-3 clones are significantly

less stable than the Type-2 clones with an exception of Type-1 clones. This is because of the absence of

Type-1 active clone fragments in RText and uniCentaoPOS. In case of non-active clones for all the three

change patterns we can see that Type-3 clones possess inconsistent changes with over 50% followed by Type-

2 and Type-1. Therefore, the study conducted in the activeness of active clones based on types can also add

benefits to software maintenance, especially when clones need to be managed. We can conclude that further

enhancement in clone management activity can be done by prioritizing the clone inspection based on types.

From the study (Table 5.9) we can infer that clone types that are less stable can be looked at first than the

other ones that are more stable. In other words, we can say that active clones that have a higher tendency

to change inconsistently can be given higher attention than the consistent ones so that they can be managed

carefully.

5.4 Summary

There are a number of threats to the validity of our analysis. Execution traces are based on the tests we

provided. Additional testing would reasonably result in additional methods being executed with the possi-

bility of additional active clone fragments being identified and thus the reduction in clones to be considered

may not be as significant. However, our intention of this study is to only focus on test specific clones during

the maintenance of that related functionality, and it is obvious that there will be a reduction of active clone

fragments (hence the reduction of active clone classes) for maintenance as evident by our results.

In our study, we did not use real test suites of the systems to address any specific maintenance tasks.

93

As a result, all the tests were synthetic in nature which impacted the relevance of the collected execution

traces. Again, this does not have any impacts on our findings as it is obvious that there will be less number

of active clones for a test case compared to all the clones of the system. For the same reason, we did not feel

the importance of making a comprehensive test suite that can exercise the entire subject system. In the case

where the entire system is exercised by a test suite, all the clones of that system will be active clones and

thus all the clones are subject to maintenance, which is in contrary to the motivation of this work.

We studied a small set of systems and thus it is impossible to generalize the findings. However, we

carefully selected the systems of diverse varieties and sizes and experienced similar characteristics in favour

of our claim. Furthermore, it is of course obvious that a subsystem (i.e., a part of the system captured by a

test suite) will have less number of clone fragments than the entire system, and essentially will help reduce

the maintenance effort. Our framework is designed to report active clone fragments of the subset of the

system’s features. If the active clone fragments of the whole system is desired then the tool will report all the

clones of the system as active clones, and thus prioritization of them followed by reduction in management

effort does not apply.

Another threat to the validity of the findings (in particular the precision and recall of finding active

clone fragments) is that it depends on a third party static clone detection tool. Depending on the tool, the

types and granularity of clones, and the precision and recall of finding active clones might significantly vary.

However, in our approach, we have used NiCad, which works both for method and block levels of clones, and

which has been shown highly accurate in terms of both precision and recall both for method and block levels

of clone detection. In order to gain further confidence on the findings, we have applied a semi-automated

search based approach for a number of active clones. We randomly selected a few active clone fragments and

then for each of them we searched for their corresponding similar fragments in the source code using an IDE

based near-miss clone detection tool developed in our lab [105]. For all the cases, we experienced similar

findings as of NiCad. We also conducted the same procedure for a few other methods that were found in the

traces but were not part of the clones. We did not find any other fragments similar to them in the system,

which essentially again is consistent with NiCad’s output.

94

Chapter 6

Conclusion and Future Work

Software maintenance is an important aspect in software engineering which ensures sustainability of

efficient, reliable and right product for customers. It is an incremental process which initiates after a product’s

release. Meeting a customer requirement is one of the prime objectives of maintenance activity. Thus

maintaining a system consumes a considerable amount of time. The process even becomes complex during

the course of its usage as more and more modifications are brought into it making the system large in

size. Therefore, this impacts program comprehension as well such that poor understanding about a system’s

implementation, architecture and design may cause the maintenance difficulty or impossible in many cases.

Understanding the features of a system by analysing the method calls collected as execution traces can

help the developer to gain insight of how a feature is implemented. Execution traces contain a sequence of

method calls that represents the underlying implementation of features. Knowing only the method calls in

textual format will not provide any understanding about a system’s implementation. Therefore, mining the

execution traces is one of the necessary steps. Revealing the context (objective of implementation of methods)

can add benefit to the developers by making the traces more meaningful. If the method calls can be segmented

based on system use, test and event then the features can be located easily. Our technique contains simple

yet efficient and when implemented as a tool makes the analysis of trace easier and comprehensive. We

have defined frameworks for testing, mining, and visualization. We have used Aspect Oriented Programming

(AOP) approach to instrument code and then a static one to mine important information from the source

code.

Locating features in a system is one of the challenging tasks for program comprehension. The better

a feature can be located the more precise and perfect would the maintenance be. To make the analysis

more easy, simple and yet effective we have performed mining of traces both in terms of quantification and

clustering. The more modular and informative a trace would be the easier would be the comprehension. To

address this issue we have categorised method calls based on system use, test and events to determine their

contexts. We have also proposed a taxonomy of metrics and enhanced the understanding of the features

by applying them to quantify their behaviour. The comprehension process is further accompanied by using

the display of screen shots in the form of image. This solves the problem of mapping segmented traces

to interfaces. We have also used an annotator to segment execution traces during the testing so that the

beginning and the end of tests can be easily identified. We also mined information for similar code fragments

95

called clones to determine the contexts in which they are used. Finally, to support the clone management we

further mined the traces to determine the behavioural aspect of the clones using a set of active clone metrics.

In chapter 3, we have proposed a testing framework, an analysis framework, a trace mining framework,

a taxonomy of metrics and a trace mining data organization. The testing framework is used to connect the

user activities defined in use sets and tests to the source code. It accommodates tests corresponding to a

user interacting with the system. The analysis framework describes the overall strategy of our study of how

data is collected and the process of the execution trace mining. Our framework incorporates both the static

and the dynamic approaches. The static approach is used to mine source code information and the dynamic

approach is used to collect run time data. The trace mining framework is used to mine the execution trace

data to identify features, clustering of methods based on API and clones, and the metrics calculation to

determine the behavioural aspects of the features.

In Chapter 4, we have described the prototype of TrAM. We created a trace mining tool with interactive

interface that complements the method call based feature analysis of execution traces. The tool allows the

developers to navigate through a tree-like structure of the execution traces, identify features and understand

their context. It contains panels such as main panel for the representation of traces, an image thumbnail panel

for displaying user interfaces, a metric panel to display the metric values based on system uses, tests, events,

methods and groups. The thumbnail panel can be zoomed out and the code viewer panel displays the real

implemented source code associated with the snapshot. To differentiate between the internal and external

methods, the tool incorporates a filtering approach that allows the developers to analyse features based on

choice of methods. Three radio buttons internal, external or both selection choices can let the developers to

switch among them as desired. Grouping of methods based on API and active clones is supported by the

categorization panel. The developers can easily analyse the existence of groups of methods and active clone

class containing fragments in the execution trace.

In Chapter 5, we have also conducted an empirical study on the execution traces using our tool to examine

the behaviour of active clones. We have answered three research questions by conducting experiments on

five subject systems JHotDraw, HSQLDB, RText, jEdit, and UniCentaoPOS of varying size and types. We

found that traces do contain active clones and in every test there is involvements of active clones. We also

studied active clones in terms of their activeness using the active clone genealogy and compared their change

patterns with the non-active clones. We found that active clones are highly active than the non-active clones

and change more inconsistently. Moreover, we also found that active clones are less stable than the non-

active clones. On further analysis we also found that Type 3 active clones are more active than the Type

2 and the Type 1 clones. Therefore, active clones can be used as a means for clone management such as

prioritizing clone inspection. The active clones can also help the maintenance engineers to understand what

portions of trace are occupied by active clones and the how distributed the active clones are over the system.

Although we have used systems of various size and types, analysis on more system would provide precise

result. Similarly, the experiment is sensitive to test and its coverage where real tests would have provided

96

more precise results. We presented an approach for assisting a software developer in the maintenance of

systems containing clones by focusing on those clones that are involved in tests related to the maintenance

task.

One of the major part of trace mining in TrAM is active clone mining. Right now it is dependent on a

single clone detector NiCad having a its own file format of clone representation. In future, we plan to mine

active clone information from the result file of other clone detector having different file formats. The traces

that are shown in the trace screen are plain texts of method calls and their call graph. To make it more

easy, simple and readable to the user we plan to collapse the trace based on consecutive repeated patterns.

For instance, a certain portion of code may contain in a loop and at certain point it executes a number of

times with identical emerging patterns. Such pattens can be reduced by clustering them all into one group

and collapsed as one. This will reduce the length and size of the trace. To do so, we plan to make use of

any kind of similarity pattern to detect similar chunks of trace. The call graph represented by TrAM is a

caller-callee relationship. However, it can be enhanced and made more informative by adding the information

of caller-callee relationship in terms of inheritance in case of API.

The other part of the mining of TrAM is the quantification of trace in terms of metrics. To make them

more presentable and understandable, graphical approaches with color schemes can be implemented. From

the user study we have also found that 36% of the participants had difficulty in reading information of traces

due to the complex organization of data. We, therefore, also plan to make the organization of the tool

more simple and yet more presentable to the users. Moreover, the user study also revealed that 43% of the

participants had other comments about the tool’s design and appearance. The majority of them expressed

their interests on having a help option that will provide them with a quick guideline on how to use the tool and

what the features represent. Few of them wanted more categorization based on groups of internal methods

such as class based consumption of the internal methods. Thus, our future work will be concentrated on

the issues raised by the participants and plan to resolve them by adding those new functionalities. Besides

categorizing trace based on external methods and active clone classes, we will also incorporate categorization

by method return types, and access modifier. For instance, a method may have a return type of int, float,

double, object and so on and categorizing the methods based on these types would be interesting to analyse.

Finally, we will incorporate more dynamic information of the method’s resource consumption such as amount

of memory allocated by the internal and external methods.

One of the main applications of the tool is to assist the new developers to understand the functionalities

of a system. In industry where a lot of commercial systems are developed must go through the maintenance

phases that would require changes to be made in the source code. Therefore, a system evolves continuously

to meet the customer requirements. In such cases, execution traces can be collected for all the functionalities

implemented by the system. Therefore, whenever a new developer is on its way to modify a certain function-

ality then at first they can use TrAM to understand the implementation of the features which will save a lot

of maintenance time dedicated for understanding.

97

References

[1] K. Arnold. Programmers are People, Too. ACM Queue, volume 3, issue 5, pages 54–59, 2005.

[2] F. Asadi, M. Di Penta, G. Antoniol, and Y. Gueheneuc. A Heuristic-based Approach to Identify
Concepts in Execution Traces. In Proceedings of the 14th European Conference on Software
Maintenance and Reengineering (CSMR ’10), pages 31-40, 2010.

[3] M. Asaduzzaman, C. K. Roy, and K. Schneider. VisCad: Flexible Code Clone Analysis Support
For NiCad. In Proceedings of the International Workshop on Software Clone (IWSC ’11), pages
77–78, 2011.

[4] T. Bakota, R. Ferenc, and T. Gyimothy. Clone smells in software evolution. In Proceedings of
the International Conference on Software Maintenance (ICSM ’07), pages 24–33, 2007.

[5] T. Ball. The Concept of Dynamic Analysis. In Proceedings of 7th European Software Engineering
Conference held jointly with the 7th ACM SIGSOFT International Symposium on Foundations
of software engineering (ESEC/FSE ’99), volume 1687, issue 1999, pages 216-234, 1999.

[6] T. T. Bartolomei, K. Czarnecki, R. Lammel, and T. van der Storm. Study of an API migration
for two XML APIs. In Proceedings of 2nd International Conference on Software Language
Engineering (SLE ’09), pages 42–61, 2009.

[7] V. R. Basili. Evolving and packaging reading technologies. Journal of System Software volume
38, issue 1, pages 3-12, 1997.

[8] J. Bloch. How to Design a Good API and Why it Matters. In Proceedings of 21st International
Conference on Object-oriented Programming Systems, Languages, and Applications (OOPSLA
’06), pages 506–507, 2006.

[9] C. Bore and S. Bore. Profiling Software API Usability for Consumer Electronics. In Proceedings
of International Conference on Consumer Electronics (ICCE ’05), pages 155–156, 2005.

[10] G. Canfora and A. Cimitile. Software maintenance. In Handbook of Software Engineering and
Knowledge Engineering, 2002.

[11] S. Clarke and C. Becker. Using the Cognitive Dimensions Framework to Evaluate the Usability
of a Class Library. In Proceedings of Joint Conference of EASE and PPIG, pages 359–366, 2003.

[12] J. R. Cordy and C. K. Roy. Tuning Research Tools for Scalability and Performance: The NICAD
Experience. Science of Computer Programming 79,1 (January 2014), pp. 158-171.

[13] J. R. Cordy and C.K. Roy. The NiCad Clone Detector. In Proceedings of the Tool Demo Track
of the 19th International Conference on Program Comprehension (ICPC ’11), pages 219–220,
2011.

[14] B. Cornelissen, A. Zaidman, A. Deursen, L. Moonen, and R. Koschke. A Systematic Survey of
Program Comprehension through Dynamic Analysis. In IEEE Transaction on Software Engi-
neering, volume 35 issue 5, pages 684–699, 2009.

[15] B. Cornelissen, A. Zaidman, D. Holten, L. Moonen and A. van Deursen, and J. J. van Wijk.
Execution Trace Analysis Through Massive Sequence and Circular Bundle Views. The Journal
of Systems and Software 81 (2008), pages 2252-2268, 2008.

98

[16] U. Dekel and J. D. Herbsleb. Improving API Documentation Usability with Knowledge Pushing.
In Proceedings of International Conference on Software Engineering (ICSE ’09), pages 16–24,
2009.

[17] T. Eisenbarth, R. Koshke, and D. Simon. Aiding Program Comprehension by Static and Dy-
namic Feature Analysis. In Proceedings of the International Conference on Software Mainte-
nance (ICSM ’01), pages 602–611, 2001.

[18] B. Ellis, J. Stylos, and B. Myers. The factory pattern in API design: A Usability Evaluation.
In Proceedings of the 29th International Conference on Software Engineering (ICSE ’07), pages
302–312, 2007.

[19] M. D. Ernst. Static and Dynamic Analysis: Synergy and Duality. In Proceedings of ICSE
Workshop on Dynamic Analysis, pages 25-28, 2003.

[20] R. E. Fairley. Tutorial: Static Analysis and Dynamic Testing of Computer Software. IEEE
Journals and Magazines, pages 14-23, 1978.

[21] M. Feilkas and D. Ratiu. Ensuring Well-Behaved Usage of APIs through Syntactic Constraints.
In Proceedings of the 16th IEEE International Conference on Program Comprehension (ICPC
’08), pages 248–253, 2008.

[22] M. Fischer, J. Oberleitner, H. Gall, and T. Gschwind. System Evolution Tracking Through
Execution Trace Analysis. In Proceedings of the 13th International Workshop on Program Com-
prehension (IWPC ’05), pages 237–246, 2005.

[23] R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger. Relation of code clones and change couplings.
In Proceedings of the 9th International Conference of Fundamental Approaches to Software
Engineering (FASE ’06), pages 411–425, 2006.

[24] J. D. Gradecki and N. Lesiecki. Mastering AspectJ: Aspect-Oriented Programming in Java. John
Wiley and Sons, Pages 456, 2003.

[25] T. Gschwind, J. Oberleitner, and M. Pinzger. Using Run-Time Data for Program Comprehen-
sion. In Proceedings of the 11th International Workshop on Program Comprehension (IWPC
’03), pages 245–250, 2003.

[26] A. Hamou-Lhadj and T. Lethbridge. Measuring Various Properties of Execution Traces to Help
Build Better Trace Analysis Tools. In Proceedings of the 10th International Conference on
Engineering of Complex Computer Systems (ICECCS ’05), pages 559–568, 2005.

[27] A. Hamou-Lhadj and T. Lethbridge. Compression Techniques to Simplify the Analysis of Large
Execution Traces. In Proceedings of the 10th International Workshop on Program Comprehen-
sion (IWPC ’02), pages 159–168, 2002.

[28] A. Hamou-Lhadj. Techniques to Simplify the Analysis of Ex-
ecution Traces for Program Comprehension. PhD Thesis,
http://www.site.uottawa.ca/∼tcl/gradtheses/ahamou/AbdelwahabHamouLhadjPhDThesis.pdf,
University of Ottawa, pages 171, 2005.

[29] A. Hamou-Lhadj and T. C. Lethbridge. A survey of trace exploration tools and techniques. In
Proceedings of the Conference of the Centre for Advanced Studies on Collaborative Research
(CASCON ’04), pages 42-55, 2004.

[30] A. Hamou-Lhadj, T. Lethbridge, and L. Fu. Challenges and Requirements for an Effective Trace
Exploration Tool. In Proceedings of International workshop on Program Comprehension (IWPC
’04), pages 70–78, 2004.

[31] M. J. Harrold. Testing: a Roadmap. In Proceedings of the Conference on The Future of Software
Engineering (Special Volume published in conjunction with ICSE ’00), pages 61–72, 2000.

99

[32] J. Henkel and A. Diwan. CatchUp!: Capturing and Replaying Refactorings to Support API
Evolution. In Proceedings of the 27th International Conference on Software Engineering (ICSE
’05), pages 274–283, 2005.

[33] M. Henning. API Design Matters. ACM Queue, volume 5, issue 4, pages 24–36, 2007.

[34] J. N. Herder. Aspect-Oriented Programming with AspectJ. Vrije Universiteit, Amsterdam,
2002.

[35] R. Holmes, R. Walker, and G. Murphy. Approximate Structural Context Matching: An Ap-
proach to Recommend Relevant Examples. In IEEE Transactions on Software Engineering,
volume 32, issue 12, pages 952–970, 2006.

[36] P. Jalote, V. Vangala, T. Singh, and P. Jain. Program Partitioning - A Framework for Combin-
ing Static and Dynamic Analysis. In Proceedings of the International Workshop on Dynamic
systems Analysis (WODA ’06), pages 11– 16, 2006.

[37] D. Jerding and S. Rugaber. Using Visualisation for Architecture Localization and Extraction. In
Proceedings of the 4th Working Conference on Reverse Engineering (WCRE ’97), pages 56–65,
1997.

[38] D. Jerding, J. Stasko, and T. Ball. Visualizing Interactions in Program Executions, In Pro-
ceedings of the International Conference on Software Engineering (ICSE ’97), pages 360–370,
1997.

[39] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do code clones matter? In Proceed-
ings of the 31st International Conference on Software Engineering (ICSE ’09), pages 485–495,
2009.

[40] C. Kapser and M. W. Godfrey. Cloning considered harmful. In Proceedings of the 13th Working
Conference on Reverse Engineering (WCRE ’06), pages 19–28, 2006.

[41] D. Kawrykow and M. P. Robillard. Detecting Inefficient API Usage. In Proceedings of 31st
International Conference on Software Engineering - Companion (ICSE-Companion ’09), pages
183–186, 2009.

[42] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An Overview
of AspectJ. In Proceedings of the 15th European Conference on Object-Oriented Programming
(ECOOP ’01), pages 327–353, 2001.

[43] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy. An Empirical Study of Code Clone Ge-
nealogies. In Proceedings of the 10th European Software Engineering Conference held jointly
with 13th ACM SIGSOFT international Symposium on Foundations of Software Engineering
(ESEC-FSE-13 ’05), pages 187-196, 2005.

[44] K. Koskimies and H. Mossenbock. Scene: Using Scenario Diagrams and Active Text for Il-
lustrating Object-Oriented Programs. In Proceedings of the 18th International Conference on
Software Engineering (ICSE ’96), pages 366–375, 1996.

[45] K. Koskimies, T. Mannisto, T. Systa, and J. Tuomi. SCED: A Tool for Dynamic Modeling of
Object Systems. University of Tampere, Department of Computer Science, Report A-1996-4,
1996.

[46] R. Laddad. AspectJ in Action. Second Edition, pages 568, 2009.

[47] D. Lafferty and V. Cahill. Language-Independent Aspect-Oriented Programming. In Proceedings
of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’03), pages 1–12, 2003.

100

[48] D. B Lange and Y. Nakamura. Object-Oriented Program Tracing and Visualization, IEEE
Computer Society, volume 30, issue 5, pages 63–70, 1997.

[49] T.D. LaToza, G. Venolia, and R. DeLine. Maintaining Mental Models: A Study of Developer
Work Habits. In Proceedings of the 28th International Conference on Software Engineering
(ICSE ’06), pages 492–501, 2006.

[50] S. Liang and D. Viswanathan. Comprehensive Profiling Support in the Java Virtual Machine. In
Proceedings of the USENIX Conference On Object Oriented Technologies and Systems (COOTS
’99), pages 229-240, 1999.

[51] D. Lo, S. Khoo, and C. Liu. Mining Temporal Rules from Program Execution Traces. In Proceed-
ings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis
(PCODA ’07), pages 24–28, 2007.

[52] A. Lozano and M. Wermelinger. Assessing the Effect of Clones on Changeability. In Proceedings
of the International Conference on Software Maintenance (ICSM ’08), pages 227–236, 2008.

[53] L. Luo. Software testing techniques. Institute for Software Research International Carnegie
Mellon University Pittsburgh, PA, 15232:1-19, 2001.

[54] H. Ma, R. Amor, and E. Tempero. Usage Patterns of Java Standard API. In Proceedings of
13th Asia Pacific Software Engineering Conference (APSEC ’06), pages 342–352, 2006.

[55] S. McLellan, A. Roesler, J. Tempest, and C. Spinuzzi. Building more Usable APIs. In IEEE
Software, volume 15, issue 3, pages 78–86, 1998.

[56] M. Mondal, C. K. Roy, and K. A. Schneider. Insight into a Method Co-change Pattern to Identify
Highly Coupled Methods: An Empirical Study. In Proceedings of the 21st IEEE International
Conference on Program Comprehension (ICPC ’13), pages 103–112, 2013.

[57] M. Mondal, C. K. Roy, and K. A. Schneider. Connectivity of Co-changed Method Groups: A
Case Study on Open Source Systems. In Proceedings of the 2012 Conference of the Centre for
Advanced Studies on Collaborative Research (CASCON ’12), pages 205–219, 2012.

[58] M. Mondal, C. K. Roy, and K. A. Schneider. An Empirical Study on Clone Stability. ACM
SIGAPP Applied Computing Review (ACR), volume 12, issue 3, pages 20–36.

[59] M. Mondal, C.K. Roy, and K.A. Schneider. Dispersion of Changes in Cloned and Non-cloned
Code. In Proceedings of the ICSE 6th International Workshop on Software Clones (IWSC ’12),
pages 29–35, 2012.

[60] M. Mondal, C. K. Roy, M. S. Rahman, R. K. Saha, J. Krinke, and K.A. Schneider. Comparative
Stability of Cloned and Non-cloned Code: An Empirical Study. In Proceedings of the Software
Engineering Track of the 27th ACM Symposium on Applied Computing (ACM SAC ’12), pages
1227-1234, 2012.

[61] J. S. Paudel. Aspect Structure of Compilers. PhD Thesis,
http://ecommons.usask.ca/bitstream/handle/10388/etd-08272009-164252/ThesisJeeva.pdf,
University of Saskatchewan, pages 135, 2009.

[62] W. D. Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, and J. Yang. Visualizing the
Execution of Java Programs. Revised Lectures on Software Visualization, pages 151–162, 2001.

[63] W. De Pauw, D. Lorenz J. Vlissides, and M. Wegman. Execution Patterns in Object-Oriented
Visualization. In Proceedings of the 4th USENIX Conference on Object-Oriented Technologies
and Systems (COOTS ’98), pages 219–234, 1998.

[64] D. J. Pearce, M. Webster, R. Berry, and P. H.J. Kelly. Profiling with AspectJ. Software: Practice
and Experience, volume 37, issue 7, pages 747–777, 2007.

101

[65] D. J. Pearce, P. H. J. Kelly, T. Field, and U. Harder. Gilk: A Dynamic Instrumentation Tool
for the Linux Kernel. In Proceedings of the International TOOLS Conference, pages 220-226,
2002.

[66] H. Pirzadeh, A. Agarwal, and A. Hamou-Lhadj. An Approach for Detecting Execution Phases
of a System for the Purpose of Program Comprehension. In Proceedings of 8th ACIS Inter-
national Conference on Software Engineering Research, Management and Applications (SERA
’10), pages 207-214, 2010.

[67] H. Pirzadeh and A. Hamou-Lhadj. A Novel Approach Based on Gestalt Psychology for Ab-
stracting the Content of Large Execution Traces for Program Comprehension. In Proceedings of
16th International Conference on Engineering of Complex Computer Systems (ICECCS ’11),
pages 221–230, 2011.

[68] H. Pirzadeh, A. Hamou-Lhadj, and M. Shah. Exploiting Text Mining Techniques in the Anal-
ysis of Execution Traces. In Proceedings of 27th IEEE International Conference on Software
Maintenance (ICSM ’11), pages 223–232, 2011.

[69] M. S. Rahman, A. Aryani, C. K. Roy, and F. Perin. On the Relationships between Domain-
Based Coupling and Code Clones: An Exploratory Study. In Proceedings of the New Ideas and
Emerging Results Track of the 35th International Conference on Software Engineering (ICSE
’13), pages 1265–1268, 2013.

[70] T. Richner and S. Ducasse. Using Dynamic Information for the Iterative Recovery of Collabora-
tions and Roles. In Proceedings of the 18th International Conference on Software Maintenance
(ICSM ’02), pages 34–43, 2002.

[71] M. Rieger, S. Ducasse, and M. Lanza. Insights into System-wide Code Duplication. In Pro-
ceedings of the 11th Working Conference on Reverse Engineering (WCRE ’04), pages 100–109,
2004.

[72] C. K. Roy and J. R. Cordy, 2010. Near-miss Function Clones in Open Source Software: An
Empirical Study. Journal of Software: Evolution and Process, volume 22 issue 3, pages 165–189.

[73] C. K. Roy and J. R. Cordy, 2008. An Empirical Evaluation of Function Clones in Open Source
Software. In Proceedings of the 15th Working Conference on Reverse Engineering (WCRE ’08),
pages 81–90, 2008.

[74] C. K. Roy and J. R. Cordy. A survey on software clone detection research. School of Computing
Technical Report 2007-541, Queens University, Canada, pages 115, 2007.

[75] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and Evaluation of Code Clone Detection
Techniques and Tools: A Qualitative Approach. Science of Computer Programming, pages 470–
495, 2009.

[76] C. K. Roy and J. R. Cordy. A Mutation/Injection-based Automatic Framework for Evaluat-
ing Code Clone Detection Tools. In Proceedings of the International Conference on Software
Testing, Verification and Validation Workshops (ICSTW ’09), pages 157–166, 2009.

[77] C. K. Roy and J. R. Cordy. NiCad: Accurate Detection of Near-Miss Intentional Clones Us-
ing Flexible Pretty-Printing and Code Normalization. In Proceedings of the 16th International
Conference on Program Comprehension (ICPC ’08), pages 172–181, 2008.

[78] C. K. Roy. Detection and Analysis of Near-Miss Software Clones. In Proceedings of the Doctoral
Symposium Track of the 25th IEEE International Conference on Software Maintenance (ICSM
’09), pages 447–450, 2009.

[79] C. K. Roy and J.R. Cordy. Towards a Mutation-Based Automatic Framework for Evaluat-
ing Code Clone Detection Tools. In Proceedings of the Poster Paper Track of the Canadian
Conference on Computer Science and Software Engineering (C3S2E ’08), pages 137–140, 2008.

102

[80] C. K. Roy, M.G. Uddin, B. Roy, and T. R. Dean. Evaluating Aspect Mining Techniques: A Case
Study. In Proceedings of the 15th IEEE International Conference on Program Comprehension
(ICPC ’07), pages 167–176, 2007.

[81] H. Safyallah and K. Sartipi. Dynamic Analysis of Software Systems using Execution Pattern
Mining. In Proceedings of the 14th International Conference on Program Comprehension (ICPC
’06), pages 84–88, 2006.

[82] R. K. Saha, M. Asaduzzaman, M. F. Zibran, C.K. Roy, and K. A. Schneider. Evaluating
Code Clone Genealogies at Release level: An Empirical Study. In Proceedings of the 10th IEEE
International Conference on Source Code Analysis and Manipulation (SCAM ’10), pages 87–96,
2010.

[83] R. K. Saha, C. K. Roy, and K. A. Schneider. An Automatic Framework for Extracting and Clas-
sifying Near-Miss Clone Genealogies. In Proceedings of the 27th IEEE International Conference
on Software Maintenance (ICSM ’11), pages 293–302, 2011.

[84] R. K. Saha, C. K. Roy, K. A. Schneider, and D. E. Perry. Understanding the Evolution of Type-
3 Clones: An Exploratory Study. In Proceedings of the 10th Working Conference on Mining
Software Repositories (MSR ’13), pages 139–148, 2013.

[85] M. Salah, S. Macoridis, G. Antoniol, and M. Di Penta. Scenario-Driven Dynamic Analysis
for Comprehending Large Software Systems. In Proceedings of 10th European Conference on
Software Maintenance and Reengineering (CSMR ’06).

[86] J. Stylos and S. Clarke. Usability Implications of Requiring Parameters in Objects’ Construc-
tors. In Proceedings of the 29th International Conference on Software Engineering (ICSE ’07),
pages 529–539, 2007.

[87] J. Stylos, B. Graf, D. K. Busse, C. Ziegler, R. Ehret, and J. Karstens. A Case Study of API
Redesign for Improved Usability. In IEEE Symposiium on Visual Languages and Human-Centric
Computing (VLHCC ’08), pages 189–192, 2008.

[88] J. Stylos and B. Myers. Mapping the Space of API Design Decisions. In IEEE Symposium on
Visual Languages and Human-Centric Computing (VLHCC ’07), pages 50–60, 2007.

[89] A. Sutherland and K. Schneider. UI Traces: Supporting the Maintenance of Interactive Soft-
ware. In Proceedings of International Conference on Software Maintenance (ICSM ’09), pages
563–566, 2009.

[90] J. Svajlenko, C. Roy, and J. Cordy. A Mutation Analysis Based Benchmarking Framework
for Clone Detectors. In Proceedings of Short/Tool Papers Track of the ICSE 7th International
Workshop on Software Clones (IWSC ’13), pages 8–9, 2013.

[91] T. Systa. Understanding the Behaviour of Java Programs. In Proceedings of the 7th Working
Conference on Reverse Engineering (WCRE ’00), pages 214–223, 2000.

[92] T. Systa , K. Koskimies, and H. Muller. Shimba An Environment for Reverse Engineering Java
Software Systems. Software Practice and Experience, volume 31, issue 4, pages 371–394, 2001.

[93] S. Voigt, J. Bohnet, and J. Dollner. Object Aware Execution Trace Exploration. In Proceedings
of the International Conference on Software Maintenance (ICSM ’09), pages 201–210, 2009.

[94] R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Swanson, and J. Isaak. Visualizing Dy-
namic Software System Information through High-level Models. In Proceedings of the 13th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA ’98), pages 271–283, 1998.

103

[95] Y. Wu, L. W. Mar, and H. C. Jiau. CoDocent: Support API Usage with Code Example and API
Documentation. In Proceedings of the 5th International Conference on Software Engineering
Advances (ICSEA ’10), pages 135–140, 2010.

[96] T. Xie and J. Pei. MAPO: Mining API Usages from Open Source Repositories. In Proceedings
of the International Workshop on Mining Software Repositories (MSR ’06), pages 54–57, 2006.

[97] Z. Xing and E. Stroulia. API-Evolution Support with DiffCatchUp. In IEEE Transactions on
Software Engineering, volume 33, issue 12, pages 818–836, 2007.

[98] A. Zaidman and S. Demeyer. Managing Trace Data Volume Through a Heuristical Clustering
Process Based on Event Execution Frequency. In Proceedings of the 8th European Conference
on Software Maintenance and Reengineering (CSMR ’04), pages 329–338, 2004.

[99] A. Zaidman, T. Calderfs, S. Demeyers, and J. Paradaens. Applying Webmining Techniques to
Execution Traces to Support the Program Comprehension Process. In Proceedings of the 9th
European Conference on Software Maintenance and Re-engineering (CSMR ’05), pages 134–
142, 2005.

[100] I. Zayour. Reverse Engineering: A Cognitive Approach, a Case Study and a Tool. PhD disser-
tation, http://www.site.uottawa.ca/∼tcl/gradtheses/, University of Ottawa, pages 167, 2002.

[101] M. F. Zibran and C. K. Roy. Conflict-aware Optimal Scheduling of Code Clone Refactoring.
IET Software, volume 7, issue 3, pages 167–186, 2013.

[102] M. F. Zibran, R. K. Saha, C. K. Roy, and K. A. Schneider. Evaluating the Conventional
Wisdom in Clone Removal: A Genealogy-based Empirical Study. In Proceedings of the Software
Engineering track of the 28th ACM Symposium On Applied Computing (ACM SAC ’13), pages
1223–1230, 2013.

[103] M. F. Zibran and C. K Roy. A Constraint Programming Approach to Conflict-aware Optimal
Scheduling of Prioritized Code Clone Refactoring. In Proceedings of the 11th IEEE International
Working Conference on Source Code Analysis and Manipulation (SCAM ’11), pages 105–114,
2011.

[104] M. F. Zibran, R. K. Saha, M. Asaduzzaman, and C.K. Roy, 2011. Analyzing and Forecasting
Near-miss Clones in Evolving Software: An Empirical Study. In Proceedings of the 16th IEEE
International Conference on Engineering of Complex Computer Systems (ICECCS ’11), pages
295–304, 2011.

[105] M. F. Zibran and C. K. Roy. IDE-based Real-time Focused Search for Near-miss Clones. In
Proceedings of the 27th Annual ACM Symposium on Applied Computing (SAC ’12), pages
1235–1242, 2012.

[106] Software Engineering. http://se.inf.ethz.ch/old/teaching/2008-S/se-0204/slides/21-Legacy-
Software.pdf. Accessed in 2013.

[107] Tutorial: DTrace by Example. http://www.oracle.com/technetwork/server-
storage/solaris10/dtrace-tutorial-142317.html. Accessed in 2013.

104

