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Abstract

During the last 50 years, the quality of analysis methods in many scientific disciplines has 

been enhanced by electronic applications, automation and data processing. While the 

features, performance and usability of these processes have been continually enhanced, 

it is conspicuous that the majority of institutes operate own proprietary software. This 

situation arises for both historical and financial reasons, plus a wish to retain autonomy 

fuelled by the requirement for a system that remains compatible with both new and 

legacy hardware.

This thesis reviews the commonly used scientific software systems and their stakeholders 

and tries to identify generic problems. The demands on instrument systems are sum

marized by a requirement specification. Based on these requirements, a basic concept 

is developed tha t reflects the current state-of-the art in software design and which may 

provide a blueprint for instrument system architectures.

The results are used to create a proof-of-concept implementation. Core to this approach 

is an application server that comes with a container, which makes use of the Inversion- 

of-Control pattern  to loosely couple and execute components. These do not need to 

implement fixed interfaces and are thus decoupled from a specific use-case. Components 

can, for example, be proxies tha t control and acquire data from legacy hardware, perform 

calculations, provide a human-machine interface or act as storage. They are dynamically 

wired to experiments using AML-based Assembly files. Both Assemblies and Components 

can be published using a central store on a collaboration platform and shared by the 

community. This increases reusability and allows the use of existing Assemblies with new 

hardware by simply replacing the hardware proxy modules.

Example components have been provided for the access to legacy and new instrument 

hardware, the storage of results in the NeXus format, data reduction, simulation with 

McStas, the execution of customizable scans and the visualization of data.
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CHAPTER

O N E

PREFACE

1.1. Survey of the Thesis

C h a p t e r  1 - P r e f a c e  - [p a g e  11 f f .]

The first chapter starts with introductory notes and suggestions how to read the thesis. 

Information is given about the typographical conventions, how to navigate through the thesis 

and how to obtain the developed software Open Inspire.

C h a p t e r  2 - R e v ie w  o f  e x is t in g  R e s e a r c h  a n d  T h e o r y - [p a g e  17 f f .]

Chapter two begins with a general description of the research question, a basic description of 

the experiment physics and an overview to the utilized research environment. This introduc

tion is followed by a comprehensive review of software systems used for instrument control, 

data analysis, experiment simulation and data storage.

C h a p t e r  3 - S o f t w a r e  R e q u ir e m e n t s  -  [p a g e  55 f f .]

The third chapter covers the requirements for a state-of-the art instrument software. It sum

marizes the analysis process and goals of the project, identifies and compares the stakeholders, 

covers the project constraints, relevant facts, scope and context of the work.
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The chapter closes with a short summary of the Functional Requirements while a compre

hensive list of all Non-Functional Requirements can be found in Appendix 2 on page 808.

C h a p t e r  4 - O p e n  In s p ir e  - T h e  Im p l e m e n t a t io n  - [p a g e  71 f f .]

Chapter four covers the concrete realisation of a software architecture in consideration of 

the stated requirements of chapter three. It starts with the basic concepts of the system, 

which includes network topology decisions, the introduction of the application server archi

tecture and important implementation details. This introduction is followed by the design 

of components, their management and their wiring to so-called Assemblies as well as the 

summary of global system services and configurations. To make components and documents 

publicly available, a collaboration platform has been created, which is shortly covered before 

the chapter finally closes with a summarization of the build system and IDEs integration.

C h a p t e r  5 - O p e n  I n s p ir e  in  t h e  F ie l d  - [p a g e  175 f f .]

The fifth chapter proves the concept by presenting component implementations that cover all 

im portant parts of an instrument system. It starts with an introduction of User Interfaces, 

storage of experiment data using the AeXws-format, customizable scan implementations, con

trol of legacy hardware, simulation of instruments using MeStas and closes with an automated 

instrument calibration setup.

C h a p t e r  6 - S u m m a r y , C o n c l u s io n  a n d  O u t l o o k  - [p a g e  25 5  f f .]

Chapter six summarizes the results and considers the extent to which the software Open 

Inspire fulfils the requirements of the research community. The assets are evaluated as well 

as the limitations and an outlook is given how the developed software can be enhanced.

A p p e n d ix  - [p a g e  2 6 8  f f .]

For the sake of readability, continuative information can be found in the appendix. It is the 

location for configuration files, relevant source code, the non-functional requirements and 

additional graphics.

Finally the thesis closes with the bibliography, list of figures, list of tables and a glossary.



1.2 Readers Instructions 13

1.2. Readers Instructions

This section contains useful information that simplifies navigating through the document and 

understanding of some typographical conventions.

Navigating through the Document

Some techniques have been utilized to provide an improved navigation between parts of the 

thesis. These simplifications affect the electronic document as well as the hardcopy.

L i t e r a t u r e  R e f e r e n c e s

A literature reference is marked by a label in squared brackets. The corresponding entry can 

be found in the bibliography in the appendix at the end of the thesis. To make it easier to 

find a cited document, a URL that contains the latest web location of the cited document 

is given whenever possible1. If the document is read at the computer, clicking cite marks 

and web links is supported to directly navigate to corresponding bibliography entries and 

related documents. Here is an example for a citation of the Open Inspire NOBUGS paper 

—>[FJS+08]f-. To find the text passages where a document is cited, back links are provided.

A c r o n y m s  a n d  G l o s s a r y

In IT related projects it is common to use acronyms for technologies, program names or 

software paradigms. In the majority of cases the first occurrence of an acronym is written in 

its completed form followed by its abbreviation in brackets, e.g. —>Infomia.tion Technology 

(IT)4-. Later on the acronym is only written in its short form IT. All acronyms are added 

to an index of acronyms at the end of the document to consult the meaning even when its 

written in short form. Similar to the bibliography, backlinks are provided to  find the passages 

in the text where the acronym is used. The electronic document allows clicking the acronym 

and navigating to the explanation as well as clicking the indexed pages and showing the 

occurrence.

1Web links have the drawback that the referenced document might have changed or is no more available. It 
is thus recommended to use a service such as the WayBackMachine (h ttp ://a rch iv e .o rg /w eb /w eb .p h p ) to 
obtain a cached version of the document at the effective date of the cite.

http://archive.org/web/web.php


14 Preface

S e c t i o n  a n d  e x t e r n a l  r e f e r e n c e s

This thesis makes use of references to other sections or external web resources. An example 

of such a reference is —̂ chapter 6 on page 255*- or -»http://www.openinspire.org-*-. It is 

possible to quickly navigate to the related text position by clicking it.

R e q u i r e m e n t  r e f e r e n c e s

Appendix 2 (page 308 ff.) contains a list of Non-Functional software requirements tha t are 

referenced in the running text. The printed text allows the reader to find the requirements 

with help of their unique id. If an electronic reader is used, it is possible to jump to a 

requirement by clicking the related link. Such a link is printed in the form: [13 3.2.2].

Understanding the Diagrams

Wherever applicable, meaningful illustrations are used in favor of textual descriptions or 

source code. The first choice for software-related diagrams is the Unified Modeling Language 

(UML), which allows modeling Object Oriented software and its environment in a standard

ized way. To provide a better readability, the illustrations make use of the liberty to mix 

different types of diagrams and to hide irrelevant information. Several books have been used 

as reference for the creation of the included UML diagrams2 but for the understanding of the 

used diagrams it is sufficient to read the book UML 2.0 in a Nutshell [PP05].

1.3. Software Installation

W ithin the scope of the thesis, an instrument software has been developed according to the 

requirements, identified in chapter 3. The software is called Open Inspire3 and abbreviated 

in this document as 01. It is published as a freely available Open Source product [3 7.1.2] and 

can be downloaded at OI’s community portal h t t p : //www. o p e n in sp ire . org. This page also 

contains documents with up-to-date information about installation, configuration and usage 

of Open Inspire. Beyond that, collaboration tools are available tha t allow to browse sources, 

communicate with developers, report bugs and get access to documentation.

2UML books used for this thesis: [BalOl, Bal05, BRJ06, ER02, EROS, Sch03, umlOS]
3Acronym for Open Infrastructure for Natural Science and Programming in Research Environment.

http://www.openinspire.org-*-
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1.4. Internal Section

The 01 webpage comes with restricted area, which provides supplemental information for 

this thesis. If a reader prefers to read the thesis on a tablet or computer, it is possible to 

download the document in form of a PDF file. The URL to the internal section is h t tp :  

/ / t h e s i s . o p e n in sp ire .o rg . This section also contains links to additional information or 

demonstrations. It is recommended to regularly check the page for updates or demo material.

The page is protected and can be accessed using the username th e s i s  and password 

p h d th e s is .



CHAPTER

T W O

REVIEW OF EXISTING RESEARCH AND THEORY

The intention of the second chapter is to familiarize the reader with the research topic, the re

search environment, the state-of-the-art in experiment related software, and the identification 

of demands for new software functionality.

The chapter starts with the definition of the general research question tha t will be refined 

using a comprehensive requirement analysis in chapter 3.

Subsequently a short overview presents the basic physics and experiments performed in the 

selected research and test environment.

This overview will be completed by a short introduction to the assembly of the instrument 

and sample environment.

The next section covers commonly used experiment related software and gives a comprehen

sive survey of instrument control and data acquisition software, data analysis, processing and 

visualization software, instrument and experiment simulation as well as software for data  

exchange and storage.

Finally this chapter closes with an analysis of software demands achieved by user and devel

oper interviews.
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2.1. The Research Question

Using neutron and synchrotron radiation for non-destructive material analyses in the area 

of material science and engineering is a common technique. In addition to X-ray experi

ments, synchrotrons and neutrons can be used to get a deep insight into materials without 

manipulating their geometry or characteristics.

All of these experiments have a similar setup and use diffraction techniques for the investiga

tion of material properties. The simplest setup consists of a source, a sample and a detector. 

The source provides a synchrotron or neutron beam that will hit the sample, which will scat

ter, absorb or transmit the beam. Intensities, positions and distributions of the scattered 

radiation, measured by the detector are used to infer information about constitutional and 

structural properties of the material.

Generating synchrotron or neutron radiation by accelerators, reactors and spallation sources 

involves high complexity and costs, which makes beam-time rare and expensive. An im

portant target is hence to reduce the duration of experiments by optimizing the setup and 

by decreasing idle-times. While one way to achieve this is by hardware upgrades, such as 

enhanced neutron optics or more sensitive detectors, this thesis seeks to answer the question 

as to the extent this can be achieved by means of enhanced software systems.

Software can speed-up experiments and increase quality by automating recurring tasks, min

imizing breaks necessary for user-input as well as utilizing algorithms th a t decrease the du

ration of experiments by running them  autonomously. For the overall benefit it is however 

necessary to also include the development effort for such new software functionality into the 

consideration if such an upgrade is worthwhile.

Since scientific experiments are often specialized for a particular purpose, continually en

hanced and tailored to a specific environment, they are not developed for a mass-market. 

This means tha t nearly all institutes invest time and money in proprietary in-house solu

tions. The result are similar redundant functionalities that are over and over developed at 

different operating sites.
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This redundancy is not necessary but difficult to prevent since there is no generally accepted 

standard, which is compatible with all possible instrument setups. And if such a standard 

would exist, it is nearly impossible to raise up the effort in changing all existing setups and 

upgrading them with environment-specific functionality.

The thesis hence seeks to answer the question in which way a system can be designed that 

reduces development redundancy by providing means that allow to share common function

ality between institutes. The challenge is here to allow a smooth integration of existing 

concepts and to be compatible with legacy systems with a minimal intervention into existing 

infrastructures. Beyond that, developing a standard is a community process and cannot be 

established by an individual, so tha t the approach must be flexible enough to incorporate 

upcoming standards without the need to make changes to the new software system itself.

The objective is hence to develop a functional system as well as example implementations 

in the area of neutron diffraction, which enrich the features and usability of experiments 

without forcing users to forgo their familiar experiment environment. User Interfaces, storage 

mechanisms, advanced scans, the integration of legacy systems, the simulation of experiments 

and the introduction of an automated instrument alignment shall thereby be considered as 

well as the integration of cloud-based collaboration methodologies.

2.2. Material Scientific Backgrounds

The idea of the structure of materials was a long treasured secret of the nature. More than  

2000 years ago, the philosopher Plato (427-347 B.C.) tried to explain the behavior of m ate

rials and proposed tha t everything consists of small composed particles, cubes, tetrahedrons, 

octahedrons and icosahedrons. In the last hundred years new analysis methods gave us the 

opportunity to look deeper into the material and shed light on the mechanisms and struc

tures. The new branch of research Crystallography1, originated as the science of the study of 

crystal forms, covers exactly these concerns, the study of atomic arrangements in crystalline 

materials.

xcrystallon (Greek) =  cold drop /  frozen drop
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2.2.1. Basic Crystallography and Diffraction Physics

Today, we know much more than ever about the basic physics that describe the properties 

of materials. While an amorphous solid is a solid in which there is no long-range order, 

crystalline materials consist of structures that recur periodically. These structures exist in 

many types of materials, which may be classified by their crystallographic structure. The 

arrangement of atoms in such structures can be described as unit cells, spatial arrangements 

of atoms th a t are stacked in a three-dimensional space. The length of the cell edges and 

angles between them defines the lattice parameters of the cell. Fourteen so-called bravais 

lattices can be used to summarize all existing types of lattices. Many specific characteristics 

of a material can be inferred from the specific lattice type of a material. [KBB98]

The three common Diffraction Techniques

Three common non-destructive measurement techniques used in materials science and engi

neering are X-ray-, synchrotron and neutron diffraction [SuriOT]. Prior to these techniques, 

the study of crystals was based on geometric measurements of the crystals using a goniome

ter. This is a mechanical instrument, which can rotate objects to precise angular positions 

and measures angles to be plotted in a stereographic projection. Each point is labelled by a 

so-called Miller index, a triple of integers that denote planes orthogonal to a direction in the 

basis of the so called reciprocal lattice vectors.

Modern techniques now depend on the analysis of diffraction patterns that can be measured 

after targeting an X-ray, synchrotron or neutron-beam to the sample. All three types of 

radiation interact with the specimen in different ways, so the most appropriate technique can 

be selected for the experiment. While X-rays for example interact with the spatial distribution 

of valence electrons, neutrons are scattered by the atomic nuclei through strong nuclear forces 

and additionally by magnetic fields since its magnetic moment is non-zero. Synchrotrons may 

be used whenever conventional X-ray tubes are not sufficient because of the need for a higher 

brightness and intensity2.

2 The intensity is many orders of magnitudes more than X-rays produced in conventional X-ray tubes
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Details of Neutron Diffraction

The first known reference, where neutrons are discussed to study applied problems of this sort 

is titled Applications of Neutron Diffraction of Non-Destructive Testing Problems and pub

lished by the former US National Bureau of Standards (NBS)3 in 1976/77 [PCAE78]. After 

the Institute Laue-Langevin (ILL) was commissioned in 1971, European and Australian scien

tists started making routine measurements with neutrons. First depthprobing measurements 

began 1979/80 in Missouri, Karlsruhe and Harwell. In the following years the community 

started to grow and neutron scattering became a widely used technique for non-destructive 

material analysis.

A good starting point for more detailed information to neutron diffraction are the publications 

The Early History of Neutron Stress Measurements [Kra.08], Introduction to diffraction in 

materials science and engineering [KA01], Measurement o f residual and applied stress using 

neutron diffraction [HK92] and Neutron stress measurements in the 21st century [KraOl] .

2.2.2. Neutron Sources for Material Scientific Experiments

The rising interest in neutron experiments caused the commissioning of numerous neutron 

sources worldwide. The types of sources can be generally classified in two branches, fission 

reactor and spallation sources. [FL03]

Fission reactors

At present most neutron sources are based on steady state reactors tha t are optimized to 

produce a high neutron flux. In most cases, the core consists of enriched 235U isotope tha t 

releases neutrons due to the fission process. Neutron beam tubes tha t are directed towards 

the reactor core are used for transportation of neutrons to the instrument. A moderator 

between core and tubes is used to slow the neutrons so they have a suitable wavelength for 

probing the atomic distances in the materials under investigation. Usually monochromatic 

instruments are found at fission reactor sources due to the steady state neutron flux.

3The NBS is today the National Institute of Standards and Technology (NIST)
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For residual stress analyses4 generally only the position of one interference peak is detected 

to evaluate the local lattice strain.

Spallation sources

Neutron spallation sources use a cyclotron setup to accelerate high-energy protons. These 

hit a target with a high atomic mass and cause subsequent nuclear reactions th a t put the 

target nuclei in a highly excited state from which it decays by "evaporating" neutrons. The 

resulting pulsed neutron beam enables the powerful time-of-flight method, which delivers the 

complete diffraction pattern in a single measurement.

2.2.3. Neutron Diffraction Applications

More and more modern engineering progresses profit from developments of new materials 

and innovations in their processing and treatments. Materials characterization techniques 

for the study of metals, alloys, ceramic and composites, especially non-destructive analyses 

of residual stress profiles and textures, have gained increasing importance. Thus a large 

amount of beam time at the materials research diffractometers used for the practical part 

of this thesis is exclusively used for industrial research. Among the components that were 

investigated are crankshafts, impellers, turbine blades, pistons, cylinder heads, and welds.

Residual Stress Measurements

Residual stress is the stress remaining in a component or structure when there are no external 

forces acting on it. They may be generated or modified a t every stage in the component life 

cycle, from original material production to final disposal. Welding, for instance, is one of 

the most significant causes of residual stresses. The measurement and analysis of residual 

stresses has gained significant importance over the past years due to  the increasing demands 

in improving the properties of new engineering materials and components. The ability to 

measure these residual stresses accurately will thus lead to the manufacture of stronger, 

lighter and cheaper components by industry. This drive to optimize material performance 

whilst minimizing component weight will ensure that this field continues to grow. In future,

4An explanation of residual stress measurements follows on page 22
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neutron scattering will gain further importance for strain measurements as new dedicated 

neutron diffractometers become available. These instruments will allow the utilization of 

the full potential of the technique and are likely to further establish neutron stress analysis 

as a routine method for industry. Unlike conventional X-rays, neutrons can penetrate deep 

into most crystalline materials. This makes the neutron a non-destructive probe, capable of 

measuring in the bulk of a material specimen under investigation. Neutron diffraction can 

measure stresses in three dimensions with a typical spatial resolution (1-5 mm). No other 

stress measurement technique offers a combination of these properties [HutOS].

Texture Measurements

A large number of poly crystalline materials, either manmade or natural, display a non-random 

orientation of crystallites; known as texture. This texture has a profound effect on the ma

terial, making physical properties, such as elastic moduli anisotropic [WH04], There are two 

types of texture; lattice preferred orientation (LPO) also known as ’preferred crystallographic 

orientation’ and shape preferred orientation or ’preferred morphological orientation’. In this 

context only the first type is of relevance due to its accessibility by diffraction experiments. 

Texture can be measured in several ways, depending on the relationship between the size of 

the crystal (or grains) and the sampling volume and the size of the specimen. One way is to 

measure the average texture over a large volume. A second way is to measure with smaller 

volumes, providing information of texture as a function of position. A third way is to measure 

the orientation of individual crystals. Texture analysis covers a wide range of research in

terests, such as engineering0, physics6, biology' and geology8. Diffraction techniques are the 

most widely used means of measuring texture [Bun85]. However normal X-rays are limited 

to  the surface of a material due to its low penetration. Neutrons offer advantages since they 

allow the integrated or spatially resolved measurement of bulk specimens because of their 

high penetration. In-situ experiments are also possible using different sample environments 

such as stress-rigs, furnaces or pressure cells.

5e.g. welds, thin films and car body panel manufacture
6e.g. high temperature semi conductors
7e.g. bones and shells
8e.g. seismic anisotropy
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Neutron diffraction texture measurements can be performed at reactor sources, typically 

using wavelengths of approximately 0.1 to 0.2 nm produced typically by a single crystal 

monochromator. The sample can be placed within an Eulerian cradle or on a robot at the 

center of the neutron diffractometer and rotated over the entire orientation range.

2.3. The Research Environment

Figure 2.1.: Experimental Hall at B E R -II (From HZB Media Library)

This PhD-thesis comes with a strong practical part. The development of the software Open 

Inspire, as described in chapter 4, as well as the practical examples covered in chapter 5, 

presuppose a capable development environment. To meet this requirement the Helmholtz- 

Centre Berlin for Materials and Energy (HZB) kindly provided access to the two dedicated 

residual stress diffractometers E3 and E7 located at the research reactor BER-II in Berlin, 

Germany. Beyond that, the Technical University Munich (TUM) offered intermittent access 

to the diffractometer StressSpec for texture measurements.

9located a t the  Resea rch-Neutronsource Heinz Maier-Leibnitz (FRM -II) in Garching, Germany
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2.3.1. The Diffractometer Construction

Both instruments E3 and E 7  in Berlin as well as StressSpec in Garching are nearly identi

cal10 in their construction. For this reason it is fully sufficient to only describe the general 

instrument assembly to understand the work in this thesis.

The short overview will describe the way of Neutron starting a t the Neutron Source and finally 

ending at the detector or beam stop of the instrument. By way of example the instrument 

E 7  has been selected since it has been used for nearly 90 percent of all tests.

The N eutron Source and Beam  Tubes

The HZB and TUM both operate fission reactors11 as neutron source. Figure 2.1 shows the 

HZB fission reactor BER-II in the oval at the center surrounded by the Experimental Hall 

(E-Hall). Nine beam-tubes transport the neutrons to the instruments inside the E-Hall. Here 

the instruments E3 and E7  are located. E3 is illustrated on the left next to  the reactor.

The Casemate - Container for the Monochromator and Collimator

Figure 2.2 shows the construction of the instrument. The large gray cylinder on the right 

is the casemate. Depending on the instrument a number of selectable monochromators and 

collimators are mounted behind the shielding. Collimators look similar to a comb and are used 

to filter neutrons with different directions so tha t all resulting neutrons leave it in parallel. 

Monochromators consist of crystals tha t scatter the incoming neutrons in such a way tha t 

only neutrons with a particular wavelength are passed.

Immediately before and behind the casemate beam-shutters are mounted. These shutters 

can interrupt the beam on user demand whenever work at the casemate or instrument need 

to be performed. Neither shutters are controllable by software.

10The few differences are primary caused by different monochromator or collimator setups, space proportions, 
size of sample tables, height of the incoming beam or the detector resolutions

11 See section 2.2.2 on page 21 for more details on fission reactors
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0  X-Translation Axis (xT)

©  Y-Translation Axis (yT)

O  Casemate (Monochromator/Collimator)

©  Detector Axis (TTHS)

©  Z-Translation Axis (zT)

©  Primary Slit Distance (PSD)

©  Primary Slit Rotation (PSR)0  Specimen

©  Area D etector; ©  Primary Slit Translation (PST)

Figure 2.2.: Neutron Diffractometer (E3, E7, StressSpec)
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T h e  p r im a ry  slit

Figure 2.3 shows the so called primary slit and the secondary shutter. The beam passes 

through the opened shutter and will be constricted by the geometry of a mountable slit. To 

restrict the geometry of the beam diameter three positioners can be used to freely place the 

slit inside the way of the beam. The slit is made of a material that absorbs all neutrons that 

are not passed through the hole and so allows a precise portion of the beam to be selected. 

The first axis is called Primary Slit Translation ( ’S3 ) and used to move the slit in parallel 

to the secondary shutter. The second axis is Primary Slit Rotation (PSP) and can rotate the 

slit to select neutrons with a specific direction. Finally the axis Primary Slit Distance (PSD) 

moves the slit in parallel to the shutter.

Figure 2.3.: Primary Slit and positioner axes for translation and rotation
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T h e  Sam ple P o sitio n in g  S ystem

The next important component inside the beam is the specimen that is to be investigated. 

Figure 2.2 shows the specimen in form of a red crystal. Due to the manifold geometries and 

weights, the investigated sample is mounted on a table that allows to measure even weighty 

samples with several hundred kilos. Furthermore it is equipped by four motors and related 

absolute encoders that allow to freely position the sample and read back the positioning 

values. Figure 2.4 and 2.4 show more detailed views of the sample table. The axes xT and 

y'T translate the sample in x and y direction. zrl lifts the table up and down and omgs is 

used for the rotation.

Figure 2.4.: Translation Axes - xT, y T  F igure 2.5.: Goniometer Table

W hen these given axes are not sufficient, an Eulerian Cradle can be mounted that additionally 

provides axes to rotate the sample around PHI and CHI. Figure 2.7 shows an Eulerian Cradle, 

which is additionally equipped with a small sample table and the translation axes xE and

yE.

W ith help of the primary slit and all axes of the sample table it is possible to precisely select 

the part of the sample that is to be measured and to bring it in the correct measurement 

position and angle.
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The D etection System

The illustrated instrument is equipped with three types of detectors. The first detector MON 

is directly located behind the secondary shutter and counts the incoming neutrons.

CHI

Figure 2.7.: Eulerian CradleFigure 2.6.: Singledetector

The second detector ADET is an area detector with 128x128 channels12 and illustrated as 

grey box on the lower left side of figure 2.2. It detects neutrons scattered by the sample and 

is for tha t purpose circular movable around the sample table. The name of this motor driven 

rotation axis is tths.

The last detector is the Single Detector (SDET), a plain counter tube for neutron detection. 

It is placed directly inside the beam behind the sample and used to detect all neutrons that 

are not diffracted. Its primary use are calibration measurements used to locate the position 

and direction of the beam. Figure 2.6 shows the detector of instrument E3  directly in front 

of the beam-stop. The beam-stop is always the last instrument component in the way of the 

beam and used to shield the environment from hazardous radiation.

Camera System  and Lighting

The final important part of the construction setup is the camera and lighting system. This 

is the most recently installed system and has been mounted specifically for instrum ent cali

12 E3 utilizes a detector with 256x256 channels
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brations performed by Open Inspire. The setup is composed of a fixed focus camera13 that 

delivers a monochrome picture with a resolution of 1280x1024 pixels and a diffuse lighting. 

For the calibration process a sample with a fixed geometry is mounted on the goniometer, 

illuminated by the diffuse lighting which casts a shadow of the object on the camera. This 

camera can now detect the white to black gradients to determine the location of the object 

on the goniometer. More detailed information to the setup and calibration process can be 

found in chapter 5.6 on page 244.

2.3.2. The Control Electronics

The link between the mechanical components and the instrument software is the electronics. 

Although all three instruments E3, E7  and StressSpec are nearly clones in their construction, 

they vary in their electronic setup. The primary difference here is the bus system used for 

the data transport. E3 uses the CAMAC-bus11 [cam] while E7  and StressSpec are equipped 

with a VME-buslo[vitb]. Nearly all bus components such as the motor-controls have been 

developed in-house a t the IiZB and are hence proprietary devices.

Positioning Electronics

All motor axes relevant in this thesis are controlled by the HZB development S T  169. A 

microstep power amplifier and linear controller for stepper motors tha t support software 

driven and manual motor control. Further features are micro step accurate positioning, 

operation of end-switches as well as engine idle and short circuit-proofing by means of voltage 

and current tracing.

Beyond tha t the axes xT, yT, zT, omgs and tths have an encoder to read back the position 

value (even after complete instrument shutdowns) thereby making reference-drives obsolete. 

Internally the proprietary components SV3901 for VME and its CAMAC  equivalent Y66 

are used as comparators between the position setpoint read from the EKF-module and the 

value read from the encoder. The EKF-module is a multiplexer and address-converter be

13Camera Type: M4+CL of company Jai
14C om putcr A utom ated M easurement And Control (CAMAC) is an international standard for a modular data 

handling system, developed for data acquisition and experiment control in nuclear physics
15The Versa Module Eurocard (VME)-bus is a standardized computer bus developed in 1981. It is physically 

based on Eurocard sizes, mechanicals and connectors and uses its own signalling system.
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tween hardware and VME-station at E7  and StressSpec. For the E3 CAMAC system a 

so called Parallel-Bus-Crate-Controller combines the functionality of the EKF-module and 

VME-station equivalent.

A motor positioning can so be considered as comprising the following steps; the presetting of a 

motor setpoint, the activation of the motor controller which drives the motor, the comparison 

of the setpoint and the actual value and the stopping of the motor when the value is reached.

D etector Electronics

The detector electronics is mounted inside a rack on the reverse of the detector. It contains a 

high-voltage generator with 3750V as well as several delay and converter circuits. Depending 

on the instrument the data is directly made available to the VME system or published by an 

additional server, which is equipped with a PCI detector interface.

Camera Electronics

For the handling of the data detected by the camera, a  Windows based camera server is 

used. Here a PCI frame grabber16 is used to record the digital camera signals and makes 

them available to the Operating System for further processing. More information on the 

calibration process can be found in chapter 5.6.

A more detailed description of the positioning, detection and camera system can be found in 

chapter 4 of the diploma thesis [Fle05].

2.3.3. The Control Software

The final component in the control chain is the instrument control software. All three of 

the evaluated instruments and nearly all other instruments a t the HZB are controlled by the 

same software. This software is named Caress and provides a unique user interface, several 

scan algorithms and a large number of hardware drivers to address all HZB instruments in 

the same way.

16The used frame grabber is a Siso Microenable III from Stemmer Imaging
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This section does not cover Caress since section 2.4 on page 32 already summarizes the 

functionality and chapter 5.4 on page 206 explicitly explains the control of Caress-devices 

with Open Inspire.

2.4. Software Systems

During the last 50 years, the quality of measurement and analysis methods has been en

hanced by means of modern electronic applications, automation and data processing. These 

enhancements enable the collection of more information about the measured material than 

ever before. Over the past 30 years various software systems for instrument control and data 

analysis have been developed by different institutes all over the world. The range of these 

systems goes from simple monolithic command line tools to high level distributed enterprise 

applications in heterogeneous networks. To illuminate the differences in software design that 

various instrument environments, requirements and programming skills afforded, it is mean

ingful to give an overview about popular existing systems. In contemporary software design 

a couple of paradigms are mandatory. One of these paradigms is the reusability, extensibility 

and exchangeability of software parts and is directly linked with the creation of a  modular, 

component based system. Further the system has to be failsafe, well maintainable and user 

friendly. Theses aims are not new; the difference is in the method of their realization. The 

following paragraphs show a survey of the most common instrument software systems, which 

are primarily used for neutron but also for synchrotron and X-ray diffraction experiments.

2.4.1. Control and Data Acquisition Software

Caress

Caress [RS07, SauOT] is the primary control and data acquisition software for neutron scat

tering instruments at the Helmholtz-Centre Berlin for Materials and Energy (HZB) and also 

used at FRM-II near Munich. It is primarily a command driven architecture that controls 

about 130 different types of hardware components and is used at more than 17 instruments. 

Caress performs operations such as scans or the execution of scripts. It is a client server 

system with multiple hardware servers that publish a generic Common Object Request Bro
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ker Architecture (CORBA) interface. A graphical user interface extends the command line 

interface by setup and scan dialogs. Chapter 5.4 covers Caress in more detail.

Frack

Frack [Fle05] is a client server architecture tha t was developed at HZB in 2005 for advanced in

strum ent control and calibration. The client is a pure platform independent Java application 

tha t owns a wizard guided fail safe swing user interface. Frack uses a simple proprietary XML 

based communication protocol for the communication with Frack Servers such as HardFrack- 

CARESS for the communication with CARESS or HardFrack-CAM for the communication 

with a visual sample edge detection system. Frack includes built-in modules for user man

agement, instrument configuration, data analysis, data processing, instrument control and 

automatic generation of high quality PDF, PS and DTjnjXpapers with integrated graphics.

TACO

TACO [Unr02, Neu98, GKM+09] is an object oriented control system that has been developed 

at ESRF Grenoble. It offers access to different types of electronic equipment by transparent 

network devices, which allow the addressing of device values by common physical units. 

The protocol used for calls between hardware servers and clients is Sun-RPC, which enables 

accessing services in a platform independent way. All features of devices are realized using 

device classes, written in C /C + +  and are represented in form of Device Objects. Access to 

implemented device commands from within the program is simplified by a C /C + +  API. It has 

been ported to the most common operating systems and can access CORBA, Java, T C L /T k 

as well as ASCII based communication protocols, Labview via ASCII, OLE2 (Windows) and 

SPEC.

TANGO

TANGO [KAEJ98, t;an09, CAK+99, CGK+01, G TP“ 03, GBS+07, GBS+07] is the successor 

of TACO and, as was its ancestor, is an object oriented distributed control system. It is 

also based on the device server concept but introduces a more advanced object model than  

TANGO. The Open Source system is actively developed by the institutes Alba[alb09], Desy
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[des09], E lettra [ele09], ESRF [esr09] and Soleil [sol09]. In contrast to TACO, TANGO used 

CORBA as communication solution and so is programming language independent. TANGO 

clients and servers can currently be written in C + + , Java and Python. TANGO objects as 

well as TACO objects are instances of a central Device class tha t defines the name proper

ties, attributes, executable commands and events [Mit03]. Several services such as MySQL 

database access, naming services, archiving of historical data and a timing source are pro

vided as well as a high level API tha t hides networking details, allows object browsing and 

discovery and offers several security features. Most clients are written in Java and handle 

configuration, monitoring and control tasks. Web based clients for TANGO devices can be 

developed with help of the tool Canone. One further step is the adoption of the CORBA 

Component Model to allow better mappings between TANGO components and Enterprise 

Java Beans (EJB).

NICOS

NICOS  [Neu98, Unr02, KX02, GKM+09] is a network based instrument control system that 

includes the Qtl( -based NICOS Client, a NICOS Server and the NICOS Methods. It is 

developed at the FRM-II in Garching, Germany and used as a front-end for TACO. The 

client and server are both written in Python and enable the writing nearly of all types 

of Python scripts using a client side editor and executing them on the server side. All 

devices are represented by object oriented classes and made available by the NICOS Methods 

package. NICOS introduces powerful enhancements and instrument specific extensions that 

allow all supported hardware setups to be deal with in a  simplified and standardized way. A 

configuration editor and debugging capabilities as well as monitoring capabilities top off the 

range.

EPICS

The Experimental Physics and Industrial Control System (EPICS) [DKK91, DHK+93, 

LewOO, Hil95, KAJ+97a, TBO03, Car95] is a collection of software tools that work together 

and create a control and data  acquisition software for experimental physics. It uses a dis-

irQt is a well accepted API that inter alia allows to quickly build cross-platform UIs using C + + .
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tributed database, which registers functional subsystems like data acquisition systems, su

pervisory control, closed loop systems, archiving or alarm management. EPICS is built on 

a software communication bus that allows distributed process control. The realization of 

state machines is achieved by a control system th a t is modelled by means of a sequential 

control language. A timing system helps the triggering of components depending on given 

timing demands. All registered devices are readable as process variables within entire sub

nets via broadcast UDP packages. Hardware servers extend templates tha t are written in 

C with help of API functionality for interface declarations, data type definitions or timing. 

They are called Input/O utput Controller (IOC)[I\AJ+97b]. A special RECORD [SAK95] 

defines the process variables and triggering for the external access to components. Channel 

Access Clients for EPICS allow to remotely access devices and can be realized in different 

languages. EPICS is primary developed at the Argonne National Laboratory (ANL) [anl] 

in the USA and is in regular use at the synchrotron facility of the Helmholtz-Centre Berlin 

for Materials and Energy (HZB) [hzb] in Germany, at the Paul Scherrer Institut (PSI) [psi] 

Switzerland and currently introduced at Deutsches Elektronen-Synchrotron (DESY) [des09] 

in Hamburg. EPICS comes with the most comprehensive documentation library including 

manuals, tutorials and videos.

DANSE

DANSE [FAA, dana] is one of the latest well planned software projects on distributed D a ta  

Analysis for N eutron Scattering Experiments. The development of DANSE started almost 

a t the same time as that of Open Inspire. The project goals are 1) to build a software 

that enables new and more sophisticated science to be performed with Neutron scattering 

experiments, 2) make the analysis of data easier for all scientists and 3) to provide a robust 

software infrastructure that can be maintained in the future [danb]. The DANSE architecture 

is based on the data flow paradigm which connects reusable software components on different 

computers using data streams. The framework is Open Source and uses the language Python 

to enable the insertion of new procedures easily. Users are able to direct their processing 

in a web browser by accessing a central server. The user interface, that is consistent for all 

neutron instruments is intended to be easily operated. DANSE is language independent, can
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integrate different kinds of commercial and non commercial software products and supports 

data storage with NeXus. Instrument scientists are able to use their scientific knowledge in 

programming DANSE modules while being shielded from the rest of the complex software. 

This decoupling is achieved by a property table that converts property strings to native 

representations. Components exchange data via ports and making it available to its core 

and vice versa. Each module decodes its incoming and encodes its outgoing DANSE-XML- 

stream depending on the current programming language, which ensures the decoupling of user 

interface and components. All components are available by a web portal using a standard 

browser and can be wired together with a Labview-like graphical user interface. DANSE 

is the reviewed software project with the highest funding. It is primary developed for the 

Spallation Neutron Source (SNS) in Oak Ridge Tennessee. The National Science Foundation 

originally awarded M$11.97 to the California Institute of Technology for computer software 

to analyze Neutron scattering experiments and develop best fitting software.

SICS

SICS [sic, HKM97, KWOO] is an acronym for SINQ Instrument Control System and developed 

at the Paul Scherrer Institut; (PSI) in Switzerland. Its primary use is the control of various 

instruments at the Swiss Spallation Neutron Source SINQ [sin] but in the meantime it also 

controls instruments a t other institutes such as the Australian Nuclear Science and Technol

ogy Organisation (AXSTO) [ans] or South African Nuclear Energy Corporation (NECSA) 

[nec]. SICS is a client server system with one server and multiple clients tha t implement the 

SICS user interface. User interfaces are written in Tcl/TK [Ous94], ANSI-C and currently 

recoded in Java to provide a maximum platform independency. The core of a SICS system is 

the server, which is written in C but anyhow makes use of Object Oriented design principles. 

It runs on UNIX based systems and can be subdivided into a kernel, object database and 

interpreter. The kernel is the core of the system and responsible for the client access and gen

eral control. The objects are software modules tha t represent hardware devices, commands, 

measurement strategies and data storage. The last part is the interpreter tha t allows to issu

ing of commands to SICS objects that can be delivered as user commands from a command 

line. A T C P /IP  terminal server provides access to the hardware via RS232, detector data is
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read via T C P /IP  network. The used network protocol between client and server is a simple 

ASCII command protocol through telnet or plain sockets. SICS is shipped with support for 

the latest version of the NeXus-dataformat since its maintainer is a t the same time a founder 

of XeXus.

GumTree

The Graphical User interface for Multiple and Time Resolved Experiments (GumTree) 15 

is primarily developed by a group of software specialists a t the Australian Nuclear Science 

and Technology Organisation (ANSTO) [ans] but also released in different editions for in

stance at the PSI [KZH+08]. It is one of the most matured Integrated Scientific Experiment 

Environments (ISEE) due to the consequent use of latest software engineering techniques 

such as Agile Development19 [IILH+04, BBvB+01, Coc02] including eXtreme Programming 

(XP) practices, which enables fast parallel development with frequent synchronization points 

instead of sequential development processes. GumTree evolved as a result of a requirement 

analysis process for neutron and X-Ray instrument software at ANSTO in 2002. Interviews, 

surveys and workshops were used to collect wishes and requirements of users and instrument 

responsible in different institutes. The result was the usage of a combination of SICS and 

Tango for hardware control, ISAW for visualization and GumTree as a client for superordinate 

control, data acquisition, visualization system for live and offline data and a workbench for 

data reduction and analysis. The developers were one of the first that analyzed similarities 

of common control systems architectures and proposed the Grand Unified Model for Control 

and Analysis Systems (GUM) [GH], which compares and defines several standards for scien

tific data acquisition systems. The Grand Unified Model for Control and Analysis Systems 

(GUM) states "The control and analysis parts of a scientific experiment must be treated as 

part o f one system with input and output being readily exchanged between all parts o f the 

system. There must be a single integrated graphical user interface from which all aspects of 

the control and analysis system can be accessed. There is a basic set of building blocks that

18GumTree related publications: [gum, LGFH06, LUG 1 0G, RHH 1 06, IIG, BK06, GSX06, GM07, CT, GH, 
BBvlUO l, Goc02]

19 "Agile Software Development emphasizes continuous adaptation to the project goals, developer skills, and 
personal interaction, over the traditional documentation bound, definitive plan and process driven practices." 
[ITLTT 1 01]
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all control and analysis systems should have. All building blocks should have a well defined 

interface." Building blocks can be device drivers, device servers, network protocols, database, 

scanner, sequencer, batch, command line and graphical user interface, data file formats, anal

ysis servers, analysis sequencer and data visualization. While the concrete realization of these 

blocks is up to the developer, the GUM defines an abstraction layer that can be interfaced by 

frameworks tha t are built to support multiple control systems. The components in GumTree 

are realized in form of lazy instantiated OSGi packages, handled by the Eclipse RCP. Com

ponents are available for the control systems EPICS, TANGO and SICS, the data formats, 

NeXus, HDF, Excel, CVS and XML as well as the visualization engines OPENGL, ISAW, 

Ptplot, VTK. Furthermore a Data Reduction and Analysis Module (DRA) [RHH+06] allows 

data reduction, correction and basic analysis while running experiments.

ACS

The Advanced Control System (ACS) is an upgrade20 [KPP+] to the AN KA Control System , 

which has been used until 2000 to operate instruments a t the synchrotron radiation light 

source ANKA [ank, PZS+02] in Karlsruhe, Germany. The same framework is also used in 

the ALMA Common Software (ACS) [CZ+05, SFS04] at the European Southern Observatory 

(ESO) [eso] and developed by the independent spin-off company Cosylab. ACS is designed 

in form of a three-tier architecture using a visualization layer with control GUI, a process 

control layer with accelerator objects and a fieldbus layer with devices. The visualization 

layer is realized by a rich set of JavaBeans which are part of the Abeans [KBC+, VKK~, 

DKO+] library, which has been released in 1999 as part of the ANKA Control System. The 

CosyBeans subset, which provides the widgets is today independently usable and used by 

other systems such as the Control System Studio (CSS). The process control layer consists of 

device servers, which were formerly implemented along the guidelines of the TACO system 

but in the meantime refactored to a new device server design [CJS+04]. These C + +  based 

servers use CORBA to publish objects of all controllable devices. The third layer is the 

field bus layer, which is realized in form of a LonWorks field bus and specific hardware 

tha t allows to access the devices via device objects. The system provides an XML-based

20The upgrade was necessary to substitute the old CORBA implementation by an Open Source variant
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configuration database and features such as synchronous and asynchronous communication, 

fail safe monitors and alarms, run-time name/location resolution, archiving as well as error 

handling and logging capabilities. An additional feature is the built-in management, which 

enables centralized control over processes with commands such as start/stop/reload, send 

message or disconnect client.

CSS

The Control System Studio (CSS) [css, HCG+] is a software project at DESY in Hamburg, 

Germany. It is like GumTree an Eclipse based Rich Client Platform (RCP) whose task is to 

provide a consistent and platform independent user interface for instruments th a t were before 

operated by several EPICS clients. The different look and feel and way of data  handling of 

clients complicated the usability and data exchange, which lead to a common platform for 

developers with a management infrastructure and a centralized connection to external data 

sources such as JDBC-databases, JMS- or LDAP-servers. CSS uses OSGi and the Eclipse 

Extension Point mechanism to provide a pluggable design. The data is abstracted by the 

so called D ata Access Layer (DAL), which allows to transparently access any control system 

protocol that implements the DAL and is so decoupled from EPICS. Several CSS applications 

are already available tha t allow browsing data [Kas] such as EPICS Process Variable (PV) 

tables, name spaces, alarm systems, provide rich sets of graphical widgets and a graphical 

editor for operator interface screens named SYNOPTIC [KasOT]. Data is persisted using the 

relational database Oracle and incorporate into different plug-ins [Pur]. Control widgets and 

visualization of live data is realized using the CosyBeans library [KBC+].

SScanSS

The Strain Scanning Simulation Software (SScanSS) [Fit, JSDE02, ZGA+09, JSED04] is 

an instrument software, developed for the diffractometer EN G IN-X21 [OS.T+04, SD.7E06] 

[ZGA+09] a t ISIS [isi] (UK) but also installed at other neutron facilities including K O W ARI 

at ANSTO, NRSF2 a t OakRidge (USA), VULCAN  a t the SNS (USA) and JEEP  a t D IA 

MOND (UK). It is written using the Interactive Data Language (IDL) [idl], an array-based sci

21ENGIN-X is the successor of ENGIN [JEW97, DDE 01]
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entific programming language for complex interactive mathematical and visualization tasks. 

A Graphical User Interface (GUI) helps to plan measurements using a virtual sample (ob

tained from laser scans or tomography data) and creates HDF5 and text based batch files, 

used to simulate or control the real instrument. It is possible to calculate neutron path 

lengths, required count times as well as predict potential collisions between specimen and 

the instrument. A compact mathematical framework has been developed to allow automatic 

positioning and orientation by robotic methods [JOP+08, JE07]. The IDL code is executed 

inside a free but commercial virtual machine that runs on all popular operating systems, 

while altering code is subject to users with valid IDL licenses.

NoM ad

The software system NoMad [nom, iae] is a replacement of the dated software MAD and 

developed for instruments a t the Institute Laue-Langevin (ILL) in Grenoble, France. It 

replaces the old undocumented fortran code of MAD with an object oriented software with 

a WYSIWYG22 User Interface. All configuration tasks can be performed via drag and drop 

operations, even the definition of measurement batch processes. NoMad contains numerous 

predefined configurations that can be tailored to the users needs by setup dialogs. It is 

the first instrument system that is developed to be configurable by pen tablets right a t the 

instrument and has a replay functionality that allows reproducing operations in the smallest 

detail. NoMad features a virtual simulation mode and is able to write data in the NeXus 

format and plain text. It is not an Open Source project.

SPEC

SPEC is commercial scientific software for UNIX that consists of packages for instrument 

control and data acquisition for X-Ray diffraction at synchrotrons. It has device control 

capabilities as well as visualization, a command interpreter, a programming language with 

a C-like syntax and an own data format. SPEC can be used to access devices at VME, 

CAMAC, GPIB, RS-232, PC I/O  ports and socket I/O . It is developed by Certified Scientific 

Software (CSS) [spe] at Cambridge USA.

22W hat You See Is W hat You G et (W YSIW YG)
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Lab VIEW

The Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) [lab09] is a 

well known commercial development environment and platform for control and measurement 

systems. It is developed by National Instruments and has been continually improved and 

extended during the last 30 years. It is widely used in materials science for the control of 

instrument [DS06] and sample environment and basis for miscellaneous systems such as the 

control system of ENGIN-X. An essential difference to other systems is the introduction of 

the visual programming language G, which allows modeling programs in form of component 

boxes and communication links. The use of the dataflow paradigm combined with fine grained 

visual modeling allows to create nearly everything that is usually done on a textual basis in 

conventional programming languages. LabVIEW contains an editor, compiler and a debugger, 

which allows setting break-points, stepping through the structures and animating the program 

flow. LabVIEW programs are called Virtual Instrument (VI) and consist of the graphical 

block based programcode and a frontpanel. The frontpanel allows to model sophisticated user 

interfaces with help of a rich set of graphical widgets [J.T06]. LabVIEW code is compiled, has 

a comparable performance to other high level languages and can be executed on Windows, 

UNIX/Linux, and Mac OSX. A large number of tutorials, an active community [lab] and 

many books help starting with LabVIEW [TK06] as well as solving complex tasks [SS07].

2.4.2. Data Analysis, Processing and Visualization Software

BEA N

BEAN [FHSL99] is a program package for one-dimensional neutron spectra. It is used as 

replacement for different proprietary software packages a t Berlin Neutron Scattering Center 

(BENSC) to provide a consistent data analysis system. It is designed as a 3-tier architecture. 

BEAN itself runs on a UNIX based Application server and has a connection to a client and 

database tier. The client is a simple workstation tha t is able to emulate X I 1-terminals and 

the used database is a NFS server. BEAN utilizes PV-WAVE for visualization and has a 

command line that extends the PV-WAVE command language with object oriented data.
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The main task of BEAN is reading spectra with different data formats from the instrument, 

perform fitting operations and visualize data.

Open GENIE

Open GENIE [ope, ALS+a, ALS~b] is the successor of GENIE, a software to display and 

analyze neutron scattering data of instruments a t the ISIS [isi] spallation neutron source, UK. 

Beside capabilities for data reading, analysis and visualization it provides specific features 

for neutron experiments as well as a scripting control, which is used at instruments such as 

ENGIN-X [OSJ+04, CAMSO‘2]. It is distributed under the GNU Public License (GPL) and 

available for Windows, UNIX/Linux, and Mac OS. One strength is the ability to interpret 

multiple data formats such as simple plain text or even complex NeXus sources. Open GENIE 

incorporates technologies such as C and Fortran based extensible mechanisms, a Smalltalk 

Interpreter, a Tcl/Tk interface as well as PGPlot. A DCOM /  ActiveX interface enables 

communicating with Windows programs such as LabView or Excel and yet another interface 

allows accessing and visualizing Matlab data.

ISAW

The Integrated Spectral Analysis Workbench (ISAW) [isa, CMM+02, CWIi+01, CWH+00a, 

WMM+04] is a software project of the former Intense Pulsed Neutron Source (IPNS) [ipn] 

and today also used in other software such as GumTree. It is network-based and used to 

read, manipulate, visualize and save neutron scattering data. The choice of Java makes ISAW 

platform independent and even usable in browsers. It is very flexible due to its object oriented 

modular architecture, which makes it easier to maintain and add features [CWH+00b]. A GUI 

allows loading and manipulating multiple spectra from different runs and allow operations 

such as merging, summing, axes conversions, sorting and display the data as images or plots 

[GM07]. The support of NeXus allows to exchange measurement data between different 

software solutions and perform a comprehensive number of mathematical operations on data 

measured at miscellaneous instruments [CWH+00b, TBW+OG].
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DAVE

The Data Analysis and Visualization Environment (DAVE) [dav] is a development of the 

Center for Neutron Research at the National Institute of Standards and Technology (NIST) 

[nisb], US. DAVE is an IDL23 based integrated environment for the reduction, visualization 

and analysis of inelastic neutron scattering data. It is a user friendly tool, which helps 

scientists to interpret data from neutron scattering experiments and comes with support for 

several spectrometers at the NIST Center for Neutron Research (NCNR) and Paul Scherrer 

Inst.itut (PSI). A binary executable is freely available for Windows, Linux, and MacOSX. 

The open source code is subject to users with a valid IDL development license.

M antid

The Manipulation and Analysis Toolkit for ISIS Data (Mantid) [man, D TT+08] is an appli

cation framework for high-performance computing on neutron data. The project, th a t is still 

in development, will provide an extensible framework with common services, algorithms and 

data objects and can be extended by plugins for specialized functionality. It is planned to  be 

easily extensible by scientists and users, freely redistributable and should provide scripting, 

visualization and data transformation mechanisms as well as the support for virtual instru

ment geometries. The C + +  and Python based data reduction and analysis tool M antid is 

released under the Gnu GPL and available for Windows and Linux. It provides a M atlab 

interface and is NeXus capable [Fow08].

TV tueb /  TVnexus

TVtueb [KBF+00, CSII+02, HHS03] is scientific software for data analysis and visualiza

tion of one- or two-dimensional datasets tha t are read from different types of da ta  files. It 

has been developed a t the Helmholtz-Centro Berlin for Materials and Energy (HZB) and is 

still in use for data reduction, analysis and visualization tasks of stress and strain measure

ments performed at the BENSC and FRM-II. TVtueb can directly read Caress da ta  files and 

perform operations such as auto-indexing, determination of intensity and position of peaks,

23 The SScanSS paragraph on page 39 contains a short survey of the Interactive Data. Language (IDL)
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transformation into reciprocal space, background analysis, intersections, three-dimensional 

fitting algorithms, correction of PSD-efficiency and the comfortable plotting of parameters. 

TVNexus [tvn] emerged from the codebase of TVtueb but has been extensively refactored to 

handle the data of new instruments such as the E2 at the HZB. It comes with support for 

NeXus and can handle very large datafiles due to its new 64 bit design. TVtueb and TVnexus 

are both closed source applications and exclusively published for Windows systems.

2.4.3. Instrument and Experiment Simulation Software

One technique tha t became more and more accepted during the last years is the simulation 

of material scientific problems. Several years ago the computing-power was too weak to pro

cess complex experiments and instrument calculations but in the meantime it is possible to 

even simulate comprehensive experiments and instrument setups in acceptable time without 

the need for expensive computing clusters. For the development of modern instrument soft

ware these simulation techniques can help in three ways. Harnessing simulations to concrete 

experiments helps selecting areas of interest in advance and so reduces beam-time. While 

an experiment is running a simultaneous simulation can be used to precalculate the next 

reasonable measurement step without wasting beam-time. When the experiment finished, 

non-measurable data21 can be simulated to get an idea how the measured data could look 

like and achieve a broader survey to the results.

The Monte Carlo method

The so-called Monte Carlo algorithm [GSf)6] is a well-established stochastic simulation 

method that is used in many scientific areas. Its name is a reference to a famous Casino 

in Monaco because of the analogous randomness and repetitive nature of the algorithm. It 

is often used for simulation of physical or mathematical systems, where an exact result with 

a deterministic approach is not feasible.

In Neutron Scattering environments, Monte Carlo simulations are primarily used to optimize 

the design of beam-lines2°.

24 For example areas that can not be measured due to the sample or instrument geometry
25Beamline Simulation Publications: [AdRFOl, ALTK 1 04, ALN01, BPHLB06, DSHT99, XKM95, SB78]
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Starting from the simulation of the neutron sources, described by the neutron energy dis

tribution and its geometrical shape, single neutrons starting at the source with randomly 

calculated velocity and direction are being sent on their way into beam tubes, instrument 

shielding and optical components. The interaction of each neutron with the instrument com

ponents in their flight path is calculated and the neutron direction and wavelength is changed 

respectively. Finally the neutron is absorbed by shielding components or detected by the vir

tual instrument detector. Calculations for millions of neutrons can be done very rapidly on 

today’s computer clusters. Generally the assumed characteristics of the sample on the center 

of the sample table are very simple because these calculations are not done to simulate spe

cific experiments but only to determine/optimize instrument resolutions and signal-to-noise 

ratios. Therefore the available sample descriptions normally don’t contain information about 

absorption, complex geometry, orientation distribution, crystal structure of individual phases 

and so on. For this type of work several Monte Carlo Simulation frameworks are available 

on the science market.

Simulation Frameworks

Commonly used simulation systems in this area are the frameworks McStas, VITESS, NISP, 

IDEAS and Restrax. All of these tools deliver feasible and comparable results [SDF_ 02] and 

only differ in their scope of operation. Here the frameworks differ in their usability, user- 

interfaces, scripting and configuration capabilities as well as the range of prebuilt modules. 

For most applications it is sufficient to select the one framework that either already comes 

with a fitting set of functionality such as prebuilt modules for specific neutron optics or 

to select the framework with the preferred usability. Sometimes simulation systems such 

as McStas and Vitess [RIOT, UO08] or McStas and Restrax [WSF+00, WSF+02] are used 

in combination to compare the results or profit from the combination of the strength of a 

specific environment.

M cStas

McStas [mesa] is one of the most popular neutron ray-tracing simulation tools. It is based 

on a meta language especially designed for neutron simulation experiments but in the mean
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time also available for X-ray experiments [mcx]. A component-based approach lets the user 

select, arrange and parameterize components in the McStas meta-language, which is auto

matically translated to ANSI-C Code. This technique allows the creation of a simulation 

executable, which can be run with high performance even on systems, where no McStas is 

installed. McStas supports both pulsed and continuous sources and is able to simulate all 

kinds of neutron scattering instruments such as diffractometers, spectrometers, reflectome- 

ters or small-angle scattering instruments. The McStas Library currently includes around 

100 components; VITESS components can be included, too. A big advantage of McStas is 

the large number of different data formats that can be generated including PGPLOT, Mat- 

lab, Scilab, VRML/HTML, HDF/NeXus, XML/NeXus, Octave and IDL. McStas is actively 

supported by the RispNational Laboratory[ris], the Institute Laue-Langevin (ILL) [ill], the 

Paul Scherrcr Institut (PSI) [psi] and the Niels Bohr Institutet Kobenhavn (NBI) [nbi] and is 

freely available under the terms of the GPL. The package is well tested, reliable and available 

for Linux, Mac OS and Windows. It is comprehensively documented and supported by an 

active community. The large acceptance of McStas becomes obvious by the large number of 

publications26 [mcsb] about successful simulations at the RNL, ESS, ILL, FRM-II, PSI and 

ANSTO.

VITESS

The Virtual Instrumentation Tool for Neutron Scattering at Pulsed and Continuous Sources

(VITESS) is the second widely used monte-carlo-based simulation environment. "VITESS has

been partly supported by the SCANS network (FP5) and was supported by the NMI3-MCNSI

Network (FP6) within the Research Infrastructures Activities of the Research and Technology

Development Programme of the European Commission." [vita] The free software is maintained

and permanently extended by the HZB, ILL, PSI, JINR [jin] and IFE [ife]. The developers of

VITESS attached importance in providing a full featured Graphical User Interface (GUI) for

the setup of simulations, data visualization and analysis. It is, as well as McStas, built in a

modular way and can be used for the simulation of nearly all types of beamline installations

including the neutron source, guides, choppers, polarizers, monochromators, analyzers and

26McSlas Simulation Publications: [ALN, GFKW07, GOP07, Gra07, GDVL+08, HSG+ 07, IvLM 1 02, LWF, 
LN99, LNTL00, mesa, NL00, SBFH04, VGF * 03, W K F W F L 0 4 , WFL f 05, ZSK 1 06]
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even the sample. The internal design is built on a modular description architecture based on 

building blocks and pipe based communication mechanisms [Fro]. VITESS is the simulation 

system with the second largest number of publications2'.

N ISP

The Neutron Instrument Simulation Package (NISP)28 queues up in the list of montecarlo 

based neutron-ray-tracing packages. The package is developed in Los Alamos and consists in 

a Graphical User Interface for Windows, the Fortran Monte Carlo Library MCLIB [See05], 

the simulation executor M C _Run  and the Windows based results viewer See_M C_Data. 

NISP can perform complete source-to-detector simulations of neutrons, is well documented 

but has a smaller community than McStas or VITESS.

Other M.C. based Neutron Diffraction Packages

Beside the well-established simulation packages introduced in the previous sections some 

further packages are worth to be mentioned. These packages are used rather infrequently for 

instrument optimizations but can be considered for some situations in which they provide 

additional functionality or simply promise a better result for a specific situation.

The first tool tha t belong to this group is RESTRAX and its modification SIMRES [res]20. 

It can be used for the planning, simulation and analysis of neutron scattering instruments. 

The code is reliable and creates output comparable with the output of McStas or VITESS 

[SDF+02].

The second mentionable Neutron Scattering Simulation package is IDEAS [LW02, LWR+02], 

which has already been applied to instrumentation projects at the ORNL, HZB, FRM-II 

and BNL. IDEAS is developed for Windows Systems and completely configurable using its 

Graphical User Interface. It can be by extended either in the source code or by DLLs using 

code in C or FORTRAN.

27VITESS Publications: [LZM 1, LGWM05, MZA08, vita, WZSH 00, WZSM00, ZLM02, ZLM 1 04]
28NISP Publications: [nisa, spiOO, SDTII00, SDO I]
29Restrax Publications: [SKOG, W SF 1 00, WSF 02]
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Finally the tool MCNPX [GFKW07], which has been developed at the Los Alamos National 

Lab (LANL) [lan], differs from all other packages. "MCNPX is a general-purpose Monte Carlo 

radiation transport code for modeling the interaction of radiation with everything", [men] 

The difference is that it is not specially optimized for Neutron Diffraction Applications but 

allows calculations beyond the scope of all other packages. So it is used for nuclear medicine, 

nuclear safeguards, accelerator applications, homeland security, nuclear criticality, and much 

more. MCNPX is written in Fortran 90 and runnable on UNIX and Linux systems.

2.4.4. Data Exchange and Storage

Whenever automated experiments are performed, collected data needs to be stored for further 

processing or archival storage. Focusing on the last three decades it is observable tha t the 

demands on a suitable dataformat are gradually shifting. While aged solutions are primarily 

focused on saving disk space and a providing high-performance algorithms, modern solutions 

also aspire to afford a highest possible exchangeability.

The reviewed facts about common software system show that nearly all older systems come 

with a proprietary data format. For short term data storage, this is acceptable since data 

measured by different systems can significantly differ and as much data should be stored in 

the best fitting way.

Short Term Storage

Short term  storage mechanisms are either necessary when the experiment generated data 

exceeds the amount of volatile memory or the complexity of data does not allow to store 

it in a common data format. One automatic way to deal with this problem is using the 

OSs swap mechanism, which automatically caches data that does not fit in memory to the 

harddisk. For time-critical tasks this mechanism has several disadvantages since it is not 

predictable when data is stored and which data is stored. Here the access, read and write 

times significantly differ depending on the amount and speed of RAM as well as the type 

of swap medium such as a HD or SSD. Furthermore the addressable memory depends on 

the hardware and OS architecture and is for 32 bit systems limited to 4GB, which is not 

enough for large experiment data, such as the detector output of instrument E2 at BER.-II.
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A different setup tha t solves these problems is storing the data on demand using persistence 

mechanisms. While most instrument systems persist their data to proprietary binary files, 

new architectures in different areas make use of high level frameworks such as Hibernate30. 

These framework often provide different standardized ways to directly serialize objects to files 

or databases. Naturally these files can also be manually stored in relation databases such as 

MySQL , PostgreSQL, Oracle etc. using SQL-APIs like JDBC.

Long Term Storage

Beside the internal data storage, tha t is more a technical issue, another im portant topic is 

the long term  storage of data. Long term  storage in this context means the storage of data 

using a standardized format, which can be read by independent tools even after many years. 

Here the ongoing globalization in diffraction experiments shows th a t there is a strong need 

to compare measured data. A way to achieve this is to agree upon standards and store the 

measurement results in a common data format. This allows to open and compare experiment 

data obtained from multiple instruments by all tools that support this unique standard. 

Here the data differs significantly from the short term  data. While the short-term-data is 

equipped with verbose instrument specific information, for the longer stored data, usually 

data-reduction algorithms can be applied. The remaining relevant data finally needs to be 

saved in combination with meta information that allows to recognize data  structures in a 

consistent way. To reduce storage costs and to simplify file transfers it is useful to choose an 

output format which supports compression.

The NeXus Format

Many scientific branches draw upon one or more common data formats to store data  combined 

with m eta information. In the area of neutron, x-ray, and muon science the NeXus dataform at 

has been established as a widely used standard.

The Data Format for Neutron. X-Ray & Muon Science (NeXus) is an open file format that 

has been standardized by the NeXus International Advisory Committee (NIAC) [niaOfi], a 

group of programmers and scientists representing major scientific facilities in Europe, Asia,

30Hibernate is an Object Relational Mapping library, which is e.g. able to map Java classes to  database tables
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Australia, and North America. The committee meets a t least once every year and deals with 

questions such as the establishment of policies concerning definitions, use and promotion of 

the NeXus format, insurance of a sufficiently complete and clear dataformat as well as the 

discussion of new definitions, interfaces and API functionality.

The NeXus architecture is composed of four components [ncx09] :

1. Design principles and guidelines that describe how and where data is to be stored

2. Instrument descriptions tha t form unique templates for portable instrument data

3. An access layer to  lower-level file formats tha t store NeXus files on physical media

4. An API with a set of routines that allow to read and write NeXus files

Design principles

The NeXus-design-principles describe the general assembly of NeXus-files without fixing the 

underlying file format. A NeXus-file can be regarded as a file system in which the two NeXus 

main entities data groups and data items form a tree. Data groups represent the branches and 

can contain data items or further groups. Data items are represented by so called Scientific 

Datasets (SDSs) and can be scalar values or multidimensional arrays with character-, integer- 

or float-types of various sizes31. In contrast to plain filesystems NeXus additionally introduces 

some sort of meta information tha t help to identify stored data. Data items are tagged for 

this with attributes in form of key-value pairs that contain extra information such as data 

units. Groups do not have attributes but are both, identified by a name and an additional 

class identifier that explicitly defines the sort of data stored in a group.

Illustration 2.8 shows a simplified example of a NeXus tree structure. Here it is visible that 

each group has a dedicated NeXus-class tha t starts with N X  and is printed in brackets under 

the group name. Each file only contains one NXroot but can contain as many NXentry32 

elements as needed. All further guidelines that describe which and how many entries of data 

items and data groups can be stored in a group are defined by XML based meta description 

files [nexc]. This also includes the allowed types of attributes that can be assigned to data

31 Allowed sizes are 1,2,4 and 8 bytes
32 An NXentry contains all data for one single scan or measurement
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items. It is important to mention that a tree may be extended by own proprietary groups 

and items. The drawback is that independent software can no longer recognize the type of 

the proprietary stored data.

Instrument Descriptions

The previous chapter illustrated tha t NeXus files are equipped with meta data that help to 

identify stored information in a human and machine readable way. In some situations this 

is not sufficient since mandatory relations between stored data for specific experiment or 

instrument scenarios are not addressed. NeXus defines a set of instrument definitions that 

solve the problem by precisely defining the format for particular instrument types. These 

definitions are being formalized as XML-files and describe all data groups and items including 

a flag if they are optional or mandatory. The existence of these definitions allow to develop 

much more portable applications for data analysis and visualization tha t can rely on complete 

and valid experiment and instrument data.[nexb]

Low Level NeX us File Formats

Beside the definition of structures and guidelines a further important point is the storage on 

physical media. Here XeXus separates the organization of the data from the concrete storage 

format. This means that NeXus allows the storage of data using different fileformats that 

ideally support tree based structures. The three directly supported file formats are XML, 

HDF4 and HDF5. While XML has the major advantage that it is directly human readable 

but also simply parsable by a multitude of free XML parser libraries, its drawback is the high 

consumption of storage space due to its verbose meta information. HDF5 on the other hand 

allows high compression and fast data handling but requires special HDF capable libraries 

th a t are not available for all platforms33. The support of LIDF4 is more a compatibility 

decision and only supports a subset of the newer HDF5 functionality34.

330n e  example is the absence of a 100% native T1DF5 java library and even missing 64 Bit support when 
falling back to the Java Native Interface (JN1) based HDF5 implementations

34HDF4 in particular lacks the support for multidimensional compound datatypes, is not thread safe, does 
not natively support XeXus trees and has size restrictions [hdfa]
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The N eX us A PI

The final part of this NeXus disquisition is the NeXus Application Programming Interface. 

This API is an integral part of NeXus and provides a unique interface th a t allows to read, 

write and create NeXus files in XML, HDF4 and HDF5. The advantage of this abstraction 

layer is tha t the same routines are used for all three formats. Switching between them is 

possible with minimal effort. The API is available for C, Fortran 77, Fortran 90, Java and 

IDL. Support for further languages such as Python is being planned.

The navigation through NeXus-files follows a state machine based approach. After opening 

the NeXus-file, a handle is used to store the current location and allows to navigate through 

the tree similar to the browsing of a file system using a Command Line Interface (CLI). 

Commands are provided to open, close and create groups, read and write data and related 

attributes as well as setting compression flags and the type of the underlying file format.

NeXus is in the meantime supported by several instrument control systems such as SICS, 

GumTree, NoMAD and DANSE, analysis and visualization systems such as ISAW, and Open 

GENIE, Mantid, TVnexus and simulations systems such as McStas. More detailed informa

tion about the usage of NeXus in Open Inspire is covered in chapter 5.2 on page 190.



CHAPTER

T H R E E

SOFTWARE REQUIREMENTS

3.1. Introduction

The previous chapter gave an overview of the scientific backgrounds, the instruments and 

research environment, measurement principles and the most commonly used software solu

tions.

This chapter now determines the requirements that are placed on an instrument system. This 

is realized using a Software Requirements Specification (SRS), which later serves as basis for 

all decisions during the development process.

For this specification, the author decided on a mix of different forms of description th a t 

have been shortened and adapted to the context of a PhD thesis. As a basis, the Guide for 

Developing System Requirements Specifications (IEEE 1233) and Recommended Practice for 

Software Requirements Specifications (IEEE 830) have been applied [SAF00]. The structuring 

is based on the Volere - Requirements Specification Template [RR09].

To determine the software requirements, a specification analysis and continuous enhancement 

has been carried out considering the following sources:
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a) Anonymous interviews conducted with instrument responsibles, users, developers and 

decision makers at selected institutes1.

b) Evaluation of the results of the Inspire Assessment, a questionnaire conducted in De

cember 2007 in cooperation with the TUM, NECSA, PSI and ILL.

c) Analyses of functional and non-functional properties of the instrument systems intro

duced in chapter 2 including the analysis of source codes and system processes.

d) Analysis of the usual processes and operating experience at instruments and their en

vironment (e.g. scans) regardless of the operated soft- and hardware.

e) Experiences and observations of other hardware and software systems with overlapping 

functionality (e.g. in other scientific or industrial disciplines).

f) Consideration of similar programs or libraries or dependencies used by other systems.

The complete Requirements Analysis includes the identification of the abstract Customer 

Requirements using the sources a and b and their further development to Development Re

quirements by means of source c to /. 2

In favor of readability and the scope of work the presented individual evaluation of all in

termediate steps of the requirement analysis will be omitted. The separate determination of 

customer and development requirements are also not part of this document as the interviews 

were carried out anonymously'1.

However included are the results of the finished requirement analysis in forms of a reduced 

Software Requirements Specification (SRS). This includes the presentation of the Business-, 

Product- and Process Requirements and is divided into the three main sections The Purpose 

of the Project, Functional Requirements and Non-Functional Requirements.

The selected form of the SRS allows an overview of all requirements to be obtained, and 

allows their referencing during the design and implementation phase in order to evaluate the 

satisfaction of the requirements after completion of the development. The SRS is thereby

1 Included Institutes: HZB (former HMI and BESSY), TUM, ANSTO, XECSA, PSI, ILL, DESY and OU
2For more information about Customer and Development Requirements read [CKM01]
3The Inspire Assessment was public.
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not limited to Open Inspire but can be reused as basis specification for other instrument or 

control systems.

For the prototype of Open Inspire (which will be covered in 4), the SRS is indispensable 

in that it allows a systematic continuation of the development even beyond the completion 

of the prototype. Software companies organize extensive processes generally according the 

Capability M aturity Model Integration (CMMI) reference model [Tea02], which subdivides 

the quality of the software project organization in five "maturity levels". Already CMMI 

Level 2 (Managed) requires the existence of a SRS to handle the development processes.

3.2. Project Drivers

The first part of the SRS gives a short overview of the Project Effort, the Goals of the 

Development, introduces the Stakeholders tha t are confronted with the instrument system 

and summarizes the constraints of the development.

3.2.1. Background of the Development Effort

For many years more and more material scientific tasks in international institutes are as

sisted by a growing number of software systems. Initially simple process computers executed 

repetitive tasks to disburden personnel, increase the reproducibility and lower the errors of 

measurements. In the meantime these computers are replaced by several generations of less 

expensive, more powerful and easier to use computer systems tha t allow measurements th a t 

could before only be made under challenging conditions. Nearly all institutes took advantage 

of these new technologies and developed instrument systems as introduced in section 2.4.

Today’s growing computer networking, distribution of tasks, the implementation of cloud 

computing and the global convergence of research institutions give more than ever a motiva

tion to use these new concepts for the enhancement of existing systems and profit from new 

developments.
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3.2.2. Goals of the Project

The goal of the work is to develop the concept of a universal and flexible Supervisory Control 

and D ata Acquisition (SCADA) middleware tha t bridges the gap between established classic 

systems such as introduced in section 2.4 and a global cloud oriented service infrastructure. 

The software should therefore ease the loose coupling of already available and working clas

sically designed software fragments and increase their strength in a global context.

The heart of the concept shall be a framework and platform that improves the collaboration 

between users and developers of instrument systems. This shall be done by providing means 

th a t allow the global publishing and sharing of binary software fragments and the composing 

of them to arbitrary instrument and experiment setups. The vision is that users can quickly 

compose experiment setups using prebuilt building blocks without the need for programming 

skills and tha t developers can share and reuse common functionality to reduce redundancy 

and save time. W ith sophisticated mechanisms for the coupling of heterogeneous Data. Ac

quisition and Control (DAC) systems it should also help to discover common interfaces, test 

the compability of systems and flexibly define and test new interface standards.

3.2.3. The Stakeholders

The first step of the SRS comprises the identification of all involved stakeholders. The side 

of the client is represented by research institutions that offer experiment software to users. 

On the customer side are the experimenters and observers that use and maintain the system 

and the last group includes the developers that are responsible for the development of the 

core system, extensions and software tests.

The Client - Research Facilities

The system to be developed is not dedicated to one or only a few clients but freely usable 

by all facilities tha t offer controllable research or automation infrastructure to clients. For 

the investigation of the requirements and operating environments of potentially interested 

research institutes several instrument responsibles and developers have been interviewed.
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Facilities with instrument responsibles that offered interest are the IIZB (DE), FRM-II (DE), 

PSI (SW), NECSA (SA), ANSTO (AU), ILL (FR), DESY (DE) and HZDR (DE).

The research facilities select and provide the software and infrastructure for experiments, pay 

soft- and hardware maintainers as well as developers and schedule the access to instruments 

and the sample environment.

The Users

While research institutions play an important role as providers of infrastructure the user- 

group actively makes use of the actual system functionality. Users can be divided into ob

servers, experimenters, configurators and administrators.

Observer

The observer-group is the group with the lowest privileges and includes all persons th a t have 

no active input privileges to the software but are enabled to query information from the 

system. Examples are the current position of an axis, the visualization of a detector, the 

state of hardware components or error messages.

One variant for a user interface accessible by observers is a public display directly at the 

instrument, which can be viewed by everyone. An other active variant may be a network- 

based remote monitoring using remote computers, tablets or mobile phones.

People which are belonging to this role are for example visitors th a t pass the instrument but 

also security guards or maintenance personnel th a t have no direct reference and access to  the 

instrument but should be alarmed about possible malfunctions or hazards.

Scientific Skills Programming Skills Instrument Setup Electronics Setup

Level □ □ □ □ □ □ □ □ □ □ □ □

Table 3.1.: The Observer’s Skills

Table 3.1 shows the strength and knowledge required to be a member of the Observer-role. 

( [□□□] =  novice, [■□□] =  moderate experience, [■■□] =  experienced, [■■■] =  expert )
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Experimenter

The largest and most important4 group is the group of experimenters and includes the sci

entists conducting experiments on the instruments. An experimenter selects the appropri

ate experiment environment, configures measurement sequences and evaluates the measured 

data. They normally use the instrument only for the limited time of the experiment and then 

switches to the most promising instrument for the next experiment.

An experimenter usually has no or only limited programming skills but extensive scientific 

knowledge regarding the experiment and setup of the instrument.

Scientific Skills Programming Skills Instrument Setup Electronics Setup

Level ■ ■ ■ □ □ □ ■ ■ ■ □ □ □

Table 3.2.: The Experimenter’s Skills

Configurator

Configurators are responsible for the adaption of the software to specific instruments and 

experiment environments. Before the individual components of an instrument can be used it 

is usually necessary to configure the software with hardware dependent setting. Depending 

on the hardware this can for instance be bus IDs, IO-, memory- and IP addresses but also 

the offsets and limits of positioners or the number of detector channels. Depending on the 

software setup additional properties such as database configurations, the composition and 

Look and Feel (LnF) of the Graphical User Interface (GUI), preconfigured measurement 

sequences or storage paths are conceivable.

The configurator normally inherits all the privileges of the experimenter.

Scientific Skills Programming Skills Instrument Setup Electronics Setup

Level □ □ □ ■ ■ ■ ■ ■ ■

Table 3.3.: The Configurator’s Skills

4The experimenter is the user that primary makes use of the software. All other users work aims to make the 
experimenters measurements possible.
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Administrator

A similar role to the configurator’s role is that of the administrator. This person is as 

well responsible for the system setup but has more privileges. While the configurator can 

only configure released properties of the installed instrument software, the administrator has 

unrestricted access to the whole system. Tasks of the administrator are the basic installation 

and maintenance of software, the rectification of errors, the installation of updates and the 

creation and management of users, groups and their privileges. Moreover he is responsible 

for the secure and reliable operation of the system. As superuser he inherits the rights of all 

other users.

Scientific Skills Programming Skills Instrument Setup Electronics Setup

Level ■ ■ ■ ■ ■ ■

Table 3.4.: The Administrator’s Skills

Developers

Beside the two categories clients and users the stakeholders can be differentiated into a third 

role developers that are responsible for the extension of the system. While software projects 

for small monolithic software normally do not differentiate between System Designers, Com

ponent Developers and Software Tester, it is indispensable for larger modular systems.

System  Designer - Software Engineer

A person tha t is considered as a System Designer is a developer who is responsible for the 

abstract planning of the overall system. He is primary a Software Engineer whose work 

includes the requirement analysis, the object oriented analysis and modeling of the software 

system, the framework and interface design as well as the application of relevant Design 

Patterns and adherence to Good Practices. The results are usually model descriptions in 

form of UML diagrams. While implementing the software is actually not the work of the 

Software Engineer but the work of a programmer, providing runnable reference models in 

form of prototypes is not unusual and often helpful.

The practical part of this thesis’ work mainly falls into the realm of Software Engineering.
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Scientific Skills Programming Skills Instrument Setup Electronics Setup

Level ■ ■ ■

Table 3.5.: The Developer’s Skills

Component Developer /  Programmer

The group of software developers includes the programmers who develop the core software 

system against the system modefi as well as the developers who write system extensions. Core 

developers mainly work at the project beginning and later on rarely make changes to the core 

system to prevent incompatibilities. Component developers on the other hand constantly 

extend a modular software system using component based extensions (plugins) that will later 

be configured by Configurators and used by Experimenters.

A software developer is usually Administrator for his own development and test system.

Scientific Skills Programming Skills Instrument Setup Electronics Setup

Level

Table 3.6.: The Developer’s Skills

Software Tester

Software Tester are responsible for the test and verification of the software system. Their 

job is to setup test systems, create test cases (e.g using unit tests), analyze log files, profile 

the memory and realtime behaviour, perform code quality checks and verify if the software 

meets the given requirements and good practices. Projects that use Test-driven development 

(TDD) as development process first create tests and develop and refactor the functionality 

in short cycles until all tests succeed.

During the development of the software prototype in chapter 4, only a minimum of automated 

software tests will be applied since it would exceed the time constraints/1

5 The definition of the System Model is the job of the Software Engineer
6 This does not affect the mandatory manual tests that are performed before publishing a new release.
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Scientific Skills Programming Skills Instrument Setup Electronics Setup

Level

Table 3.7.: The Developer’s Skills

3.3. Project Constraints

3.3.1. Mandated Constraints

M andated constraints are the essential constraints that must be met by the system. To keep 

it short and simple, it is presented in form of a summary rather than atomic requirements.

The Implementation Environment

The most important constraints refer to  the implementation environment. A software proto

type shall be developed that is able to control the neutron diffractometers E3  and E 7  a t the 

HZB. This consequently requires the system to be compatible with the instrument hard- and 

software, covered in chapter 2.3. To meet this requirement it must be possibly to query data 

from the instrument hardware and to gain a level of control over the hardware th a t allows to 

run scans. This includes the ability to configure and initialize hardware and to control and 

query Caress-controlled devices such as motors, encoders, detectors (single and area) as well 

as counters. The system must be executable at the instruments without needing to change 

any hardware. This is met when the software is runnable on the given instrument computers.

Partner or Collaborative Applications

The software used to control the hardware at the instruments is Caress. To control the 

existing devices without changing them it is necessary that the new system is able to  com

municate with them in the same way as Caress does. To achieve this, the system must come 

with its own implementation of the Caress protocols to allow the direct communication with 

the Caress-hardware-servers.

Beside the control it is also necessary to save data in a generally accepted data  format. The 

NeXus-format, which has been covered in section 2.4.4 on page 49, is the standard format for
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the storage of neutron diffraction data. The system shall then come with support to write 

measurement results using the NeXus-iorm&t.

W ith respect of the measurements it should be possible to run complex scans with minimum 

configuration effort. The tool SScanSS, which has been covered on page 2.4.1, allows the quick 

3-dimensional planning of scans and writes the scan paths to an output file. The system shall 

be able to read these scan configurations and drive the hardware according to the presets.

Finally it shall be possible to simulate measurements rather than driving real hardware. 

This allows setups to be tested and dry-runs to be made in order to anticipate how the real 

measurement results may look like or assist the real measurement with pre-simulated data. 

To perform simulations, the system should allow the integration with the tool McStas, which 

has been introduced on page 45 and is the selected standard simulation engine on E3 and 

E7.

Solution Constraints

The solution must be flexible enough to be adapted to new environments and situations. The 

developed prototype shall run on Neutron Diffractrometers but the overall system must be 

easily adaptable to other instrument hardware and be usable for measurement and control 

tasks in other scientific or industrial disciplines.

While the prototype shall be developed for the Diffractometers at the HZB, the core system 

must be designed in a hardware independent way. This means that only a minor part of the 

system, tha t is responsible for the communication for the hardware, needs to be adapted to 

run the same experiment on hardware used at other institutes. The aim is to perform the 

same experiments with different motors, counter and detectors but get comparable results.

To justify the effort of developing the new software it must have a clear advantage over 

classical systems. It must improve the way experiments are run without introducing new 

limitations and it may even allow new types of experiments that are not possible with current 

systems. This shall be achieved by a platform that allows a more flexible configuration, a 

better extensibility and an easier maintenance without reducing the overall performance.
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Advanced measurement features shall be easily addable to the system by an extension mech

anism. The aim is here to  provide intelligent measurement features that, for example allow 

measurement times to be calculated dynamically in response to actual sensor or simulation 

data.

Legal Constraints

Everyone shall be able to convince himself whether the system code is secure and does exactly 

what the user wants to do with the system. This can be done by analyzing the source code. 

A legal constraint is therefore tha t the source code is publicly available. This is met when 

the system is published under an OSI compliant open source license and free to download by 

everyone from the internet.

To keep the system free of charge and avoid interfering with other license restrictions it must 

be independent and decoupled from commercial software. If external libraries are required 

for the functionality of the core system, these must be free and under an Open Source license. 

To avoid restricting the system however it must be both permissible and possible to extend 

it even with commercial libraries and tools.

Schedule Constraints

The work is done in the context of a PhD-thesis so tha t the final software prototype must be 

available within the PhD schedule of 6 years. A preview of the software must be available 

after 2 years th a t is able to control the devices of the given environment to confirm the 

feasibility.

Software tests will be run on the same instruments used for the regular user measurements. 

This makes it necessary to schedule them in a way that does not conflict with measurement 

times of such experimenters.
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3.3.2. Relevant Facts and Assumptions 

Relevant Facts

The instrument network is separated from the rest of the network using a Virtual Local Area 

Network (VLAN), which makes it impossible to directly access the instrument computers 

from the HZB intranet or the internet. The only way to communicate with the instrument 

from the outside is using a SSII tunnel. Slow or faulty networks, which have been identified 

at several institute networks, and the overhead of the encrypted tunnel can cause bad or 

fluctuating network latencies and throughputs. These problems must be countered by fault- 

tolerant network communication mechanisms.

The instruments are located in radioactive environments with extensive underlying safety 

rules, which restrict users in entering the instrument environment. This makes it necessary 

to  consider waiting times if the direct access to an instrument is required and presumes a 

design tha t is stable enough to run in unattended environments with non-permanent user 

access.

Business Rules

All neutron sources have maintenance times. The reactor at the HZB is for one week per 

month shut-down so that software tests can be performed that do not require neutrons.

Assumptions

The main system users belong to the group of experimenters. These scientists want to perform 

measurements and solve problems in a timely and focused manner, reach the aim without 

writing complex and comprehensive scripts and avoiding configurations tha t require internal 

system knowledge.

Globalization approaches make it necessary that experiment results that have been performed 

with instruments at different institutes are comparable. To make experiments comparable, 

new standards such as the NeXus format need to be defined. These help to share data and 

to interchange measurement workflows, device-interfaces or configuration files.
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The performance of computers will continuously increase (Moore’s Law [Sch97]). Future 

computer hardware will be able to perform more complex operations such as simulation 

calculations.

It can be assumed that software which is currently being developed will later run on higher 

performance hardware and will be designed to make use of more complex functionality.

3.4. Scope of the Work

3.4.1. The Current Situation

Many institutes worldwide carry out material scientific experiments using neutron diffraction 

techniques. A short introduction to these techniques was given in section 2.2 on page 19. The 

environment and the assembly of the instruments has been covered in 2.3 on page 24 and the 

most frequently used software systems for diffraction experiments have been summarized in 

section 2.4 on page 32.

Before a measurement is performed, the first step is to find the best fitting instrument for 

the specific research. After an adequate instrument has been found, a proposal needs to 

be submitted to the operator of the instrument tha t contains a detailed description of the 

experiment and the demanded sample environment. If the feasibility of the experiment can 

be confirmed and the proposal has been accepted, so called beam time will be assigned in 

which the experiment has to be performed.

Now the real work begins and both sides start with the preparation of the experiment and the 

environment. This work is an important factor for the overall success of the experiment and 

increasingly includes simulation techniques tha t help identifying problems prior to the real 

experiment. One part of the work is the preparation of the samples and the planning of the 

measurement the other one is the configuration of the sample environment and the software. 

All currently available experiment systems support the use of batch-files, which describe 

the single steps of a measurement required to run long experiments without intervention. 

After completion of the measurement a dataset with all relevant measurement values and 

parameters will be given to  the experimenters. Depending on the format, the analysis of the
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measurement results can be performed by free standard software or using special software 

such as TVtueb, which will be given to the experimenters.

Each measurement system only has limited configuration capabilities tha t suffice for the 

commonly used experiments. If custom measurement flows or non-supported hardware need 

to be used, adopting the software can lead to a considerably time-afford.

3.4.2. The Context of the Work

Due to the limited overall-time of a PhD-thesis, only a model shall be developed that can be 

used as the basis for further control and data acquisition tasks a t different instruments.

The verification of the model shall be proven using a prototype which demonstrates the core

concepts of the model. For a selected set of important features only one use-case will be and 

implemented for demonstration purposes. Although it would be possible to use the prototype 

in other environments, the verification shall be limited to the environment at the HZB which 

has been introduced in section 2.3.

Performance-, memory- and other fine-tuning work as well as the preparation for hard real

time will not be part of the prototype development unless it is essential for the functionality.

3.5. Requirements

Requirements can be split into the categories Functional- and Non-Functional-Requirements. 

Functional Requirements describe what the system shall do and Non-Functional-Requirements 

how it shall do the work.

This thesis deals with the development of an enhanced system, which improves the workflow 

of experimenters, administrators and developers, provides more flexible experiment planning 

and operation capabilities and ease the integration with third-party systems. All these de

mands are Non-Functional-Requirements because they describe how the specific issues shall 

be solved or improved. For a platform and framework such as provided by the developed 

prototype, the Non-Functional-Requirements are very important because their satisfaction 

shall ease the integration and development of modular components that provide functionality 

tha t cover concrete use-case specific tasks.
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The functional requirements for an instrument system can be easily encompassed by the 

evaluation of existing instrument software. If the system does not come with the full function 

set of classical system it must at least come with mechanisms tha t allow to add additional 

functions in a fast, easy, and flexible way. This limitation would otherwise be a regression 

and would not constitute an acceptable solution.

3.5.1. Functional Requirements

The majority of Functional Requirements th a t apply to an instrument system can be collected 

from the function summary of the presented software systems in chapter 2.4. Further essential 

requirements for the new development have been given as constraints in section 3.3.

The following list gives a short overview over the essential Functional Requirements. Only 

the most important functionality shall be directly bound to the core system while all other 

functionality can be flexibly added on demand. A detailed justification for this decision and 

the introduction of further requirements, which are not yet clear in this abstract context, will 

follow in chapter 4.

The system shall ...

• ... provide a platform that allows the running of modular extensions

• ... control the life cycle of components

• ... come with functionality that allows the control of the data flow between modules

• ... provide a development API tha t allows access to and reuse of recurring functionality

• ... provide a User Interface that allows the configuration of the core system and its 

extensions

• ... provide functionality tha t allows monitoring of the current operation of the system

• ... allow restrictions to be placed on the user’s access to critical functionality

• ... provide a layer that validates user-input in order to prevent faults caused by misuse

• ... provide a secure interface that allows access to and operation of the system remotely
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Extensions shall ...

• ... perform measurements

• ... control and query hardware

• ... collect and save measurement results

• ... provide mathematical data reduction algorithms

• ... allow the creation and execution of measurement sequences

• ... provide scripting mechanisms for the creation of complex scans

• ... intelligently control the progress of the measurement using just-in-time data

• ... allow the simulation of hardware and measurement flows

3.5.2. Non-Functional Requirements

The second more comprehensive part of the requirements are the Non-Functional-Requirements. 

While the implementation of a functional requirement generally applies to a self-contained 

part of the implementation chapter 4, each non-functional requirement can be important for a 

larger number of independent implementation parts. A description and justification of which 

non-functional requirements have been met by each implementation detail would interrupt 

the readers flow and add extra redundancy.

To counter this problem, an index with all Non-Functional-Requirements‘ has been created 

in appendix 2. Each requirement comes with a unique id, a description, a rationale and a 

fit criteria so that a closer requirement description is not necessary in chapter 4. When a 

requirement relates to an implementation detail, it is specified with its unique id and links to 

the relevant requirement in appendix 2 starting with page 308. To ease finding a requirement 

they are sorted into categories and listed in the table of contents.

7The index also contains a minor number of functional-requirements that are referenced by multiple imple
mentation descriptions.



CHAPTER

F O U R

OPEN INSPIRE - THE IMPLEMENTATION

Open Inspire - The Implementation covers the concrete realization of a new type of software 

system. Open Inspire is a minimal but well extensible prototype of a software solution tha t 

complies with all guidelines and specifications covered in chapter 3. The primary aim is 

not the development of a system with all imaginable features but a matured, solid and fully 

functional basis for many usage scenarios. Instead of implementing specific features directly 

in the core of the software, it is designed to be independent from specific usage scenarios due 

to the decoupling between the core platform and modular extensions.

The chapter starts with a short survey of the distributed Open Inspire Architecture und 

continues with a closer look at the server. An overview describes the general concept of the 

01 Application Server on page 76 before the extension system is discussed in section 4.2. W ith 

an understanding of the component architecture, section 4.3 continues with a description of 

the 01  Container and the wiring of components to so called 01 Assemblies and closes with 

a survey of global services provided by the server. The next section starting on page 146 

covers the 01  Project Infrastructure. It deals with the global web project used by users for 

collaboration and information sharing as well as as a global resource storage used by the 

server. Section 4.6 closes with details about the 01 Build System , Integrated Development 

Environment (IDE) Integration and information for developers.
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4.1. Basic Concepts and Decisions

4.1.1. Network Layout

A problem common to many scientific Data Acquisition and Control (DAC) systems is the 

limitation to only one communication mechanism between different elements of distributed 

software. Generally it is no problem when the instrument environment is designed specifically 

to be used by the software or when the software is developed for the particular instrument 

environment. However, when the solution needs to be integrateable in an existing environ

ment [IE! 5 .3 .2][IE! 4 .2 .2][IE! 4.2 .3][IE! 5.3.3]p  5.3.6] without changing any system parts and without 

violating any rules and guidelines of the operating institute or company p  7.1.4]p  6.3.3] the 

problem is more difficult. To meet these requirements it is necessary to have a system that 

is easily integrateable in existing environments without changing them and with a minimum 

adaptation effort.

01 solves these issues by introducing a pluggable network architecture that is decoupled from 

the system core and is modularly exchangeable. This enables the reuse of existing devices 

with their existent protocols and network architectures and provides the ability to rapidly 

react to new developments without altering any part of the D A C  system itself p  5 .3 .6 ]p  

5.3 .8]p  5.3.9].

Figure 4.1 shows the network layout of a viable Open Inspire driven instrument environment. 

It is structured in the form of a multi-tier network with a Supervisory Control and Data 

Acquisition (SCADA) server in the center and an arbitrary number of Data Acquisition and 

Control (DAC) systems, service providers and user interface clients around. The example 

network is split into a secure internal area with services in the direct instrument environment 

and an untrusted external network such as the internet1. Using a firewall © enables filtering 

network packages and restricting the transport to a selected number of services and protocols. 

To allow the passing of packages belonging to external clients that access the 01 Server and 

to  allow server communication with external services, 01 introduces a modular network im-

1This is a common setup at all evaluated institutes
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plementation for a secure and encrypted communication through firewalls p  5.3.5]p  6.5.2]p  

6.3.2]. A firewall-friendly reference implementation is covered in section 5.1.1 on page 176.

Open Inspire Application Server

The 01 Application Server © acts as SO AD A server, as middleware between user and different 

types of hardware and as a process control manager. In contrast to classical designs, the 01 

Server comes without task-oriented logic, without direct hardware access and without fixed 

user interface. Functionality can be added on demand, depending on the scope of duties. 

Business logic such as scan control and data processing as well as communication with DAC 

systems, external services and user interface clients are provided by software components and 

executed inside the 01 Container, covered in chapter 4.1.2.

Data Acquisition and Control Services

Instead of directly access the hardware from the OI Server, this functionality has been out

sourced to so called Data Acquisition and Control (DAC) servers. These servers contain all 

functionality needed for the direct low-level hardware access and provide lightweight network 

services, which allow the control and reading of data from devices. The advantage of this 

approach is that DAC servers can be written in any programming language, can be operated 

on any hardware and can provide arbitrary high level interfaces as long as a 01 Server com

ponent is able to communicate with them. Different to the 01 Server, which simply calls a 

service and waits for an answer, the DAC servers can implement hard realtime functionality 

needed to meet hardware timing requirements. p  3.1.2] p  4.2.2] p  5.3.6]

For new 01 based developments it is recommended to realize DAC servers in form of embedded 

systems O that represent the functionality of only one physical device to one network service. 

Beside micro-controllers, programmable hardware such as Field Programmable Gate Arrays 

(FPGAs) are a good choice to realize critical and failsafe functionality with high performance, 

massive parallelization, and small latencies. For non time-critical operations with lesser safety 

demands one or more services can be operated on normal PC hardware and provide access 

to  installed devices such as the camera system covered in chapter 5.6.3 on page 247.



4.1 Basic Concepts and Decisions 75

The OI architecture also allows the integration of existing hardware control systems © such 

as Caress, TANGO , EPICS or SICS p  4.2.8]. When such systems already provide a network 

interface, these interfaces are often not designed to be used standalone and require additional 

control and conversion code. One principle of the OI design is the ability to integrate other 

systems without changing them, which means that all additional conversion and communi

cation code needs to be integrated and handled by the OI server. This will be demonstrated 

using the example of Caress in chapter 5.4.

To minimize latency times and maximize the throughput between Open Inspire and DAC 

servers, they are located in the same network. This guarantees fewer network hops, shorter 

cable lengths and no speed decrease caused by packet filters p  3.1.3] p  3.1.7] p  3.1.8].

Information Services

In addition to DAC servers for the access to low-level hardware, a second category of services 

can be summarized under the term  information service (©, ©). Examples therefore are storage 

solutions, databases and directory services as well as monitoring services of external systems 

such as a neutron or synchrotron sources. To assist internal data reduction processes2, services 

can furthermore act as gateways to  number crunchers, computer clusters or cloud systems.

User Interface Clients

A user interface for Open Inspire can be implemented in different ways. The first way is to 

add it as a service directly to the Open Inspire (OI) server such as the OI Shell or SysTray 

covered in chapter 4.4.2 on page 143. The other and recommended way is to implement it 

as a network client tha t remotely connects to the OI Server. A client can be located directly 

beside the instrument © or somewhere in the internet ©. To allow the operation of clients 

on different types of devices, the OI Architecture makes no restrictions about the implemen

tation, communication protocol and programming language of clients. Whenever a client 

communicates using a different protocol than the reference implementation, introduced in 

section 4.4.1, a new service protocol can be modularly added to the OI Server. Clients can 

provide simple monitoring functionality, can be tailored to specific tasks such as the instru

2Data reduction processes transform raw experiment data to simplified, ordered and better accessible data.
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ment calibration covered in chapter 5.6 or universally used for the configuration, monitoring 

and control of experiments such as the client OI Sunrise that is part of section 5.1.2. They 

can be operated as normal programs, in forms of web sites or on mobile devices such as 

smartphones or tablets.

OI Library and Media Platform

The Open Inspire Library and Media Platform (OI-LAMP) © is a central repository for OI 

related libraries and media. It offers human readable content on the webpage h t t p : //www. 

o p e n in sp ire .o rg  such as manuals, tutorials and screencasts as well as machine readable 

services used by the OI Server, OI Clients and external tools. Open Inspire is the first 

scientific SCADA architecture tha t comes with a central component repository similar to 

Apple’s App Store or Google Play. Components can be published by users, browsed in the 

web or by 01 Clients and automatically downloaded and installed by the OI Server. Different 

to applications, 01 components are not executed standalone but wired to experiments and 

executed inside the OI Server. More details about the OI-LAMP are covered in chapter 4.5 

on page 146.

4.1.2. Application Server Basics

Compared with the systems analysed in section 2.4 the conspicuous difference of 01 is that 

all application logic has been outsourced to a central and dedicated application server. In 

contrast to two-tier client-server systems, the introduction of a third tier as middleware be

tween Hardware and User Interface (UI) prevents the application logic being interwoven with 

the DAC or User Interface code. Classical coupling of the application logic with the client 

or server code enables fast and unconfined data transfers within the software boundaries but 

constraints the logic to the software platform of a specific DAC server or User Interface. Using 

a fine grained distributed system in contrast meets the demands on a high degree of separa

tion, reusability and scalability but requires a higher communication effort for serialization, 

deserialization and synchronization. This leads to higher latencies and limited throughput.

The Application Server approach of OI combines the advantages of both the systems. It offers 

a flexible and loosely coupled component model without compromising the good performance
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of monolithic systems. Time-critical communication can only occur between the OI Server 

and DAC servers. But this is unproblematic, because real-time tasks are not performed on 

the OI server side but on the DAC servers tha t already reduce the data before transportation 

and therefore ease the timing requirements. Even less problematic is the communication 

between the OI server and UI clients. The entire workflow is managed by the OI server, so 

tha t a complete connection loss will not affect the server operation p  3.5.4] p  1.1.2]. Beside 

these external communication, the internal data flow is nearly latency free and guarantees high 

throughputs p  3.1.7]p  3.1.8]. This is mainly interesting for flexible setups with mathematical 

components such as measurement data reduction.

4.1.3. Application Server Internals

Considering the OI server as a White Box shows that it only appears to behave like a mono

lithic application. Internally it conforms to all claimed requirements such as modularity, 

exchangeability and reusability p  3 .7 .2 ]p  3 .7 .5 ]p  3.8.3] . This situation is attained by virtue 

of to the decoupling of the server code from instrument and experiment specific functionality.

While dynamic extensions to DAC systems are usually realised by plugins, within OI they are 

realised in a way tha t is geared to application containers for web applications. Conventional 

plugins require a fixed interface that enables the communication between plugin and main 

program. This forces the main program and the plugin to follow a fixed standard concerning 

the interface and data structures. Outsourcing of functionality into plugins leads to a more 

lightweight application core, a better decoupling and enables on-demand loading but it does 

not solve the problem that the plugins still depend on a fixed interface and server, which 

is responsible for the initialization and data transport. This conflicts with the requirement 

p  5.3.10], which demands modules to be independently usable in programs outside the OI 

server.

To meet this requirement, an architecture is needed that does not only make the components 

independent from each other but also keeps them completely decoupled from a superordinate 

software system. This is the job of the OI Application Container th a t uses the Inversion 

of Control (IoC)-pattern, which allows the movement of hardcoded references between parts
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of a program to a superordinate instance to be later linked using the Dependency Injection 

(D l)-pattern [Fow04]. Details are covered in section 4.3.1 on page 110 and section 4.3.4 on 

page 128.

The OI Server hosts the OI Container and is responsible for the management and manipula

tion of components. In a manner similar to programs within Operating Systems, modules can 

be loaded into the container, configured and set to perform tasks or interact with hardware or 

users. Each module is independent from the container and directly useable in other unrelated 

software systems p  5.3.10]. In contrast to programs in Operating Systems the focus does not 

concentrate on the execution of individual programs but on the linking of independent com

ponents to a network with an arbitrary number of building blocks. Program fragments are 

therefore not coupled to one specific scenario but are reusable to build up composites for 

many different and independent usage scenarios.

A simple material science example, would be a measurement in which a detector makes 

snapshots of a sample’s diffraction pattern as it is rotated in steps of 5 degrees. This scenario 

can be built up by four modules. One for the positioner control, one to read from the detector, 

one to coordinate the measurement and one for the data storage. While such functionality 

is often directly merged with the DAC system core, the component architecture of OI does 

not limit the logic to one or few scenarios. Modules can be independently reused in future 

assemblies inside or outside OI p  5.1.1]. A description of OI’s Assemblies and of the linking 

of modules follows in section 4.3.2.

Figure 4.2 shows the internal schematic of the OI Server. The communication paths between 

external servers and clients show that these do not really communicate with the OI Server 

itself but with modules tha t are executed inside the container. The server itself is not respon

sible for any instrument or experiment specific work tha t could constrain it to a fixed usage 

scenario. Beyond this, a further step is to outsource all the functionality from the OI Server 

to the container tha t is not required for the essential operation. The container itself is thus 

lightweight p  5.1.2]p  3.8.4]p  4.3.4]p 5.1.3] and only responsible for the installation, manage

ment and execution of modules. Tasks for specific usage scenarios such as neutron diffraction 

are exclusively provided by modules. The server is therefore not fixed to a specific domain
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but can be reused for completely different use-cases such as found in Smart Home or in

dustrial environments. This thinning of server functionality and the corresponding codebase, 

reduces the need for later modifications significantly. Changes only occur inside the container 

so that the framework can be kept untouched. This does not only meet the requirements 

for longevityp 3.8.2]p  3.8.3] but also improves stability, error-proneness p  3.2.3] p  3.2.3] and 

leads to faster understanding of the design p  2.3.3]p  2.3.3]p  2.3.2].

Although most functionality can be relocated to the container, graphic 1.2 shows tha t some 

management logic of the server need to be operated outside the container. These services are 

subdivided into Container Management Services, User Interface Services and Global Services. 

The Container Management provides core functionality for the 01 server and coordinates the 

complete lifecycle, error handling and component management. User Interface Services can

http://www.openinspire.org
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be plugged into the OI Server and provide user access to the server, directly on server-side. 

This will be covered in chapter 4.4.2. Finally the global services can be registered to provide 

functionality that can be used by modules to access server functionality or the filesystem. 

One important service is the Network Service that automatically provides network access to 

all other registered services. Clients can therefore connect to the server, authenticate by the 

Authentication-Service and access log files, start and stop the container, configure assemblies 

of modules or read configuration and measurement data from the filesystem. To meet all 

security requirements, the access to the filesystem or services can be restricted based on the 

registered users role p  2.2.2]p  2.2.3]p  2.2.4]p  2.2.5]p  3.2.8]p  6.1.2].

4.1.4. P latform  and Im plem entation Decisions

OI is platform independent and implemented using the programming language Java. Com

mon languages have been evaluated and a selection made that include C; C+ + , (7#, Objective 

C (ObjC), Python and Groovy. The following paragraph shows the primary selection criteria 

and comparison between Java and the evaluated language selection.

Feasibility:

All required functional and non-functional requirements can be achieved with Java. C  does 

not come into consideration due to the lack of Object Oriented capabilities.

Popularity and Acceptance:

According to the "Programming Language Popularity" statistics from langpop.com the lan

guages Java, C and C++ rank at the top of the normalized language popularity, accep

tance and resources comparison. These results include statistics from the Yahoo A P I  search, 

Craigslist database with information about job offers for programmers, Powell’s Books with 

statistics about available programming books, Freshmeat and Google Code with information 

about languages in Open Source projects, Del.icio.us with bookmarked language topics and 

committed Open Source code at Oloh. A second comparison about languages people are 

talking about includes Lambda - The Ultimate, programming.reddit.com, Slashdot and IRC. 

This places Java on the fourth place of 34 behind C+ + , C and Python. Python is a good
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alternative to Java and has been accepted as neutron experiment standard script language at 

the NOBUGS'* conference 2008. Python code is executable inside the Java VM using Jython.

Compatibility and Platform Independence:

Java, Python and Groovy programs are directly executable on different platforms. C, C++ 

and Objective C code need to be recompiled for all targets, which leads to compatibility 

problems when platform specific functionality is used. Objective C is primarily focused on 

Mac OS X  and C # on Windows so tha t other platforms are not supported in the same way. 

Direct hardware access from C, C++, ObjC and Python binds the code to a platform while 

Java comes with an abstraction layer tha t prevents the loss of platform independency. W ith 

the JSR 223 : Scription for the Java Platform [jsc], Java allows the execution of currently 

more than 25 scripting languages including Python, Groovy, Ruby and Scala directly inside 

the Java VM. This allows the creation of OI modules with scripting code in other languages.

Er ror-Proneness:

Java is a strict language that prevents many faults already on code base. It will not compile 

until all exceptions are caught and is less prone to memory leaks since it does not allow 

pointer based memory access. In contrast to Python and Groovy it strictly uses hard typing, 

which reduces type conversion errors while programming and improves the testability. The 

Java Security Manager is important for executing OI modules inside sandboxes, which do not 

allow the access to the filesystem or restricted resources.

Language Scope and Libraries:

Java has a sophisticated language scope and comes with one of the most comprehensive class 

libraries with solutions for nearly all problems. Additional functionality can be accessed by 

libraries for the scripting languages, supported by the JSR 223.

Developm ent Tools:

Integrated Development Environments (IDEs) to advance development and improve the time- 

to-market are available for all evaluated languages. For Java the most common tools Net-

3The New Opportunities for B etter User Group Software (XOBUGS) conference is regular conference with  
the aim to improve the collaboration between IT professionals at X-Ray and Neutron sources [nob].



82 Open Inspire - The Implementation

Beans, IntelliJ  and Eclipse provide all important methods such as refactoring, autocomple

tion, tests, debugging, syntax highlighting and syntax checking. Section 4.6.4 on page 169 

covers an example IDE integration using NetBeans.

Speed and Ease of Learning:

In contrast to Groovy and Python, writing small Java programs takes more time, caused by 

the verbose syntax. But this syntax has the advantage that the user is forced to write clean 

code tha t is often more reliable and helps beginners to avoid mistakes. Automated memory 

management and renouncing from pointers eases the development and prevents faults.

Execution Speed and Resource Consumption:

While C and C++ and ObjC are famous for their high execution speed, the languages Java, 

C#  and the scripting languages Python and Groovy are often considered as slow. For Java this 

label is antiquated. Due to language improvements over the last 10 years, Java comes with an 

improved JIT-Compiler and code optimization that make the speed differences between Java 

and C or C++ minimal. In particular comprehensive programs profit from the enhanced 

memory management and just in time compilation and are in several situations even faster 

[JN]. The memory consumption of Java is higher due to dynamic memory management and 

caching mechanisms but for modern hardware this is not a limiting factor.

Hardware Access:

Except for Java and Groovy all languages allow the direct access of hardware. Java and 

Groovy are operated in virtual machines and designed to directly run on any hardware so 

th a t a direct access of hardware will break platform independency. Since OI is designed to 

be a SCAD A server without direct hardware control, the platform independent optimization 

is more important than the access of hardware from the OI server.

OI runs on all major operating systems such as Windows, Linux, Mac OS and Solaris.
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4.1.5. Survey to  th e  Files and Folder S truc tu re

Checking out1 the OI Server from the Mercurial Repository5 h t tp : / /h g .o p e n in s p i r e .o r g  

creates a 30MB folder structure with —800 files tha t will grow to —1600 files (220MB) after 

building. The content and size of the directories can vary because the OI build system is 

able to  decide, which content6 needs to be downloaded from the Open Inspire Library and 

Media Platform (OI-LAMP)' during the build process. This reduces the required download 

bandwidth and minimizes the local and repository file sizes, which would be occupied by 

irrelevant packages otherwise [K 4.3.4]p  4.3.5] p  4.3.6].

The Main Folder

After building OI, the root folder main contains a readme-file and the subfolders system, mods 

and release. It is recommended to read the file README. T X T  a t first because it contains 

links and information about the OI version, building instructions and known problems.

main

 README. TXT....................................................................Information where to start reading

 system  Sources , build system and docs

 mods...............................................................................................................Sources of modules

 r e l e a s e .................................................................................................. Ready to run binaries

Figure 4.3.: Open Inspire Root Directory

The Release Folder

The folder release contains the complete and executable OI distribution. It will be created 

during the first build process and contains all files that are included in the OI installation 

packages tha t are downloadable from the OI website. Figure 4.4 on page 84 shows the 

shortened content of the release directory with short descriptions to each entry.

4The checkout process triggers the download of the sources and will be covered in chapter 4.6.1 on page 156.
5A Mercurial Repository is the storage place of sources using the Version C ontrol System Mercurial
6The build system for instance only downloads the files necessary for the specific platform and configuration.
7The O pen Inspire Library and Media Platform  is covered in chapter 4.5 on page 146

http://hg.openinspire.org


84 Open Inspire - The Implementation

L :
main

re le a s e

s t a r t . s h .....................................Start script for Linux, UNIX, Solaris and Mac OSX

s t a r t . b a t .................................................................... S tart script for Windows systems

O pen ln sp ire . j  a r ...................................................................... The Open Inspire Kernel

a sse m b lie s ............................................................................................. OI Assembly Files

1 In s p ire  2009 Demo Assemblies

.Demo-Scan.xml....................................................................Scan Demo Assembly

.Demo-UI.xml.........................................................User Interface Demo Assembly

c o n f.......................................................................................................Configuration Files

. i n s p i r e . p r o p e r t ie s ..................................................................Main Configuration

p r iv i le g e s .x m l User and Group Permissions

 cache ........................................................................................... Cache for Runtime Data

.c a c h e .p ro p e r t ie s  Cache Strategy Configuration

. jn i - c a c h e .............................................................................Cached Native Libraries

lo g s ..............................................................................................................Rotated Logfiles

in s p i r e . lo g ...................................................................................The active Log File

in sp ire -2 0 1 2 -0 9 -1 8 .lo g  A rotated Logfile Backup

. oim s .........................................................................................Installed OI Modules

. o i l s ..................................................................................................................... OI Libraries

. unpacked Installed OI Libraries

.packed .................................................................... Downloaded OI Library Packages

s to r a g e  Data stored by OI Modules

Figure 4.4.: Open Inspire Release Directory
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The System  Folder

The system  directory is relevant for developers and contains all resources tha t are required 

to build Open Inspire (OI). This includes the sources for the kernel and libraries, all build 

scripts, build resources, templates, configuration files, documentation and IDE extensions. 

The system  folder is covered in more detail when the build system layout is introduced in 

chapter 4.6.2 and illustrated in figure 4.40 on page 359.

The M odules Folder

The folder mods contains the sources and resources of all official Open Inspire Modules 

(OIMs). To achieve a clear separation from the kernel sources and libraries, these files have 

been outsourced to a folder that is independent from the main build system. Having the folder 

on the same directory level as the system  and release folder also allows the easy checkout of 

a subset of modules8. A list of all modules can be found on the official website.

4.2. Open Inspire Component Design

Open Inspire comes with a system of loosely coupled components that can be used to assemble 

complex scenarios inside the OI container.

Java already provides a fine grained object oriented module concept, organized in forms of 

classes, interfaces and packages. To meet the requirements on the OI module system, this 

hierarchical organization of classes in packages is not sufficient. Additional functionality such 

as versioning, dependency handling, information hiding and the definition of public interfaces 

on component base are still missing. These are necessary to distribute, organize and connect 

components without knowing module internals or writing any line of programming code [IE1

2.3.5].

One common modularization approach in web environments are Enterprise JavaBeans (E.IBs) 

that come with the Java Enterprise Edition (JEE). E.TBs, defined according the JSR. 220, 

are network-compatible, provide persistence and transaction support as well as a manageable 

lifecycle and can be executed in any EJB-compliant container.

8This feature is provided my Mercurial Subrepositories [sub 11]



86 Open Inspire - The Implementation

One of the first OI designs was build on the EJB 2.1 standard but the development has not 

been pursued due to the high complexity and overhead. These drawbacks prevent occasional 

programmers without competent JEE knowledge, from writing modules and complicates the 

solution of simple problems.

Diverse independent projects try  to approach the problem with component models such as the 

OSGi service platform [osg, A1103, GPZ05], NetBeans Modules [Bou02] or the Eclipse Plugin 

Architecture [Bol03]. An official Java standard has been recommended as JSR 294 : Improved 

Modularity Support in the Java Programming Language [jsra] but never been realized. Recent 

developments are entitled under the name Project Jigsaw [jig] tha t however won’t be part of 

the Java SE 7 [jdk] and might not be supported by other Java SE 7 implementations.

The fact tha t no established standard is available and that none of the approaches support 

a method to enable the definition of component inputs and outputs that can be easily inter

linked, necessitates a new design. The primary aim here is to keep a simple and lightweight 

design with a high degree of reusability. One way is to introduce a wrapper language that 

describes the interfaces and module functionality and enables the conversion of the modules 

to other component models such as OSGi to guarantee a high compatibility. But defining 

another proprietary interface description language requires a new language to be learnt and 

tools tha t handle the language to  be written.

In- and outputs of Open Inspire components are realized in forms of annotations directly 

inside the source code. A wrapping language is unnecessary and a programmer can come 

back to the language elements known from Java. The idea is not to have a description 

language and create a source code skeleton that can be filled with logic but to write logic and 

simply mark method as in- or output ports. These can be processed by the OI container or 

converted to interface descriptions used by other approaches or to access the modules from 

other languages. This design approach is flexible enough to meet all stated requirements and 

only requires a minimal intrusion into the source code and programming workflow.

The following sections will cover the two types of extension modules Open Inspire Modules 

(OIMs) and Open Inspire Librarys (OILs) that act as building blocks for complex scenarios 

and as wrapper for the encapsulation of libraries.
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4.2.1. Open Inspire Modules - OIMs

The most important OI extension type is the Open Inspire Module (OIM). Just by the use of 

OIMs it is possible to create complete instrument software setups. This works even outside 

of the OI environment due to their strict decoupling and independence from the OI Server.

In established systems it is a common practice to have a fixed number of component types that 

are each customized for a specific task. The Grand Unified Model for Control and Analysis 

Systems (GUM)9 [GII] for example defines building blocks such as device drivers, network 

protocols, databases, sequencers, analysis functionality or data visualization. One reason for 

the manifold number of different module types is the wish for easy to use interfaces tha t 

describe the module functionality in an intuitive way. Another reason are core designs tha t 

require modules with different types of interfaces tha t provide functionality for specific parts 

of the software. Disadvantages of the approach are the raised complexity and learning effort 

for the various module types as well as the need for core modifications when new types of 

modules need to be added. A different approach is the definition of one fixed interface for all 

modules10 that needs to be generic enough to represent the functionality of all modules. This 

concept is flexible but error-prone because of the additional encoding and decoding effort for 

the transferred data and the absence of a type-safe data verification on the code level.

The OI Design makes no differences between module types. Each module follows the same 

design, independent from its features. Once a programmer knows the general setup of an 

OIM, this is valid for all other modules. The selection of a specific module type per scenario is 

unnecessary. Thanks to the lightweight design, a module designer can so concentrate on the 

logic implementation without loosing time for the creation of complex wrappers for simple 

module functionality.

The U sers’s Point of View

A user is typically not interested in the internal operation of a module but rather how it 

is used p  2.1.7]. For this reason it is meaningful to hide irrelevant information and avoid

9See section 2.4.1 on page 37 for details to GumTree and the GUM
10Examples are the Caress Abstract Device absdev or the device interface of Taco
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damage caused by misuse and to prevent overtax. The easier the usage of the module the 

higher is the acceptance.

M odule Installation and Deinstallation

To use a module it needs to be installed. In most situations the installation and deinstallation 

of software is the responsibility of a system administrator. Installing OIMs on the contrary 

is trivial and thanks to mechanisms that prevent misuse promptly performable by users p

5.1.5].

The manual module installation is not more than  a simple copy of an OIM in the oim- 

installation folder of the OI-Server. The deinstallation is in reverse the deletion of the module 

file. The OI Server is able to detect changes and automatically performs all installation steps 

in the background p  3.4.6] p  3.8.4]. If an internet connection is available it is yet easier. 

Open Inspire automatically detects when missing modules are requested, starts a download 

from the OI-LAMP module repository and installs them. Details to the OI-LAMP follow in 

chapter 4.5.

The M odule’s Ports and Properties

Installed OIMs can be interlinked to so called OI Assemblies that are executable inside the 

OI Container. While this chapter gives an introduction to the outer view on an OIM the 

design of assemblies and interlinking will be covered in chapter 4.3.2.
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Example OIM

steps =  10
startA ngle= 0
endAngle =  180

positioner O-

In terconnection

Positioner OIM

■i i m in im u m  =  -180
i  i

f !  m axim um  = 180

Example Scenario:

The Example OIM is a 
scan controller that is 
configured to drive a 
connected positioner 
axis in 10 steps from  
an angle o f 0° to 180°.

Figure 4.5.: Open Inspire Module Example

Figure 4.5 shows an example of an assembly tha t contains two modules. The focus in this 

section is on the Example OIM , which is a simple scanner module that drives a positioner
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axis and can be configured with a start angle, end angle and a number of discrete positioning 

steps. The second Positioner OIM  is a proxy for a concrete positioner hardware that can be 

driven in a range from -180° to 180°.

OIMs can be configured by two types of user configurable mechanisms:

1. OlProperties for the configuration of module parameters

2. OlPorts for the interconnection of modules

Each module can be configured by an arbitrary number of OlProperties such as initialization 

parameters, positioner limits, detector channels or storage paths. The OlProperties for the 

Example OIM  are the start angle, the end angle and the number of positioning steps.

The second construct OI Port is used whenever modules need to be interconnected. The 

Example OIM  provides an OlPort named positioner. This port enables the loose coupling of 

modules from type positioner such as the Positioner OIM  with the Example OIM. Due to 

the fact that the Example OIM  is independent from a specific positioner implementation it 

is possible to switch the positioner without changing universal control logic. Each OIM can 

have an arbitrary number of ports. Details about the internals follow in section 4.2.1.

The Developer’s Point of View

From the developer’s point of view it is not only important to know how a module is used 

but how it is build-up. The next sections will, for this reason, discuss the internals as well as 

the development of OIMs.

Nam ing Conventions

The design of an OIM requires the compliance with intentionally few conventions. From 

the outside it is a binary file with a unique package name that consists of three logical 

subsections id _ v e rs io n { _ su ff ix { # » .o im 11 similar to the Gentoo Linux [Arn05] naming 

for ebuilds [ebu].

11 Brackets delineate optional fields and do not appear in the name. #  represents any non-zero positive integer.
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A distinctive name always starts with an id tha t contains the URI12 of the vendor, followed by 

a specific module name. To improve the sortability of OIMs, all name fragments are written in 

reverse order, lowercase and separated by hyphens. A module named example with the vendor 

URI h t tp : / / s u b .d o m a in . t ld  will under this terms have the id tld-dom ain-sub-exam ple.

The second part is the version and reflects the development stage of the OIM. It is made up 

by two, three or more period separated numbers for the major and minor version followed by 

an optional suffix. This suffix indicates the package stage in the Software Release Lifecycle 

[VdHW03, ITilOS, rel] and can be one from table 4.1 followed by a positive integer number.

O rd e r Suffix D esc rip tio n

A _alpha Alpha release. Feature incomplete and unstable testing package.

B _ b e ta Beta Release. Feature complete but still unstable.

C _ rc Release candidate. Potentially the final product. Only bugfixes.

D Normal release. Ready and stable software. ( No suffix )

E _ P Patch level. Bug fixes have been applied.

Table 4.1.: Release Lifecycle Module Suffix

Now it is possible to model a valid package name for the Example OIM : 

org-openinspire-oim-example_l.3.0_rcl.oim

Adhering to these rules allows comparing OIM versions and switching to newer versions. 

Whenever the suffix changes1,5, a package will be automatically replaced by the most recent 

version. Packages with different main versions such as . .  ._ 1 .3 .0 .oim and . .  ._ 1 .3 .1 .oim 

will in contrast coexist, because they may provide different interfaces or modified function

ality.

T h e  O IM  A rch ive

To keep all data together, the content of an OIM is packed as a ZIP-archive [zip] with the suffix 

.oim  th a t indicates its special internal file structure. Publishing an OIM as one file simplifies 

the distribution and circumvents problems with platform dependent file permissions, text-

12Uiiiforxu Resource Indicators (URIs) (RFC 3986 [BLFM05]) are used to uniquely identify files in the W W W .
13For example p ackage_l. 3 . 0_alpha3. oim to p a ck a g e .!. 3 . 0 .b e t a l . oim

http://sub.domain.tld
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and filename encodings. All common operating systems come with unzip tools tha t also work 

for OIMs. Graphic 4.6 shows the complete content of the Example OIM.

o rg -open in sp ire-o im -exam ple-1 .3 .0 _ r c l . oim 

 META-INF

L_MANIFEST.MF......................................................   Module M eta Information

 o rg /open insp ire/o im /exam ple

 ExampleOIM. c l a s s  The module logic

 exam ple. png The module icon

Figure 4.6.: Sample OIM Archive Contents

The example archive contains only three files. The first file M ANIFEST.M F  is located in the 

M ETA-INF-folder and contains meta-data that will be covered in the next section. File two 

is the compiled Java program in the form of a class and file three a png-im&ge as module icon. 

A module can contain as many class files as necessary as long as they stored in a subfolder 

of a folder structure tha t reflects the OIM-name1'1.

The assembly and meta data of OIMs might be familiar to Java programmers because it is 

widely consistent with the Java Archive (JAR.) specification [Jar]. JARs act as container for 

Java Classes and resources and just as well contain the mentioned M ANIFEST.M F. Beside 

the high recognition value, specializations of the JAR format have been proven in differ

ent component systems such as NetBeans Modules (NBMs), OSGis, Open Document Texts 

(ODTs), Web Application Archives (WARs) or Enterprise Application Archives (EARs). The 

OIMs specification only extends the M ANIFEST.M F  with additional m eta entries th a t do 

not clash with the original JAR-specification. Changing the filename suffix from .oim  to  .jar 

transforms an OIM to an unconfined Java Archive tha t can be used in any independent Java 

application.

14When the module id is org-openinspire-oim -exam ple, the classes must be located in a subfolder of 
org/openinspire/oim /exam ple
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T h e  M e ta  D e sc rip tio n

The extensions of the OIM manifest compared to the standard JAR manifest will be exem

plified with help of the Example OIM  manifest that is illustrated in figure 4.7.

Manifest-Version : 1.0 
Ant-Version: Apache Ant 1.7.1 
Created-By: 14.3-b01-101 (Apple Inc.)
Built-By: Stefan Alexander Flemming <sf©openinspire.org>

OIM-Name: org-openinspire-oim-example 
OIM-Version: 1.3.0-rcl
OIM-Title: OIM - Example Module
OIM-Info: A Module that moves an axis in steps between two angles 
OIM-Icon: org/openinspire/oim/example/example.png 
OIM-Authors: Stefan A. Flemming <sf©openinspire.org>
OIM-Weblink:

h t t p ://o i m .openinspire.org/org-openinspire-oim-example 
OIM-Service: o r g .openinspire.o i m .example.ExampleModule 
OIM-Mod-Deps :

org-openinspire-oim-domain-science_l.3.0-rcl 
OIM-Lib-Deps: oil-oi_l.3 .0-rcl

Figure 4.7.: OIM Manifest Example for the Example Module

A JAR. manifest contains a list of "name:value"-pairs15 inspired by the RFC822 standard [rfc].

The first four lines describe the version of the manifest format, the version of the build system 

th a t has been used to create the manifest, the version and vendor of the Java implementation 

and the name and email address of the person that created the JAR file.

Beside these JAR  keywords, it is allowed to introduce an arbitrary number of new keywords 

without compromising the compatibility. Open Inspire uses this feature beginning with line 

6 to introduce 10 new keywords that are all prefixed with OIM  to avoid clashes.

O IM -N am e  contains the unique name of the OIM in the same way as it is used for the 

filename and O IM -V ersion  the appropriate version id. These entries allow to identify or 

repair the OIM filename even when it has been renamed.

O IM -T itle  contains a human readable name and O IM -Info  a short description of the OIM. 

Both values are used by tools for the management, installation and documentation.

15A description of all keywords, optional sections and comments can be look up in the JA R  specification [Jar].

http://oim.openinspire.org/org-openinspire-oim-example
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OIM-Icon declares a path  to a graphic tha t can be used by tools to show an icon tha t 

represents the OIM. Scaling pixel graphics is afflicted with quality loss so tha t multiple 

graphics can be optionally stored with different resolutions16.

The field OIM-Authors contains a comma separated list of developers including their email 

addresses in squared brackets.

OIM-Weblink is an URI to continuative information about the OIM. Official OIMs link to 

a related information page on h t t p : //www. o p e n in s p ire . org.

OIM-Service specifies the path to the service class tha t publishes the public interfaces of 

the OIM. More information about service classes follow in section 4.2.1 on page 95.

OIM -M od-Deps and OIM-Lib-Deps finally define dependencies to other modules OIMs 

and libraries OILs. The fields can be either left blank or can contain one or more colon 

separated entries with complete OIM or OIL names including their versions.

Main focus of attention in conjunction with loose coupling is to reduce the dependency factor 

between modules so far that changes will have a delimited and controllable effect on the 

system. OIMs that need to communicate with other modules therefore have to define a 

dependency to the module type of the counterpart in the module manifest. The OI Container 

will otherwise effectively prohibit any hidden communication between OIMs and blocks all 

mutual access until a dependency has been explicitly defined p  6.2.5].

Whenever a module is loaded by the OI container, the container automatically determines 

and installs all required modules. Even mixing the same module type with different versions 

is possible. Outside the container, when an OIM is treated as a JAR, all dependencies need 

to be resolved manually and communication restrictions between modules can not take effect. 

Beyond that, mixing of different OIMs will fail through class path  clashes.

16To support images with different resolutions, a suffix such as _16.png for a 16x16 pixel image can be added. 
Allowed suffixes are _16, _32 and _64 in combination with the graphic format .png, . g i f  or .jp g .
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The D eveloper’s View of the M odule Interface

The development emphasis for the OIM interface model was on a design that is characterized 

by a high flexibility, simple to learn and easy to integrate into existing applications p  2.3.5]p

2.3.6 ]p  2.3.7]. Looking back to the manifold interface designs of the software systems in 

chapter 2.4 makes clear that the diverging demands make it difficult to find an universal 

interface approach [El 3.1.8]p 3.7.4]. On page 87 it has already been mentioned that the 

interface design can be roughly separated into a generic and a customized approach. Generic 

interfaces are more flexible, not limited to specific module tasks and do not run the risk 

of being incompatible with prospective module functionality while customized interfaces are 

more intuitive, easy to use and fail-safe.

The most commonly practiced approach is the definition of one generic module interface for 

the communication between all modules and a superordinate framework. For non object- 

oriented systems this interface often consists of several fixed functions such as init, cleanup, 

read and write. All modules can be registered in the same way at a superordinate instance 

which is able to initialize them with init, finalize them with cleanup and transfer data in 

both directions using read and write. In object-oriented systems, it is customary to define 

a base class or interface that contains equivalent methods for init, cleanup, read and write 

and let new modules inherit these methods. The inheritance from a common super class, for 

example, allows putting all derivates in a polymorphic list and iterate this list to call init an all 

modules. Similar models can be found in the Abstract Device of Caress, the TACO/TANGO  

device, the Device-class of Frack [Fle05] or even in the modules of the Linux Kernel [LO05].

The definition of a generic interface with fixed methods and fixed parameter types however 

does not solve the problem of how to transfer module specific data. One option is to pass data 

packages with arbitrary content between the read and write methods. This can be both copies 

and references to an explicitly defined data structure that is interpretable by any module. 

Another way, which is used by distributed systems in particular, is the utilization of streams. 

Local streaming implementations can, for example, be implemented by the Java Serialization
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A P I  or Pipes. A common design pattern is the Dataflow Pattern1( [dat, MK03], which is 

heavily used in Lab View to realize the communication between components. For distributed 

instrument systems CORBA and character streams, such as XM L  streams, have been widely 

accepted18.

Both versions require each module itself to take care about the stream serialization, deserial

ization and data interpretation. Implementing these functions individually for each module 

causes a high redundancy and consequently increases the development effort, maintainability 

effort and error-proneness. Providing this functionality in contrast by external libraries or 

the framework binds the modules to external resources and violates their self reliance. All 

solutions have in common that the user is confronted with an additional level of complexity, 

which constricts the maintainability and learnability [E3 2.4.7]p  2.4.8]. The serialization and 

deserialization furthermore have a negative impact on the data rate.

To give occasional programmers without expert knowledge the opportunity to quickly under

stand the module’s interface concepts and promptly write modules, the OIM design follows 

a new less interfering path. Instead of defining new interface definitions and data  transfer 

guidelines, modules will be interconnected using already existing and well known constructs 

of programming languages. W ithin object-oriented systems it is common to interlink classes 

by references. The first class therefore defines a method with a parameter th a t expects a 

reference to an instance of the second class. This mechanism is self-explanatory, familiar to 

all programmers and failsafe, because the compiler is able to check the validity of method 

names, parameters and the matching of referenced instances with the parameter type.

The question arising at this point is how to interlink modules from the outside. Up to now it 

is only possible to  define references between objects directly in the source code so th a t they 

are compiled to be part of the immutable binaries. Here one of the most im portant design 

decisions comes in. Thanks to the OI Container it is possible to move references between 

modules from the source code to a superordinate layer and let the container inject them.

17The Dataflow Pattern  is the counterpart to  the control flow model in text-oriented programming languages 
and used in graphical programming languages to describe the information flow between graphical logic 
blocks.

18CORT3A is for instance used by Caress and TANGO, XML streams by Frack and DANSE.
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To enable this injection, the service class19 of the OIM needs to publish information about 

the methods that should be treated as externally accessible ports. Several base structures for 

service classes have been evaluated20 but only Plain Old Java Objects (POJOs)21 turned out 

to meet all required qualities. POJOs are lightweight, do not follow any major object models 

or complex conventions, are familiar to all Java programmers and independent from external 

resources or frameworks. This makes them predestinated for loosely coupled object models.

"We [Fowler, Parsons, MacKenzie] wondered why people were so against using 

regular objects in their systems and concluded that it was because simple objects 

lacked a fancy name. So we gave them one, and i t ’s caught on very nicely." 

[FowOO]

Figure 4.8 illustrates the source code for a valid OIM service class, which can be used for the 

ExampleOIM  in figure 4.6 on page 91. The ports startAngle and endAngle in figure 4.5 have 

been removed for clearness and internally replaced by the fixed values 0° and 180°.

On first view, the source code does not differ from any other Java Class except for line 

15 a n d  20. The Class ExampleOIM  declares two private attributes omegaAxis and steps, 

which are encapsulated by public Setter- and Cetfer-methods. The Setter a t line  16 allows 

setting the omega-axis of the ExampleOIM  by passing an instance of the type Positioner. A 

second Setter- and Getter at L ine 21 a n d  25 are used for the number of steps in which the 

omega-positioner should drive a semicircle.

The method performMovement a t line 29 is responsible for the axis-movement. It iterates 

with the preset number of steps from an angle of 0° to 180°, initializes the external positioner 

with the target angle for each step (line 31) and starts the positioning (line 32).

Even now it is possible to use the ExampleOIM  in any ordinary Java application by passing 

a Positioner instance to setPositioner, setting the number of steps with setSteps and starting 

the axis movement with performMovement.

19The service class has been defined in the OIM manifest under the key OIM-Service
20e.g. E.JBs, Spring Beans, MBeans, CORBA stubs and skeletons, ICE Slices and XML
21POJO has been mentioned the first time in 2000 by Martin Fowler and is since 2005 a common term used 

to distinguish lightweight object models from models with many dependencies and complex conventions.
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* S o u r c e c o d e  for a simple axis move m e n t  *

package o r g .o p e n i n s p i r e .o i m .e x a m p l e .E x a m p l e O I M ; 
import o r g .o p e n i n s p i r e .lib .*;
import o r g .o p e n i n s p i r e .o i m .e x a m p l e .P o s i t i o n e r ;

public class E x a m p l e O I M !

private P o s i t i o n e r  o m e g a A x i s ; 
private int steps;

@0IPort
public void s e t P o s i t i o n e r ( P o s i t i o n e r  o m e g a A x i s ) !  

t h i s .o m e g a A x i s = o m e g a A x i s ;
>

Q O I P r o p e r t y
public void s e t S t e p s ( i n t  steps)! 

t h i s .s t e p s = s t e p s ;
>

public int g e t S t e p s O !  
return t h i s . steps;

>

p ublic void p e r f o r m M o v e m e n t ()!
f or ( int angle =0; angle <180; angle +=180 / steps ) 

o m e g a A x i s .s e t S e t p o i n t ( a n g l e ) ; 
o m e g a A x i s .m o v e ();
// wait for axis / p e r f o r m  op e r a t i o n

>
>

>

Figure 4.8.: Source Code for the Service Class of the Example OIM
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Using it inside the OI Container is no problem either but is at this stage only meaningful 

when all methods are publicly accessible by the container. This is disadvantageous because 

internal operations would be unprotected and it moreover leads to an unclear, uncontrollable 

and error-prone design. Distinguishing between public and private methods will not help 

either because public methods are required for the communication between classes inside 

modules. This does not automatically mean that accessing the module from the outside is 

safe, too.

The solution for this problem is the specific selection of all methods that should be treated 

as ports. One way is the declaration of them inside a further description file. The advantage 

of this approach is that any class can be equipped with meta information without changing 

the class itself. Drawbacks are the extra effort for the maintenance and synchronization of 

the m eta file with the source code as well as the overhead, additional learn expenses and the 

fixation to a syntax tha t needs to be kept compatible with new releases. Early versions of 

the OIM  model made use of such XML based meta files but these have been replaced by the 

upcoming Java Annotation design in 2006. The JSR 175 [jsrb] specified Annotations as a 

mechanism in Java 1.5 that can be used to directly place meta data in the source code.

OI introduces the two Annotation types @OIPort and @OIProperty to simplify the OIM  

interface and get rid off external meta data. Whenever a method should be marked as a port, 

it is sufficient to add @OIPort prior to the method name. This is similar to the @OIProperty, 

which can be added to declare a method for the configuration of module parameters.

Figure 4.8 illustrates the use of Annotations in line 15 a n d  20. The first one declares the 

method setPositioner as an OI Port and allows connecting any external Positioner module 

to the ExampleOIM. The second one defines setSteps as OI Property to make the number of 

positioning steps configurable from outside the module.

L ine 9 shows that an OIM Service Class does not need to extend a superclass or implement 

an interface. This is an important design decision, because languages which do not support 

multiple inheritance would otherwise disallow using existing classes as OIM Service Class 

when they are already included in an inheritance hierarchy.
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A second important step that makes OIMs independent is the abandonment of mandatory 

library or OIM dependencies. The import statement in line  7 exclusively imports the Posi

tioner interface since it is explicitly used by the Module Example.

One small disfigurement is certainly inevitable since it is not possible to use Java Annotations 

until they are previously defined. One option is to define the @OIPort and @OIProperty 

annotation by including a code snipped (figure 4.9) into the module. A second option is 

to reduce the redundancy but add a dependency to a module that provides the required 

annotations as in line line 6 of figure 4.8.
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11
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16
17
18

Figure 4.9.: @OlProperties and @OIPort Annotations

G e n e ra tin g  M odu les

While the last sections covered the details of the OIM design, a developer will normally use 

a generator to simplify the module creation. A generator asks for the name, version and 

module properties such as authors and dependencies, validates the information and creates 

an OIM with the correct name, folder structure and files (figure 4.6). This folder includes a 

manifest (figure 4.7), an icon and a service class template ( figure 4.8), which allows adding 

ports and properties by adding the appropriate annotations prior to the method names.

package o r g .o p e n i n s p i r e .l i b .m e t a ; 
import j a v a .l a n g .a n n o t a t i o n . *;

© D o c u m e n t e d
© R e t e n t i o n ( R e t e n t i o n P o l i c y . R U N T I M E )
© T a r g e t ( E l e m e n t T y p e .METHOD) 
public ©i n t e r f a c e  OlPort {

S tring d e s c r i p t i o n () default "No des c r i p t i o n " ; 
b o o lean m a n d a t o r y () default false;

>

© D o c u m e n t e d
© R e t e n t i o n ( R e t e n t i o n P o l i c y .RUNTIME)
© T a r g e t ( E l e m e n t T y p e .METHOD) 
public ©i n t e r f a c e  O l P r o p e r t y  {

S tring d e s c r i p t i o n () default "No des c r i p t i o n " ; 
b o o lean m a n d a t o r y () default false;

>
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4.2.2. Open inspire Libraries - OILs

A second newly introduced module type is the Open Inspire Library (OIL). In contrast 

to OIMs, this module type is not used to provide mechanisms that allow interconnecting 

modules or set properties but encapsulates already existing binary libraries. Since OILs 

have a unique id and version similar to OIMs they can be set as module dependency and 

automatically resolved and installed by the container. In contrast to OIMs, OILs are not 

limited to be used by other modules but also by the container and build system to access 

external functionality. Benefits are the central installation and update management as well 

as the decrease of redundancy.

While the next section shows how to wrap platform independent Java libraries using OIMs, 

the subsequent section shows how OILs can be used to wrap and include even platform 

dependent libraries, written in other languages.

Platform  Independent Java OILs

Binary Java libraries are published by means of JAR files which can contain compiled classes, 

media such as graphics, audio files, videos or other documents. To enable OI to use the large 

number of existing JAR files, OI wraps these files into OILs to ease the use and solve several 

problems.

In classical designs, JARs need to be loaded at program start and make all their functionality 

globally and unrestrictedly available to the whole application. In OI it is however not clear 

at the program start, which libraries are required by OIMs that are subsequently loaded by 

the container.

Since installing all JARs prophylactically tha t are ever used makes no sense, including all 

JARs th a t are required by a module into it is the only option. This leads admittedly to  a 

high redundancy since the same JARs are again and again bundled with different modules. 

The solution for this problem is to define a JAR as dependency, which is installed when the 

first OIM requests the library and will be afterwards shared with other OIMs. The problem
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is, th a t this is not possible with classical JARs due to the lack of a naming and versioning 

mechanism that enables the identification and referencing of JARs in a distinct namespace.

This problem is solved by means of OILs that encapsulate existing JARs without changing 

them but by adding a unique id and meta information. This mechanism will be made clear by 

the OIL o i l-x m l-1 .3 . 0 - r c l - a l l . o i l  th a t provides XML creation and parsing functionality.

The OIL Naming Scheme

An OIL is published similar to an OIM but this time with the file ending .oil. This ending 

is always prefixed with -all when it is platform independent, which is the case for JARs. 

The further name elements embrace the name and the version of the OIL. Since JARs can 

not be assigned to a general namespace, they can be named more flexibly than  OIMs. The 

name must however be unambiguous, begin with oil- and mirror the contents of the OIL. The 

version is used for the OIL and not for the enclosed JAR file and follows the already known 

OIM convention, which has been introduced on page 89. The OI Container is therefore able 

to load even different versions of a library a t the same time.

The OIL Archive Content

Figure 4.10 illustrates the contents of the example OIL oil-xml-1.3.0-rcl-all.oil. 

oil-xml_l.3.0-rcl_all.oil

— o i l .p r o p e r t i e s ...................................................... Meta Information for the OIL archive

— j  a r s .................................................................................. Folder with wrapped JAR libraries

1— jdom. j a r ...........................................................................Example for a wrapped library

—  l ic e n s e s  Folder with licenses for the libraries

1— APACHE_LICENSE.TXT.......................................... Example License for wrapped library

Figure 4.10.: Platform Independent OIL Archive Contents

The archive contains a file oil.properties, which comprises meta information and the two 

folders jars and licenses. All JARs are encapsulated in their unaltered form, how they are 

published by the developer, and located in the folder JARs. The folder licenses contains
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license files that need to be included for legal reasons and confirmed by the user during 

installation p  7.1.3].

T h e  M e ta  D esc rip tio n  F ile

The unique filename of an OIL is already sufficient to make the server recognize and manage 

an OIL but does not yet show the function of the OIL. This is done by the included file 

o i l .p r o p e r t ie s ,  which provides additional meta information that can be queried by man

agement tools or when creating a list of all OIMs and their description on a webpage. Figure 

4.11 shows the contents of the meta file for the example OIL.

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Open Inspire Library Wrapper Archive V I . 0 # 
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

# The unique id of the library wrapper archive 
o i l .wrapper.id=xml

# The version of the library wrapper archive 
o i l .wrapper.version=l.3.0-rcl

# A human readable name of the library wrapper 
o i l .wrapper.name=The JDOM XML Library Wrapper

# A human readable description for the wrapper 
o i l .wrapper.info=\

Library wrapper for the JDOM Java XML Library.

# The build date of the library wrapper 
o i l .wrapper.date=20101124

# The version of the wrapped library 
o i l .j a r .j d o m .version=l.1.1

Figure 4.11.: Example of a Platform Independent OIL Properties File

Beside comments, this file contains several key-value-pairs, o il.w ra p p e r.id  and o il.w rap p e r. 

v e rs io n  contain the name and version of the library to repair the filename when it has been 

renamed by mistake, o il.w ra p p e r.n a m e  and o il.w rap p er.in fo  contain a human readable 

name and description of the OIL. o il.w ra p p e r.d a te  is used for the creation date of the OIL 

and o il.jd o m .v ersio n  contains the versions of all encapsulated JARs. To allow assigning
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versions to more than one included JAR it is important to add the name of the JAR as the 

third period-separated substring.

The user is in normal situations not confronted with this meta-file. Developers can utilize an 

OIL generator tha t encapsulates the libraries, license files and generates the meta-file similar 

to the OIM generator.

N ative Libraries

Using existing JARs from Open Inspire allows access to the considerable functionality pro

vided by third-party suppliers. Enlarging this repertoire to include functionality written in 

other languages will, however, again increase the number of available libraries. This is in

evitable when the functions are either not available or portable22 to Java. An example is the 

NeXus API, which is written in C but which is required for the storage of measurement data 

in the NeXus format, which is covered in section 2.4.4 on page 49 and 5.2 on page 190.

Java already provides mechanisms to access native libraries written in C /  C++ by means 

of the Java Native Interface (JNI). Using this API however is accompanied by several disad

vantages such as the loss of platform independence due to the fact that the native libraries 

are compiled for solely one OS and processor architecture p  4 .4 .3]p  4 .3 .6]p  5.3.3]. A second 

problem is tha t all libraries need to be globally installed in the executing OS and registered 

in the library path before a Java program that requires them can be started.

The lack of mechanisms that allow the installation of native library during runtime however 

leads to conflict because it is unknown to the 01 Server, which libraries will eventually 

be requested by OIMs that are executed in the container. Prompting the user to install 

required libraries manually restarting the 01 server is not an option, because it leads to 

a high complexity, maintenance effort and is not accordable with the dynamic component 

model of 01.

The solution for this problem is to extend the 01 Container by a mechanism that manipulates 

Java’s internal library management to allow loading subsequently installed native libraries

22Reasons are for instance restrictions in commercial libraries, missing source codes, high complexity or a 
disproportional porting effort.
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from arbitrary sources. To approach the problems related to the lack of platform indepen

dency, two encapsulation mechanisms for native libraries have been considered.

One option is the integration of native libraries for all platforms in the same OIL. The 

advantage is the simple maintainability because only one file is be distributed, independent 

from its architecture. The drawback is that one OIL contains libraries for all platforms, which 

leads to a larger file. Downloading and installing this file results in a higher consumption 

of bandwidth and storage space23. For this reason, Open Inspire uses a second variant that 

splits the native libraries to multiple OILs that each represent one platform p  1.3.3]. This 

approach is more elaborate but consumes considerably less resources.

Naming Conventions

For platform independent OILs such as the o il-x m l-1 .3 .0 - r c l - a l l . o i l  it has already been 

quoted that the filename contains the keyword "all”, which stands for "all architectures’. For 

platform dependent OILs, this keyword will be replaced by a designator that indicated the 

architecture and Operating System, required to load the native library. Valid designators are 

windows, linux, macosx and Solaris combined with the architectures x86 or x64 for 32 or 64 

bit architectures24. A valid filename for the platform dependent NeXus OIL for 32 Bit Linux 

can for example be o i l - n e x u s - 1 .3 .0 - b e ta 2 - a l l .o i l .

File Contents

The only difference in the file structure of a platform dependent OIL compared to a platform 

independent is an additional jm's-folder. This folder contains all native libraries for the 

platform that has been specified by the filename. For Linux and Solaris the libraries are 

stored as Shared Objects (.so), for Mac OSX  as Dynamic Libraries (.dylib)  and for Windows 

as Dynamic Link Libraries (.dll).

Example 4.12 shows the content of the NeXus OIL for 32 Bit Linux. In addition to the native

libraries in the jras-folder and the NeXus-license in the licenses-folder, this file contains an

23A native library with 10 MB would result in a 90MB OIL when libraries for 10 architectures are included.
24This list may be extended by PPC, MIPS or ARM architectures.
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additional jnexus.jar. This file is provide interfaces tha t allow accessing the native code in a 

Java-friendly way.

oil-nexus_l.3.0-beta2_linux-x86 

 oil.properties

—  jars

1 jn e x u s .ja x

—  jnis

I libhdf5.so.O, libhdf5.so.0.0.0, libjnexus.so, libjnexus.so.O,

libmxml.so.1, libmxml.so.1.0, libNeXus.so, libNeXus.so.0, 

libsz.so.2, libsz.so.2.0.0

 licenses

L C O P Y I N G

Figure 4.12.: Native OIL Archive Contents 

T h e  M e ta  D e sc rip tio n  F ile

As shown in figure 4.13, the meta file o il.p ro p e rtie s  of a platform independent and platform 

dependent OIL differs in only two additional entries.

The entry o il.jn i.qua lifie rs  contains a list with names of all loadable native libraries in the 

OIL. This is important when the internal name of the native library differs from the filename 

because Java identifies a library by its internal name and not filename.

o il.jn i.ve rsion  finally contains the version of the encapsulated native library. Not to  be 

confused with the version of the OIL, which is set by oil. w ra p p e r  .version.

It is important to keep in mind that native OILs are always workarounds and will never 

replace well designed and platform independent Java libraries.

4.2.3. C om ponent M anagem ent

Using the loosely coupleable and easy maintainable component model improves the handling 

of extensive DAC environments. It systematically allows the hiding of complexity and the



106 Open Inspire - The Implementation

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Open Inspire Library Wrapper Archive VI.0 # 
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

# The unique id of the library wrapper 
o i l .wrapper.id=nexus

# The version of the library wrapper 
o i l .wrapper.version=l.3.0-beta2

# A human readable name of the library wrapper
o i l .wrapper.name=The Native Nexus Library Wrapper

# A human readable description of the library wrapper 
o i l .wrapper.info=\

The Wrapper for the native NeXus API\
to store measurement data in h d f 4 , hdf5 and xml.

# The creation date of the library wrapper 
o i l .wrapper.date=20090707

# A comma separated list of native library qualifiers 
oil.jni.qualifiers=NeXus

# The original version of the wrapped native library 
o i l .j n i .version=NeXus-4.2.0 MacOSX

Figure 4.13.: Example of a Platform Dependent OIL Properties File

automation of recurrent tasks so that users and programmers are only confronted with simple 

and manageable interfaces. The design not only saves time that otherwise would need to be 

invested in learning and understanding complex unbounded software structures, but also 

paves the way for further improvements such as easily acquiring an overview of existing 

modules, the finding of the correct module for a problem and retrieving and keeping it up 

to  date. Here it is not sufficient to simply install and run a module, but to identify, resolve 

and download all module- and library dependencies for all modules in a recursive way. This 

expenditure of time can be reduced by using a central component repository and tools for 

the autom ated management of modules and libraries.

Component Repository

The OI Component Repository is a central store for official OIMs and OILs and part of 

the Open Inspire Library and Media Platform (OI-LAMP), covered in section 4.5 on page
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14C. All components are globally accessible via h t tp : / / s to r e .o p e n in s p i r e .o r g  and can 

be downloaded in a manual or autom ated manner [El 4.4.2][E! 4.4.3][M 4.4.4][El 4.4.5][El 3.8.4][El 

3.7.5], In contrast to decentral solutions, it ensures that modules with older versions are kept 

downloadable and referencable by assemblies even after years [El 3.8.2][E1 3.8.3].

The server is not limited to a fixed repository but allows the entering of arbitrary URLs in 

the server configuration. This enables the setting up of local repositories for filtered network 

environments25, thereby decreasing the network load or operation of overlays with modified 

component compositions, which is useful when non-public modules are to be made accessible 

or global modules blocked. To advance the reliability and pursue load sharing, more than 

one randomly picked repository URL can be set in the configuration26.

U sage o f th e  R e p o s ito ry

To alleviate the repository usage, the oi-client library provides an API for searching, down

loading and updating components and retrieving module meta information from the server.

The O I W eb site  at h ttp ://w w w .o p e n in sp ire .o rg  uses this API to generate a browseable 

web index of all components and their corresponding meta information. It allows users to get 

an overview, comparing and finding modules without downloading them. New components 

can be uploaded are published after manually testing their validity, safety and reliability.

A second consumer of the API is the O I C o m p o n e n t B row ser, which comes as an instal

lable application. It allows browsing the component database, directly installing OIMs and 

OILs including their dependencies and can generate, verify and validate new modules.

The O I S erv er itself uses the API for its whole component management, dependency calcu

lation, update service and for reading meta information.

D efin ite  R efe ren ceab ility

Another important aim for a global repository is the absolute and unambiguous reference

ability of components, which at the same time form the basis for further applications:

25The HZB for instance does not allow accessing the internet from the instruments.
26Per default the URLs h t t p : / / s t o r e l . op en in sp ire . org to h t t p : / / s t o r e 9 . op en in sp ire . org link to differ

ent mirror servers

http://store.openinspire.org
http://www.openinspire.org
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One example are scientific papers. Adding an OI Assembly to a publication would allow the 

exact reproduction of the software setup for the experiment, to be repeated at any later time. 

To keep publications small, the OI-LAMP furthermore supports the central web publishment 

of Assemblies and inserting a simple link to a paper instead of the whole content.

Another aim is to provide a mechanism to enable the finding and correcting of failures retro

spectively p  6.2.5]. For example, when an Assembly is added to the measurement data and 

it turns out that the setup, or a module, was faulty some situations allow the measurement 

data to be corrected or declared invalid.

4.3. Container and Assemblies

W ith Open Inspire Modules, section 4.2 introduced a component design tha t is configurable 

using OI Properties and interconnectable via OI Ports. While using these modules as stan

dalone components is possible, the real benefit of the design becomes clear when they are 

managed by an application container. This section starts with a design consideration, the OI 

Assembly Design and closes with a survey to the OI Container.

4.3.1. Design Consideration

Classical Design Approaches

Using and interconnecting OIMs independently from the OI Server can be done by instan

tiating, configuring and linking OI Service Objects directly in the source code. A program 

therefor needs to add all required OIMs and dependent OILs to the classpath, import the 

Service Classes, configure, instantiate and start them in the correct order2' . Properties need 

to be configured manually by calling OlProperty annotated setters with configuration values 

and calling OlPort methods with references to other Service Class instances.

This procedure is cumbersome and leads to a close coupling between modules and main pro

gram. It is inflexible, difficult to maintain and time consuming, since all module parameters 

and links between modules may be modified exclusively by programmers with source code 

access.

27Instantiating, configuring and starting OIMs in the wrong order causes a crash due to a missing dependencies.
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One possible improvement is the introduction of a user interface for the module configura

tion. Parameters for a setup are so variably customizable for specific environments but the 

composition and linking of modules remains static and only changeable by programmers on 

source code level.

A different approach particularly suitable for experiments that need to be changeable at 

short notice are configuration files such as the hardware_modules.dat of Caress (B.3.1) or the 

config.xml of Frack th a t allow the specification of the loadable modules and their parameters. 

Using this approach a parser searches the configuration file for known devices and their 

configuration parameters and plugs them into the system. This system however assumes 

th a t these devices are known by the core system before they can be configured or used for 

measurements. Setups with new and unknown devices are still not usable without changes 

to the core system to add support for the new device.

A more flexible approach is component wiring and configuration by scripts. Such scripts 

could be executed by the OI Server, which in this case will be responsible to control the 

access to installed modules. The advantages of this approach are:

• From within a script it is possible to instantiate28, interconnect and configure an arbi

trary  number of modules without limitation for a small set of configuration parameters 

but the full strength of the selected scripting language.

• Using one script per instrument setup allows to quickly switch between different coex

isting scripts for different types of experiments.

• Modules with so far unknown interfaces are usable, because the developer itself takes 

care about the correct data interpretation instead of an autom ated system.

The drawback of the approach is that a script author can hardly be forced to comply with 

all good practices and programming conventions. A script that is erroneous or irreconcilable 

with the overall design can not only influence the system stability and security but moreover 

lead to the following problems or constraints:

28Instantiation is the creation of an instance of an object in an Object Oriented Programming language.
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• The host system can be harmed or compromised by bypassing security mechanisms [ISI 

6 .1.2].

• The exchangeability of scripts between instruments can not be ensured, because using of 

platform dependent or incompatible ressources from within scripts can not be prohibited 

p  5.3.3].

• The unconfined complexity of scripts prevents a machine based or graphical creation 

and modification of scripts.

• Programming skills are required for the creation and modification of scripts p  5.1.1].

• Extra time and effort is inevitably required for learning the scripting language, scripting 

conventions and good practices p  2.3.3].

Solving these problems by mechanisms for the automatic verification and validation of scripts 

is either only partially realizable or not at all. Beyond that it is impracticable and too 

extensive due to the large scope of common script languages.

Container-based Design

The insights gained by the analysis and review of instrument systems as well as the consid

erations in the last section shows a core problem of classical systems: The tight coupling of 

experiment setups with the base system. This is inter alia a reason why nearly all scientific 

disciplines operate their own instrument software that covers only a specific scope of exper

iments. The concomitant redundancy is particularly obstructive since base functionality is 

reinvented over and over, instead of extending existing systems with specific functionalities.

One solution to these problems is the consequent separation of all experiment specific software 

parts from a base system, which is limited to provide a core functionality for various indepen

dent application scenarios. This state can be reached by abstracting the base functionality 

so far tha t it is no more related to a specific application domain. Changing an application 

specific part of the software system will therefore consequently have no influence on the base 

system. The advantage of this approach over a tailored system for material scientific sce

narios is the availability of an immutable basis for various application scenarios. Users and
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developers can so work on one software core that is sharable by scientific disciplines such as 

astronomy or even industrial process or smart living scenarios p  5.3.10][KI 5.3.9] [LCBM05].

To achieve such a system it is essential to reach higher decoupling levels than realized by 

commonly used instrument systems. A necessary first step is the complete decoupling of 

the system base from modular extensions as has already been realized by the OI component 

design described in Section 4.2. The next step is the separation of experiment specific setups 

from the system base. This includes not only the parameterization of the OI modules but 

also the experiment assembly with individual OIMs. To achieve this, all statically compiled 

references between modules need to be moved to higher management instance tha t is in the 

position to create, configure and interconnect OIM-instances.

In Open Inspire the OI Container has been designed specifically for this task. It is able to 

create flexible networks of OI modules, configure them and handle their life cycles. The core 

design of the container builds on a combination of the Inversion of Control (IoC) and DI- 

pattern  [Fow04]. Using the IoC pattern, the supervision of the control flow between modules 

can be extracted from the application code and relocated to a level tha t is dynamically 

maintainable by the OI Container. Calling OlProperties and OlPorts for the configuration 

and interconnection of modules is therefore externally controllable by the OI-IoC-Container 

using the Hollywood Principle: *Don’t call us, we’ll call you" [MBF99]. The interconnection 

of OIMs is finally realized by calling OlPort annotated methods with instances of interlinkable 

OIMs29 using Dependency Injection.

While some instrument systems already profit indirectly from IoC-Container architectures 

such as provided by Enterprise JavaBean (E.IB) Containers or Rich Client Platforms 

(RCPs)30, these techniques have never been tailored for instrument systems. Common con

tainer architectures found in application servers are primary optimized for web environments 

and come with a richness of functionality that will never be used by instrument systems. The 

same applies to containers in Rich Client Platforms that are optimized for graphical clients 

applications. The added complexity directly effects the maintainability, stability and learn-

29Detailed information about the injection process will be covered in section 4.3.4 on page 130.
30TACO /  TANGO EJB) [GTP 1 03], GumTree -> Eclipse RCP [GAT]
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ability of such systems because containers need an overhead to be prepared for this custom 

functionality.

For the early Open Inspire developments31, the choice first fell on the lightweight IoC Con

tainer of the Spring Framework [JHA+]. The simple and scalable architecture is characterized 

by its versatility and can be found both in web and RCP-applications [IIO07]. In OI it has 

been embedded into the system core and used for the creation of object networks using 

Dependency Injection with help of so called XML-based Spring Context files.

W ith the introduction of the OIM and OIL model it became clear that the adaption of Spring 

to meet the requirements of OI would take longer than developing a new tailor-made solution. 

This applies particularly to the integration into the build system, simplified context files for 

the wiring of OI modules and the OIM/OIL-lifecycle management. A further concern is 

the ongoing Spring development such that the dependence on the framework would require 

regular adjustments and a close contact with developers to stay up-to-date with the latest 

version32.

W ith respect to the requirement for the reuse of existing technologies [13 5.3.2][IS1 5.3.6], fur

ther less complex container architectures with minimal overhead such as the Pico and Nano 

container [Fow04, picll] have been analyzed. These containers are characterized by their 

simplicity, compactness, application neutrality and independence from other libraries. But 

compared to Spring, an extra effort is required for implementation of essential features such 

as XML-based configuration architecture. Considering that the time needed for the imple

mentation of the core features provided by the evaluated containers is small against the time 

required to add OI specific module management functionality.

For the above reasons and the provision of a better check on the development and indepen

dence from other projects, the decision was made in favor of developing a new and tailored 

design. Since 2007 OI comes with its own SC ADA optimized IoC-container that complies with 

all requirements for a flexible instrument system. While chapter 4.3.4 will cover the internal

31 Until version OI 2007.0
32This includes bug fixes, replacing deprecated functionality and following new good practices.
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design and functionality of the 01 Container, the following chapter gives an introduction to 

the 01 Assemblies, used for the configuration and interlinkage of OI Modules.

4.3.2. 01 Assemblies

W ith the relocation of the module management from the statical server- and module code to 

the responsibility of the container, users are able to create and modify complete experiment 

setups in an easy and flexible way by so-called 01  Assemblies.

An 01  Assembly is a simple XML-based configuration file that describes the exact module 

configuration and interlinkage of an experiment in a simple and handy way. Due to the 

concentration of all information in one small file it is easy to convey and distribute.

The XML-based format makes it both human and machine readable. Since it is a text file, 

fast modifications can be made with any ordinary text or XML editor. To allow this in an 

easy and intuitive way without much training, only a small selected number of XML-tags 

have been defined. The requirements for an optimal machine based processing are fulfilled 

by the entirely interpretable and unique semantic of 01 Assemblies. In contrast to script 

based solutions, 01  Assemblies are automatically and losslessly convertible between different 

formats and read/writable by XML-tools that are available for all programming languages 

and operating systems.

Installing an 01  Assembly requires no more than the copying of the file to the assembly- 

folder of the OI Server. Once it is executed, the OI Container will automatically determine 

all required OIMs/OILs, download missing ones from the OI-LAMP, configure them  and 

create the module interconnections. A more detailed illustration of these activities will follow 

in chapter 4.3.4 after illustrating the general design and features of OI Assemblies by several 

examples.
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The general Assembly Layout

Figure 4.14 shows the content of a complete and valid OI Assembly. To prevent problems 

with special characters, it is recommended to start an assembly with setting the text encoding 

to UTF-8 33 and the XML-version to 1.0.

<?xml version5 "1.0" encoding3 "UTF-8"?>

<oi-assembly
xmlns="h t t p ://openinspire.org/schema/assembly" 
xml n s :xsi="h t t p ://w w w .w 3 .org/2001/XMLSchema-instance" 
x s i :schemaLocation3 "h t t p ://openinspire.org/schemauuu 

oi-assembly-1.3.xsd">

<spec>
<title>PhD Thesis Example Assembly</title>
<version>1.0</version>
<date>2011-03-01</date>
<originator>Stefan Flemming, sf©openinspire.org</originator> 
<abstract>

A short Description of the 01 Assembly.
</abstract >
<description>

A comprehensive Description of the 01 Assembly.
</description>

</spec>

<oim id3 "positioner" type3 "org-openinspire-oim-phd-positioner" 
version3 "1.0.0-rcl">
<property name= "minimum" value3 "-180.0" />
<property name3 "maximum" value3 "180.0" />

</oim>

</oi-assembly>

Figure 4.14.: Layout of a minimal OI Assembly

The relevant content of the file starts with the root tag oi-assem bly, which can have exactly 

one spec and an arbitrary number of oim-tags. To allow an OI independent validation of the 

XML file31, the lines 4 to 6 are used to assign the document to a unique name space.

To describe the assembly as a whole, the spec-tag from line 8 to 19 allows the entering of 

a set of global m etadata. The tags t i t l e ,  a b s tr a c t  and d e s c r ip tio n  contain the name, 

a short and a more comprehensive description of the assembly; v e rs io n  and d a te  are used

33The 8 Bit Unicode Transformation Format. (UTF-8) is an international text encoding (RFC 3629 [Yer03])
34Every XML editor can so check the syntax and structure of the OI Assembly

http://openinspire.org/schema/assembly
http://www.w3.org/2001/XMLSchema-instance
http://openinspire.org/schemauuu
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to track changes and o r ig in a to r  contains the name and contact of the author. These tags 

are primary used by tools tha t allow browsing or listing context files such as the OI-LAMP 

online browser.

Line 21 finally introduces the oim-tag. This tag is used to create and configure an 

OIM instance as well as interconnecting it with other modules. The example in figure 

4.14 only shows the creation of a single OIM instance while real setups normally have 

various instances. When the assembly is started, the OI Container checks if the OIM 

o rg -o p e n in sp ire -o im -p h d -p o s itio n e r  in the version 1 .0 .0 - r c l  is already installed. If 

not, a download from the OI-LAMP with a subsequent installation will be performed so tha t 

the container can create an instance of the module. This instance gets the unique name 

positioner, which can be referenced by other modules in the container. Beyond that, the two 

two properties minimum  and maximum  are set using the values -180.0 and 180.0.

A ssem bly  B asics

While figure 4.14 only covers the creation of a single OIM, figure 4.15 shows a more compre

hensive example tha t also illustrates the interconnection of modules. For clarity, all further 

assemblies are illustrated without m etadata such as the text encoding, schema declarations 

and assembly specification. Although omitting these information is not recommended, the 

assembly keeps anyhow executable. The container will in this situation replace missing data 

with default values.

The example describes a setup of a simple neutron diffraction experiment composed by a 

positioner, a detector, a counter and a software based scanner for the experiment control. 

The OIMs created in line 3, 8 and 13 are used to control concrete hardware devices. The 

devices are configured by OlProperties as already known from the positioner but with the 

difference tha t the counter uses the property dimensions instead of limits and th a t the counter 

has no properties at all. The scanner in line 16 finally coordinates the experiment sequence. 

It can for example use the positioner to rotate the sample from 0° to 90° in 10° steps and use 

the counter to wait 60 seconds a t each step while the detector meaures incoming neutrons.
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<oi-assembly>

<oim id=" posit ionerl11 type = " org-openinspire-oim-phd-positioner 11 
version="1.0.0-rcl">
<property name = "minimum" value = "-180 . 0 11 />
<property name="maximum" value="180.0" />

</oim>

<oim id="detectorl" type="org-openinspire-oim-phd-detector" 
version="1.0.0-rcl">
<property name="xchannels" value="16" />
<property name="ychannels" value="16" />

</oim>

<oim id="counter1" type="org-openinspire-oim-phd-counter" 
version="1.0.0-rcl">

</oim>

<oim id="scanner" type="org-openinspire-oim-phd-scanner" 
version="1.0.0-rcl">
<property name="start" value="0" />
<property name="end" value="90" />
<property name="steps" value="10" />
<property name="period" value="60s" />
<port name="positioner" ref="positioner1" />
<port narne = " detector " ref = " detect or 1 " />
<port name="counter" ref= " counterl" />

</oim>

</oi-assembly>

F ig u r e  4 .1 5 .:  A sim ple O I A ssem bly fo r  a Scan

The creation and configuration of software components by configuration files is nothing new 

and is used in other instrument systems. However, the difference here is how Open Inspire 

uses these files, additionally, for the creation of dynamically configurable component networks. 

This is concretely realized by the OlPorts in the Assembly that have been introduced in 

Section 4.2.1. To give the scanner access to the positioner, detector and counter, these 

three modules are referenced using the ref-attribute of the port-tag in line 21 to 23. It is 

only necessary to pass the id of the referenceable OIM. The identification of the respective 

instances and the dependency injection will be automatically performed in the background. 

Internally, the instances of the modules are passed to the methods setPositioner, setDetector 

and setCounter of the Scan OIM after checking if the parameter type of the OlPort annotated 

method is compatible with the referenced OIM. The order of the OIMs in the OI Assembly
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has no effect since the correct creation and injection order is calculated by the OI Container 

according to the module dependencies.

When the scan sequence is to be changed, this can be achieved straightforwardly by cus

tomizing the scan properties in line 17 to 20. If it is intended tha t the assembly is to be 

used for different hardware, only the hardware modules such as the positioner, detector and 

counter need to  be replaced. The scan itself remains untouched.

M ultiple M odule References

While the scanner-module in Figure 4.15 only illustrates referencing one module per port, the 

next example describes how to connect multiple modules to the same port. The precondition 

for this multiple referencing is that an OlPort is able to accept more than one OIM instance. 

This condition is provided for ports with a parameter type that is a derivate of the interface 

java. u til collection3o.

A demonstration of this feature will be given with the aid of the WidgetTestcenter OIM, which 

is used to debug assemblies and modules. It can be used inside an OI Assembly like other 

modules but exceptionally opens a graphical windows instead of working in the background. 

One possible realization for such a GUI could be a statically arranged set of widgets for 

the visualization and control of OIMs data tha t is passed through a fixed set of ports. The 

main drawback of this approach is the low flexibility since each new widget arrangement 

requires its own new GUI module. The WidgetTestcenter solves this problem in a more 

flexible way by using only one port with name components that accepts an arbitrary number 

of different OIMs. Whenever the WidgetTestcenter is started, it automatically displays a 

matching widget for each connected OIM. The source for these widgets is the OIM Widgets, 

which contains a multitude of graphical elements for the control and visualization of OIMs.

Figure 4.16 shows the configuration of multiple references with help of an assembly th a t is

part of each OI 1.3 installation. In the same way as in the previous example, the first step

is the creation of the three devices positioner, counter and detector in line 3, 8 and 11. But

this time these modules are to be controlled and visualized by the WidgetTestcenter, which

35The interface java.util.collection  is part of the standard Java SDK and implemented by lists such as 
LinkedList, ArrayList and Vector and sets such as HashSet or TreeSet
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<oi-assembly >

<oim id="positionerl" type="org-openinspire-oim-demo-positioner" 
version="1.3.0-m5">
<property name = "minimum " value= "-180 . 0 " />
<property name="maximum" value="180.0" />

</oim>

<oim id = "counterl" type="org-openinspire-oim-demo-counter" 
version="1.3.0-m5">

</oim>

<oim id = "detector1" type="org-openinspire-oim-demo-detector" 
version="1.3.0 -m5">
<property name="horizontalSize" value="256"/>
<property name="verticalSize" value="256"/>

</oim>

<oim id="WidgetTestcenter"
type="org-openinspire-oim-debug-widgettestcenter" 
version="1.3.0-m5">
<port name=" components " ref = "positionerl " />
<port name="components" ref= " counter1" />
<port name="components" ref="detector1" />

</oim>

< /oi-assembly>

Figure 4.16.: Multiple Referencing Example - The Widget Testcenter

is created in line 16. Connecting the three modules with the WidgetTestcenter requires not 

more than calling the port components mutliple times with the IDs of the devices. The 

conversion to a Collection, required by the OlPort c o m p o n e n ts is automatically performed 

in the background.

Executing the OI Assembly opens the window in figure 4.17 and shows widgets for the three 

devices. These devices are software simulations of real hardware and so already controllable 

by the widgets. Only a few lines of configuration make it possible to compose an arbitrary 

number of module arrangements. When more than  one WidgetTestcenter is used in an OI 

Assembly, a window for each one is opened which allows multi screen usage. Is a module 

connected with multiple WidgetTestcenters, the corresponding widget is shown and changed

36Internally, the method of the port in the WidgetTestcenter is realized by: QOIPort p u b lic  void
setComponents(List<Object> modules) { . . . }
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in all windows synchronously. It is possible to freely move and resize a widget. All widget 

settings are saved when a window is closed and automatically restored the next time.

R eg u la r  E xp ressio n  based  R eferenc ing

W ith Multiple References, a simple mechanism has been introduced that allows the connection 

of more than one module per port. This mechanism is very handy for small scenarios but for 

a large number of modules it can become cluttered by referencing each module individually.

To reduce complexity and improve productivity, the container has been extended to allow

Regular Expressions (RegExs) in ports. Regular Expressions [Fri06] are a commonly accepted 

and powerful standard for the filtering of texts by defined patterns. In the OI Assembly they 

are applied to connect a pattern-based selection of OIMs to a port.

Open Inspire 2009  - Widget Testcenter

d e tec to r!  Dem oDeiectorpo sitioner! ; Dem oPosm oner
p o sitioner! detectorl

ACTIVEs teps

4 i> co un ter! : DemoCourster
co u n te r!

( 1  HALT; j, &

Figure 4 .IT.: Screenshot of a Widget Testcenter Window

A concrete example is line 19 of assembly 4.18. Instead of referencing each OIM individually, 

the wildcard is used to connect all OIMs in the assembly with the port. The OIM Wid

getTestcenter, which provides the port, is however automatically excluded from the selection 

to prevent recursion effects.

Table 4.2 shows a selection of simple example patterns but is not limited to this small subset. 

To apply complex patterns, the OI assembly allows to utilize the full strength of the filter 

syntax, provided by the Java Regular Expression Engine. Using RegEx in small assemblies
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<oi-assembly>

<oim id="observerPositioner"
type="org-openinspire-oim-demo-positioner" version="1.3.0-m5" 
role="observer">
<property name="minimum" value="-180.0" />
<property name=Mmaximum" value="180.0" />

</oim>

<oim id="userPositioner"
type="org-openinspire-oim-demo-positioner" version="1.3.0-m5" 
role="user">
<property name="minimum" value="0.0" />
<property name="maximum" value="360.0" />

</oim>

<oim id = "adminPositioner"
type="org-openinspire-oim-demo-positioner" version="1.3.0-m5" 
role="admin">
<property name="minimum" value®"-200.0" />
<property name®"maximum" value®"200.0" />

</oim>

<oim id="widgetTestcenter "
type="org-openinspire-oim-debug-widgettestcenter" 
version®5" 1. 3 . 0 -m5" >
<port name = " components" ref="*" />

</oim>

</oi-assembly>

Figure 4.18.: Using Regular Expressions and Roles in OI Assemblies

such as example 4.18 only has a marginal effect, using patterns in comprehensive assemblies 

leads to a noteable simplification.

Role-based Security Mechanism

A closer look at figure 4.18 reveals that Regular Expressions are not the only new feature. 

Line 3, 8 and 13 introduce a new role-tag tha t is part of Open Inspire’s role-based security 

mechanisms [IEI 3.2.8]p 6.1.2]. OI uses a user database to assign each user to a specific role3'. 

After authenticating by username and password, a user gains access to all services that are 

activated for his role. Beside global container services, which will be covered in chapter 4.4, 

the same user access control mechanism is also applicable for OIMs inside the container.

37Details about the OI Authentication Service and config will be covered in section 4.4.1 on page 140
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E x p ressio n S elec ted  M odu les
* All modules

.* P o s itio n e r$ All modules, which end with Positioner

"u se r .* All modules, which start with user

observerPositioner | userPositioner The module observerPositioner and userPositioner

Table 4.2.: A selection of common Regular Expression

Adding a role-tag to an OIM entry means that only users tha t belong to the given role 

may access it. The three roles observer, user and admin are defined by default but an 

arbitrary number of additional roles can be freely added and populated with users38. Beyond 

that, inheritance hierarchies between users are possible. The default group user for example 

inherits all privileges from observer and the admin the privileges of all other roles. When a 

person who belongs to the user-role starts the assembly 4.18, the WidgetTestcenter will only 

show the widgets for the userPositioner and observerPositioner but due to missing privileges 

not for the observerPositioner.

Roles are an essential security feature that allows restricting the access to harmful devices to 

trusted users p  6.1.2]. To prevent bypassing the security mechanisms, writing and manipu

lating assemblies is reserved for privileged users.

G ra p h ic a l R e p re se n ta tio n  o f A ssem blies

The intentional abandonment of commands, control structures and other elements th a t con

trol the data-flow in OI Assemblies allows a simple, complete and lossless conversion between 

different description forms. A particularly important form is a graphical representation of 

an assembly p  2.1.5]p  2.4.9]. In contrast to script-based configurations, it is possible to 

create a definite and complete representation directly from the assembly. Vice versa Open 

Inspire comes with a graphical editor that allows creating and changing assemblies without 

ever being confronted with the syntax and internals. Beside graphical assembly editing th a t 

will be covered in section 5.1.2 in more detail, another possible way is converting assemblies 

to formats such as HTML or IM^K. These formats allow an optimal integration in websites 

and print-documentation.

38Adding roles and users to the server configuration is explained in Section 1.4.1 and in the configuration file
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Figure 4.19.: Graphical Representation of a simple OI Assembly

Since assemblies can be visualized in a graphical form without information loss, all further OI 

Assemblies in this work will be printed as graphics instead of text excerpts. A first example 

is figure 4.19, that shows a graphical representation of assembly 4.16 on page 118.
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Dissem ination of Assemblies

An important advantage of 01 Assemblies is the fact tha t one single file is necessary to 

describe and reconstruct a complete experiment setup. The inclusion of the OIM version in 

the assembly makes it possible to reconstruct a former setup even after years in exactly the 

same way.

In classical systems, changes are often performed at the core level and published as a whole 

under a new version. The disadvantage here is that it cannot be guaranteed tha t old setups 

will work in the same way as the time when they were created and tested.

W ith the OIM versioning, a fine grained versioning system has been introduced tha t allows 

creating or loading assemblies tha t may even contain outdated modules. The container 

therefore autonomously downloads the archived OIMs that were used by the assembly a t the 

publication date. When the assembly should now be brought up to date, outdated modules 

can be gradually replayed by new ones. Even mixing OIMs modules with different versions 

is possible.

An important feature is the subsequent correctability of systematic measurement errors. If it 

becomes known that measurements are corrupted due to a faulty version of a module, these 

can be identified by the provided assembly and in many situations corrected subsequently 39.

A different area that benefits from 01 Assemblies are publications. If an assembly is attached 

to a publication, it contains all data required to understand and reconstruct the exact ex

periment setup. Due to space restrictions it is however often impossible to include the entire 

assembly in textform. In this situation it is possible to publish the assembly similar to OIMs 

at the OI-LAMP and insert a unique link to it in the publication.

4.3.3. 01 Interface Domain Model

The previous chapters covered the internal setup, configuration and interlinkage of OIMs. 

Example 4.15 showed how to restrict an 01 Port by fixing the setters’s param eter type to  a 

specific module type. Assembly 4.16 and 4.18 on the contrary illustrated how to connect an

3901 is the first scientific system, which allows storing a textual single-file system setup beside measurement 
data that enables to automatically reconstruct a complete software setup.
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arbitrary number of modules to a single OI Port by passing a Collection of references. The 

responsibility for the interpretation and processing of passed objects here directly delegates 

to the OIM.

Regarding the first option and using a concrete parameter-type for a port such as org- 

openinspire-oim-demo-positioner does not meet all requirements on flexibility, reusability 

and interchangeability. The scanner OIM is limited to  only one positioner-OIM, which is 

specified by the fixed port type, although other positioners with similar interfaces and func

tionality could be used as well. However, if each module is accepted by the scanner, it is not 

externally verifiable, if a connected module is compatible at all.

A solution for this problem is the definition of common interfaces thereby ensuring that only 

devices are connected to a port tha t implement one of them. While defining a common 

interface for a few locally used device types is unproblematic, the definition of an universal 

interface standard raises organizational problems. Such universal standard would require a 

consensus on the definition of interfaces in the correspondent scientific discipline.

Time and organizational reasons make this only achievable by an expert commission and not 

as part of a PhD thesis.

The only way around this difficulty is the definition of a local interface standard for a bounded 

selection of use cases. The main challenge is now to minimize the problems in the run-up that 

will arise when the local standard should be later adopted to a globally accepted standard. 

Typically, the extension points for modularly expandable systems are directly provided and 

tightly coupled to  the core system. Making changes to these interfaces is very problematic 

because it breaks the backwards compatibility and requires the adoption all modules that 

make use of the interface. This is the reason why interfaces will be never changed normally. 

Instrument systems are designed for long-term operation so that their interfaces need to be 

defined in a way tha t does not restrict its application in future scenarios. To achieve this, they 

typically need to be defined in a very general and abstract way. Such unspecific interfaces 

however have the drawback that they are less intuitive and require a higher maintainability 

effort and complex logic for the interpretation of interchanged data.
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Interface Domain Basics

To address these problems and improve flexibility, an extended interface concept has been 

developed for Open Inspire. Instead of integrating the interfaces directly in the OI Server, 

even the interfaces have been mode modularly exchangeable. To achieve this in a way tha t 

fits optimally in the OI Design, no new mechanism has been developed but the interfaces 

themselves have been outsourced to OIMs to be shifted to  the OI Container.

OIMs that exclusively provide interface specifications are called OI Interface Domains. Since 

these are full-fledged and valid OIMs they can be defined as dependency of other modules, 

published by the OI-LAMP as well as automatically installed and managed by the server. 

W ith regard to contents they only differ in the lack of program logic and Service Classes, 

because no OI Ports or OI Properties are required. This is necessary to keep open the option 

of converting the interfaces to other standards or harnessing them for other programming 

languages.

Figure 4.20 shows an excerpt of the OI Interface Domain org-openinspire-oim-domain- 

science, which provides interfaces and enumerations for the use by diffraction setups. If 

a module makes use of such a standard interface, it only needs to define an OIM dependency 

to the Interface Domain and make sure tha t the Service Class implements the appropriate 

interface. An example is module org-openinspire-oim-demo-counter whose Service Class im

plements the Counter interface from the introduced Interface Domain. If the param eter of a 

port is of type Counter, arbitrary OIMs can be connected tha t implement this standard inter

face. The scanner can thus be used without modification, with counters of various hardware 

controllers.

Interface Inheritance

OI Interface Domains directly benefit from inheritance hierarchies between interfaces. The 

interface Counter for example comes not only with the methods startCountingQ, stopCount- 

ing() and resetCountsQ but also inherits all public methods of the interface Device. This in 

turn  inherits from DeviceState, Emergency and ChangeableValue
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org-openinspire-oim-domain-science

« in te rfa ce »
PropertyChangeRelay

addPropertyChangeListener(listener: PropertyChangeListener) i

addPropertyChangeListener(propertyName : String, listener: PropertyChangeListener)
. removePropertyChangeListener(!istener: PropertyChangeListener) :
; removePropertyChangeListener(propertyName : String, listener: PropertyChangeListener),

«enum eration»
StateCode

INIT
IDLE
ACTIVE
ERROR

« in te rfa ce »
DeviceState

state : StateCode 
error: String

« in te rfa ce »
Value

name: String 
un it: String 
value: Double 
minimum: Double 
maximum: Double 
tolerance : String

« in te rfa ce »  
ChangeableValue 

; setpoint: Double

« in te rfa ce »
Lockable

getLock(): String 
setLock( lock : String ) 
unlock()
isLocked(): boolean

« in te rfa ce »
Emergency

emergencyHaltQ

« in te rfa ce »  
Positioner 

error: PositionerErrorCode
startPositioning()
stopPositioningQ

«enum eration»
PositionerErrorCode

NONE
OFFLINE
INIT
TIMEOUT
LIMITS
READ
STOP
OTHER

« in te rfa ce »
Device

« in te rfa ce »
Counter

startCounting()
stopCountingQ
resetCounts()

«enum eration»
CounterErrorCode

NONE
OFFLINE
INIT
SETPOINT
RANGE
READ
STOP
RESET

•OTHER

« in te rfa ce »
Detector

matrix: int[0..*] 
dimension: Dimension 
maximumChannelCount: int 
integralCounts: int
startDetecting()
stopDetectingQ
clearMatrix()

«enum era tion»
DetectorErrorCode

NONE
OFFLINE
INIT
TIMEOUT 
RANGE 
READ 
STOP 
CLEAR 

UN VALID 
OTHER

Figure 4.20.: Excerpt from the OI Science Domain
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E x a m p le  1: An EmergencyShutdown module, which has a port of type Emergency can be 

used to halt all modules tha t are connected with it and implement the interface Emergency. 

Setting the wildcard for this port in an OI Assembly automatically interlinks all Counter, 

Detector, Positioner and Device objects with the module. The EmergencyShutdown OIM 

can so iterate all connected modules and stop them by calling emergencyHaltQ.

E x am p le  2: A second example tha t makes use of interface inheritances are GUIs. The 

WidgetTestcenter for example is able to select a fitting widget for an OIM according to 

its implemented interface or superinterfaces. If a widget for a specific positioner is to be 

displayed, a first check determines if a suitable widget for the exact OIM is available. If this 

is false, a more general control for the Positioner will be used. If that is also missing, the 

interface hierarchy will be iterated until a widget is found for Device, ChangeableValue or 

Value.

A different case are combined graphical components such as lists, which can display cross- 

sectional information of different OIMs like detectors, counters and positioners in the same 

widget40. Not to be neglected are configurable GUIs tha t allow users to create widget com

positions by selecting the best fitting presentation form of a module depending on the current 

use case.

B en efits  o f In te rfa c e  D om ains

The outsourcing of the interfaces to OIMs does not only have an impact on overall flexibility 

but is also a pre-condition for further requirements:

• If a general interface standard is to be defined at a future date, this can be quickly 

deployed as OIM by the OI-LAMP. Changes on the OI Server and downtimes a t the 

instruments are not necessary. The transition to new standards is seamless.

• OI Interface Domains can coexist. Assemblies of modules that use older interfaces 

remain valid and usable. Required Interface Domains will be installed automatically.

40All three modules implement Value so that one and the same list can contain an arbitrary number of values 
with the overall count of the detector, the single count of the counter or the position of a positioner.
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• The 01 Server is completely decoupled from its range of use. Adding new Interface Do

mains opens up new independent fields of application. Examples are Interface Domains 

for astronomical applications, industry control or Smart Living scenarios.

If a new Interface Domain is to be published as a replacement for an old domain, it is complex 

and costly to adjust all modules to the new interface standard. The solution here is to publish 

an additional OIM that provides mechanisms that act as a bridge between the standards. 

Both Interface Domains will be loaded parallelly in the same assembly while the bridging 

OIM translates the interfaces, calls and data between the two standards.

4.3.4. The Container Operation Internals

After the previous chapters, which dealt with the development of 01  Assemblies from the 

perspective of the user, this chapter gives an insight into the internal processing of an 01  

Assembly by the container. Thanks to the container, a variety of complex tasks, which are 

otherwise carried out in a manual way, can be automated and hidden from the user. Due 

to the increased code complexity of these background tasks, this chapter gives only a short 

overview rather than a detailed description. More detailed information can be found next to 

the sourcecode under the package org.openinspire.kemel.container.

For improved maintainability, all functions required to start and stop 01 Assemblies have 

been separated into individual steps, which are processed by a state machine. This eases 

extending the container by new process steps, analyzing errors and querying the container 

state. The control and monitoring of the current container state is therefore realized by 

a service11 that can be accessed locally or through external network based clients. Figure 

4.21 shows the ten steps, which are processed by the container during each start of an 01  

Assembly.

Container Startup

The next sections provide a brief overview and a selection of simplified activity charts for the 

individual steps, processed by the 01 Container during the startup of an 01  Assembly.

41More details to the containerservice will be covered in paragraph 4.4.1 on page 141
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Figure 4.21.: 01 Container Startup Cycle

Startup Step 1 : OI Assembly Parsing

In the first step, the 01 Assembly will be opened to be processed by the XML Parser JDOM 

[jdo]. To detect structural- and syntax errors preliminarily to the logical processing, an XML 

Schema based validation will be performed12. When the validity has been approved, the 

specification and all OIM tags are read from the assembly and cached as internal object 

structure for all further processing.

Startup Step 2 : OI Expression Processing

Step 2 is responsible for the processing of Regular Expressions. All ports of the OIM entries, 

which have been cached during the last step, are progressively reviewed for the presence of 

wildcards. For each found wildcard, a list of all matching OIM inside the currently cached 

assembly will be created. As an instantiation is not yet possible, only the module IDs are

42If no Schema is given in the assembly, the XML Schema oi-assembly-l.S.xsd, is used as fallback
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A ssem blyParsing

Validate 
XML File

Parse A ssem bly  
S p ec  and Root

Load 
A ssem bly File

- m

Parse  
OIM TagP arse PropertiesP arse Ports

Create
OIMWrapper Add OIMInfo to List

[unparsed OIM tag left]

Figure 4.22.: Startup Step 1 : Assembly Validation and Parsing

added for further processing in step 9. Since more than one ID can match a wildcard, an 

automatical distinction between single and multiple references, as covered in paragraph 4.3.2, 

will be carried out. Duplicates and the module that provides the port are filtered.

E xpression P rocessing  )

[U nprocessed  OIMs 
left in OIM C ache]

[OlPorts left in 
OIM Service  C lass]

[unprocessed  value of 
port tag in A ssem bly  

left for se lec ted  OlPort]

S e lec t next OIM 
from OIM C ache

S e lec t next OlPort 
of OIM Service C lass

I Add m atched OIM IDs to 
ID List for Port

Match expression  of port [ 
value with all OIM IDs

Figure 4.23.: Startup Step 2 : Regular Expression Processing

S ta r tu p  S te p  3 : O IM  D ep en d en cy  R eso lv ing

Step 3 checks whether all required OIMs are already installed and rectifies missing depen

dencies. A list will be created with all installed and another list with all required modules. 

The O I Module Installer subsequently calculates all dependencies of the required modules
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that are already installed and downloads the modules from the OI-LAMP that are required 

but not installed.

OIM D ependency Resolving

Create list with 
required OIMs

Create list with 
installed OIMs

Calculate 
d epend en cies of 

required OIMs

.v:
Install m issing OIMs- -X

[required OIMs installed]

Register installed  ̂
OIMs

• — - -.....-  T -'

->• X

Prompt for OIM
installation

Figure 4.24.: Startup Step 3 : OIM Dependency Resolving

Downloaded OIMs can have dependencies again, which will be calculated and downloaded 

until all dependencies are recursively resolved. Once all OIMs are available, they are registered 

for all further processing by step 6 and 7. If no network connection is available, the user will 

be prompted to manually copy all missing modules to the local OIM folder .

S ta r tu p  S tep  4 : OIL D ep en d en cy  R eso lv ing

Step 4 is responsible for the installation of missing library dependencies. At first, a de

pendency list will be created by aggregating all dependencies that are registered under the 

OIM-Lib-Deps manifest entry of the required OIMs. Since OILs can also have library depen

dencies, a further scan recursively adds missing dependencies of all required OILs tha t are 

installed. If modules are missing, a download of the missing OILs from the OI-LAMI will be 

initiated. These steps are repeated until all dependencies are resolved. If a module cannot 

be installed from the OI-LAMI1 it needs to be installed manually. The container therefore 

prompts the user to copy the module to the lib-folder, detects and uncompresses them for 

the installation.

43These can be modules th a t have been manually downloaded from the OI LAMP on a  different com puter or 
custom modules th a t have not been published by the OI-LAMP.

44For example modules th a t have not been published or because of a missing internet connection.
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OIL D ependency Resolving

Prompt for manual 
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H manually installed 
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OILs
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Figure 4.25.: Startup Step 4 • OIL Dependency Resolving

Startup Step 5 : N ative Library Loading

Chapter 4.2.2 (page 103) introduced the fact that OI allows the use of third-party functionality 

written in other languages such as C/C++. Java provides the Java Native Interface (JNI) 

for this purpose, which, however, causes various problems and is not directly usable with the 

strictly modular OI component system. To solve these problems, an extended approach has 

been developed explicitly for OI, which will be explained in more detail. The main problem 

is the loss of platform independence, as any native library can only run on a particular 

architecture and operating system. The second problem is tha t even if the correct library 

is available, it needs to be installed in the OS-specific library path before the Java Virtual 

Machine (JVM) is started. Installing all libraries in advance is however not an option because 

it is not clear when the OI Server starts, which library dependencies will be required later as 

requested by components and dynamically loaded by the container. One solution that might 

be supposed is to prompt the user for a manual installation and restart of the OI Server when 

missing libraries are requested. In addition to flexibility and usability limitations, this also 

leads to the problem that it is not possible to verify if the version of the installed library is 

compatible with the required OIM45. At first glance this problem seems to be solvable by 

adding all required native libraries to the OIL and directly loading them from there. But

45 And since it is installed globally, only one version can be installed, whose version is probably not compatible 
with all installed OIMs that make use of the library.
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this fails when a library itself has dependencies to other libraries and tries to  load them , 

since Java only makes libraries accessible th a t were present in the global library pa th  a t I 

s tartup . Dynamic preloading of libraries in an order th a t accounts for the dependencies does 

not solve the problem either.

Native Library Loading

Determine and 
register native OILs

Sa v e  old Java 
Library Path

Load Libraries

Parse OIL 
Descriptors

Create list with 
library nam es

Manipulate Library 
Path Load libraries

Copy libraries to 
OI Library Path

n

[library loading 
successful!]

Create path with 
i folders of all OILs

Restore old Java  
Library Path

Figure 4.26.: Startup Step 5 : Native Library Loading

Nevertheless, in order to remain compliant w ith the OI design principles, the two-stage mech

anism in figure 1.26 has been developed. Defining an OIL as dependency in an OIL m anifest 

causes the container to first search for a platform  independent OIL. If no OIL is found locally 

or in the OI-LAMP a second search looks for a platform  dependent version th a t m atches 

the OS and architecture of the executive system. If a native module is found in the

OI-LAMP th a t m atches the naming conventions, introduced in chapter 4.2.2 (page 104), it 

will be downloaded and installed. Since Java does not allow the changing of the preset native 

library path  of the JVM once it is started , a hack is used to overwrite the access rights of 

restricted JVM code a t runtim e by means of the Reflection API. The container is thereby 

able to save the original library path , m anipulate it to include the loadable native libraries of 

the OIL, load them  in the correct order and finally restore it. A possible reason why Java 

does not allow later changes of the library path  are various special cases and OS designs, such 

as Windows, where loading libraries from the m anipulated path  fails. OI provides a fallback 

for these situations and copies all native libraries to an OI specific path , which has been

46Native libraries are now able to  load dependent library since all libraries are tem porarily  in the  library path .
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globally added prior to the OI Server start, loads the libraries from there and automatically 

deletes them when the OI Server or JVM shuts down. The fact that the fallback variant is 

slower and consumes more memory makes the first variant the preferred method.

Startup Step 6 : Class Loading

To access the resources or classes provided by OIMs and OILs they need to be loadable by 

the JVM. For a standard Java program the classes are typically added to the application’s 

class-path prior to the start, which makes all resources globally accessible within the program. 

Analogous to the native library loading in step 5, predicting the classes and resources required 

by a yet to be started OI Assembly is not possible. Beyond that it is not allowed to use 

multiple versions of the same class in one application due to the lack of class versioning 

mechanisms.

OI solves these problems by the three new class loaders OIMClassLoader, OILClassLoader 

and OISystemClassLoader. Each type of OIM and OIL that is used directly or as dependency 

in the current OI Assembly gets assigned a dedicated class loader that gives access to the 

resources and classes provided by the specific module. If an OIM tries to load a class or 

resource, it first considers its own OIMClassLoader. If the file cannot be found, the loader 

delegates to the OIM and OIL ClassLoaders of the modules, which are set as dependency. 

Each module can in turn  have its own dependencies so that a chain of class-loaders is evaluated 

until the resource is found. The complexity here is that OI needs to take care that each module 

gets access to the correct version of dependent libraries. If an OIM A owns a dependency 

to an OIM B and an OIL C, and OIM B itself has a dependency to OIL C with a different 

version, it needs to be ensured that all classes in OIM A use version 1 of OIL C and the 

classes of OIM B use version 2 of OIL C.

S e c u r i t y : The introduced mechanism fulfills all security requirements p  3.2.5]p  3.2.3] since 

each module is executed within a shielded environment and can exclusively access resources 

in its own module boundaries or tha t are set as dependency. Accessing or compromising 

code of the server or modules tha t are not set as dependency is prohibited. Only a secure
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Class Loading

Add all OIMs and 
dependencies  
within current 

Assembly to List

Create OIMClassLoader:; 
y  for each OIM type in list j

Create OILCIassLoader 
for each OIL type in list

a Create global 
OISystemClassLoader

Create links 
between  

ClassLoaders 
according to 

dependencies

Set
OIMClassLoader 

for each OIM 
Instance in 
Assem b

Figure 4.27.: Startup Step 6 : Class Loading

selection of global container services 1 are made available by the OISystemClassLoader th a t 

also controls the module access to the Java A P I .

P e r f o r m a n c e : Analyzing the classes and resources for each module and its dependencies is 

slow, when it is performed every time a resource or class is loaded. To speed up this process, 

the OIClassLoaderCache caches all d a ta  a t the first tim e and uses efficient hash algorithm s 

for subsequent access to the d a ta  pool.

S ta r tu p  S tep  7 : O IM  In s ta n tia tio n

Since each OIM is, in the m eantime, able to load resources and classes w ith its assigned class 

loader chain, the s ta rtu p  continues w ith the instantiation of the OIM Service Classes. The 

container therefore opens the manifest of each OIMs in the Assembly, reads the nam e of the 

OIServiceClass, loads the class w ith the assigned OIMClassLoader and creates an  instance.

Instantiation

R ead Serv ice  
C la ss e s  from all 
OIM M anifests

G et OIM 
C lassL oader  for 

e a ch  OIM
AH Instantiate S erv ice  

C la ss for e a c h  OIM

Figure 4.28.: Startup Step 7 : OIM Instantiation

47An introduction to  the Global Services follows in section l. l
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Startup Step 8 : Property Injection

After all OIM instances are created, the container continues with the injection of the OIM 

specific properties specified in the OI Assembly.

Property /  Port Injection J

[List has more OIMs] fa|se method™'6 .

O  > G e t l l s t w l t h O I M s in j_ ^ \ M  Setectnext01M W / ‘)  ' 
v -  ; assembly [  \  / ■  i \  /  true

1- - - - - - - - - - - - - - - - -  - 1 X false - - - - - - - - - - - - - - - - - - - - - '  f

Select ne
v . t .

\

xt method \
FJk:.

1

Property / Port j  
Injection Subroutine!' ' S /

Figure 4.29.: Startup Step 8 and 9 : Property /  Port Injection

The Reflection mechanism is used to scan each OIM Service Class in the assembly for methods 

tha t begin with set, have a single parameter and are annotated with OlProperty. Matching 

methods are then called with the appropriate property-value for the specific OIM in the 

Assembly. If a matching property-entry is missing no injection will take place. If the manda- 

iory-attribute is set for the OlProperty in the source code, the startup will be canceled after 

printing an error message, otherwise it will be ignored and no injection takes place for the 

property. OI is able to interpret the text entry of the property and casts the specific value 

to the String, floating point or integer value, required by the method. Figure 4.29 and 4.30 

provide an overview for the Property Injection process.

Startup Step 9 : Port Injection

The Port Injection step is responsible for the interlinkage of modules. Similar to the Property 

Injection, all methods of the Service Classes are searched for Setter-methods with a single 

param eter but this time with an OlPort annotation. Since linking more than one OIM 

instance to  a p o rt18 is allowed, a first check determines if the method’s parameter type derives 

from Collection and supports multiple references. If this is true, it is possible to compose 

the appropriate Collections with help of the values that have been aggregated during the

48Multiple references are based on Java Collections and covered in section 4.3.2 on page 117
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Figure 4.30.: Startup Step 8 : Property Injection Subroutine

evaluation of wildcards and multiple port entries in step 2. However, in contrast to the 

Property Injection not the values themselves but the OIM instances are injected. These can 

be obtained from an "OIM ID i->- OIM Instance" mapping, created in step 7. OI then calls 

all OlPort annotated OIM methods with the newly created Collections of instances. Using 

Collections is admittedly a special case and only used for multiple references. For single 

references a simple injection takes place where the port value is read from the Assembly, 

replaced by the OIM instance and passed to the OlPort method. 01 automatically casts the 

instances and creates Collections of the correct type to match the input param eter of 

the OlPort. Mandatory-tags are supported and handled in the same way as in step 8.

S ta r tu p  S te p  10 : O IM  S ta r tu p

Step 10 is finally responsible for the initialization and startup of OIMs. Normally all ini

tialization code for Java Classes is placed in the constructor of a class and called as part 

of the instantiation. This also works for OIMs that have no OlProperties and OlPorts but 

fails when OIMs need to be either externally configured or require references to other OIMs.
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F igure 4.31.: Startup Step 9 : Port Injection Subroutine

The reason is that these values are first injected in step 8 and 9 after the constructor has al

ready been executed . The solution is the method initComponent(), which can be optionally 

added to OIM Service Classes and is triggered after the injection process, when all properties 

and ports are accessible. The challenge here is to call the init methods in the correct order. 

Starting an OIM before all modules are initialized, which are connected to the OIM ’s port, 

can provoke crashes caused by uninitialized objects. 01 solves the problem using topological 

sorting algorithms that create trees of all active OIMs and dependencies, resolve cyclic de

pendencies and determine the correct OIM startup order. Details to the algorithms can be 

found in the oi-system  library and are due to the complexity not part of this overview.

Container Shutdown

S h u td o w n  S tep  1 : O IM  S h u td o w n

The step OIM Shutdown is used to cleanly shutdown an active 01 Assembly. Each OIM 

Service Class can, as counterpart to the initCornponent() method, come with an optional

49Injections are only feasible on objects so th a t it needs to  be performed after the instantiation in step 7
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Module Startup
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Figure 4.32.: Startup Step 10 : Module Startup

method shutdownComponent(). This can be utilized by OIM developers for cleanup tasks 

such as closing files and network connections, stopping threads or freeing memory. If the 

container finds such shutdown methods, it respects possible runtime dependencies and calls 

them in reverse order than in step 10. After completing this voluntary OIM cleanup process, 

the container memory is freed and the server will be prepared for the start of new Assemblies.

Module Shutdown J

Get ordered list of running 
modules

Iterate all modules 
and invoke method 

shutdownComponentQ

Figure 4.33.: Shutdown Step : Module Shutdown

4.4. Services and Configuration

The preferred way to provide a service by OI is to publish and operate it as OIM within the 

OI Container. This is certainly only possible for services that are not used for the server 

management itself and hence need to be independent from the container.

In order to provide services that are not bound to the container state, OI comes with a Service 

Registry that allows registering global services. These standard services dock against fixed 

and predetermined interfaces and are hence easily replaceable by other implementations.
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4.4.1. Shared System Services

The following section provides a brief insight into the key OI Services: Authentication Service, 

Filesystem Service, Container Service, Network Service and Logger Service. Figure 4.2 on 

page 79 already showed the placement of these services within the OI Server.

Authentication Service

The Authentication Service is used for the authentication of users by username and password. 

A successful authorization allocates the user to a role and unlocks the access to specific 

resources and extended functionality p  3.2.8]. The service is primarily used to restrict the 

file access to the OI Filesystem (FileSystem Service), to prevent unauthorized changes to the 

container state (Container Service) and for the login to the OI Shell00. Another object is the 

handling of role-based security mechanisms within the OI Assembly, introduced on page 120.

The configuration of the privileges is managed by the XML file privileges.xmlo1, which con

tains the two main sections roles and users. Roles is used to configure an arbitrary number of 

roles, which have an id, a description and can inherit the privileges of other roles. By default, 

the roles admin, user, observer and shell are predefined. The role admin thereby inherits all 

rights from user, which in turn  inherits the rights from observer and shell. Adding new roles 

enables the easy and flexible creation of complex privileges networks. The other section users 

finally provides a list of users with a unique name, an encrypted password, a description and 

an assigned role. Here the users admin, user and observer are predefined and assigned to the 

correspondent role p  2.2.2]p  2.2.3].

Filesystem  Service

The FileSystem Service (FS Service) provides access to Assembly files and stored OIM data 

such as measurement results. This makes external applications and modules not only able to 

read and write server-stored data but also allows the copying, moving, deletion and renam

ing of files within the directory structure, or the setting of extended attributes such as file 

locks. The service acts as an apparently transparent barrier between filesystem and service

50The Open Inspire Shell is a Command Line Interface (CLI) covered on page 143.
51See graphics 4.4 on page 84 for the default location of the privileges.xml in the filesystem.
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consumers. It is therefore the point where transparent filtering mechanisms such as the role- 

based access control or automatic file history and version management are implemented. For 

the access control it works closely together with the Authentication Service and for external 

clients it is made accessible by the Network Service. Network clients primary use the FileSys

tem Service to create and edit Assemblies and to observe or download measurement da ta02. 

An optimal throughput and bandwidth consumption of transfers is realized by streams while 

asynchronous notification mechanisms keep simultaneously connected clients synchronous.

Container Service

The Container Service is used to control and query the status of the OI Container. This 

primarily includes starting and stopping OI Assemblies as well as setting the current Assembly 

using a path and filename that is managed by the FileSystem Service. Beyond that, it is 

possible to read the container state, progress of the currently processed startup- or shutdown- 

step as well as messages and error states. Beside the active reading of container states, clients 

can furthermore register themselves as observer and receive notifications about state changes.

Network Service

OI comes with a Network Service th a t allows publishing services transparently via network. 

Providing the network support by means of an exchangeable implementation enables the 

changing or adding of network protocols without touching other OI Services. Moreover it is 

possible to operate different network implementations a t the same time. This allows access 

to the same data model while communicating with multiple clients using different protocols, 

which in turn makes OI flexible when new standards arise or the provided implementation 

turns out to be incompatible with specific architectures'0̂ .

To meet all requirements for a firewall-friendly architecture OI comes with a Cajo [cajll] 

based default network implementation. The solution completely abstains from dynamical 

ports and requires no open client-side ports for callbacks, which makes it easily and securely 

tunnelable through existing firewalls p  6.5.2]. All relevant network functionality including

52Each OIM has a dedicated storage for data such as measurement results that is accessible by the 1\S Service 
53An example is the smartphone operating system Android, which comes with a reduced JVM that lacks RMI 

support and is hence incompatible with the OI default network service.
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secure tunneling through encrypted SSH  connections is provided by the oi-system library. 

Establishing a remote connection is done with one command th a t only requires the hostname 

and port of the network service and returns a Lookup with all free services provided by the 

OI server. An additional authentication with username and passwords expands this Lookup 

by restricted services tha t are accessible by the user’s role. Since services can be dynamically 

added and removed, all clients are notified in case of Lookup changes.

Registering network services is not limited to global services but is also made possible for 

OIMs inside the container by adding the OIM ServiceRegistry to an OI Assembly. All modules 

tha t are connected to this registry module automatically publish their service interface using 

the Network Service in due consideration of the access restriction given by the role-tag. 

Clients can access the published interfaces in the same way as local services and thus use 

it for example as data provider for widgets. GUIs are thus able to dynamically activate or 

deactivate controls, menu items or other Ul-elements when services are added or removed 

from the Lookup°4.

Logging Service

W ith the Logging Service another important service is available, which is primarily used 

by the OI Server and OIMs inside the OI Container. It is a convenient interface to the 

messages generated during the runtime of Open Inspire and thus an important instrument 

in meeting the stipulated error analysis requirements p  6.4.2]. The service collects all log 

messages that are generated for debugging or informational purposes using the standard 

java.util.logging.Logger command in the OI Server, OIMs, .TVM or external libraries and 

saves them to the file inspire.log. For a reduced file size and improved handling, it is a 

rotating log file, which means that a new empty file is generated every day and the old file 

is saved with appended date. Each log entry contains the date and time of the message, the 

class and method in which the message has been logged, the log level50 and the message itself 

p  6.4.3]. Error analysis-, profiling- and visualization-tools can either access the local log file 

or read it as stream from the service.

54More details about the dynamic activation of UI elements follow in section 5.1.1 on page 176
55Valid log levels are SEVERE, WARNING, INFO, CONFIG, FINE, FINER and FINEST. More details can 

be found directly in the configuration file, which is covered in 4.4.3 on page 145.
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4.4.2. User Interaction Services

Since a large number of users should be addressed, their preferences in relation to the UI need 

to be taken into account. OI provides a set of services that can be used as backend for various 

forms of User Interfaces. Three UI realizations are already implemented and discussed below.

Network based User Interface Clients

The recommended way to operate the 01  server is in headless mode as background service 

because this guarantees an optimal decoupling between data model and view. As long as a 

GUI client has access to the OI Network Service, there are no limitations on the shape or 

implementation of a client. Clients in Java, Groovy, Scala, Jython or other languages based 

on the JVM can make use of the oz-c/zeni-library, which already provides all functionality for 

the authentication, communication, remote access, encryption and tunneling. Clients in other 

languages can either directly access the default protocol or implement a new Network Service. 

More detailed application examples follow in chapter 5.1 on page 175, which introduces the 

RemoteLookup of the Network Service and several UI implementations.

The Open Inspire Shell

Beside the headless or daemon mode, it is possible to start OI in the Shell mode, which allows 

the operation of Open Inspire using a Command Line Interface. The OI Shell is platform 

independent and thus works on Mac OSX, Windows, Linux  and other UNIX  derivates in the 

same way. Compared to the network based coupling of clients, the Shell liaises more closely 

with the system core and can hence provide some extra features like enhanced debugging 

mechanisms.

If OI is configured to start in Shell mode, it shows the start screen pictured in Figure 4.34 

and prompts for a username and password. If the user can successfully authorize himself as a 

member of the role shell, he obtains access to a Command Line Interface. In the special case 

tha t the authentication is disabled in the OI configuration, the Shell reclaims prompting for 

a login.
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auriga:release stefan$ ./s ta r t .s h

/  _  \   /  _ / _ ________ (_)______
/  / _ /  /  _  \ /  - J  _  \  J  // _  \ ( _ - < /  _  \ /  /  _ _ / ~ J
\  /  . _ / \ _ / _ / / _ /  /  / _ / / _ /  /  ■ _ /_ /_ /  \__ /

/_ /  /_ /
Server S hell 1.3.0_alpha7 (Type help)

(c) Stefan Alexander Flemming www.openinspire.org

Login: admin 
Password:

01-Shell => Q

Figure 4.34.: 0 /  .STieZZ Login

The use of the Shell is almost self explanatory. A good starting point is the command help, 

which outputs a list of all available commands (figure 4.35). For further information, help in 

combination with a command name gives a detailed description of a specific command. 

01-S h ell => help 

Open In s p ire  S h e ll Commands:

asm L is ts , selects  and s ta rts  assemblies
e x it  Shuts down the Open In s p ire  Server
help P rin ts  help or command descrip tion
log P rin ts  the content of the lo g f i le
o i l  Shows inform ation about 01 L ib ra rie s
oim Shows inform ation about 01 Modules
q u it Shuts down the Open In s p ire  Server
services L is ts  a l l  ac tive  services
sysinfo P rin ts  system environment variab les
version P rin ts  01 version and bu ild  inform ation

0 1-S h ell => □

Figure 4.35.: 01 Shell Help

Adding new 01 Shell commands is straightforward by internally registering a class that imple

ments the Command56 interface. This interface comes with the methods execute (S tr in g  □ 

p a ram ete rs) , g e tS h o rtD e sc rip tio n O  and getL ongD escrip tionO  that need to be over

written with methods tha t provide the command logic and descriptions for the help command.

56The interface can be found in the OI Kernel sources under org.openinspire.kemel.ui.shell.cmd.Command

http://www.openinspire.org
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T h e  O p en  In sp ire  S y stem  T ray

The third default User Interface provided by OI is a graphical UI that makes use of the 

SysTray. If it is enabled in the OI configuration, a new icon appears in the System Tray of 

the Operating System and provides access to a configuration and control menu. Opening 

the menu shows items that allow the server to be halted, the starting and stopping of the 

Assembly and selection of available Assemblies from a nested tree as shown for Mac O SX  in 

Figure 4.36.

r u n  $  ffl ©  © X is H O  * S '  V  So. 19:23 Q

Halt Server §gH

Start
Stop &es

Demonstration
HZB-Wannsee

Figure 4.36.: Mac OSX System Tray

The SysTray menu thus meets the requirements for providing an easy means to operate the 

OI server for systems such as Windows, where using a CLI is unusual. Open Inspire is hence 

startable as a background service and though remains operable without the need for external 

clients.

4.4.3. The Service Configuration

OI comes with a configuration file that makes the main behavior of the OI Server configurable 

and allows setting up OI according to the good practices of Operating Systems or specific 

user demands p  2.1.5][El 6.1.3]. It is named inspire.properties and per default located in the 

con/-folder51, beside the already known privileges.xml for the configuration of user rights and 

roles. The file is divided into the five segments Network, User Interface, Logging, Storage & 

Persistence and Update & Repository, adequately commented and self-explaining so th a t no 

detailed description but only a brief overview of the main configuration sections is given in 

table 4.3.

57See graphics 4.4 on page 81 for the location in the filesystem
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S ec tio n D e sc rip tio n

N etw o rk Allows setting the IPs Address and Ports of the Network and 
Registry Service.

U ser In te rfa c e Allows to set if 01 should whether start as a background 
service or interactive shell, if the SysTray should be enabled 
and which Look and Feel (LnF) to use. Currently the LnFs 
System LnF, Metal and the modern LnF Nimbus can be set 
for the decoration of server side dialogs.

Logger Allows setting the path and filename of log file as well as the 
LogLevel.

S to rag e  a n d  P e rs is ta n c e Allows to configure the storage root for OIM data and the 
cache-directory. The cac/ze-folder is used to store temporary 
data generated by the module installer, as cache for native 
libraries and as a buffer for OIM data.

The file cache.properties is automatically created within the 
cac/ie-folder and used for data that should persist system 
restarts. The 01 server can hence remember the lastly 
started Assembly or the last startup date.

U p d a te  R e p o s ito ry Allows to replace the default URL of the OI-LAMP Update 
Center by a local mirror or overlay.

Table 4.3.: The OI Configuration File

To comply with the standard paths of different Operating Systems, it is possible to start 

the OI server with the parameter config, that expects the path to the inspire.properties. 

Respecting the Linux Filesystem Hierarchy Standard (FHS) [Qui94], for example, is thus 

possible by adjusting the paths within the inspire.properties and relocate the configuration 

files to / etc, write the logger’s output to /var/log  and start OI using a startup script.

4.5. OI Library and Media Platform

An important attribute of Open Inspire is that it is not a local and foreclosed system but 

comes with multiple collaboration features tha t ease the global exchange of information. The 

center of the system forms the publicly accessible component repository a t h t t p : / / s t o r e . 

o p e n in sp ire .o rg , which has been scratched in Section 4.1.1 (page 76).

While this repository is used by several automated 01 services, which access the globally 

published OIMs, OILs and OI Assemblies, it is not suitable to be used as human readable

http://store
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information source. To meet all collaboration and learning requirements it is therefore nec

essary to provide additional services to ease the exchange of information between users and 

allow quick access to the required documentation and resources [13 5.2.2][I3 5.2.3][13 5.2.4][13 

2.3.9].

4.5.1. The Project Webpage

The website h t t p : //www. o p e n in s p ire . org is the entry point for everyone who is interested 

in or working with Open Inspire. It is designed in a uniform style and optimized to be viewed 

on high resolution screens as well as the small displays of tablets or smartphones58 [3 1.1.2].

Figure 4.37 shows a snapshot of the site. The head is a dynamically adjustable menu with 

links to the sections Home, Documents, Collaboration, Assemblies, Modules and Downloads. 

The left side contains a submenu that shows the entries of the currently selected main menu 

section and the third menu under the main menu is a breadcrumb th a t indicates the path  

to the current webpage. A password-protected backend allows editing all static content, the 

integration of dynamical services and setting up user access privileges.

Home Documents Collaboration Assemb.  _______ ____________

D ow nloads ■ 01 Installer Packs

® OI Installer Packs Open inspire Binary installation Packages
01 Server Sources Open Inspire is p la tfo rm  independent and executable on ail m a jo r opera ting  systems. You can

either dow n load  a universal ZIP A rch ive and run Open Inspire from  the re  o r d ow n loa d  an 
installer fo r M ac OSX, Linux o r W indow s. The second o p tion  is th e  recom m ended w a y  because 
it in tegra tes sm ooth ly  in to  th e  system by adhering th e  specific p la tfo rm  peculiarities.

Oi instailers (Latest Snapshots)
Click on the  package th a t relates to  yo u r O pera ting  System and dow n load  a  p la tfo rm  specific 
installer. All packages are da ily  builds and you use them  on yo u r ow n risk!

Figure 4.37.: Snapshot from the 01 Website

58Modern smartphones provide in landscape mode enough space to display the complete width of the page.
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To reduce the administration effort and ease the publishing of content, a Content Management 

System (CMS) is used. Prom the shortlist of the CMSs TypoS, Joomla, Drupal, Wordpress 

and Magnolia, TypoS [typb] has been chosen. The Open Source system TypoS comes with 

a configurable backend that i) allows the creation of pages using a rich text editor, ii) takes 

over tasks such as the user and access management and iii) can be extended using plugins 

(important to allow the integration of OI specific dynamic content). The drawback of this 

system is that it is written in PHP  and thus not as easy integrated in the OI environment 

as a Java-based CMS. But this is compensated by TypoS's popularity. Thousands of pages 

of organizations such as Airbus, DHL, EADS, UNESCO, the HZB, BHT, Greenpeace, Lindt 

or T-Online all commit on TypoS [typa]. This makes it very likely that the development and 

support will be continued.

4.5.2. Content and Backend Services

For a rapidly changing and developing project, such as Open Inspire, it is difficult and time- 

consuming to keep all documentation, links and services up-to date. As a result, the time 

effort rapidly shifts from the development of the web infrastructure to  permanent mainte

nance. To meet the requirement tha t all published content is up-to date p  3.8.5] and that the 

development is not hindered by maintenance tasks, a dynamic service infrastructure is used 

tha t automatically updates the web pages when sources, components, assemblies or binary 

OI packages change.

Figure 4.38 illustrates the OI Service Infrastructure. To meet the requirements regarding the 

reuse of existing systems p  5.3.6] it incorporates several third party products. These have 

been made to communicate with each other and integrate seamlessly into the OI environment. 

The following paragraphs give a survey to the website’s main sections and the integrated 

services.

Documentation

The section Documentation contains primarily static content and is divided into the four sub

sections Manuals, Tutorials, Screencasts and A P I Documentation. These subsections provide 

information that is addressed to beginners as well as advanced users and programmers.
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O p e n  C loud S erv ice  In frastru ctu reWeb Content

TYP03
I n te g r a t e d  C loud  S e rv ice swww .openm spire.org

01 C o m p o n e n t s  

01 A sse m b l ie s

Continuous IntegrationOpen Inspire Store
Deve loper

J e n k in s
bttp://}enkins.openinspfre.orgn Up: / /s  to  re . open i n s p : re . or g

Version Control

- 0 j  m e r c u r ia l
http://ha.openinspire org

D o w n lo a d s01 Server 
and 

01 C lients
.. i.O .C Code Review System

f i  CRUCIBLE
Reporting &  Visualization

OFISNEYE
http://fisheye.openinspire.org

http://crucible openinspire.org

C o llab o ra t ion  
Serv ices Issue and Project Tracking

X i I R A
Discussion Forum

ajrjo
http://forum .openinspire.org

http://iira.openinspire.org

D o c u m e n ta t io nD eve lopm en t
Environm ents

Figure 4.38.: The 01 Web and Cloud Infrastructure

Screencasts are the preferred medium. The section contains short videos, used to introduce a 

user into a specific topic. The advantage of a screencast is that a user can exactly reproduce 

each step due to the fact that each interaction with the computer such as mouse movements, 

entering text or opening a menu are directly obvious. For the creation of screencasts the 

software Camtasia [com] has been selected since it is available for Mac OS as well as Win

dows and comes with utilities such as the highlighting of screen cutouts, zooming and the 

embedding of videos and speech.

An addition to the Screencasts are Tutorials that use short texts and illustrations to introduce 

functionality step by step. Tutorials can be printed and consume less hardware but are not 

as exact in their description and clearly reproducible as Screencast.

The third document type are Manuals. These are more comprehensive and not aimed to 

users that want to learn functionality but for everyone who search more detailed information.

http://www.openmspire.org
http://ha.openinspire
http://fisheye.openinspire.org
http://crucible
http://forum.openinspire.org
http://iira.openinspire.org
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The last category is aimed to developers and contains the OI API and source code documen

tation. The OI source code is commented and contains descriptions, which makes it possible 

to automatically create a human readable code documentation. The documents contain de

scriptions of all packages, classes, methods and attributes as well as their dependencies among 

each other. The generation of the documentation occurs automatically when sources inside 

the OI Version Control System (VCS) change. As generation tool Doxygen has been selected, 

which comes with several advantages over Java’s standard documentation tool javadoc such 

as the creation of PD F documents and more sophisticated configuration switches. Doxy

gen is embedded into the OI Build System  and automatically triggered by the Continuous 

Integration System (CIS), which will be covered in connection with the Download Section.

Components

The Section Components provides user-friendly access to the OIMs and OILs that are pub

lished using the OI Store. While the store is primarily used autonomously from the OI Server 

and Clients for the downloading of components or querying of meta data, the Components 

Section makes these and some additional features accessible through human readable web

pages. Functions include the ability to browse the catalog of published components, query 

the component descriptions, submitting new components, downloading components or adding 

comments and votes09. Beyond that, it is possible to generate OI Components by means of 

a step-by-step wizard. This wizard asks for the features tha t a module should have and 

creates a package with all necessary meta files and preconfigured Java classes including the 

annotated method bodies for the OI Ports and OI Properties.

OI Components are written in Java, so that the OI Store also uses Java to  process the 

modules’ meta information such as the values from the OIM Manifest or the OI Port and OI 

Property annotations. Embedding the Java-based store into the PHP-based TypoS website is 

difficult so tha t the store provides an independent web service that is used by the OI Server, 

OI Clients and the website to  query all relevant information remotely.

59Commenting and voting for components allows users to give a quality and popularity feedback
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Assemblies

The Section Assemblies is similar to the Components Section but provides access to the cata

log of globally published 01 Assemblies. Analogously to the components catalog the Assem

blies section is split into categories and comes with a simple search engine tha t helps finding 

a desired Assembly. The catalog entries show the name, description, all meta-information, 

the list of dependent components and a unique ID. This ID  is used for a feature called Rapid 

Assembly. Passing the ID  to the server60 triggers the download and installation of the corre

sponding Assembly and all dependent modules and libraries. One short ID  is thus all that is 

required to assemble the complete setup of an experiment. Such an ID  can subsequently be 

published with papers or shared between experimenters.

Downloads

The fourth of the seven website’s main sections is the Download area. Prom this section it is 

possible to download the 01 sources, binaries, related applications and resources p  4.4.3]p  

1.1.5] . An important requirement here was to provide the most recent downloads without 

distracting the development process due to publishing-tasks. This is done by several back

ground services provided by the official Mercurial front-end and the Continuous Integration 

System (CIS) Jenkins.

The dynamic access to the sources is realized by the Version Control System (VCS) at h g . 

o p e n in sp ire .o rg , which allows browsing all versions of all OI sources tha t have ever been 

committed. Committing an update to the sources automatically triggers the creation of a 

bz2, zip and gz archive and makes the sources available through the download section.

A difficult and more time-consuming task is the provisioning of the installable 01 Binaries. 

Whenever sources change, the binaries need to be rebuilt, using the Build System  covered 

in Section 4.6, and repackaged for all supported Operating Systems and platforms p  4.4.2]. 

Performing these steps every time manually, even for minimal source code changes, hinders the 

development and has thus been automated using a Continuous Integration System (CIS)61.

60Entering ra  12.3  inside the OI Shell for example installs version 3 of the public Assembly number 12
61A CIS is a tool that automatically triggers the build process either when sources change or on a regular time 

base. More datails follow in the next Section. The 01 CIS is hosted at c i.o p e n in sp ir e .o r g
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Whenever code is submitted, a VCS hook triggers the CIS Jenkins, which subsequently gets 

all sources from the VCS, configures the OI Build System  and builds a platform independent 

OI release p  1.3.3]. This release can be used to run OI without installation on OSs where 

no explicit OI Installer is available or for the packaging of OI for OSs tha t come with a 

custom installation system and download the OI binaries during the installation62. To reduce 

bandwidth and to provide a unique download link, all releases are packed as zip-, tgz- and 

6z2-archives, tagged with a version, uploaded to the OI store and made available through 

the Download-Section p  4.3.3].

The platform independent packages are sufficient to run OI on all OSs but they do not observe 

the OS specific characteristics such as system specific paths or the lifecycle-management of 

services. This is why OI also comes with optimized installers for the most widely used OSs, i.e. 

Windows, Mac OSX  and Linux p  1.3.2]. The main difficulties here are tha t these operating 

systems are very different in their usual installation mechanisms and that the installer binaries 

can only be built on the related platforms. To prevent all OSs needing to be installed on the 

continuous build system (to allow building the binaries for all platforms), a cross-compilation 

environment has been setup tha t is able to build binaries for Linux, Windows and create 

OSX PackageMaker setups.

For Windows, the Xullsoft Scriptable Install System (NSIS) [nsill] is used, since it is Open 

Source and flexibly configurable via configuration files. Such a configuration, which reflects 

the current version, paths and specific system characterics63, is generated for each release 

by the OI Build System. Jenkins subsequently calls the NSIS  installer generator to cross- 

compile64 a single Windows exe using the configuration file, platform independent OI package 

and additional resources such as icons and images. Starting the generated Installer checks if 

a current Java installation is present, downloads and installs Java when it is missing, lets the 

user choose the OI install location, select optional assemblies, modules and documentation 

and then installs and configures OI for Windows, creating all startup scripts and an optional 

start-m enu and desktop shortcut.

62Many Linux Installation Systems make use of such an automated download.
63For Windows, OI is for example configured with an activated 01 SystemTray (Paragraph 4.4.2, p 145)
64The installer executable is created using the Minimalist GNU for Windows (MinGW) [m inll] cross- 

compilation environment under Gentoo Linux.
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For Linux it is unusual to have a binary installer. Here the OI Build System  creates build 

configurations or packages for the installation system of the specific Linux distributions65. 

01 installation packages that install and build 01 from the sources are provided for Gentoo 

and Sabayon Linux. The installation downloads the sources, builds OI, copies all files to the 

OS specific locations and adjusts the OI configuration files to match all file locations and 

platform characteristics66.

Mac OSX  comes with a tool called Package Maker, which creates application packages that 

behave like an individual file, which can be installed by copying it to the OSX Application 

Folder. The fact that Java is pre-installed on OSX  and that the application package can 

be configured and equipped with everything required to run 01 makes this installation very 

easy. Building the Application Package requires no cross-compilation and it can be directly 

assembled with Jenkins under Linux.

To meet all data integrity requirements all files hosted at the global 01 Server are backed-up 

daily and stored on individual servers in independent networks. For improved scalability 

and fail-safety, the URL s to re .o p e n in s p ire .o rg  automatically balances the load to the 

independent mirrors s to re l .o p e n in s p ir e .o r g  to s to re 9 .o p e n in s p ire .o rg .

Collaboration

The last Web Section provides services that help improving the collaboration between users 

and developers. The main communication is handled by a forum at forum, o p e n in s p ire . org. 

It is divided into public sections for everyone who is interested in OI and registered users and 

developers. A forum or a mailing list is the core of a community project, since it allows the 

collaborative answering of questions. The advantage of a forum over a mailing list is, th a t all 

contributions are centrally browseable, searchable and readable and that special formattings6' 

and the inclusion of graphics is possible and consistent for all viewers.

Beside the forum, several services are made available that mainly serve to improve the devel

opment. The first service is the issue tracking, reporting and project management tool JIRA

65Common installer systems are for instance the RPM Package M anagers (RPJVIs) for RedHat, CentO S  and 
SuSE, Advanced Packaging Tool (A PT) for Debian and Ubuntu or Portage for Gentoo and Sabayon Linux

660 n  Linux, 01 is started per default as background daemon with disabled 01 SysTray
67Source code can for example printed in a monospace font and equipped with line numbers.
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[jir]. It is accessible a t j i r a .o p e n in s p ir e .o rg  and allows the reporting of bugs, feature re

quests and issues, and the acquisition of the current project state and statistics. Statistics can 

relate to open issues, the overall stability or timeliness of project development. Issues can be 

reported, assigned to developers and tracked, so th a t everyone tha t subscribes to a bug gets 

emails with status updates. Furthermore it is possible to connect a bug or issue to code. This 

is done with help of the the tool Fisheye [fis], which acts as a bridge between the OI Mercurial 

VCS with JIRA. Fisheye is hosted at f ish e y e . o p e n in sp ire .o rg  and provides sophisticated 

services such as real-time notifications of code changes, web-based reporting, visualization, 

search and code sharing. Figure 4.38 shows tha t not only JIRA  is using Fisheye but also 

Crucible. Crucible [cru] is a code review tool that allows the addition of inline comments 

to source code. A discussion related to issues or code changes can thus be added as layer 

directly over the code without altering the code inside the VCS itself. This simplification of 

the development workflow and introduction of asynchronous reviews is also supplemented by 

different types of change notifications.

The tools Crucible, Fisheye and JIRA  have been selected because they interact to perfection 

and are very popular with more than 26,000 customers. The company Atlassian offered a free 

Open Source license for all three products to the Open Inspire project. Several tools such as 

Bugzilla, Drac and Redmine have been evaluated before and used with OI until 2010 but have 

been replaced by the Atlassion tools due their wider function set and better integrateability.

The selection of tools make it possible to continue and control the OI project even with large 

groups of developers and users [M 3.7.5]. If the project grows, the software GreenHopper [gre] 

provides all services for an agile project management, including backlogs, sprint planning and 

project tracking68 Beyond tha t it is possible to introduce automatic tests and notifications 

about build problems using Jenkins, which also integrates well into the JIRA  environment.69

4.6. The Build Environment

A build system usually comprises one or more scripts for the compilation of source files, the 

preparation of resources and the subsequent composition of all build artifacts to an application

68GreenHopper is integrated into the OI environment, but disabled until an agile development will be started.
69It is for example possible to link JIRA  issues to Jenkins builds.
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package. The aim is to autom ate as many steps as possible while minimizing interactions 

with the developer during the build process. The build system thus has a direct influence 

on the development speed since developers need to wait for the time required by the build 

process, every time changes to the source code or resources are made. To reduce build times, 

sophisticated systems ensure that only changed files are rebuild and tha t files, which are not 

required for the specific target environment, are excluded from the build process. Beyond 

tha t there is a strong aim to provide the means for an individual configuration of the build 

process without compromising the usability. This can be achieved by a simple and intuitive 

interface to the build system that hides all complex processes, which are executed in the 

background.

Open Inspire is a dynamic system of modular, loosely coupled and distributed components. 

This leads to the problem that OI can not be built with traditional static build scripts. 

Normally each arbitrary configuration of OIMs and OILs would require a specific script that 

respects the dependencies between modules and the correct build order. Until 2007 OI thus 

required each OIM to be built individually and all dependencies manually scrutinised. Since 

the compiler is not able to recognize the assignment of a class to an OIM it is impossible 

to output a clear message that indicates the missing OIMs. This makes it hard and time- 

consuming to discover the correct build order. It should be remarked th a t changing the 

source code of only one module or library requires rebuilding all modules tha t depend on it.

W ith the intention of improving the handling of OI and increasing its acceptance, versions 

of OI from 2009 onwards come with a more flexible build system, which solves the problems 

discussed above. The basis of the build system is Apache .An£'0[ap a lla , HL04], which has been 

extended through the addition of functionality that supports the dynamic build requirements 

of OI. In contrast to many other solutions, there is no restriction to a particular OS as well 

as no requirements for installed programs or libraries other than Java and Ant.

70A considered alternative to Ant is Mouen[apallb], which already provides some required extra functionality 
but at the same time a new layer of complexity that comparably need to be adopted to OT.
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4.6.1. OI Building Basics

Before covering the internals of the build system, this section briefly explains how to build 

O pen Inspire in just a few steps from the sources. The only prerequisites are a recent Java and 

A n t '1 installation and the corresponding entries in the default path of the OS. All complex 

processes are hidden and run in the background so that users without build experience are 

able to build and run OI. The commands in the following sections do not differ, no m atter 

whether they are executed on Windows, UNIX, Linux or Mac OSX.

Checking out the Sources

The Open Inspire sources can be downloaded from the resources section of the OI website 

or directly checked-out from the OI Mercurial repository. For developers and everyone who 

wants to keep the locally downloaded sources up to date, it is a good choice to check-out 

the sources from the repository. When m ercurial'2 is installed and added to the OS’s default 

path, creating a local clone of the repository requires nothing more than the execution of the 

command:

hg clone http://hg.openinspire.org oi

The content of the 01 repository can be thereafter found in the newly created oz-folder.

one stefan # hg clone http://hg.openinspire.org oi
requesting all changes
adding changesets
adding manifests
adding file changes
added 321 changesets with 4955 changes to 2008 files (+1 heads] 
updating to branch default
489 files updated, 0 files merged, 0 files removed, 0 files unresolved 
one stefan # []

Figure 4.39.: Getting the 01 Sources from, the 01 Mercurial Repository

n For Open Inspire 1.3 the required Apache Ant version is 1.7 or higher in combination with JDK 1.6
72Mercurial can be downloaded from the Mercurial project website at h ttp ://m e r c u r ia l.se le n ic .c o m

http://hg.openinspire.org
http://hg.openinspire.org
http://mercurial.selenic.com
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Configuring the Build

Before building OI for the first time, a one-off adjustment of the build system needs to 

be performed. This automatic preconfiguration, in relation to the build environment and 

target platform, is done by running the following command inside the st/siem-folder of the 

checked-out data:

an t con figu re

The build system detects the architecture and build platform, downloads required OIMs and 

OILs from the OI-LAM P, unpacks and installs them. This is necessary, because the OI 

repository does not contain any binary files to save storage space and to reduce the required 

bandw idth '3. In addition, it ensures that only files, which are relevant for the build process 

and platform are downloaded. To achieve file integrity, accidentally deleted files are detected 

and automatically restored from the OI-LAM P.

Directly after the autonomous configuration, a second interactive part asks for some user 

preferences. The first is the builder’s name and email address, which will be integrated into 

the build and can be queried using the shell command vers io n . This allows distinguishing 

official from user builds and contacting the builder in the case of problems or inquiries. The 

second question relates to the generation of project files for the integration of OI in In tegrated  

Development Environm ents (IDEs). Affirming the question generates project files th a t allow 

opening OI and components using the NetBeans ID E '4. Finally the JD K  used for the build 

can be selected, if OI should not be build with the system wide standard Java installation.

Building the OI Release

After the build system has been configured, it is possible to build OI using the command: 

an t b u ild

The system builds the OI Kernel, all system libraries, required OIMs, downloads further 

dependencies from the OI-LAMP and creates the release folder, introduced in section 4.1.5

73VCSs save space by storing only the file changes between consecutive check-ins. This however only works for 
text files and not for binary files that occupy much space since all versions of the same file are still present.

74More details about the NetBeans integration can be found in section 4.6.4 on page 170
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on page 83. The OI modules to be built, can thereby be set through a configuration file, which 

will be covered in section 4.6.2 on page 166. All required dependencies will be automatically 

resolved and the build order will be calculated by the build system. Whenever an t b u ild  is 

called again, only changed files will be compiled and copied. No user intervention is required.

Cleaning the OI Release

If the build system needs to be reset to its original state and all built binaries and created 

release files deleted, this can be done using:

ant clean

The configuration files and downloaded data remains untouched in order to speed up later 

builds. If it is required to reset the system to the state it was in directly after the checkout, 

this is done by:

ant verylean

The system hence needs to be reconfigured using an t configu re  prior to the next build.

4.6.2. The Build System Layout

OI developers can be split into the three categories: Kernel Developers, Module Developers 

and Accessory Developers. All three groups have, contrary to users, an interest in the internals 

of the build system. While section 4.1.5 covered the release-folder, the following pages outline 

the system  and mods-folder that contain relevant data for kernel and module developers.

Figure 4.40 documents all relevant contents of the system  folder. The folder’s root contains 

the Ant script build, xml, which is the entry point for all build targets and delegates the 

execution to further build scripts in oiproject and prj. The build system is for clarity reasons 

structured into directory-based subparts to allow building the kernel or libraries individually.

Documentation - doc

The first place to go after checking-out the sources is the folder doc, which contains the files 

READ M E.TXT, TO D O .TXT  and FAQ.TXT. The first file contains build and installation 

instructions, version information and a short introduction. The TO D O .TXT  informs about
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main
L system

b u i ld . xml......................................................................................... The build start script

o ip r o je c t ................................................................................................ The build system

 c o n f ig .p r o p e r t ie s ..............................................The main build configuration file

u se r  .p r o p e r t ie s ............................................................. User specific build settings

m odules.....................................................................Shared build scripts for modules

s c r i p t s  Global configuration and release scripts

t p l ........................................................................Templates to be copied into release

n b p ro je c t  IDE configuration for NetBeans

p r  j ............................................................................................. Sources and build artifacts

 k e rn e l  .....................................................The Open Inspire kernel

l i b s ..............................................................................................Shared library sources

.o i - a n te x t ..................................................................Ant build system extensions

. o i - c l i e n t  Library for kernel client < ->  kernel comm.

o i-m e ta  Annotations used by kernel and OIMs

.o i-sy s te m  Libraries used by kernel and build system

 o i - u t i l ...........................................Optional libraries used by kernel and OIMs

 oim s........................................................................OIMs built by the main buildsystem

o i l s ................................................................................................ OILs used by the kernel

doc ........................................................................................................ Documentation files

 README. TXT .................................................................... The main documentation file

TODO . TXT    Known bugs and feature requests

FAQ.TXT .......................................................Answers to Frequently Asked Questions

Figure 4.40.: The Build System Layout

known problems and the development roadmap and the third file answers frequently asked 

questions.
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OI Kernel - kernel

The most important folder for OI core developers is named kernel and is located inside the 

pry-folder. It contains all sources and resources of the OI Kernel. In addition to the sources 

th a t can be found in the subdirectory src, the kernel’s build script build.xml is stored here. 

This script, which is called during the build process, compiles all classes, stores them into the 

c/s-folder and uses the created build artifacts to create the packed OI binary Openlnspire.jar.

META-INF   Kernel Meta Data

1— s e r v ic e s  Service Provider Interfaces

org

I o p en in sp ire

1— k e rn e l  Open Inspire Kernel

— a u th ........................................................................ Authentication and Authorisation

c o n ta in e r  The Container Framework

c la s s lo a d e r .............................................Assembly, OIM and OIL Classloaders

e x c e p tio n s .......................................Container Exceptions and Error Handling

. s te p s  Container Lifecycle Steps

— env  Environment and Configuration Management

— n e t .................................................................................. Network System and Services

— r e s .................................................Resources (Graphics, Media Files, Binary Data)

s e r v ic e s ................................................................................ Service Implementations

. env .............................................................Environment Service Implementations

 n e t  Network Service Implementations

— u i  Integrated User Interfaces

. s h e l l ................................................................... Command Line Interface (Shell)

I— and Shell Commands

. s y s t r a y ..................................................................................................System Tray

u p d a te  Integrated Update System

Figure 4.41.: The Package Hierarchy of the Kernel Sources
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Figure 4.41 shows a rough overview of the kernel’s source package structure combined with 

short descriptions. A detailed explanation of the approximately 100 kernel classes however 

goes beyond the scope of this written thesis and will be omitted for this reason. Details can 

be obtained directly from the kernel sources tha t both come with Javadoc comments and 

more detailed information.

System Libraries - libs

In addition to the kernel sources, OI comes with the five libraries oi~antext, oi-client, oi-meta, 

oi-system  and oi-util, which can be found in homonymous subdirectories under prj/libs. Each 

library can be built independently, contains its own build.xml and src-folder, stores compiled 

data into a els-folder and creates a JAR file.

Instead of integrating all functions directly into the OI Kernel, outsourcing functionality into 

individual libraries contributes to the reusability and decoupling of the system. External 

programs normally use only certain subsets of the overall functionality so th a t splitting the 

whole function-set into five small libraries instead of one large is meaningful. This does not 

only save space but also prevents misuse, since external programs can exclusively access the 

limited function set, provided by the specific library.

Figure 4.42 illustrates the relationship between the libraries and subdomains of the overall 

system. The division has been deliberately chosen to allow each library acting as a mediator 

between specific parts of the system. This is necessary to achieve a well defined data-flow 

between kernel, build system, modules or external clients using provided APIs and entities.

OI Ant Extensions - oi-antext

The library oi-antext is the first part that is built by the OI Build System. It contains so 

called Ant-tasks th a t have been written to extend Apache A nt [apalla , HL04] by dynamic 

features, required for the complex build process of OI. It thus provides functionality for the 

dynamic handling of class paths, sorting and resolving module dependencies, downloading 

and installing OIMs and OILs from the OI-LAMP as well as providing the means for the 

formatted output of text messages during the build process. The speciality of the library is
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oi-antext oi-system 01 Kernel oi-client

oi-util oi-meta

01 Clients01 Buildsystem 01 Modules

Figure 4.42.: The Relationship between the 01 Libraries and the Overall System

th a t it is build and directly used in the same process due to the fact that the further build 

process itself needs functions of the freshly built library.

o rg . o p e n in sp ire . l i b

 an t e x t ............................................   OI Ant Tasks for Buildsystem

1 u i ...............................................................Build System User Interaction Classes

Figure 4.43.: The Hierarchy of the ’oi-antext' Library Sources

OI System  Library - oi-system

The second library is called oi-system  and used by the 01 Kernel, build system and OI- 

LAMP. It includes functionality for the analysis of the execution environment, classes and 

entities for the management of OIMs and OILs as well as network functionality for the 

interaction with the OI-LAMP. The primary aim is to provide wrappers and tools that 

simplify the handling of modules and libraries. A high level API allows the easy installation 

of modules directly from the OI-LAMP, while low level functionality automates nearly all 

complex tasks in the background. These tasks include creating and installing components, 

reading and writing meta-data, calculating and resolving dependencies as well as browsing and 

downloading from the online repository. An important feature is the automatic detection of 

the runtime environment and the associated download and installation of platform dependent 

libraries. Another complex feature is the topological sorting that is used by both the container
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and the build system to calculate the build-, injection-, instantiation- and execution order of 

modules and their dependencies.

o rg . o p e n in s p ire . l i b  

1 system

 i n f o .................................. Information Providers (e.g. Operating System Info)

 mod

 o i l ...................................................... OIL Management Classes and Entities

 oim......................................................OIM Management Classes and Entities

 s o r t  Dependency Management and Sorting

 n e t ........................................................ Network Helper Classes (e.g. Download)

Figure 4.44.: The Hierarchy of the ’oi-system" Library Sources 

OI Client Library - oi-client

Open Inspire provides a network service' 5 that allows clients to remotely access the OI Server, 

OI Container, running OIMs, Assemblies or stored data. The oi-client library in exchange 

provides an API for all client-side functionality, necessary to create encrypted tunnels, set up 

connections, authenticate and communicate with OI servers. The server on the other hand 

uses the library for the registration of services with help of service interfaces, which can be 

found in the services- folder of the library. How these can be accessed using OI’s network 

based Lookup mechanism will be covered in section 5.1.1 on page 176.

o rg . o p e n in s p ire . l i b  

 c l i e n t

 a p i ........................................................ Remote Lookup and Authentication API

1 e x c e p tio n s ............................Network and Authentication Error Handling

 s e r v ic e s ......................................Net Service Interfaces (Auth., Obj.Lookup)

Figure 4.45.: The Hierarchy of the "oi-client" Library Sources

75See section 1.4.1 on page J41 for a brief introduction to the network service and page 113 for client usages.
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OI M eta Library - oi-meta

The library oi-meta is, with only three classes, the smallest library. It contains the two 

annotations OlProperty and OlPort, illustrated in figure 4.9 on page 99, and a third called 

OIEvent. This can be used for a dataflow based delegation of events between OIMs, which 

is however not used in this thesis in favor of the classical events provided by the Java A P I.'6

o rg . o p e n in sp ire . l i b

I m eta .................................OI Meta Classes (OlPort and OlProperty Annotations)

Figure 4.46.: The Hierarchy of the 'oi-meta ’ Library Sources

OI U tilities Library - oi-util

The last library oi-util contains utility classes for the use by OIMs. To make the library 

settable as module dependency, it is also wrapped by the OIL oil-oi_1.3.x-x_all. The sub

packages entities and io extend the Java standard API by new datatypes such as Pair and 

methods for the comfortable copying of files' ' .  The oi-util library is similarly to the client li

brary equipped with service interfaces, but this time for a local Lookup. This allows currently 

running OIMs to access common container functions such as getting public information of 

other OIMs inside the container or querying the path where the specific OIM may store data. 

This is for security reasons, because the read and write access to the filesystem is explicitly 

restricted to one folder for the specific OIM instance, a second shared folder for all OIMs of 

the same type and a third for all OIMs. Finally, the last sub-package, sync, contains classes 

tha t provide mechanisms used to synchronize OIMs. One use-case is the blocking of the 

execution of a program until a position of an axis is reached/8

OI Libraries - oils

Due to space and bandwidth considerations, as discussed in the section "Build System Con

figuration" on page 157, no binary files are stored inside the OI Mercurial repository. Since OI 

requires some prebuilt binary libraries for the build process, these are automatically down-

76Dataflow based event delegation is planned to be replaced by a dataflow subcontainer architecture
77This is necessary, since convenient file handling is first available as part of JSR 203 in the future JDK 7
78More details about OIM synchronization can be found in section 5.3.2 on page 197
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o rg . o p e n in sp ire . l i b  
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 i o ................................................................10 and Stream Utils (e.g. File Copy)

 s e r v ic e s ..................................................................Internal OI Service Interfaces

 sy n c ...........................................................Extended 01 Synchronisation Utilities

Figure 4.47.: The Hierarchy of the "oi-util" Library Sources

loaded from the OI-LAMP. To realize this with already existing means, the build system 

comes back to the same OIL design, used inside the container. If a missing library is de

tected, it is downloaded as OIL from the OI-LAMP, stored inside the oils/packed folder and 

unpacked to oils/unpacked. From here it is possible to directly access the individual libraries 

th a t were wrapped inside the OILs. Also the previously introduced system libraries inside 

the Zzft-folder are published using the OI-LAMP. The OIL oi-kemel contains the libraries 

oi-system.jar and oi-client.jar and the OIL oil-oi comprises the oi-meta.jar and oi-util.jar.

01 Modules - oims

If only the folder system  is downloaded from the repository, the build system will consequently 

exclusively build the pure OI Server without additional modules. If a developer also wants to 

build OIMs, he can either download the additional mods-folder, which contains the sources 

for all official OIMs, or create a mods-ioldei to store own OIM developments. The mods- 

directory is located on the same level as the system-foldev and not within. This decouples 

the 01 Server from independent OIMs and lets the user decide whether he wants to use 

only the system-folder, the system-folder and a selected number of modules or the whole 

repository.

If a new OIM is developed, the developer can either start from scratch, adapt the tem plate 

org-openinspire-oim-template-module or use the module generator from the 01 Website. Each 

OIM has its dedicated user configurable build file, a src-directory for the sources and a con

figuration file named module.properties. This file contains the name, version, description, 

authors and dependencies to other OIMs and OILs and serves as data source for the OIM
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Manifest, covered in chapter 4.2.1 on page 92. If no generator is used, the manual configura

tion is also simple since all values are self-explanory and sufficiently documented.

For a better overview and handling, all OIMs are separated in groups. An index with all 

official OIMs and their related groups can be found on the OI website.

Build System Resources - oiproject

All universally reusable resources of the build system are located at a central place inside 

the oiproject-folder. This folder contains the two build configuration files config.properties 

and user.properties as well as the three folders modules, scripts and tpl with build scripts, 

resources and release artifacts.

Build System  Configuration

By means of the two build configuration files it is possible to configure the build system 

flexibly without ever having the need to touch a build script.

The first file config.properties contains internal properties for the build process that are never 

changed by users normally. It contains the current version number of the build, compiler 

options, paths to sources, and target directories as well as information about build depen

dencies. Beyond that, it allows the configuring of the release by setting the default paths 

and filenames, configuration properties such as the URL of the OI-LAMP and by selecting 

the example Assemblies and configuration files tha t are added to the release. This file is nor

mally uninteresting for users and developers and is only changed when a new official version 

is released. More detailed information can be found in form of comments directly inside the 

file.

More interesting is the second file user.properties, which enables users to customize the build 

process. The file is automatically generated by the configure-task and inter alia serves as 

storage for the interactively requested configuration values such as the username, contact 

data, selected build platform and whether NetBeans project files should be generated. Beyond 

th a t it is possible to select which OIMs or OIM-groups are to be built. This for example
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would allow the whole group calibration and the individual module math to be built, while 

excluding all other modules found inside the mods folder.

4.6.3. The OI Build Targets

Just as important as the layout of the build system is the dynamic behavior of the individual 

build tasks. This section gives a brief overview of the previously discussed configure, build, 

clean and veryclean targets as well as the yet to be described targets info, run, rebuild, 

cis-config and profile.

Each build target can be executed by an t <targetname> inside the system-folder. The main 

build script automatically branches into all dependent build files and executes all the relevant 

sub-tasks of the target. This process is accompanied by informational and warning messages 

and gives a good overview about the specific build sequences. A detailed description of the 

build sequences is thus omitted in favor of the following short description of the targets.

The info Target

The info-target can be invoked by an t in fo  and prints the OI Version, Build ID and a list 

of all primary build targets including short descriptions.

The configure Target

The configure-target starts with cleaning the build system from already existing configura

tions and obsolete OILs. This step is followed by the download of all OILs from the OI-LAMP 

required for the further build process. These are inter alia used for the creation of the library 

oi-antext, which is again directly integrated into the system to provide OI’s advanced build 

functionality. This library finally acquires the user values, covered in section 4.6.1 on page 

157, which are used as input for the creation of the configuration file user.properties.

The build Target

The 6m7d-target first builds the libraries oi-system , oi-meta, oi-client and oi-util as well as 

oi-antext if it is not already available. These libraries are required by the kernel, which 

is built in the next step and configured with the personal values from the user.properties.
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Next, all modules inside the mods-folder that are also activated in the user-properties file are 

analyzed and evaluated for their dependencies. If dependencies cannot not be resolved locally, 

they are downloaded from the OI-LAMP and made available to the build system. When 

all dependencies are resolved, the topological sorting algorithm, provided by the oi-system- 

library, calculates the correct build order before building and installing all selected OIMs. 

Finally, the release structure th a t is shown in figure 4.4 on page 84 is created and populated 

with the kernel, system libraries, OIMs, OILs, configuration files, example assemblies and 

startup scripts. Depending on the target OS, all files are configured with the OS specific file 

permissions and the startup scripts and OI main program are made executable.

The clean Target

Calling the clean-target causes the execution of the internal dean-targets the kernel, all 

libraries, all OIMs and the release script. This results in the deletion of all built artifacts 

such as the compiled classes, Java Archives and the complete release folder. It equals a reset 

of the build system to the state after the execution of an t configu re .

The veryclean Target

Executing an t v e ry c lean  includes the target clean but also deletes the user.properties and 

any downloaded OIL as well as generated project files for the IDE-integration. It equals a 

reset to the state after the checkout and requires running an t con figu re  again.

The rebuild Target

a n t r e b u ild  is a convenient method to rebuild the system. It combines the clean and build- 

target in one command and rebuilds all files without leaving out already built classes.

The run Target

W ith help of the nm~target it is possible to start the OI Server directly from the build system. 

The command changes to the release folder and executes the OI specific startup script.
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The cis-config Target

If Open Inspire is built by a Continuous Integration System, this cannot react to the inter

active configuration questions of the configure-target. The cis-config-target thus allows the 

execution of the configuration step of the build system in a non-interactive mode by passing 

the user configuration values using a configuration file. This target is never called by users.

The profile Target

The final target profile is exclusively used by NetBeans IDE, which is covered in the following 

section. It allows profiling OI to get information about the runtime behavior and execution 

time of specific system components. Calling this target manually results in an error message.

4.6.4. IDE Integration

Every developer prefers to use an editor and build environment tha t integrates smoothly into 

the workflow. The build system thus aims to be independent from specific development tools 

and is based on standards such as Apache Ant that may be directly used from the command 

line or integrated into Integrated Development. Environm ents (IDEs). If Java and ant is 

installed, this is enough to start developing, no m atter which O perating System  or editor is 

used.

To speed up the development and improve the software quality it is recommended to make use 

of an IDE th a t provides sophisticated software engineering features such as code refactoring, 

advanced debugging, profiling, auto completion and the automation of recurrent tasks p  

2.3.6]. All these features are provided by the four major and widespread Java ID Es Eclipse 

[eclll], NetBeans [ne tll], IntelliJ IDEA  [intll] and JDeveloper [jdell]. While all IDEs are 

suitable to be merged with the OI build process, it is beyond the scope of the thesis to 

provide implementations for all these IDEs. Instead, the decision was made to provide only 

one reference implementation based on NetBeans.
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The first NetBeans Version was published in 1998, for more than 10 years it has been the IDE 

which is the longest on the market. It has the second largest community after eclipse and 

the highest immigration of new users, so that a  large number of developers are addressed'9.

Over the last years Eclipse had a high popularity due to its snappy user interface built using 

the proprietary GUI framework SWT, which allows a fast and native rendering using the OS’s 

standard look and feel, while NetBeans came with a Swing-based UI that did not integrate 

as well and was noticeably slower. In the meantime Swing has been improved and comes 

with a native rendering so that NetBeans has the advantage that it builds on the standard 

Java GUI library, is at least as snappy as Eclipse and integrates even better into the native 

system look and feel.

IntelliJ IDEA is a sophisticated and professional IDE that is published as ultimate and 

community edition. The problem is that OI is strictly based on free open source projects, 

which only makes the community edition of IntelliJ IDEA eligible and this is missing some 

im portant features. JetBrains gives free of charge ultimate edition licenses to open source 

project developers but it is not possible to prove the entitlement of each volatile OI developer.

JDeveloper is as well as NetBeans developed by Oracle and hence has the advantage that is 

comes from the same company as Java and so quickly follows new Java releases. It provides 

functionalities for advanced Java EE  developments but is less extensible than NetBeans, 

which explicitly focuses on providing a modularly extensible platform. The simple usage, 

central plugin-management, sophisticated UI and the presence of the extensible NetBeans 

RCP are thus key factors for the choice of NetBeans as standard IDE for Open Inspire.

NetBeans IDE Integration

To keep OI independent of a specific IDE, the build system is decoupled from the IDE inte

gration. If the optional support for the NetBeans IDE is required, it can be activated during 

the execution of the configure-task. The first build thus automatically generates a nbproject- 

folder in the system-directory, which creates the required NetBeans project infrastructure. In 

addition to  the main project, further project files are created inside the mods-folder of each

79The analysis has been performed using data of the Google Trends engine [goo'll] using combinations of 
netbeans,netbeans ide, eclipse, eclipse ide, intellij and jdeveloper, web publications and developer interviews.
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activated OIM. From now on, OI autom atically updates all ID 1 project files to reflect the 

01 project infrastructure w ith their complex dependency structure. The challenge is here to 

make the IDE finding all source and resource dependencies stored in 01 Ms, OIL and system  

libraries, incorporating O I’s access restrictions between components as well as following the 

component versioning.
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Figure 4.48.: Open Inspire NetBeans Integration

If the NetBeans support is activated, the system  folder and all folders of activated projects 

can be, as any other NetBeans project, directly opened w ith NetBeans 6 or higher. This 

feature works out-of-the-box w ithout additional plugins. Figure 4.48 shows the opened OI 

main project in NetBeans 7.

T h e  P r o je c t  E x p lo r e r

The left side of figure 1.48 shows the Project Explorer, which has been custom ized to  reflect 

O I’s project structure. The tree shows nodes to  provide direct access to the sources of the 

kernel and five system  libraries OI System , OI Utilities, OI Client, OI Antext and OI Meta.
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The next tree node is a direct link to the user.properties and opens the file using the editor. 

The last three nodes finally provide direct access to the OI documentation, show a tree of the 

OI Assemblies, which are copied to the release, and all OIM sources inside the raods-folder.

The Files Explorer

While the Project Explorer provides direct access to all frequently used files, the File Explorer 

shows the unfiltered content of the whole system-folder. This is useful when files should be 

browsed or opened that are not accessible by the Project Explorer. These include build 

scripts, internal configuration files, templates or build artifacts.

The Editor

The NetBeans editor right beside the Explorer allows viewing and editing all text based 

files that come with Open Inspire. The first apparent feature is the syntax highlighting that 

improves the readability of all important files such as Java files, Assemblies, configuration 

files and build scripts by applying syntax specific text coloring and font styles.

Further features that make use of OI’s dynamic dependency management are the automatic 

code completion, just in time compilation for syntax checks and refactoring mechanisms. 

These mechanisms all require the dynamic resolution of dependencies between loosely cou

pled OI components, which is provides by OI’s dynamic adoption of the NetBeans project 

configuration files.

If an OIM is edited that has dependencies to other OIMs or OILs, this information is also 

bypassed to the editor. This feature is important for the code completion and auto import 

features tha t belongs to the key mechanisms required to simplify the creation of new modules.

If for instance a new Counter- OIM should be created that has a dependency to the module 

domain-science80, it is possible to automatically create the source skeleton of the new counter. 

Figure 4.49 shows that it is only necessary to add implements Counter to the new counter 

class called Example. NetBeans then proposes to implement all abstract methods, which 

results in the automatic import and creation of all method bodies of a standard OI counter

80The Interface Domain org-openinspire-domain-science has been introduced in section 4.3.3 on page 125
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module. Beside this auto creation it is also possible to start writing variable or class names 

and let NetBeans complete it according to already defined specifiers that fit in the context. 

More information about auto completion features such as the encapsulation of fields in getter 

and setter methods can be found in the manuals on the NetBeans project webpage [net 11].

package org.openinspire.oim.demo.counter ?
□ import org.openinspire.oim.domain.science.Counter?
rq f  *

org.openinspire.oim .dem o.counter.Exam ple is not abstract and does not override abstract m ethod 
getCounterErrorCodeQ in org.openinspire.oim .dom ain.science.Counter__________________________
public class jExainpJLfi implements Counter{

 i

F igure 4.49.: Auto Completion in NetBeans Editor

Another related mechanism to the auto completion is the refactoring support tha t allows 

quick and parallel modifications of source code in multiple files and modules. This makes 

it possible to change the name of a package, class, method or variable a t one place and 

let the IDE automatically adjust all sources to use the new name. This also works for 

method parameters, allows moving method and classes and provides a way to securely delete 

variables, methods, classes and packages by checking all dependencies in all relates loosely 

coupled OIMs.

T o o lb ar a n d  M enus

The toolbars and menus has been adjusted to support the targets provided by the OI Build 

System. This means that executing Clean, Build, Clean and Build, Run, Debug and Profile 

from the Toolbar or from the Run, Debug and Profile menu triggers the corresponding targets 

provided by the OI build system. All other OI specific build targets (see page 167) can be 

started using the context menu by right clicking the main project in the NetBeans Explorer.
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Output W indow

If an ant target of the OI Build System is executed, all messages are redirected to  the output 

window at the bottom  of figure 4.48 and provides messages about the build process in black 

and warnings in red. Also the OI Shell is executed in this area of the IDE  window.

Debugging and Profiling

Apart from the manually executable tasks from page 167 exist the two targets Debug and 

Profile. The debugger assists finding bugs through the help of features such as the stepwise 

execution, setting of breakpoints and creating watches that display runtime execution. The 

profiler on the contrary measures execution times and memory usages of selected program 

fragments. It can be used to analyze the runtime behavior to ease fixing performance problems 

and revealing memory leaks.

Version Control

The last notable feature is the seamless integration of the version control system Mercurial. It 

inter alia allows checking out OI directly from the IDE, visualizes code changes in a graphical 

way, allows the interactive merging of conflicting files81 as well as checking-in the changes.

More detailed information about features that are not directly related to the OI Build sys

tem can be obtained from the NetBeans website [net 11]. Examples are the visualization 

and generation of UML diagrams or the GUI builder Matisse, used to create graphical OI 

Widgets.

81 This is important when multiple users change the same piece of code.



CHAPTER

F I V E

OPEN INSPIRE IN THE FIELD

The chapter Open Inspire in the Field covers concrete realizations of projects built on and 

with Open Inspire. Importance is attached to present a wide-ranging selection of different 

types of examples in the area of hardware control, simulation, data storage, scans and user 

interface clients. Bridging to the legacy control system Caress and accessing instrument 

hardware will be covered as well as Monte Carlo [Bin79] based experiment simulations with 

McStas, experiment data storage using the NeXus format, simple and advanced diffraction 

scans with aid of the Inspire Scan API and the development of Graphical User Interfaces 

such as a Rich Client built on NetBeans RCP.

5.1. User Interface Examples

Open Inspire is specifically designed to be independent from a fixed User Interface. The 

OI server and therein executed modules provide services and these can be visualized or 

controlled using so-called thin-clients. Thin-clients themselves contain only the absolutely 

necessary logic required to visualize data and to give users the ability to control the OI server 

remotely.

This paradigm makes it possible to develop independent clients that all access and control 

the same functionality on the server but can be tailored for specific OSs, environments or
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users. The development of new forms of User Interlaces (UIs) emerges fast. Years ago, the 

standard way to interface a system was the command line, the last years were marked by 

mouse-controlled user interfaces and now multi-touch based UIs, as found on mobile phones 

and tablets, become increasingly popular.

The proceeding technology development on the client side is much faster than on the server 

side, which makes it reasonable to decouple the development on both sides. The server side 

functionality hence needs to be developed only once and be kept untouched when new types 

of clients arise.

5.1.1. Client Binding

To achieve a decoupling between server and client it is expedient that the data and control 

interfaces provided by the server are in a general format rather than aiming at a specific client 

to be interfaced. A good solution is to use a middleware that allows server interfaces for all 

provided functions to be defined and to create client interfaces a t a later point. Solutions 

such as CORBA [OMG04] or ZeroC ICE  [Hen04] for example provide programming language 

independent interface definitions that can be used to create all necessary code for different 

programming languages and hence make it unnecessary tha t clients are written in the same 

language as the server.

This solution however is not sufficient when it comes to the dynamical features of the OI 

Container and does not meet all requirements. When programming language specific code 

is generated from an interface definition, this code is static and can not reflect changing 

interfaces on the server side. Yet unknown OIMs can be loaded on demand and even coexist 

in different versions with different interfaces in the same container. A client hence must be 

able to recognize which interfaces are provided by the server and dynamically supply client- 

side functionality for yet unknown services. Beyond that, being bound to a fixed middleware 

solution prevents the system to be adopted to upcoming new standards and developments.

Remote Lookup

OI loosely couples the client and server using a Lookup-Mechanism and introduces a wrapper 

tha t allows the changing of the underlying network /  middleware solution without needing to
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reimplement any client or server parts. The core idea of the concept is to provide a server-side 

object registry1 tha t is used to register plain objects2 and make them available to be accessed 

locally and by remote clients. Plain objects means that the classes of the registered objects 

do not have any relation to 01 and consequently do not need to implement any interfaces or 

to extend classes.

The registry is realized using the server-side class O bject R e g is try  and implements the 

interfaces O bjectRegistryLookup and O b jec tR eg istryS erv ice . While the second interface 

is only accessible by the server and OIMs, the O bjectRegistryLookup is stored inside the 

independent library oi-client, which is also used by the client. It provides all methods th a t are 

required to access and control remote objects, handle events and notifications between objects, 

provide authentication mechanisms and query interface and class inheritance hierarchies. The 

O b jec tR eg is try S erv ice  on the other hand is only available on the server-side and allows the 

registering and unregistering of objects and the setting of access privileges. These interfaces 

act as a facade and are independent from the underlying network implementation. Switching 

the network protocol or middleware solution hence only requires the replacement of the oi- 

c/«enf-library by one that implements the new protocol, while the client and server code 

remains untouched.

T he Server Side

Two different types of services are published through the registry: Services provided by OIMs 

inside the container and the Shared Services introduced in section 4.4.1 on page 140, which 

give access to global services such as the Container Lifecycle Management, Authentication 

and Filesystem. While all shared system services are registered automatically a t startup  by 

adding the objects to the registry, the registration of OIM-provided services can be done in 

two different ways:

The first way is realized by the OIM o rg -o p e n in sp ire -o im -se rv ic e s -re g is try . This OIM 

has an OlPort called services that allows to connect an arbitrary number of OIMs to it and

lrThe core of the object registry is a simple HashMap that holds references of objects and allows to quickly 
get an object for a given key.

2Currently only Java Objects, because the OI Server is written in Java. But the design is flexible enough to  
register SCALA, Groovy, Jython and objects written in other languages that run inside the JVM .
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automatically registers the OIMs service interfaces to make them publicly available to clients. 

One advantage of the concept is tha t the OIMs are not bound to the server but only to the 

Registry OIM, which can be replaced in a simple way. Another advantage is that the OIMs 

can be selected tha t should be published and all OIMs that are not connected to the registry 

OIM remain invisible to clients. To publish the service interfaces of all currently loaded 

OIMs, it is of course allowed to add a registry-OIM with the wildcard (*) in its service port:

<oim id="serviceRegistry"
type="org-openinspire-oim-services-registry" 
version="1.3.0_alpha">

<port name="services" ref="*"/>
</oim>

Figure 5.1.: Register the service objects of all active OIMs using a wildcard reference

The second way, beside the OIM-based registration, can be gone when more than one service 

interface or another interface than the service interface of the OIM is to be registered. Here 

it is possible to register objects simply through the r e g i s te r  and u n re g is te r  methods of 

the O b jec tR eg is tryS erv ice  interface. While the ObjectRegistryLookup has been stored 

into the oi-client-libraiy to be accessible by clients, the O b jec tR eg istryS erv ice  is as well 

available through an external library to remain the OIMs independency from the 01 Server. 

This library is called oi-util and contains utility classes usable by OIMs, the server and clients.

The Client Side

A look at the client-side shows the simplicity and flexibility of the approach. The reference 

implementation for the remote lookup mechanism provided by the oi-client library uses the 

RMI protocol to  access the server-side object registry. To get access to the registry from the 

client, only the following line of code is required:

RemoteObjectLookup lookup = new RemoteObjectLookupC'servername", 2008, 2009);

The command requires the network name of the OI server, the RMI registry port and a 

second communication port. The ports both use TCP and default to 2008 and 2009 for 

Open Inspire. No other ports are required so that it is very easy to tunnel all traffic through
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firewalls and to access the instruments a t the HZB (for instance using an SSII tunnel) [IE! 

5.3.5] p  6.5.2].

Now it is possible to run several commands on the returned object lookup:

• L ist<O bject>  lookupA llO  is the simplest command and returns a list of all publicly 

registered remote-objects, which can now directly be accessed from the client.

• <T extends Object> List<T> lookupA ll (Class<T> in te r fa c e C la s s )  is much more 

sophisticated, because it allows the return of only the objects tha t implement a spe

cific interface. The underlying functionality is executed on the server and recursively 

searches if the given interface-class appears in the inheritance hierarchy of the published 

object.

• <T extends Object> List<T> lookupA ll (Class<T> in te r fa c e C la s s )  is similar to 

the recent command but only returns the first object that matches the interfaceClass.

Objects can always be added or removed from the lookup at runtime. The start of an 

assembly for example registers all selected service objects using the o rg -o p e n in sp ire -  

o im -s e rv ic e s - re g is try  OIM. Stopping the assembly automatically unregisters the objects. 

To be informed about these registry changes, it is possible to add a Property Chang eListener 

that is always called when the content of the lookup changes. OI comes with standard Java 

property change mechanisms, which can be called on the lookup object:

• addPropertyC hangeL istener(P ropertyC hangeL istener l i s t e n e r )  to add a new Prop

erty Chang eListener, which is called when the Lookup changes and

• rem ovePropertyC hangeL istener(P ropertyC hangeL istener l i s t e n e r )  to  remove the 

Property Chang eListener.

A uthentication

To this point, nothing has been said about security. A client can connect to the OI server 

without having to pass a username or password and gets a Lookup with access to Service 

Objects. If this list of service objects contains all services published by the server it severely 

breaks the security because everyone could access and even manipulate services [IS! (j. 1.2] [El
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6.1.4]p 3.2.4]p  3.2.4]. This problem is solved by a security layer, which assures tha t restricted 

services are only published to authorized clients. All other services remain invisible to the 

client and cannot be forced to be visible since they are filtered on the server-side.

The authentication takes place by calling the method lo g in  on the already known lookup- 

object and passing a username and password as parameter:

RemoteObjectLookup lookup = new RemoteObjectLookupC'servername", 2008, 2009); 
lookup.login("admin", "oiadmin".toCharArrayO);

After transferring the encrypted user credentials [13 6.3.2] to the server, they are checked by 

the Authenticationservice (section 4.4.1 on page 140). In return all services that are released 

for the specific user and role are added to the lookup and the client will be notified about 

the changed lookup and update the User Interface.

On the server side it is possible to restrict a service to a specific role in two ways: The 

first way is to use the role-based security mechanisms (section 4.3.2 on page 120) inside the 

Assembly to define the role under which an OIM’s service class is published .

The second mechanism is to  define tha t a service needs authentication when a service is 

manually registered using the reg is te r-m e th o d  of the O b jec tR eg istryS erv ice . The first 

method overwrites the behavior of the second method.

It is always possible to change the user and consequently the published services by calling 

lo o k u p .lo g o u t() ; and login with a different username and password.

5.1.2. User Interface Types

User Interfaces can have completely different characteristics. This section shows UI examples 

with different function sets or different focuses on the platform. The examples help to make 

it clear how the Lookup mechanism works and show the strengths of the approach.

The development of clients is decoupled from the server-side developments so that it is open 

for everyone to write their own client implementations. This results in a more frequent 

development on the client-side than on the server-side where normally only bug fixes and
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optimizations are applied. To prevent the introduction of clients tha t maybe come with new 

or revised User Interfaces (UIs) and are thus outdated when this thesis is published, only 

simplified examples are presented that help understanding the main concepts. These concepts 

are usually the basis for all of the different types of clients.

Ready-to-use client implementations are downloadable from the OI website. Screenshots of 

clients can be found at h t t p : //www. o p e n in sp ire . o rg /d o c u m en ta tio n /sc ree n sh o ts . html.

OI Shell

One of the simplest client applications is a UI in the form of a Command Line Interface. 

The difference to the OI Shell, covered in section 4.4.2 on page 143, is that the client is not 

interwoven with the server but connects remotely. It is thus decoupled from the server, and so 

can be accessed from different computers, allowing multiple users to connect simultaneously 

and can be implemented using a different programming language than the server. This is 

meaningful when the shell is directly integrated with a system shell such as the bash [AleOl] 

on Linux.

Writing a CLI client is easy due to the lack of a GUI. The first step is to connect to the server 

and login as explained earlier in this section. The next step is the registration for Lookup 

changes so tha t the client gets notified whenever a service object is added to or removed from 

the RemoteOb j  ectLookup. Now the client has a list of objects but does not know what to do 

with them, because the classes or interfaces tha t describe the functionality are still missing. 

For clients written in Java3 it is now possible to add an Interface Domain (see 4.3.3 on page 

123) as library. In this case one with interfaces for all scientific devices, such as provided by 

the OIM Domain Science. A developer can now implement the interfaces step by step, and 

add functionality for the objects made available by the Lookup.

E xam ple : To allow users getting a list of all active Positioners via CLI, the Positioner 

interface from the OIM Domain Science could be implemented so tha t a command such 

as p o s i t io n e r  l i s t  would output a list of all Positioners that are currently registered. A

3For other languages it is necessary to create the classes using the selected middleware solution.
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second command such as p o s i t io n e r  xT g e t va lue  could then be used to print the position 

of the Positioner xT.

The essence of the concept is that the available commands vary depending on the currently 

loaded OI Assembly and that it is possible to implement only a subset of all available inter

faces. If the Lookup changes, the client automatically compares the interfaces of published 

remote objects with available implementations of the interfaces on the client side. If an in

terface implementation matches the interface of a published remote object, new functionality 

that is able to handle the remote object is automatically added to the UI.

Particularly novel is th a t the system is able to handle interface inheritances. When the client 

does not find an implementation for a Positioner it can query the server for the next matching 

object in the inheritance hierarchy. According to figure 4.20 an page 126 this is Device. When 

the client has an implementation for Device it is now possible to get the value of a Positioner 

but also a Counter or Detector using a command such as dev ice xT g e t v a lu e4.

Another interesting point is the way that the system handles versioning issues. OI is able to 

start Assemblies th a t load multiple OIMs with different versions at the same time. The result 

is th a t objects with the same interface but a different version can be added to the Lookup. 

Here the design provides means to differentiate between different versions. A client can thus 

have different versions of the OIM Science loaded at the same time and provide the correct 

version of a UI implementation of an object. This design guarantees that Assemblies with 

legacy OIMs are still usable with clients that provide support for newer versions of the OIMs.

Beyond tha t it is important to know that the access to remote objects works fully transpar

ently. This means tha t an object can be called in nearly the same way as if it were local. 

Even property change mechanisms work correctly, due to the sophisticated handling of the 

standard Java event mechanisms0. It is however important to keep in mind that the objects 

are called via ethernet and connection problems or latencies can occur that a developer must 

handle by mandatorily catching a set of exceptions.

4This is possible since Device inherits all methods from Value, which provides access to a double value such 
as the position or counts.

5Open Inspire creates hooks that catch Property Changes and forwards them to the remote system.
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Tailored standalone Applications

A slightly more complex, but also more common client type, is a client formed as a Graphical 

User Interface (GUI) which uses controls and widgets to interact with remote objects. While 

the connection to the server and authentication is similar to the CLI client, the way how 

Lookup changes dynamically affects the GUI elements, as will be explained using a simple 

example.

When an object is added to the RemoteOb j  ectLookup it can be made available to a GUI 

in various ways: It can be added as a desktop widget, integrated as a part of a set of 

windows, realized as a standalone window on a desktop pane or it can provide its controls 

and visualization elements in the form of a popup-window. Not all elements shall immediately 

be visible so tha t they can be made available using menu items, shortcuts, tree entries or 

popup-menus.

Figure 5.2 shows the example of a GUI designed in the Windows Ribbon Look and Feel, which 

will serve as a good example to demonstrate the unconventional, as well as the common places, 

where remote objects can be made available by the UI.

When a client is started but no Assembly is loaded by the OI Container, only limited func

tionality is made available through the UI. One example is the container status th a t can be 

shown through an information bar at the bottom  of the window 0 . An other example is the 

access to the Filesystem  through the global FileSystemService, which could be visualized by 

a Tree View. Figure 5.2 uses a tree © to provide an ordered list of all currently running 

OIMs. W hen the container stops, the items are removed from the Lookup and immediately 

disappear until new items are added. The same mechanism applies for the bar a t the top of 

the window ©, which provides icons for all currently loaded service objects. These can be 

clicked and provide the OIM specific functionality in the center of the window O. Window © 

provides access to the global logging service. Here all status messages of the server, container 

and running OIMs are listed.
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Figure 5.2.: Specification of the Open Inspire Lookup Browser

It is important to know that the view differs between users with different roles because the 

Lookup contains only the services that the user is privileged for. To allow an administrator 

to get the same view as a less privileged user he can switch his role using menu O.

One real example of a GUI client is the OIC Simple Client th a t has been developed for the 

calibration, covered in section 5.6 on page 244. It is similar to  the GUI of the WidgetTestcenter 

(figure 4.17 on page 119) but comes with menus tha t allow to select the windows, which shall 

provide access to the service objects.

A second important client is realized using the NetBeans Rich Client Platform. It is called 

OI Sunrise and developed as a reference for OI clients. NetBeans itself already comes with a 

Lookup mechanism similar to OI with the difference that it is only used locally. Developers 

can put XML files into local folders that all represent specific locations of the GUI and thus 

trigger the UI to show a menu, open a window or add any other element dynamically to the
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view. The NetBeans Lookup A P I  that is responsible for this behavior has been extended 

to support 01’s Remote Lookup so tha t NetBeans is able to respond to OI’s RemoteLookup 

changes in the same way as if local XML files were added. This behavior makes it very 

flexible and easy to write UI extensions since it is possible to fully rely on the NetBeans 

infrastructure.

When NetBeans starts with the NetBeans OI extension, it opens a dialog th a t allows connect

ing to an 01 server after passing a username and password and to optionally connect through 

an SSH tunnel when an encrypted connection is desired6. An important advantage of a Rich 

Client Platform (RCP) is that it is possible to directly use a large number of advanced APIs. 

Especially the 01 Filesystem Service (section 4.4 on page 139) benefits from this out-of-the 

box feature. If a user is privileged, he can for instance directly access the 01 Filesystem 

through the NetBeans File Explorer and has access to functions that allows the renaming, 

copying, moving, creating or the editing of Assemblies and configuration files using the Net

Beans editor. This editor in turn  provides sophisticated features such as syntax checks or 

code completion since 01 provides XML-schemas for all 01 XML files such as Assemblies.

A User Interface for the 01 Store

An other interesting client is a UI that provides a fronted for the 01 Store (see paragraph

4.2.3 on page 106 and 4.5.2 on page 150). Figure 5.3 shows such an example, which allows 

to conveniently browse the archive of all publicly available OIMs and to directly install an 

OIM and all dependencies to an OI server.

The bar at the top allows the selection of an OIM category such as Science, Smart Home or 

Industry, to sort the OIMs by type or by category1, to filter specific OIMs and to search for 

OIMs. The left side shows all the categories of all available modules tha t match the search 

and filter settings. When a category is selected, the modules in this category are listed on the 

right side and clicking a module shows all information about OIM. This information comes 

from the OIM manifest and provides links to dependent modules and libraries, a description, 

a unique name but also a way to select the version of the OIM. If the client also connects

6The feature to use an SSH tunnel is directly provided by the OI NetBeans extension
7 This allows to select e.g if a selection shall show only Positioners but for all control systems or if all devices 
shall be shown only for one control system.
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Figure 5.3.: Specification for the Open Inspire Store

to  an OIM server, it is possible to show which modules are already installed and to directly 

install modules from the OI Store to the server.

The system  is similar to the program  installation on many Linux distributions or online stores 

for apps such as the Apple App Store \  The difference is th a t no standalone applications are 

d istribu ted  but modules th a t can be connected to form Assemblies.

Assembly Editor

Editing Assemblies directly in text-m ode is error-prone and inconvenient because only ad

vanced editors such as the one used in NetBeans are capable to check the syntax and correct

8The first presentation of the  OI store was in February 2007, the Apple App Store has been introduced in 
March 2008, the Android M arket (predecessor of Google Play) has been first advertised in August 2008.
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hierarchy of XML tags. This is why 01 Assemblies are designed to be edited using a graphical 

editor rather than struggling directly with XM L-files. Using a graphical editor avoids the 

need to understand the Assembly syntax, comes with no function loss in regard to a manual 

editing and prevents the creation of invalid files due to wiring faults.
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Figure 5.4.: Specification for the Open Inspire Assembly Editor

Figure 5.4 shows how a graphical Assembly Editor can look like. It allows the editing of a 

standalone Assembly file or connects to an OI Server to edit Assemblies remotely. W hen an 

Assembly is edited locally, it is necessary tha t the editor has local copies of all used OIMs 

to read-out the meta Information such as name, description and dependencies as well as the 

OlPorts and OlProperties. Here the library oi-system  comes in, which provides all necessary 

functions to handle OIMs. This also includes the autom ated resolution and download of OIM 

dependencies on client side.

The left side shows a sorted and categorized list of all installed OIMs. These can be dropped 

to the workspace in the middle. When an OIM is dropped, it is possible to show its 01  

Ports using a small + symbol on the top right. Clicking a port spans a wire th a t can be 

connected to an other OIM. This mechanism is fail-safe because it allows connecting ports
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only to compatible OIMs. While spanning a wire, all OIMs are automatically highlighted. If 

only one OIM matches the port, it is connected automatically. When an OIM has a port that 

allows multiple connections, a new port symbol is added each time a port has been used.

To set the properties of an OIM, it is possible to enter them in the properties window on the 

right side. The top right sub window shows information about the OIM while the bottom 

window is used to set the properties, according to the OlProperties annotation. A validation 

of the entered values is automatically performed by means of the OlProperty’ s datatype.

A proof-of-concept Assembly Editor has been integrated into OI Sunrise and uses the Net

Beans Graph Library for the visualization and wiring.

Graphical User Interface Editor

W ith the standalone client earlier in this chapter, a client has been presented tha t can flexibly 

react to a  changing environment. To extend or modify the client however, it is required that 

a developer adds or changes controls and visualizations programmatically to make them 

available to  the Lookup. To give a user without programming knowledge the ability to create 

his own UI, a graphical editor can be used. This is especially useful for monitoring purposes. 

Figure 5.5 shows a UI Editor that demonstrates how to create a monitor client, which could 

for instance run on a screen directly at the instrument and provide a view with the current 

state of the instrument.

The editor can be connected to the server and gets a list of all included OIMs. These are 

shown on the right side. Now the user can drag one of the OIMs from the palette O to the 

canvas €> on the left side. When more than one visual representation for an OIM is available, 

a window © pops up, in which a widget can be selected. Due to the inheritance hierarchy of 

the Interface Domain (see 4.3.3 on page 123), tailored widgets can be selected that mirror 

the full functionality of an OIM or any other widget in the hierarchy that consequently comes 

only with a function subset. A Positioner for instance can be represented by 1) a widget that 

allows the setting of the minimum, maximum and the setpoint or 2) a label that only shows 

the current position. Such a label is available for all devices that inherit the Value interface. 

To give a user more options to design the UI, it is possible to add a backdrop or graphics.
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Figure 5.5.: Specification for the Open Inspire User Interface Editor

When the design is saved, an XM 1-file is created with all positions, types and settings of the 

widgets and the mapping to the OIMs as well as the graphics. Each Assembly has a unique 

id, so that a designed 5 ! can be bound to a specific Assembly. This allows the client to view 

the correct 111 when a new Assembly is started.

Alternative 01 Clients

The earlier examples were all designed as desktop applications, because this is currently the 

most common way to provide a Human Machine Interface (11 ' ! 1) that runs on all computers. 

At least as interesting are clients that are designed as web-applications or mobile apps.

A web application runs on an Application Server and provides a i 1 i that can be opened with 

any browser and is usable on computers but also on mobile devices such as smartphones and 

tablets. The disadvantage here is that it requires considerable effort to write a web client with 

a comparable reactiveness and interactivity such as a standalone application. The reason is
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the stateless http protocol, which does not allow clients to receive asynchronous notification 

events. The advantage is that the visualization is preprocessed on the server side so that only 

the visual data is transferred tha t is required for the view. The Application Server is usually 

installed on the same network as the OI Server and can for instance transfer detector data 

with the full bandwidth while the same data is downscaled and rendered to a small image 

when it is transfered to the client.

Using a mobile smartphone- or tablet-application to provide a GUI is a very promising ap

proach for a IIMI. The user is no longer bound to a fixed location of a terminal but has a 

portable device that he can use directly a t the instrument or elsewhere. This is particularly 

useful when a person works at the instrument mechanics and want to see or control the values 

of devices without switching between instrument and computer. Mobile devices are generally 

cumbersome when it comes to the writing of long texts but for the operation of instruments 

this is seldom necessary, so tha t a multi-touch UI has advantages compared to classical com

puters. Touches can so be used to select controls on a screen that shows the survey of an 

instrument and gestures allow to zoom into detector visualizations or rotate the instrument.

To prove the concept, a simple web application has been created, which is executable inside 

Java Application Containers, such as the one provided by Glassfish. An example for a mobile 

device has been realized using an application that can be executed on Android devices. Since 

both examples use Java, it is possible to use the client libraries, which come with Open 

Inspire.

5.2. Data Storage with NeXus

Beside the provision of a HMI for the control and visualization it is at least as important to 

provide storage mechanisms when it comes to scans or the recording of data histories.

Section 2.4.4 covered the topic Short Term Storage and Long Term storage in a general way. 

For OI, the Short Term Storage is in the responsibility of each individual OIM. This has 

the advantage tha t 1) the best fitting storage and processing mechanisms can be applied per 

OIM rather than finding an abstracted solution that has to work for all OIMs and 2) tailored 

interfaces for the lossless access to raw data can be provided. Long Term Data however need
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to be stored in a consistent way to allow the data to be easily accessed using independent 

tools.

For diffraction measurement data, section 2.4.4 on page 49 already introduced th a t the NeXus 

format has been established as a standard. It is thus used for the reference implementation 

in this chapter.

5.2.1. API and Technology Choice

The standard way to read and write NeXus-files is using the NeXus-API. This API is part of 

the official NeXus library, which is published and regularly updated by the NeXus-team to 

reflect the latest NeXus development state. Although a native interface for Java is provided, 

the core library is written in C. This breaks the platform dependency, because the library 

must be compiled and bundled for each individual OS /  architecture combination. For a long 

time, the NeXus library was only available in a 32 bit version. This is no problem when it 

is used from a C /C + +  program, because even 64 bit programs are able to use the 32 bit 

version. For Java this is different. A 64 Bit JVM is unable to load a native 32 bit library so 

tha t the usage of the NeXus library with Java is strongly limited to the supported systems 

and the published NeXus builds. Beyond this it should be noted that an individual static9 

NeXus library has s size of more than 10 MB so tha t the overall size of a multi platform 

package quickly aggregates with each supported platform.

To circumvent these problems, Darren Kelly introduced the so called NeXus Beans [nexa, 

LKHOfi] at the XIAC[nia09] meeting 2006. The approach uses the Java Beans concept [Eng97] 

to provide a Java compliant way to conveniently deal with NeXus tree structures. The NeXus 

XML schema files tha t describe the structure are for this purpose converted to Java classes, 

which provide getter- and setter-methods to read and write stored data. The complete NeXus 

tree structure can therefore be mirrored by interlinked Java objects. This allows the flexible 

assembly of a memory based NeXus data model in an Object Oriented way. To allow the 

storage of this object tree to a non-volatile storage media it can be serialized to a NeXus 

compliant XM L  file.

9A static library integrates all dependencies in one file and does not need to reload dynamic libraries from 
other files. This is mandatory for native Java libraries because they are unable to resolve the dependencies.
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The first problem with this approach was that the XM L  DTDs that were used in 2006 

to  describe the NeXus structure were unsuitable for a one-to-one NeXus-Beans < ->  XM L  

conversion. This has been corrected. The other problem is, that only the creation of XML 

files is directly supported. For the storage of large datasets this is an important drawback 

because the binary HDF format provides a faster access to data, has a seriously smaller 

overhead and supports compression. It is thus the better format to store large datasets.

A solution for all these problems would be a pure platform-independent Java implementation 

of the NeXus API that provides an object-oriented interface and allows the storage of the 

data in HDF-files. This is however difficult to realize because it means th a t the complete 

NeXus API needs to be ported from C to Java, which is a very long and complex task10 

and requires an ongoing synchronization of the C  and Java development. The more serious 

problem is however, tha t there is no pure Java implementation with the capability to write 

and alter HDF5 files. The official HDF library published by the HDF Group[hdi!:)] uses a 

native library and the only pure implementation AefCDF[RD90, net] did not allow to write 

HDF11.

Due to the fact tha t the platform independence is lost if the native HDF5 library or the 

native NeXus library is used, it is more meaningful to  directly use the original NeXus library. 

This approach saves the implementation of all low-level NeXus functionality but requires 

additional work for the object-oriented wrapping of the NeXus API and the provision of a 

simple multi-platform solution.

5.2.2. Integration of the native NeXus Library

Since it is not possible to have a platform-independent solution, it is at least possible to 

provide a convenient multi-platform way using OIs native library loader (see section 4.2.2 on 

page 103). The NeXus libraries have, for this reason, been prebuilt for all major platforms 

and packaged in form of OILs. OIMs can now define the NeXus OIL as dependency and 

the container takes care that the correct library is automatically downloaded for the specific

10Especially low-level operations with elementar datatypes such as unsigned in t  and operations such as 
bitwise shifting are difficult to port to  Jouo.Java until JDK 7 for instance does not support unsigned  
datatypes.

n In the meantime several projects aim to support HDF5 write support. The Nujan Project [nuj 11] for instance 
allows to create but not to  alter 1IDF5 files in pure Java.
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platform when it is requested. The administrator thus does not have to worry about which 

library to install, bandwidth and storage space is saved and the library does not need to be 

statically installed in the system path. This allows the updating of the library automatically 

and the ability of having more than one version installed at the same time.

5.2.3. Object Oriented NeXus Wrapper

W ith the OI NeXus library it is possible to use the full range of NeXus features by OIMs. 

Unfortunately the way how data is read and stored into the NeXus tree, as well as the 

random switching between NeXus branches, is rather unusual and inconvenient in Java due 

to its origin in C. Opening a NeXus file is still easy by creating a NeXus instance and passing 

the filename and a second parameter tha t sets the filetype (XML, HDF4 or HDF5) and access 

mode (read /  write). However, to read and write data from and to NeXus it is necessary to 

assemble structured arrays and pass them as data containers to the NeXus library. Further 

it is not possible to directly pass the information using Java’s standard data types and so 

the data generally needs to be submitted as non-typesafe Java Objects in combination with 

a parameter that sets the NeXus specific file type and length. And finally it is necessary to 

go step by step through the NeXus tree structure to reach a desired NeXus-group instead 

of having the ability to randomly access data by directly pointing to the path. The NeXus 

Japinotes [jap 12] illustrates these specific issues in detail so tha t a detailed description of the 

NeXus API is omitted in favor to a short demonstration of OI’s extended NeXus support.

OI comes with two OIMs that assist the functions of the NeXus OIL. They are named 

o rg -o im -sto rage-nexus and o rg -o p en in sp ire -o im - s to ra g e -n e x u s -e n t i t ie s  and pro

vide a convenient wrapper to the NeXus API.

The first OIM o rg -o im -sto rage-nexus contains general wrapper classes. These encapsulate 

the NeXus datatypes to make them type-safe and accessible in a common and object oriented 

way. The two main wrapper classes are Group and GroupEntry, which represent the branches 

and nodes in the NeXus tree. From the GroupEntry derives Scientific Dataset (SDS), which 

is in turn the superclass of the specialized datasets SDSString, SDSNumber and SDSBoolean. 

These all come in 4 dimensions so that an SDSNumberS for instance can hold three numbers
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(one for each dimension). An SDSNumber is a class that expect a Generic th a t derives from 

the Java datatype Number ( c la s s  SDSNumber 1D<T extends Number>) and can so represent 

any possible number type in Java. This allows all Java types to be converted automatically 

to the according NeXus-datatype while achieving type-safety and hiding it from the user. To 

assemble a NeXus tree it is now possible to  create a network with these classes. The root is 

represented by a Group that allows to add an arbitrary number of Groups or GroupEntries 

th a t in tu rn  allow to add entries so that a tree can be assembled. When the tree is created, 

it is possible to hang it into a NeXus container, which serializes it to XML- or HDF-based 

NeXus files. This approach hides complexity from the user and also increases the safety due 

to the type-safety and a Java-based Exception-handling.

The second OIM o rg -o p e n in sp ire -o im -s to ra g e -n e x u s -e n titie s  contains wrapper classes 

such as Counter Storage, Detector Storage and PositionerStorage th a t allow to conveniently 

persist data of the classes that are published by the OIM Domain Science to NeXus files. 

Figure 5.6 demonstrates how this works in practice.
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import o r g .o p e n i n s p i r e .o i m .s t o r a g e .n e x u s .a p i .G r o u p ; 
import o r g .o p e n i n s p i r e .o i m .s t o r a g e .n e x u s .a p i .N e x u s C o n t a i n e r ; 
import o r g ...o i m .s t o r a g e .n e x u s .e n t i t i e s .P o s i t i o n e r S t o r a g e ; 
import o r g . o p e n i n s p i r e . o i m . d o m a i n .s c i e n c e .P o s i t i o n e r ;

N e x u s C o n t a i n e r  nexus = new N e x u s C o n t a i n e r ( " / p a t h / t o / f i l e n a m e . 
h d 5 ", N e x u s C o n t a i n e r .F i l e T y p e .H D F 5 ) ;

Group n x E n t r y  = new G r o u p ("e n t r y 1", "NXentry");
Group n x l n s t r u m e n t  = new G r o u p ("i n s t r u m e n t ", "N X i n s t r u m e n t ");

n x E n t r y .a d d G r o u p E n t r y ( n x l n s t r u m e n t );

P o s i t i o n e r  p = new E x a m p l e P o s i t i o n e r ();
P o s i t i o n e r S t o r a g e  s = new P o s i t i o n e r S t o r a g e ( p ) ;

n x l n s t r u m e n t .a d d G r o u p E n t r y ( s ) ;

n e x u s .s t o r e E x p e r i m e n t E n t r y ( n x E n t r y ) ;

Figure 5.6.: Storing files to a NeXus database using the NeXus OIM
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In line  7 an object from type NeXusContainer is created that provides access to the NeXus 

file /path/to/filenam e.hd5  and sets the format to HDF5. L ine 9 creates the root entry 

entryl for the experiment, which has the type NXentry and line 10 a further group for 

the description of the instrument. This group with name nxlnstrument is then added to 

the nxEntry group and shows how to link groups to assemble the NeXus-tree. Now a 

P o s i t io n e r  is created in line  14 and a P o s i tio n e r  S to rage  in line  15. The construc

tor of the wrapper P o s itio n e rS to ra g e  expects a P o s itio n e r , no m atter if it is a Ca

ress Positioner, a Simulation Positioner or any other that implements the Positioner in

terface. This PositionerStorage object can now be added to a NeXus Group like any other 

GroupEntry (L ine 17). L ine 19 finally stores the root experiment entry nxEntry recur

sively to the NeXus file so that the complete tree is persisted to a file. All storage objects of 

the o rg -o p e n in sp ire -o im -s to ra g e -n e x u s -e n ti tie s  OIM therefore come with a s to r e  () 

method tha t is called during the serialization and writes the contents of the wrapped object 

to the NeXus file.

The resulting file is a valid NeXus IIDF or XML file that can now be opened by any HDF /  

XML or NeXus editor such as TvNexus (see 2.4.2 on page 43).

An important advantage of the wrapper concept is, that Storage wrappers can be created for 

every type of storage format so tha t it is easy to switch from a NeXus-based storage format 

to a different format just by providing new Storage wrappers.

5.3. Scan Implementations

W ith the implementation of Devices, UIs and Storage mechanisms all prerequisites are estab

lished to provide Scans. Through the work of the recent sections it is possible to graphically 

monitor the current state of all instrument components, alter them through controls and save 

snapshots of the current instrument state to files. To model a full-featured instrument sys

tem it is however essential to have means that allow the execution of preconfigured sequences 

of commands tha t can run over a long time, process and reduce measured data  and store 

the results to files or databases. All of these missing requirements are covered by OI’s Scan 

OIMs. Providing scan functionality as OIMs follows OI’s best practices since it decouples
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scan logic from specific hardware and thus allows modeling of a scan once and the subsequent 

reuse of it a t multiple instruments that may all come with different hardware. This makes it 

easy to share scan algorithms with the community without limiting the Assembly to specific 

hardware. A Demo Positioner can therefore be replaced by a CaressPositioner, McStas Po

sitioner or any other positioner, provided that it implements the Positioner interface from 

o rg -open in sp ire-dom ain -sc ience .

This section gives a short survey about the general realization of scans in Open Inspire1 and 

summarizes a selected number of specialized scans.

5.3.1. External View
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scanName:
One Axis Diffraction Scan
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Figure 5.7.: Genric Scan Assembly

Figure 5.7 shows the assembly of a scan setup, which uses the OIM o rg -o p e n in sp ire -  

o im -scans-generic  to model a simple One-Axis-Scan12. This can be downloaded from 

the OI Store as well as general and a customized scan widget that is included in the 

o rg -open insp ire-o im -debug-w idgets  OIM. The general widget matches all OIMs that im

plement the StartStopController, which applies for all scans. It shows a simple panel that

2All axes will be positioned at the beginning but only one axis will be moved during the measurement.
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allows to start and stop a scan while a customized widget allows to match the advanced 

functions of the individual type of scan OIM to provide means to configure device relations, 

configuration and storage paths or scan parameters such as the number of steps and counts.

A Scan OIM usually comes with several OlPorts th a t allow to tether the devices that are to 

be controlled, queried or used to process data. The scan OIM in figure 5.7 has six OlPorts 

and six OlProperties. The first three ports accept multiple OIM references (see 4.3.2 on page 

117) to connect an arbitrary number of Positioner-, Counter- and Detector-OlMs. The other 

three ports allow to connect an individual Positioner, Counter and Detector th a t shall be 

selected as active per default. The OlProperties are used to set scan configuration values 

tha t are either entered as preset values when a customized scan GUI is available or make it 

possible to even start a  scan when no GUI or only the general Start/Stop-W idget is available.

5.3.2. Implementations

While different scan OIMs, when considered as a black box, differ only marginally, their 

internal implementation can be completely different. Scan OIMs with identical OlPorts can, 

for instance easily be replaced without touching the rest of the Assembly or transferred to 

other instruments. To give an impression of different scans, this section continues with a 

short survey to different scan engines that are made available as OIM. The overview starts 

with the Generic-Scan, which is a configurable One-Axis-Scan and most commonly used 

in neutron-diffraction experiments, continues with a Sequencer Scan, Script-based-Scan and 

summarizes some advanced scan approaches.

Generic One Axis Scan

Figure 5.8 shows the simplified internal realization of the Generic <S'can13, which can almost 

identically be applied to other scans. A scan generally consists of 5 steps:

I n i t ia l i z a t i o n : In  the first step, the system performs the initialization of all connected 

devices and prepares the database. The example sets the initial values for all connected 

Positioners, Counters and Detectors, creates NeXus wrappers, which allow the storage of 

data to a IVeXus-database, and sets up the NeXus-tree, required to hold the experiment

13The Generic Scan can be found under o rg -op en in sp ire-o im -scan s-gen eric  inside the OI Store
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> Initialization 1\ I

Positioning

Detection

Snapshot

steps left

[ Long-term Storage j

List<Positioner> positioners = ... ;
List<Counters> counters = ... ;
List<Detectors> detectors = ... ;
NexusContainer nexus = new NexusContainer(scan.getNexusFileO, 
FileType.HDF5);
for (Positioner p : scan.getPositionersQ) {

positionerStorages.add(new PositionerStorage(p));
}

// ... the same for Counters and Detectors
Group nxEntry = new Group("entryl", "NXentry");
Group nxlnstrument = new Group("instrument", "NXinstrument"); 
nxEntry.addGroupEntry(nxInstrument);
for (PositionerStorage ps : positionerStorages) { 

nxlnstrument.addGroupEntry(ps);
}

// ... the same for CounterStorage and DetectorStorage

for(Positioner p : positioners){ 
currentSetpoint= .> ; 
p.setSetpoint(currentSetpoint);

}

for(Positioner p : positioners) p.startPositioningO; 
Sync.byEvent("state", StateCode.IDLE, positioners); 
for(Positioner p : positioners) p.stopPositioningQ;

counter.resetCounts(); 
detector. clearMatrixQ; 
counter.setSetpoi nt(counts); 
detector.startDetecting(); 
counter. startCountingQ;
Sync.byEvent("state", StateCode.IDLE, counter); 
counter, stopCountingO; 
detector. stopDetectingO;

for (PositionerStorage ps : positionerStorages) ps.snapshot(); 
// ... the same for CounterStorage, DetectorStorage

nexus.storeExperimentEntry(nxEntry); 
nexus. closeQ;

Figure 5.8.: Simple Scan Activity
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data. If the setpoints for the individual scan steps do not depend on dynamical environment 

values, they can be precalculated here.

POSITIONING: The second step passes the current setpoints to the Positioners, triggers the 

positioning and synchronizes the devices. If every Positioner would block the program flow 

until it reaches its setpoint, all individual positionings need to be performed sequentially. 

This is common in many control systems but often consumes unnecessary time compared to 

a parallel positioning and furthermore prevents the performing of sophisticated scan tasks 

where multiple axes need to be driven at the same tim e14. To circumvent these restrictions, 

OI Devices are non-blocking and perform their operations in the background. This allows a 

parallel execution but requires some kind of synchronization, which is normally realized by 

polling algorithms that periodically read the current value and compare it with its setpoint 

and tolerances. This however causes an unnecessary high load and traffic so th a t some 

more sophisticated synchronization methods are provided by the library oi-utils.jar. The 

algorithm used in the example is called Sync.byEvent15 and blocks the program flow until 

a number of selected devices enter a given state. The method therefor registers Property 

Change Listener for all devices, passed by the third param eter1(l. It then interrupts the 

program flow until all devices have changed the state given by the first param eter to the 

value (StateCode.IDLE) passed as the second parameter. This mechanisms make it is easy 

to create new scan modules without having to care about synchronization issues, ineffective 

polling mechanisms or complex comparisons, caused by the inclusion of tolerance calculations. 

Now it also becomes clear tha t a device comes with the fourth state INIT beside IDLE, ACTIVE 

and ERROR. W ithout the intermediate state INIT, a device that reached its target value 

(e.g. Positioner setpoint) before the synchronization started will block forever, because it is 

already IDLE  when the sync-method is called and never sends the state change to  IDLE th a t 

is required to continue the program flow.

D e t e c t i o n : After positioning all axes, slits and shutters to prepare the next measurement 

step it is time to start the detection. The example therefore resets the detector m atrix and

14One Example is a Continuar Texture Measurement, which measures while positioning one ore more axis.
15org.openinspire.Iib.util.sync.Sync.byEvent(final String eventName, final Object event Value, final Object... 

monitoredObjects);
16The third parameter is realized as variable parameter list and accepts an arbitrary number of devices
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triggers the detector as well as a counter to start counting. The already known Sync.byEvent 

method now blocks the program flow until the counter reaches a setpoint while the Detector 

counts incoming neutrons. When the setpoint is reached, the Detector and Counter is stopped 

so tha t the Detector m atrix remains fixed until it is persisted to the experiment storage. It 

is free to the user which kind of Counter is used so that the detection time can be limited by 

a timer, the counts of a single detector or the cumulative counts of an area detector.

S n a p s h o t : Since all devices have been wrapped into a Storage Wrapper (see 5 .2 .3 ) , the next 

step stores the actual values of all devices either into memory or a temporary database by 

calling the wrapper’s store method. Depending on the amount of data it is either hold in 

memory or stored into a temporary database1'.

Until the last step of the scan is reached, the system prepares the next one, sets the current 

setpoints and continues with the Positioning.

L o n g - t e r m -STORAGE: When the scan loop has finished, the last step stores the temporary 

measurement data to a Long- Term-Storage such as the NeXus database used by the example. 

The system finally cleans up the temporary scan environment and the scan is completed.

Figure 5.9 shows the Scan Widget for the Generic Scan when it is executed inside the Widget 

Testcenter. The scan window on the right side allows to set a scan name and output file as 

well as the selection of the active Positioner, Counter and Detector from the list of connected 

devices. Devices th a t are connected as activePositioner, activeCounter and activeDetector 

are preselected. To configure a scan it is now possible to set the number of steps, the counts 

per step and the start- and end-position of the active counter. When the scan is started 

using the 5£ari-button, the scan gives a feedback about the current state in the lower part of 

the window. Devices can as usual be connected to the Widget Testcenter and are monitored 

during the scan process. However, their manual control will be automatically deactivated by 

the scan to prevent influencing the measurement process.

17This could for instance be an sqlite database, which is at the same time lightweight and fast.[O\ve0G]
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Open Inspire 2009 - Widget Testcenter
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F igure 5.9.: One-Axis-Scan UI in Widget Testcenter

Sequencer Scan

While the Generic Scan is easy and fast to configure it is limited to one axis. Sometimes it 

is however necessary to run scans that drive multiple axis at the same time, deal with more 

than one counter or involve the sample environment for instance to start a heater or wait 

until a tem perature is reached. These advanced functions can not be covered by the easily 

configurable One-Axis-Scan.

A solution to perform such advanced measurements is the Sequencer Scan, which can be found 

under o rg -o p e n in s p ire -o im -s c a n s -s e q u e n c e r . This Scan OIM comes with an OlPort that 

allows the wiring of an indefinite number of different devices to it and two OlProperties that 

allow the setting of the filename of a sequencer file and an output file used to store the 

experiment results.

The Sequencer File is realized as an XML-file that contains a list of steps tha t are se

quentially processed by the sequencer scan engine. Each step includes a set of commands 

that are applied to the connected devices. This is possible since each OIM exposes a set
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of public methods through its service interface. These are mapped to the XML file so 

tha t setting the setpoint of a positioner omgs to 12.3 can be written as <oim id="omgs" 

ca ll= "se tpo in t"> 12 .3< /o im > . Synchronizing devices can be done with < b lo c k -u n til 

state="ID LE">xT,yT ,zT ,om ega</block-until>  and creating a snapshot is possible with 

<nexus cmd="snapshot" parent= "instrum ent"> xT ,yT ,zT ,om gs,detector< /nexus> .

An example sequencer file tha t includes these commands can be found in appendix B.2.1 

on page 312. It is however likely that the syntax of the file will change to guarantee a 

better integration with external editors for the sequencer file and IJIs tha t visualize the 

execution progress. Using the sequencer approach makes it possible to create nearly all 

possible variations of scans. To create nested or complex scans it is however meaningful to 

have an external tool th a t allows to create and validate the XML file. Such an editor is not 

part of the PhD thesis but could for example be directly integrated into an OI Client.

3D-Trajectory-based Scans with SScanSS

The third scan OIM can be found in the OI Store as o rg -o p en in sp ire -o im -scan s-sscan ss  

and allows running SScanSS files with Open Inspire. Similarly to the the Sequencer Scan it 

executes preconfigured scan sequences, but this time sequences generated with SScanSS.

SScanSS itself has been introduced in section 2.4.1 on page 39 and comes with a sophis

ticated graphical editor that is interesting for OI because it allows defining and calcu

lating measurement trajectories trough specimen in a 3-dimensional way. While the tool 

was originally designed to create measurement sequences for the spectrometer ENGIN-X  

[OSJ+04, SD.TEOf), DDE+04] a t ISIS, making the same generated scan-files run with OI 

opens the SScanSS-based 3D experiment planning to a wide range of new applications. Open 

Inspire especially benefits from SScanSS easy and quick 3D-modeling capabilities as well as 

the calculation, simulation and preview of complex scan trajectories through samples. SS

canSS on the other hand profits from the feasibility to use the generated scan-files not only 

on the hardware it was developed for but also on all Devices that are supported by Open 

Inspire. This includes both real hardware such as the Caress-controlled instruments E3  and
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E7  as well as virtual instruments such as the McStas-based Devices th a t will be introduced 

in section 5.5.

Setting up an 01  Assembly with the SScanSS-OIM is similar to the Sequencer-Scan with 

the difference that a SScanSS-input file is passed to the OIM in place of an XML-sequencer 

file. Although a SScanSS-setup comes with a text and an /id/5-file, it is sufficient to pass 

the text file to the OIM, because it contains a link to the corresponding hdf5-file. While the 

hdf5-file contains meta-information such as the facility name, instrument, SScanSS version 

and hardware setups, the text file delivers the parameters for the individual scan steps.

SScanSS project file: test.hdf 
1 
5
244.120 -147.726 124.596 -135.000 0.000000
236.376 -166.107 150.720 -135.000 0.000000
228.633 -184.488 176.845 -135.000 0.000000
220.889 -202.869 202.969 -135.000 0.000000
213.146 -221.250 229.094 -135.000 0.000000
X stage Y stage Z stage Theta stage mu_amps

Figure 5.10.: SScanSS Scan Configuration Text File

Figure 5.10 shows an example configuration for a scan with five steps. The SScanSS OIM 

first reads the last line, which contains the IDs of the Devices th a t are to be driven. If devices 

with the same IDs are connected to the SScanSS OIM, these are automatically correlated 

with the corresponding information in the scan file. Otherwise, it is possible to  manually 

assign the connected Devices from the OIAssembly to the devices inside the scan file. Each 

line, beginning with line 4, stands for an individual scan step and each columns contains the 

setpoints for the corresponding device given in the last line.

Running the scan is hence not more than stepping line by line through the file, driving the 

devices to the setpoints and performing a detection between each positioning. The procedure 

of the Positioner and Counter synchronization as well as the creation of snapshots and the 

storage to a NeXus-file is thereby identical to the approach in figure 5.8. The number of 

counts and the counting device can be set as OlProperty or through the Scan GUI.



204 Open Inspire in the Field

Custom Scan Engines

The recommended way setting up a scan is using a tool to pre-calculate all steps and to 

execute them with the Sequencer- or SScanSS- Scan-OIM. This approach allows to verify 

and restrict individual scan commands to prevent them compromising the system already 

before the scan is executed.

Sometimes it is however necessary to model scans that cannot be pre-calculated due to their 

complex or dynamic behavior. One reason could be that the necessity to react on changes 

in the sample environment shall directly influence the scan process. Other reasons are for 

instance scans tha t come with nested loops whose number of iterations are calculated just- 

in-time, depending on processed measurement results.

E x a m p l e  1: Figure 5.9 on page 201 shows a widget called DSSummarizer on the top-left 

side. This widget is a front-end for the OIM o rg -o p en in sp ire -o im -scan s-sscan ss , which 

can be connected to an area detector. It creates a histogram which visualizes the counts 

along the angles of a measured Debye-Sherrer-Ring. W ith this information it is possible to 

dynamically search for hot-spots and to optimize the measurement accuracy by increasing 

the measurement time at reflex positions and by skipping non-relevant areas.18

E x a m p l e  2: Another discipline that benefits from a customized scan module is the Texture 

Measurement, which has been introduced in section 2.2.3 on page 23. Originally a texture 

scan is performed by driving a Positioner in discrete steps combined with a short count 

period with an area detector. The problem with this approach is the quantification of sharp 

orientation maxima and tha t the frequent positioning of the sample takes up to 75% of the 

complete measurement time. Both problems can be solved with a scan tha t is able to position 

multiple positioners at the same time, while continuously detecting neutrons.

The first time such a a Continuar Texture Analysis Scan has been published was in the 

context of the Diploma Thesis by Christian Randau in 2007 [Ran07]. The work bases upon 

Open Inspire and uses an OIM to implement the Texture Analysis Scan as well as the Caress

18Constraints regarding the available beam-time did not allow to test this type of scan with a substantial 
instrument so that a detailed description is omitted. An example of a dynamically-influenced scan that does 
not depend on a neutron-beam can in exchange be found in section 5.6 on page 24 1.
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Devices, introduced in section 5.4 to control the hardware of the instruments E3, E 7  and 

StressSpec. Different to the scan algorithms tha t come with Caress, OI is able to drive 

multiple axes simultaneously and calculate and save the results in a format th a t can be read 

by StressTex, a Texture Analysis toolbox, developed by Ulf Garbe FRM-II /  ANSTO. The 

Texture Scan modules are in productive use at the HZB and FRM-II (Germany) and A IN STO 

(Australia).

E x a m p l e  3: A third example is the Calibration Scan, used to automatically align the com

ponents of a Neutron Diffractometers. This scan and its environment combines many of Open 

Inspire’s unique concepts so tha t it is covered in the dedicated section 5.6 on page 244 used 

to give a closing summary of OI’s core features.

Script-based Scans

The last type of scan that is however not published as a dedicated Scan OIM is a Script-based 

Scan. While the Sequential- and Customized Scan Engines already cover the full range of 

supposable scan problems the Script-based Scan nevertheless fills an im portant gap. The 

Sequential Scan Engine has the drawback tha t it does not have the same flexibility as the 

Customized Scan Engine. The Customized Scan Engine is however intended to be published 

as a ready-made OIM that typically never changes to keep the downward compatibility. This 

makes them both unattractive for a rapid-scan-prototyping approach where many fundamen

tal changed are applied to a scan during the development or when a scan shall be modeled 

in short time without the aim to ever publish it.

For these scan setups it is possible to make use of Java’s JSR 223 : Scription for the Java 

Platform, which allows the running of a large number of scripting languages directly in Java. 

Due to Java Scripting Host it is already possible to write an OIM in any of the supported 

scripting languages, because they compile to Java class files that can be packaged to an OIM 

in the same way as any other OIM. Currently OI however does not provide the toolchain and 

IDE integration so that the build and packaging process needs to be done manually. This
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future aim will provide the ability to write complete modules in languages such as Jython19, 

Groovy, Java Script or Ruby.

The advantage of the approach is, that a user can quickly write a scan sequence by using the 

full feature set of the selected scripting language. The user thereby has access to all devices 

tha t are connected to the OIM from any of the scripting languages. To make the usage 

still easier it is moreover possible to auto create a script template tha t already binds the 

connected devices to local variables. A user can now easily alter the script file while Java’s 

just-in-time-compiler always updates the generated Java class files to reflect the latest script 

changes when the OIM is restarted.

The scripting approach however also has several drawbacks. The first is the problem that it is 

nearly impossible to prevent a script from gaining access to the system by bypassing security 

mechanisms. Opening the system for arbitrary scripts consequently breaks the safety of the 

system and should be avoided. Another problem is the violation of OI’s main principles such 

as the aim to provide well-tested encapsulated functionality, which can be shared with the 

community. Scripting OIMs will not be officially part of OI until a well-tested toolchain and 

the ability to execute OIMs inside individual sandboxes is provided.

5.4. Hardware Control with Caress

Section 5.1 covered how to visualize the experiment progress using a GUI, section 5.2 covered 

how to store measurement data to the unified NeXus format and 5.3 introduced the way 

how scans can be realized with Open Inspire. All previous examples used the simulated 

demonstration devices Demo Counter, DemoDetector and DemoPositioner instead of real 

hardware. This section now fills this gap and shows how to replace the Demo Devices in 

figure 5.7 on page 195 with OIMs that act as a proxy for real hardware.

It is a strong demand for Open Inspire to be able to use existing legacy hardware with the 

highest possible flexibility and least possible effort. This section shows how to make use of 

OI’s abstraction mechanisms to allow the changing of the type of devices without touching

19Especially Jython as the Java equivalent to  Python is interesting since Python has been declared as the 
standard scripting language for neutron experiments at the NOBUGS 2008 [nob]
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the rest of the Assembly and also how to build a bridge to existing hardware systems that 

were intentionally designed not to be controlled by third party systems.

For this example the control system Caress has been chosen. It is a good starting point since 

it already supports more than 100 different hardware components, which can be directly used 

with Open Inspire after the implementation. W ith the support of Caress-based hardware it 

is possible to model fully functional diffraction scans, and use the scans introduced in section

5.3 on real instruments.

The realization of Caress support for OI is a central requirement [E3 4.2.3] and one of the 

fundamental parts of the thesis so tha t this section covers the topic in a slightly more detailed 

manner. Caress follows different design principles than OI and hence gives a good insight into 

the procedural method required to get differently designed systems to work hand in hand.

5.4.1. A survey of Caress

Caress[RS07][Sau07] is an Instrument Software for Neutron Scattering Instruments, used to 

control nearly all instruments at the Berlin Neutron Scattering Center (BENSC) (HZB) and 

some instruments at FRM-II (TU Munich). The development of Caress started in 1993 and 

the software has been continually extended to a codebase of about 164,000 lines and more than 

130 device drivers. These include bus drivers for G PIB/IEC , Camac, VME and TC P /IP , 

drivers for single, linear and area detectors, several commercial and in-house developments 

of motor controllers as well as sample environment drivers. Recently drivers were added th a t 

allow the accessing of Labview, TACO and TANGO  devices.

The Distributed Caress Environment

The network topology used by Caress is organized in the form of a client server system with 

one client and one or more servers. The central part of the system is the client which runs on a 

UNIX- f  Linux-based workstation and is itself simply known under the general name Caress. 

The servers are arranged around the Caress Client and each one publishes a defined interface 

that allows access to a specific subset of instrument hardware. The communication solution 

used is the object oriented Common Object Request: Broker Architect ure (CORBA)[OMG04]. 

Each instrument thereby owns its own Object Request Broker (ORB) which acts as a  name



208 Open Inspire in the Field

service and registry for distributed objects. Figure 5.11 shows the setup of the neutron

Motors and Counter
Encoder, Decoder, Timer

Area Detector Motors and Counters
VME System

Instrument E3 Instrument E7

CAMAC Bus

CARESS Client VM E ServerCAMAC Server CARESS Client Windows Server

Figure 5.11.: Caress Network at Instrument E3 and E7

diffractometers E3 and E7  a t BEXSC and StressSpec a t FRM-II in Munich. Although all 

instruments are nearly identical in their geometry, number and kind of movable axes, counters, 

detectors and scan functionality, they vary in the way they access the hardware. Instrument 

E 7  and StressSpec use one VME based server both for the hardware access and the operation 

of the ORB while the devices at instrument E3 are split between two servers and the OR B 

runs on the client machine. The first server handles the detector, which is connected using 

a P C I card and the second server uses a CAMAC  system to manage the remaining devices. 

These differences are important when it comes to the issue of allowing each instrument to be 

addressed independently.

The Caress Client

The Caress Client is the central element of Caress controlled instruments. It is responsible 

for the initialization and control of all devices, hosts the device configurations, provides a 

GUI and CLI, performs scans and stores measurement data.

Configuration Files

Whenever experiments are started using Caress, configuration files are processed, which con

tain initialization parameters for the experiment and instrument hardware. Two of these files 

for instrument E7  are listed in Appendix B.3. The first file hardware__modules__e7.dat on 

page 314 is used to initialize devices with specific parameters, define the hardware servers 

and conditionally enable devices for a selected scan setup. The second file params__e7.com 

on page 315 is used to setup parameters such as software limits, tolerances or offsets for
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already initialized devices. Both files act as resource for Open Inspire’s module configuration 

parameters.

The User Interface

Caress offers the choice between a Command Line Interface (CLI) and a Graphical User 

Interface (GUI) that both basically provide a prompt for Caress commands. The range of 

these commands begins with setting experiment properties, device setpoints or preset values, 

continues with the positioning of axes and ends up with performing simple one axis scans 

to complex multiple axes scans. A user typically uses the GUI that extends the CLI with 

more user friendly dialogs for scan setups and device configurations. Figure 5.12 shows the 

three windows that are opened when the GUI is started. The first window shows Monicar, 

a monitoring tool tha t shows constantly updated information about device values such as 

counts or motor positions. The second window is the main window and provides a prompt, a 

command history and menu access to configuration dialogs. The last window is a PV-Wave- 

based viewer for detector data.

Caress Documentation

Developing a bridge between Caress and Open Inspire requires gaining an insight into the 

Caress internals, which is in some situations difficult due to the lack of information. Caress 

is developed and maintained by a small group of people and not by a public developer 

community tha t shares information by forums, mailing lists or published information. The 

Caress team itself alluded to this issue in their Caress presentation summary from the SEI in 

2007 [RS07] (page 22): *The biggest deficit is the incomplete documentation". One im portant 

document provided by the Caress developers is the device parameterization manual [DPSR09], 

which can be found inside the doc-folder of every Caress installation. This file contains all 

valid device initialization parameters and is similarly used by Open Inspire to setup the 

Caress OIMs. Further files regarding the usage of the CLI or usage scenarios can be found 

inside the doc-folder of Caress's source code distribution.
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F igure 5.12.: The Graphical User Interface of Caress

During the development of the Caress OIMs it emerged that a combination of Caress docu

mentation combined with information gained by reverse engineering of Caress sources and 

discussions with Caress Team Members is a way to cope with the majority of problems. The 

most time consuming task is the reverse-engineering of the Caress sources that are responsi

ble for the hardware access. A lack of comments also hinders the decoding of the dynamical 

behavior of stateful operations.

5.4.2. General Design Decisions

Implementing the Caress support requires some preliminary steps. This includes the setup 

of a test environment, the communication between Open Inspire and Caress as well as the 

base configuration of the Caress OIMs for Open Inspire.

20T he Caress sources are stored in a HZB wide subversion repository
2h a rd w a re  access related sources are stored in the capi folder of the source code distribution
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The Test Environment

Preliminary to the development it was m andatory to find a qualified test environment. By 

reason tha t all instruments are in regular service it is essential to have an environment that 

reproduces the real instrument as accurate as possible. A simulation of the whole environment 

is not beneficial due to the high complexity and time effort so that a real Caress instance 

is a more meaningful choice in this situation. During the development of the OIMs, the 

test environment has been improved several times to reduce the dependency on the actual 

instruments and to allow critical tests tha t could otherwise harm the hardware. Caress a t first 

only ran on DEC Alpha Stations, which required the use of real experiment hardware. Early 

tests have been performed using the rarely used but unfortunately incomplete instrument E2a 

(HZB). After the first stable Open Inspire version was released, these tests were carried out 

at the instruments E7  and StressSpec during reactor rest periods. Later on, the Caress team 

released a version that also runs on Linux systems. This version is installable in a virtual 

machine and can simulate the instrument without real hardware. The new version, for the 

first time, allows the testing of Caress setups on standard PCs so tha t critical functionality 

can be executed in a simulated environment. This prevents harming the instrument due to 

malfunctions. W ith this step it also became possible to run experiments from office networks 

tha t where not possible before, due to the random CORBA ports tha t could not act as 

tunnels between the different VLANs at the HZB. A further step in early 2009 finally made 

it possible to port the simulation server, with some help of the Caress team, to  Mac OSX. 

This port is used for all dynamical tests such as the realtime behavior of m ethod calls or 

network throuput including latency times. The network monitoring tools used are netcat and 

wireshark, which run with an extension for the monitoring of Caress ’ CORBA packets.

Selection of a communication solution

A m andatory precondition for the usage of legacy systems is the identification of a suitable 

communication approach between Open Inspire and the legacy system.

The first considered way is the reuse of a Caress interface, developed for Frack within the 

scope of a diploma thesis in 2005 [Fle05]. This external interface has become, in the meantime,
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an integral part of the Caress API 22 and allows the sending of commands to Caress and the 

querying of data such as a detector matrix or motor positions. It is practical for simple control 

scenarios but has some essential drawbacks that prevented its usage with Open Inspire: 1) 

The interface does not support the initialization of devices and so prohibits operating OI 

without a parallel Caress installation, 2) it is limited to commands that are interpretable by 

Caress’ internal runtime engine and prevents integrating functionality beyond the scope of 

Caress. These commands furthermore send asynchronously, without associated return values, 

which prohibits allocating commands to return values, 3) finally, only a subset of all data can 

be read and this with low performance, which is not sufficient to tap  the full potential of the 

Caress hardware.

A second approach is the extension of Caress by a new network service. This service could 

be tailored to the needs of Open Inspire and provide all required information and access 

to the hardware. A relevant advantage is the reusability of Caress code and the option to 

directly optimize the interface and handle internal state machine and invisible dependencies 

on the server side. Both, the extension of the external interface and the development of a new 

service require changes to Caress, which results in a high maintenance effort and compatibility 

problems. It is the reason why the OI guidelines state that legacy software should be usable 

with OI without altering the system itself, p  5.3.2] p  5.3.G]

A third approach is the direct usage of the CORBA based services provided by the Caress 

hardware servers. This assures the highest flexibility without changing any parts of Caress. 

The whole functionality provided by the hardware remains preserved and Open Inspire can 

be used as standalone replacement for Caress. The cost of this approach is tha t some func

tionality of the Caress Client needs to be reproduced by Open Inspire. This includes the 

initialization of hardware as well as the providing of a timing source and adapters for the 

conversion of Caress data and operations to the OI infrastructure.

All further work is based on the third approach due to its flexibility and conformance to the 

stated equirements of Open Inspire.

22The external interface can be found in the /src/carapi/carapi.java  folder of the Caress sources
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The Caress OIMs
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Figure 5.13.: Implementation hierarchy of the Caress OIMs

Modeling diffraction scans requires access to Positioners, Counters and Detectors. The pre

scribed way to realize this functionality using OIMs is the implementation of the appropriate 

interfaces from org-openinspire-oim-domain-science, illustrated in figure 4.20 on page 126. 

This assures the compatibility between all already existing and future subsystems tha t use 

the same interfaces. Figure 5.13 shows the OIMs org-openinspire-oim-Caress-positioner, org- 

openinspire-oim-caress-counter, org-openinspire-oim-caress-detector and the additional OIM 

org-openinspire-oim-caress-proxy, which is covered in the next section.

5.4.3. T he Caress Proxy OIM

The Caress Proxy is a complementary construct tha t has been introduced as a solution for 

various design issues. The obvious approach, where each OIM represents exactly one device 

(such as a Positioner, Counter or Detector) is not directly realizable due to hidden internal 

dependencies between Caress Devices. One example is the Counter th a t needs to know all 

other counters to set them to slave mode before counting in master mode. An other example
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is the Detector, whose hardware is connected with the primary counter and starts and stops 

counting with it. Introducing links between all devices is not an option because it increases 

the complexity and abates the maintainability of the Assembly. Using dependencies between 

devices by static classes or singleton objects on the other hand creates hidden dependencies 

and causes unmanageable side effects.

Here the Caress Proxy OIM not only solves this problem but also presents several design 

advantages. As already stated in section 5.4.1, some setups require links to more than one 

hardware server. Using multiple Caress Proxies allows connecting to an arbitrary number 

of hardware servers and address multiple instruments simultaneously from within the same 

Assembly. Furthermore, configuration redundancy in the Assembly can be reduced with the 

benefit of a better maintainability, because only the Proxy needs to be configured with the 

connection parameters and not the devices themselves.

Configuration of the Caress Proxy

The Caress Proxy provides all required functionality to establish a connection with a CORBA 

based Caress service from within Open Inspire.

<oim id="CaressProxy" type="org-openinspire-oim-Caress-proxy" 
version="1.3.0">
<property name="ORBHost" value="localhost" />
<property name®" ORBPort" value="2809" />
<property name = "objectPath" value ="example.context/absdev.object"/> 
<property name®"slowDeviceTriggerlnterval" value®"10"/>
<property name®"normalDeviceTriggerlnterval" value®"1"/>

</oim>

Figure 5.14.: Initialization of a Caress Proxy OIM inside an Inspire Context File

Figure 5.14 shows the configuration for a Caress Proxy within an OI Assembly. The first 

OlProperty ORBHost specifies the name of the server, which hosts the CORBA Naming Service 

and the optional property ORBPort the port23 of the registry. The third property obj ectPath 
specifies the path to the CORBA object in the registry tha t provides all functionality tha t 

is required to communicate with the hardware server. The two remaining optional proper

23The default port of the CORBA registry is 2809.



5.4 Hardware Control w ith Caress 215

ties s low D ev iceT riggerln te rva l and no rm alD ev iceT riggerln terva l are finally used to 

configure the timing source that triggers the Caress hardware server.24

Connecting the CORBA Naming Service

Figure 5.13 on page 213 shows, tha t the Caress Proxy Module communicates with a CORBA 

service, which is registered by the Caress Device Server. Connecting the service is done 

directly from within the Java code, since Java is already equipped with built-in CORBA 

functionality. Using Java’s CORBA API offers a platform independent solution without the 

need for external libraries but some necessary configuration work due to different implemen

tations of the comprehensive CORBA specification. More details can be found in the source 

code under org.openinspire.oim. Caress.proxy, api.DeviceServer.

Communication with the Caress Hardware Service

After establishing a connection to the Object Request. Broker (ORB), the next step is calling 

the remote methods on the hardware server. To achieve this, Open Inspire resolves the 

Remote Object found  a t the location, passed by the o b jec tP a th  configuration property (see 

figure 5.14) and narrows it regarding the interface definition of the Caress Hardware Service. 

While resolving and narrowing is realized in a few lines of source code in the constructor of 

CaressAbstractDevice inside the A P I-Package of the CaressProxy, the mechanisms used to 

create and handle the remote interfaces requires a more detailed explanation.

Beside the ORB that facilitates the communication between objects, CORBA provides a 

so called Interface Definition Language (IDL) tha t is used to describe interfaces between 

CORBA instances in a platform and language independent way. These interfaces are not 

used to implement a service but as a kind of blueprint tha t is required to generate so called 

client stubs or server skeletons for nearly all existing programming languages. A native 

Caress environment implements the server skeletons for hardware servers as well as the client 

stubs for the Caress client, both in C/C++. |aclOI requires client stubs for Java, which are 

described in detail after examining the Caress Interface Definition.

24The default of 1 and 10 seconds normally needs no modification but can be used to fix timing issues.
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The Absdev Interface Definition

The interface definition, which is used by the Caress hardware server can be found in Ap

pendix B.3.2 on page 315. The file is part of the Caress source code distribution and stored 

as absdev.idl in the omnisrc folder. The figures 5.15 on page 216, 5.16 on page 5.16 and 5.17 

on page 5.17 show tables with all operations provided by the Absdev-lnteriace in a clearly 

arranged form. Cells with dark background mark global operations while light cells illustrate 

device based operations.

In itia liz a tio n , S h u td o w n  a n d  C o n fig u ra tio n  O p e ra tio n s

A B

-

long in it_system _orb(
in long k i n d o f i n i t s y s t e m ,  
out long system _status);

long release_system _orb(
in long k in d o f r e l e a s e s y s t e m ) ;

CM

long in it_m odule_orb(
in long kind_of_in it_m odule, 
in long m odule_id, 
in s tring m o d u le jin e , 
out long m odule_status);

long load_m odule_orb(
in long k ind_of_load_m odu!e,
in m odule_info_seq_t m odule_info_seq,
in long event_num ber,
out long event used,
out long m odule_status);

CO

long ch a rjo a d b lo ck _ m o d u le_ o rb (
in long kind_of_loadblock_m odule,
in long m odule_id,
in long s ta r t i te m ,
in long e n d i te m ,
in long item _type,
out long m odule_status,
in char_data_seq_t data_seq);

long short_loadblock_m odule_orb(
in long k in d o f jo a d b lo c k jn o d u le ,
in long m odule id,
in long start_item ,
in long end_item ,
in long item type,
out long m odule_status,
in short_data_seq_t data_seq);

long int_ loadblock_m odule_orb(
in long kind_of_loadblock_m odule,
in long m odule_id,
in long start item,
in long end item ,
in long item  type,
out long m odule_status,
in int_data_seq_t data_seq);

long float_loadblock_m odule_orb(
in long kind_ofM oadblock_m odule,
in long m odule_id,
in long start_item ,
in long end_item ,
in long item _type,
out long m odule_status,
in float_data_seq_t data_seq);

   —   — _

Figure 5.15.: Caress Absdev Init and Shutdown Operations
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The first figure 5.15 on page 216 shows all operations used to initialize, shutdown and con

figure the device server and related devices. in it_ sy stem _ o rb  and release_system _orb  

need to be called globally to initialize and release the whole device server. The operations 

in it_m odule_orb  are called to register and initialize devices tha t are connected to the device 

server and are afterwards ready to receive further commands. Beside a unique ID, a specific 

initialization String needs to be passed that requires to follow the rules published in the 

Hardware Module Documentation [DPSR.09]. Examples of the initialization parameter can 

be found in figure 5.23 on page 227, 5.25 on page 230 and 5.27 on page 233 by consulting 

the property deviceParam eter. The remaining methods except of the load_module_orb- 

operation are not required for the implementation of Positioner, Counter and Detector func

tionality. The operation load_module_orb is certainly used by Positioners and Counters to 

pass setpoints to positioners and counters.

Start, Stop and Drive Operations

The second figure 5.16 on page 218 illustrates operations used to start, stop and drive modules. 

s ta r t_ a c q u is i t io n _ o rb  is a global command that is called before starting new measure

ments and with a different k ind_of _ s ta r t_ a c q u is i t io n  parameter prior to new measure

ment steps. s to p _ a c q u is itio n _ o rb  causes the opposite of s ta r t_ a c q u is i t io n _ o rb  and 

pauses or stops measurements. It is important to keep in mind th a t Caress uses internal 

state machines and makes assumptions about involved devices, which are altered by the mea

surement without explicit configuration of these dependencies. The starting of an acquisition 

automatically starts all registered counters and reads back detector values until a selected 

master counter reaches its target value. The third global operation s to p _ a ll_ o rb  imme

diately stops all registered devices and is used whenever a complete and fast shutdown is 

required. To really stop all modules, s to p _ a ll_ o rb  needs to be called multiple times with 

different parameters.
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The device specific counterpart of s to p _ a ll_ o rb  is the operation stop_module_orb which 

requires the unique id of a module and only stops this selected module. It needs to be 

called when a positioner reaches its end position or when a counter finished counting to its 

target value. The last operation drive_m odule_orb is intended to start driving some drivable 

module. This method is, in the majority of cases, used to start moving a positioner to a target 

value that is passed by a parameter, which has been encoded in a module_inf o_seq-type.

A B

LO

long start_acquisition_orb(
in long kind_of_start_acquisition , 
in long run_no, 
in long m e s rc o u n t ,  
out long acquisition_status);

long stop_acquisition_orb(
in long kind o f  stop acquisition, 
out long acquisition_status);

CD
long stop_all_orb(

in long k ind_of_stop_all, 
out long stop_all_status);

long stop_m odule_orb(
in long k ind_of_stop_m odule,
in long m odule  id,
out long m odule_status);

1̂

long drive_m odule_orb(
in long kind_of_drive_m odule,
in m odule_info_seq_t m odule_info_seq,
in long event_num ber,
inout long calculated  tim eout,
out long event used,
out long delay_status,
out long m odule status);

F igure 5.16.: Absdev Start, Stop and Drive Operations
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R e a d  O p e ra tio n s

The last table of operations, labeled Figure 5.17, can be found on page 219 and represents 

methods, used to read back data from devices. read_module_orb and its global counterpart 

read_allm odules_orb  are used to read arrays with values from one device or accordingly a 

composed array of values from all changed devices.

A B

00
long read_allm oduIes_orb(

in long kind_of_read_allm odules, 
inout m odule_info_seq_t 
m o d u le in fo s e q ) ;

long read_m odule_orb(
in long kind o f  read m odule, 
in long m o d u le jd ,
inout m odule_info_seq_t m odule_info_seq);

a>

long rcadblock_param s_orb(
in long k ind_of_readblock_m odule, 
in long m o d u le id , 
inout long start channel, 
inout long e n d c h a n n e l, 
inout long c h a n n e lty p e );

oi—

long char_readblock_m odule_orb(
in long kind_of_readblock_m odule,
in long m odule_id,
in long start_channel,
in long end_channel,
out long m odule_status,
inout char_data_seq_t data_seq);

long short_readblock_m odule_orb(
in long kind_of_readblock_m odule,
in long m odule_id,
in long start_channel,
in long end channel,
out long in o d u le s ta tu s ,
inout short_data_seq_t data seq);

-

long int_readblock_m oduIe_orb(
in long kind_of_readblock m odule,
in long m odule id,
in long start_channel,
in long end_channel,
out long m odule_status,
inout int_data_seq_t d a ta s e q ) ;

long float_readblock_m odule_orb(
in long kind_of_readblock_m odule,
in long m odule_id,
in long start_channel,
in long end channel,
out long m o d u le s ta tu s ,
inout float_data_seq_t data seq);

Figure 5.17.: Absdev Read Operations

The parameter kind_of_read_m odules or k ind_of_read_allm odules specifies which kind 

of devices should be returned. Caress distinguishes between slow, normal and fast devices 

which require different wait periods between consecutive reads. The remaining methods allow 

the reading of parameters and values of a block module such as a detector histogram. Here
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the caller needs to know the datatype of the block that should be read and with it selects 

the corresponding readblock-operation. Reading the wrong datatype or a  wrong blocksize 

results in a crash of Caress.

Wrapping the Caress Communication Architecture

The disquisition regarding the absdev shows that only one communication interface is used to 

handle all conceivable forms of communication between a caress client and hardware servers. 

The outcome is tha t the CaressProxy also requires only one client stub per CaressProxy that 

has been generated according to the aisdev-Interface Definition. This stub is generated using 

the tool idlj (Interface Definition Language to Java Compiler), which is part of each Java 

Development Kit (JDK) and used to create all interfaces and classes required to communicate 

with a CORBA object from Java code.

| « in te rface»
! absdevOperationsabsdevHolder

« in te rface»
absdev

narrows

absdevHeiper absdevStub

short_data_seqJH older j | float_data„seqjH elper i 

short_data_seq_tHelper i j float_data_seq_tHolder j

int_data_seq_tHolder | m oduleJnfo_seq_tH older j

int_data_seq_tHelper [ module_info_$eq_tHelper j

char_data_seq_tHelper j : MAXJTEMS

char_data_seq_tHo!der

Figure 5.18.: The generated client stub files by idlj

The created code has been refactored to match the OIM guidelines and can found as part 

of the Caress Proxy OIM inside the package org.openinspire.oim. caress.proxy, absdev and the 

package org.openinspire.oim.caress.proxy.absdev.types. A class-diagram with all generated 

classifiers is shown in figure 5.18. The most important part of the generated code is the 

absdev-interface, which provides all required methods to access the CORBA remote object. 

All remaining classes and interfaces either define operations and structures (absdevOperations 

and the entities on the right hand side) or store, cast or serialize and deserialize objects 

(iabsdevHolder, _absdevStub or absdevHeiper).
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CORBA is a middleware that allows the distribution of complete object hierarchies but 

Caress does not make use of this functionality and exclusively uses the absdev-object to 

publish remote functionality. This decision can be justified by the evolution of Caress and 

the limited scope for making changes without causing compatibility issues.

Open Inspire generally allows the use of this absdev-reference in each Caress OIM , but there 

are many reasons in favor for introducing an object oriented layer around the absdev-object. 

Implementing the wrapper functionality at a central place inside the proxy OIM allows all 

other Caress OIMs to use the wrapper instead of the complex absdev-interface and bundles 

the complexity into one module, which can be maintained by a Caress specialist. Beyond 

tha t it allows consistent exception handling, logging, and information hiding th a t disallows 

calling functions tha t are not implemented for a specific module and would otherwise crash 

Caress. Beside these stability improvements the redundancy of code is reduced due to a 

centralization of common functionality. Sharing this functionality also improves the main

tainability and time effort, required to implement support for new devices. A further issue 

is tha t Caress uses internal state machines tha t can lead to different behaviors of the same 

operation depending on a current internal state and it is not possible to ensure tha t a call to 

an operation a t one device does not influence other devices. To handle these dynamical issues, 

a superordinate manager needs to assure the dynamical consistency of the object system. All 

of these functionalities are provided by the CaressProxy and are illustrated in the following 

sections.

Initialization and Device Registry

Before a new version of Caress was released in 2009, Caress used an allocation table with 

unique entries for device IDs and corresponding devices. W ith this definition it was clearly 

defined tha t a device with id XT, YT, Z T  or OMGS is a positioner, TIM1, TIM2  and M O N  

is a counter and A D E T  is a detector. A copy of this allocation table allowed Open Inspire 

to address known devices, that were preinitialized by Caress and even to use Open Inspire 

side by side with Caress in a passive mode. In 2009 these unique IDs have been retired and 

replaced by dynamic IDs. This decision was momentous for Open Inspire, because there is 

no way left to externally figure out the dynamic ID for a device. Even a new feature th a t
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allows a list of all registered IDs to be obtained does not solve the problem as there is no 

means to obtain the kind of device from the interface.

To reflect the changes in the new Caress version, the Caress Proxy has been refactored to 

support the new Caress Design and its dynamic IDs. Prior to version 2009-m3, the old Caress 

API can be used while all later versions are now compatible with the latest Caress builds. 

The following sections cover OI’s new Caress support beginning with version 2009-m5.

A simplified survey of the Caress Proxy architecture in figure 5.19 shows the general structure 

of the CaressProxy- OIM.

DeviceServer |-------
1 1

1*
..- ... . ........... J. ... , ......... . ... ..

------ o ; CaressProxy
1__________________ __________________

I • "* ’ ’
i

o ------1 DeviceTrigger

AbstractCaressDevice
+ AbstractCaressDevice(initString: String) 
# initDevice(server: DeviceServer)
+ refresh (de vice Entry: DeviceEntry)

o —>, AbsdevWrapper
i

!
^  J  « in te rfa ce »  

absdev

Figure 5.19.: Survey of the Caress Proxy OIM

Whenever a new CaressProxy is initialized, it creates a DeviceSeruer- and DeviceTrigger - 

instance th a t are configurable by properties passed by the Assembly parameters (see figure 

5.14 on page 214). While the DeviceTrigger exclusively provides a timing source, which is 

covered in section 5.4.3, the DeviceSeruer provides more functionality. It is responsible for 

the connection to the ORB, initializes and releases the hardware server and acts as device 

registry. Once a connection to the ORB has been successfully established, it creates an 

AbsdevWrapper- object, which gains an instance of the absdev- object from the ORB and stores 

it locally.

This AbsdevWrapper is the new gate to the hardware server. It provides the same functionality 

such as the absdev-object, but wraps it in user friendly calls, introduces Exception-Handling, 

Information Hiding and follows UML/Java specific coding guides such as names in Camel 

Case Notation. A detailed description of all wrapper operations goes beyond the scope of
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this survey. More information can be found in the AbsdevWrapper-class inside the package 

org.openinspire.oim.caress.proxy.api or as part of section 5.4.3.

The last im portant classifier in diagram 5.19 is the AbstractCaressDevice. Whenever a mod

ule such as the Caress Positioner, Caress Counter or Caress Detector needs to access the 

remote hardware, it creates a class that inherits from AbstractCaressDevice and registers this 

object at the DeviceServer. The DeviceServer creates a unique ID for the device, initializes 

the device by passing its initialization parameters to the hardware server and registers the 

object inside a local device registry. This procedure simplifies the development of modules 

because nothing is required except the initialization String and an Object that inherits from 

AbstractCaressDevice. A concrete device can now extend the functionality of the AbstractCa

ressDevice while having a valid instance of the AbsdevWrapper. Concrete examples related 

to the extension of the AbstractCaressDevice can be found in section 5.20.

Event Handling

Open Inspire uses object-oriented event mechanisms that are based on Property Change 

Events, which are relayed between OIMs. The absdev-design however does not provide in

terrupts nor callback mechanisms tha t are directly bridgeable to OI’s event mechanism. The 

problem is hence only solveable by a periodic polling of the Caress devices and the event-based 

propagation of changed values to OI’s event listeners.

The absdev-interface provides the operations read_module_orb and read_allm odules_orb , 

which allow to read current values and states of devices directly from the device server. 

The fact that every device that extends CaressAbstractDevice can also access the wrapped 

read_module_orb-operation could lead to a design where each OIM  periodically reads the 

module data and delegate changes to listeners. This approach would generally work but 

evokes several problems. Caress sets specifications concerning the time between subsequent 

calls of the read_module_orb-method. Asynchronous calls from multiple OIMs however can 

not take care about these timing demands.
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The solution for these problems is a global mechanism that periodically calls read_allm odules 

_orb instead of read_module_orb, decodes the response and redirects the data to the appro

priate device. Calling read_allm odules_orb  requires two parameters. One parameter is the 

reference to a m odule_inf o_seq_tH older that has been generated by idlj and one parameter 

is an integer that specifies the kind of devices that will be covered later on.

Unique device id 

Current state of the device 

Number of value entries 

Datatype of all value entries 

The first of n-values of type 'datatype'

The second of n-values of type 'datatype'

The last of n-values of type 'datatype'

Figure 5.20.: The Module Info Sequence

Figure 5.20 shows the content of a m odule_inf o_seq_tHolder-object after calling the method 

read_allm odules_orb . It contains an array of CORBA Any-Objects that can contain any 

kind of data and need to be casted to useful types such as int, char or double. While 

read_module_orb returns one array with entries, illustrated in figure 5.20 (right hand side), 

calling read_allm odules_orb  wraps up the entries of all devices in a superordinate array 

(left hand side), which is terminated by a binary null.

Delegating these Any-Arrays directly to  the registered devices requires that every listener 

has to interpret, decode and cast the data first, which is error prone, non-intuitive and 

redundant. To resolve these issues, read_allm odules_orb  has been wrapped by the method 

g e tD ev iceE n tries  inside the Absdev Wrapper. This method returns a DeviceEntries-Object, 

which contains a DeviceEntry-list.

The next figure 5.21 shows the class EntryFactory, which is responsible for the creation of 

DeviceEntry-Objects. It accepts Any-Arrays of variable size from read_allm odules_orb  and 

returns user friendly DeviceEntry-objects. It also shows, that DeviceEntry is an abstract class 

and needs to be extended by a concrete implementation such as a DoubleEntry, IntegerEntry

state
device 1 size n
device 2

device n
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or StringEntry. Here the polymorphic capabilities of Java come into operation that allow 

inserting objects tha t inherit from DeviceEntry into generic collections of the type DeviceEn

try. Before this is done, the EntryFactory interprets the passed Any-Array, reads the datatype 

entry of each device and creates the corresponding DeviceEntry before inserting the casted val

ues. A DoubleEntry can so act as a container for REAL-v&iues, a IntegerEntry for IN T-  and 

LONG-values and a StringEntry for CHAR- and STRING-values. This solution ensures that 

no OIM needs to take care about complex data structures but can simply read the relevant 

data by intuitively named methods such as getD evicelD , getS tateC ode or ge tE n tryS ize . 

Additionally it is no longer possible to read data with the wrong datatype because DoubleEn

try, IntegerEntry and StringEntry exclusively provide type-safe getter methods for received 

values. Practical examples can be found in section 5.4.4, 5.4.5 and 5.4.6.

EntryFactory
U  anylnfoArray: Any[0..*]
! + EntryFactory( anylnfoArray : Any[0..*J)
| + createQ : DeviceEntry (
I + create( offset: i n t ) : DeviceEntry j
J  - createlntegerEntry( offset :  in t ) :  IntegerEntry j
- createDoubleEntry( o ffset: in t ) :  DoubleEntry j
- createStringEntry( o ffset: in t ) :  StringEntry

returns
SL

j DeviceEntry
I + INT : int = 1 {readonly}
! + LONG : int = 2 {readonly}
! + REAL : int = 5 {readonly}
I + CHAR : int = 16 {readonly}
| + STRING : int = 17 {readonly}
+ getDevicelD() : int 
+ getStateCode() : int 
+ getEntrySize() : int

EntryFactory creates Objects, 
inherited from DeviceEntry depending 
on the type parameter of the passed 

CORBA-Any-Array, returned by 
read__allmodules_orb or 

read module orb

DoubleEntry 
- doubleVaiueArray: double[0..*]
+ getDoubleValueArray() : double [0..*]

IntegerEntry 
- integerValueArray: int[0..*]
+ getlntegerValueArray() : int[0..*]

StringEntry
- stringValue: String
+ getStringValue() : String

Figure 5.21.: DeviceEntries and DeviceEntry Factory

The introduced wrapping mechanism allows the current state and value information for all 

devices to be acquired using the g e tD ev iceE n tries  method. This is done in a human 

readable way but so far without delegating data to listeners. The Caress absdev-Interface 

does not provide any callback functionality that can update the client with changes and so



226 Open Inspire in the Field

periodical polling of getDeviceEntries is the only valid solution to keep the system up to date. 

Caress distinguishes between slow, normal and fast devices which require a rest period of 10 

seconds, one second and below one second between subsequent polls. By reason that the 

Caress Client is no more used in the new design, all polling facilities needs to  be reproduced 

by Open Inspire. For this task the class DeviceTrigger (see figure 5.19) provides a timing 

source that subsequently calls the getD eviceE ntries-m ethod 9 times for normal and one 

time for slow devices with a period of one second. Explicitly reading fast devices is not 

necessary, because reading normal devices includes reading fast devices and reading slow 

devices includes all.

sd Event Processing (simplified)

:CaressTrigger | ;DeviceServer 

triggerDevices(triggerType) |------------   pt̂

:AbsdevWrapper :absdev J

Consecutively called \  
9 times with —  

TriggerType.NORMAL and 
1 time with 

TriggerType.SLOW

getDeviceEntries(readType)

return deviceEntries

read all modules orb J
return info_seq_t

createfinfo s e a t )  . i ^ i—. ;DeviceEntries

return deviceEntries ^

: CaressAbstractDevice!

iioop(0, deviceEntries. length) J
refresh(deviceEntry)

i 1 1

Figure 5.22.: Polling and the Event Delegation Model

The last missing part of the architecture is the delegation mechanism that forwards current 

data  to  corresponding listeners. Figure 5.22 shows a simplified survey of the event process

ing architecture. The first step is the periodical call of ge tD ev iceE n tries  method, which 

returns a DeviceEntries-object for the selected device type (normal or slow devices). This 

DeviceEntries-object contains a list of DeviceEntry which will be iterated whenever new data 

is available. During this iteration, the device ID  of each DeviceEntry is compared with all
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IDs of the registered AbstractDevice entries. Whenever the ID of the DeviceEntry matches 

the ID of the AbstractCaressDevice, the abstract method refresh of AbstractCaressDevice is 

called and receives the corresponding DeviceEntry-parameter. So each implementation of 

AbstractCaressDevice such as CaressPositioner, CaressCounter or CaressDetector autom at

ically receives a device related DeviceEntry whenever a device value changes.

This preliminary work decreases complexity and development time for all further implemen

tations of Caress devices. The following sections help understanding the introduced models 

by concrete implementations for all devices tha t are required to perform a scan.

5.4.4. The Caress Positioner OIM

The CaressPositioner is an Open Inspire Module tha t provides all functionality, required to 

control caress driven motors and read back encoder values. The next two paragraphs show 

the CaressPositioner from the users and developers point of view.

The Users Perspective

The users view of the CaressPositioner is a black box with some configuration parameters 

and a port that links to the CaressProxy, which is connected with the corresponding hardware 

server. Figure 5.23 shows the entry for the positioner ujs inside an OI Assembly.

<oim id="OMGS" type = "org-openinspire-oim-caress-positioner " 
version="1.3.0-m5">

<property narae="offset" value*"2073.96 " />
<property name = "minimum" value = "-200 .0" />
<property name="maximum" value*"200.0" />
<property name*"tolerance" value*"0.01" />
<property name*"devieeParameter" value*"OMGSu U 4 u lluOxOOflc000u lu 

4096u 2000u200u2u24u 50u0u0ulu3000ulul0u0u0u0" />
<port name*"CaressProxy" ref= " caressProxy"/>

</oim>

Figure 5.23.: Initialization of a Caress Positioner OIM using an OI Assembly

While o f f s e t ,  minimum, maximum and to le ra n c e  are already known from the DemoDe- 

tector and configured in the same way, the additional and m andatory property named 

deviceParam eter has been introduced for the CaressPositioner and configures the remote 

hardware. If a device has already been used with Caress, this initialization value can be



228 Open Inspire in the Field

assigned one-to-one from already existing Caress configuration files (see Appendix B.3.1 on 

page 314) or created for new devices following the rules from the Caress Hardware Guide 

[DPSR09].

The Developers Perspective

The developers focus is the internals of the OIM. He profits from the wrapped interfaces and 

structures that are provided by the CaressProxy. Figure 5.24 shows that only two classes are 

required to implement the whole functionality of a positioner.

org-openinspire-oim-domain-science g  J

« in te r fa c e »
Positioner

s

org-openinspire-oim-caress-proxy

AhstractCaressDevice
+ AbstractCaressDevice(initString : String) 
#  initDevice(server: DeviceServer)
+ refm sh(deviceE ntry: D eviceE ntry)

org-openinspire-c)im-caress-positioner a

1 CaressPositioner ! OarossPnsii innerD pvir.oL,-----—
|+ initComponent 
j+ shutdownComponent 
i# setState(state : StateCode)
|#  setError(error: String)
i# setPositionerErrorCode(c:PositionerErrorCode)

_____ _ __  — __

refresh(deviceEntry : DeviceEntry )
|# driveTo(targetVa!ue, tolerance) 
i# stopQ
f- convertlVlotorState(state : in t): StateCode

Figure 5.24.: Survey of the Caress Positioner Classes

The first class is the CaressPositioner, which is a realization of the interface Positioner in 

OIM org-openinspire-oim-domain-science (see figure 4.20 on page 126). It is the OIMs service 

class and provides the complete functionality of the Positioner-interface to all linked OIMs.

The second class CaressPositionerDevice is a generalization of the AhstractCaressDevice and 

owned by the CaressPositioner. When the positioner is initialized, it creates a CaressPosi- 

tionerDevice-object and registers the object in the device registry of the CaressProxy. The 

deviceParam eter-property found in the context file is passed to the constructor of Caress

PositionerDevice, which does all initialization in its super class AhstractCaressDevice.
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Now the registry takes care tha t refresh is called each time new positioner data  is available. 

In this situation the state and value of the positioner are read from the DeviceEntry, stored in 

a local variables and all listeners are informed about the change. Whenever a new position is 

available, the value is automatically corrected by means of the offset th a t has been configured 

for the OIM.

The other way around is calling operations a t the positioner. Beside several getters and 

setters, which are used to set local parameters, the two methods s ta r tP o s i t io n in g  and 

s to p P o s itio n in g  directly call the hardware server through the CaressProxy. Here the Ca- 

ressPositionerDevice profits from its generalization of AhstractCaressDevice and inherits the 

preconfigured Absdev Wrapper, which already wraps the complex Caress calls in a convenient 

way.

5.4.5. The Caress Counter OIM

The second integral device, required for modeling a complete diffraction scan is the Caress- 

Counter. A  counter in Caress is used for multiple purposes. The main task is the selection of 

a measurement frame for a detector. In this scenario, the counter is coupled with a detector 

tha t simultaneously starts detecting and stops after reaching a predefined setpoint. Here it 

is important to keep in mind that the hardware of a Caress counter is directly connected 

to the hardware of the detector. W ith Open Inspire it is in principle possible to combine 

a Caress detector with a software-based counter but it is recommended to always combine 

a CaressDetector and a CaressCounter to select an accurate detection frame to the split 

millisecond. Beside being a timing source, a counter can also represent a counter such as a 

Single Detector or Neutron Monitor. This design allows to model measurements where an 

area detector starts counting until a specific time is reached or a number of neutrons are 

detected with a monitor counter. It is also possible to use the Single Detector instead of 

an Area Detector and count incoming neutrons until a specific timer or the monitor counter 

reaches its target value.
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T h e  U sers  P e rsp e c tiv e

From the users perspective there is no big difference between the configuration of a Caress- 

Counter and a CaressPositioner. Figure 5.4.5 shows that the module configuration is even 

less complex since it exclusively requires the already known link to a CaressProxy and a de- 

viceParameter-propevty, used to initialize the counter. This example configures a hardware 

timer and is taken from an Assembly at instrument E7.

i <oim id="TIMl" ty p e = "org-openinspire-oim-caress-counter" 
version="1.3.0 - m 5 "> 

a < p ro p e r ty  name="deviceParameter" v a lu e = "TIMlu 116ullu0xl000000u2" />
3 <port name="CaressProxy" r e f = "CaressProxy" />
i </oim>

Figure 5.25.: Initialization of a Caress Counter OIM using an 01 Assembly 

T h e  D evelopers  P e rsp e c tiv e

The developers view of the counter is similar to the positioner with the difference that the 

service class CaressCounter is a realization of the Counter-interface of org-openinspire-oim- 

domain-science and that CaressCounterDevice does not inherit from AhstractCaressDevice 

but from AbstractCounterDevice. Normally it is sufficient that CaressCounterDevice directly 

inherits from AbstractCounterDevice but introducing the CaressCounterDevice between Ab

stractCounterDevice and CaressCounterDevice inside org-openinspire-oim-caress-proxy has 

some major advantages. The CaressDetector, which will be introduced in Section 5.4.6 is 

not only a detector but as well a counter. This means that counter specific functionality 

is required in CaressCounterDevice and CaressDetectorDevice. Introducing the superclass 

AbstractCounterDevice removes this redundancy and improves the maintainability.

The second more important reason for this design is an internal dependency between Caress 

counters. In Caress it is not possible to  start a counter itself. A counter is always part of a 

construct called Acquisition. Whenever an acquisition is started, one counter needs to be set 

as master counter and all other counters as slave. Slave counters always act in a passive way 

and do not stop when a setpoint is reached. They are used to count neutrons, or time, until a 

master counter reaches its setpoint. W ith Open Inspire it should be possible to start a counter
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org-openinspire-oim-domain-science

«interface»
Counter

startCountingQ
stopCountingQ
resetCounts()

org-openmspire-oim-caress-proxy

AhstractCaressDevice
+ AbstractCaressDevice(initString : String) 
# initDevice(server: DeviceServer)
+ refresh(deviceEntry: DeviceEntry)

A
AbstractCounterDe vice

+ startCounting(setpoint: int)
+ stopCountingO 
+ reset()
+ setToSlaveQ 
+ setAiICountersToSlave()
+ refreshStatefstate: StateCode)

org-openinspire-oim-caress-counter

CaressCounter

1+ initComponent 
j+ shutdownComponent 
|# setState(state: StateCode) 
j# setError(error; String)
|# setCounterErrorCode(c:CounterErrorCode)

CaressCounterDevice
K > + refresh(deviceEntry : DeviceEntry )

+ refreshState(deviceEntry : StateCode)

Figure 5.26.: Survey to the Caress Counter Classes

without taking care of internal dependencies. To achieve this, every time, s ta r tC o u n tin g  is 

invoked for a counter it is reset and loaded with the value submitted by s e tp o in t ,  all other 

counters are set to  slave state, the aforesaid counter is set to master state and an acquisition 

is started.

Setting all counters to slave is no trivial task since all counters are independent and do not 

know other counters. This is volitional to provide a clean object-oriented information hiding. 

Here the device server solves the problem as it can provide a list of all registered counters, 

which can be iterated to call the method setToSlave for each counter. Having a method 

in the DeviceServer th a t only returns counters is inflexible and vulnerable because devices 

could bypass the context and access any OIM. To prevent this issue, the caller needs to pass 

the class type for the requested objects, and can so only access objects with already known 

classes. Requesting objects of the class type CaressCounterDevice would therefore return
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all counters but this would not include the CaressDetectorDevice instances, which are also 

counters. Here the class AbstractCounterDevice solves the problem, because asking for all 

devices tha t inherit from AbstractCounterDevice returns all devices including detectors.

Calling the method s ta rtC o u n tin g , stopC ounting and rese tC o u n ts  now behave in the 

same way as any other counter although the underlying design is based on Caress’ completely 

different acquisition mechanism.

5.4.6. The Caress Detector OIM

The last missing component, which is required for a neutron scan setup is the area detector. 

While single detectors such as counting tubes are modeled as counters, area detectors are a 

new type of device. A detector consist of a neutron sensitive surface which can be accessed as 

a m atrix with two dimensionally arranged channels. The size of the m atrix can vary between 

different instruments and has a size of 256x256 for instrument E3 /  StressSpec and 128x128 

for instrument E7. It is a slow Caress device which allows the reading of the matrix with a 

minimum interval of 10 seconds. A Caress Detector starts counting when a new acquisition 

is started and stops when the master counter reaches its target value. This means for Open 

Inspire tha t the detection starts and stops with the active counter, which is important to 

remember whenever a scan is modeled. A detector itself is not only a detector but also a full 

OI Counter th a t hence also returns the integral value of all detector channels.

The Users Perspective

The configuration of the detector within the OI Assembly is nearly identical to the configura

tion of a counter. Figure 5.27 shows an entry that registers the area detector A D E T  for the 

instrument E7. The only difference between the counter and detector is the deviceParam eter 

th a t initializes a detector with name A D E T  of kind 12125 a t VME Bus 11 a t address 

0x000000, with a low high channel of 0x400 and 128x128 detector channels.
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<oim id="ADET" type="org-openinspire-oim-caress-detector" 
version^"1.3.0-m5">
<property name="deviceParameter" value="ADETU 121u lluOX8000000u 

0X400u 128u 128"/>
<port name="CaressProxy" ref= " CaressProxy"/>

</oim>

Figure 5.27.: Initialization of a Caress Detector OIM using an OI Assembly
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! « in te r fa c e » ; 1 « in te r fa c e »
Counter i j Detector

j startCounting() 
1 stopCountingQ 
1 resetCounts()
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J j c!earMatrix() j

org-openmspire-oim-caress-proxy

AhstractCaressDevice
+ AbstractCaressDevice(initString : String) 
# initDevice(server: DeviceServer)
+ refresh(deviceEntry: DeviceEntry)

£
AbstractCounterDevice

|+initComponent 
j.+ shutdownComponent 
|#  setState(state: StateCode) 
|# setError(error: String)

+ refresh(deviceEntry: DeviceEntry )
+ refreshState{deviceEntry - StateC ode) 
+ readDetectorMatrix(): int[Q..*]
+ getMaximumChannelCount(): int

+ startCounting(setpoint: int)
+ stopCounting()
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+ setToS!ave{)
+ setAI!CountersToSlave()
+ refreshState(state: S ta teC ode)

org-openmspire-oim-caress-detector

CaressDetectorDevice

Figure 5.28.: Survey to the Caress Detector Classes

The Developers Perspective

The class diagram in figure 5.28 shows th a t the basic layout of the detector is nearly identical 

to the counter. The CaressDetector primarily realizes the Detector-interface but the fact tha t 

the detector is also a counter, for the channels integral value, suggests that the detector should 

be additionally available as a counter. This is done by the realization of the Counter-interface. 

To remove redundancy for the counter implementation and mark the detector as a counter, the 

CaressDetectorDevice inherits from AbstractCounterDevice instead of AhstractCaressDevice. 

As written in Section 5.4.5, marking the detector in the device registry as a counter is

25Caress Device Kind 121 =  HMI X18 Detector
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necessary to allow setting the detectors integral counter to slave before starting a Caress 

acquisition.

5.4.7. Summary and Usage

Caress is one of the most comprehensive instrument control systems for neutron scattering 

experiments world wide. W ith support for over 130 different device types and a base of about 

164.000 lines of code it is expedient to use Caress for proving OI’s capabilities concerning the 

reusability of already existing legacy hardware functionality. In this regard it was possible to 

confirm th a t Caress based hardware can be used with Open Inspire in compliance with all 

previously defined requirements such as reusability, modularity, minimization of downtime 

and easy usability.

R eusability and Scalability

The support of Caress driven hardware allows scans to be performed with legacy hardware 

th a t was intentionally designed not to be controllable by other systems. The requirement 

th a t no interfaces or code of the legacy system has to be changed has been fulfilled and 

allows switching between Open Inspire and the Caress Control Software without changing 

the hardware setup. Users that already operate a Caress-controlled instrument and want to 

use additional third party hardware that is incompatible with Caress can therefore prevent 

downtime and migrate step by step to the new setup or even mix existing Caress hardware 

with new components. The reusability of all existing and working functionality not only saves 

several man-years of development but also provides access to devices which could otherwise 

not be reimplemented because of missing code or device documentation.

A different perspective shows the significantly improved system scalability. Open Inspire’s 

architecture allows a modular extension of the instrument capabilities proportionally to the 

increasing instrument demands. While external components can be simply added to Caress 

driven instruments, it also smoothes the reusability of Caress components in scenarios outside 

of the Caress development focus.
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R eduction of complexity

Open Inspire successfully hides the complexity of the internal structural and dynamical com

plexity of Caress. Using a Caress device such as a positioner, counter or detector requires 

nothing more than adding the OIM-tag for the corresponding device and setting the device 

specific parameters. The device configuration is realized by only one deviceParam eter-String 

th a t can be taken one-to-one from a Caress configuration file and significantly simplifies the 

configuration. The issue that Caress devices are sometimes spread to different device servers 

is solved by an additional Caress Proxy OIM. Each Caress OIM needs to be connected to a 

Proxy-OIM, which creates a link to a device server. This furthermore makes it possible to 

use multiple Caress instances in one Assembly a t the same time.

The developers perspective is a bit more complex than the users perspective. While the user 

needs to know how to configure a couple of black boxes, the developer requires a deeper insight 

into the Caress internals. Caress is not built in a way tha t allows the mapping of devices 

one-to-one to object-oriented Open Inspire Modules due to internal dependencies and hidden 

assumptions. To improve the maintainability and facilitate the development, all complexity 

has been shifted into the Proxy OIM. The structural and dynamical complexity is therefore 

wrapped at one position and made available by easy to use wrapper interfaces. Developers 

that only want to implement new Caress devices can therefore benefit from a second level of 

complexity reduction and need no further knowledge about Caress internals. The complete 

complexity required to map objects and dynamical code is therefore limited to  one OIM, 

which can be maintained by a specialist. At the best this code is never touched, in the worst 

case of bugs it can be fixed at one place.

Comparison w ith other systems

Caress is a rather complex example compared to the wrapping of other legacy systems. The 

interfacing of Caress to Open Inspire required much development work such as wrapping non 

object-oriented functionality by objects, converting state machines and dynamical code to 

transparent event mechanisms and disentangling hidden dependencies. While other systems 

such as SICS, TANGO or EPICS often only need a subset of this development work and at
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best objects and events need only to be wrapped, Caress is a good example that shows that 

even systems of high complexity can be integrated into the Open Inspire environment.

5.5. Experiment Simulation with McStas

Section 5.4 showed how a user can easily replace devices such as the DemoPositioners, De

mo Detectors and DemoCounters by their Caress equivalents and thus use real hardware in

stead of simulated demo devices. For a user it is not more than substituting the corresponding 

Device OIMs in the Assembly and reconfiguring the OI Properties, while the complexity of 

the internal implementation remains hidden.

This section shows how the same methodology can be applied to instrument and experiment 

simulations. W ith the Demo Devices, OIMs are already given that allow to simulate instru

ment hardware but with the limitation that these devices only provide artificial demo values 

and are not connected among each other to a physical context.

W ith the OIMs covered in this chapter it is now possible to run complete Monte-Carlo-based 

simulations that do not only produce random values but incorporate the instrument and 

experiment physics. Scans thus can be performed with real hardware using the Caress OIMs 

introduced in section 5.4 but also with virtual devices tha t provide a physical simulation of 

the environment including the neutron optics, specimen and devices such as detectors.

One use-case is to prepare, create and test a scan setup prior to the real experiment to identify 

problems, select scan windows or familiarize oneself with the environment. An other advanced 

use-case is not to just switch between virtual and real devices but to operate them parallely. 

A scan can hence for instance perform a real measurement and in parallel simulate the next 

scan step to identify points of interest tha t should be measured with a higher accuracy.

5.5.1. Realisation Ways

Section 2.4.3 on page 44 introduced the Monte-Carlo-Method for the simulation of beamlines 

as well as common neutron beamline simulation frameworks. From the three most popu

lar frameworks McStas, VITESS and NISP, the first one has been selected to model OI’s 

simulation OIMs. McStas has already been used to simulate the instruments E3, E 7  and
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StressSpec, runs on all important Operating Systems, comes with a comprehensive repository 

of components and can be easily coupled with OI through McStas’ Command Line Interface.

Writing a new simulation framework was no option because McStas already fulfills all re

quirements for the simulation framework. Benefitting from a probably better integration in 

OI is disproportionate to the unnecessary time effort and redundancy.

The following two subsections introduce two different ways to approach the integration of 

McStas with Open Inspire. The first one separates the physical model of the instrument 

from the model tha t represents the hard- and software. The second one uses OI to model 

both the physical and control system setup and creates the McStas configuration on-the-fly.

Interfacing the McStas Simulation Engine

McStas comes with a couple of tools that allow to run it entirely from the command line. 

This makes it possible to remote control an installed McStas instance from a Java program 

and thus from Open Inspire. To do this, an existing McStas instrument description or a 

new one can be created that contains the physical setup of the instrument. McStas allows to 

define variables inside this file whose actual values can be passed to the McStas simulation 

engine. This for instance allows to pass the positions of positioners, the size of a detector 

or the number of neutron counts to the simulation engine and to create a simulation output 

for the specific parametrized scan. During the simulation, the results such as the calculated 

detector matrix are written to a file and can be read back for further processing.

Modeling the complete Experiment with Open Inspire

An other way is to model the complete instrument entirely from OI. For this approach it 

is possible to make use from McStas’ modular configuration blocks inside the instrument 

description file. For each component type, a corresponding OIM need to be created that 

comes with the same configuration options, modeled as OlProperties. These configuration 

values are read during the startup of the OI Assembly and used to create an instr-file. This 

will be compiled to an executable McStas instrument, which can then be handled in the same 

way as explained in the previous section.
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The advantages compared to the first approach are:

• No external instr-file is required since it is created on the fly.

• The complete instrument can be modeled using one configuration file, the OI Assembly.

• The Assembly-based setup allows to model a McStas instrument in a graphical way.

• It is possible to configure a McStas setup without knowing how to write an instr-file.

• The parameters and their validity can already be checked by the McStas OIMs so that 

misconfigurations, typos or syntax errors can be prevented and lead to fail-safety.

The disadvantages are:

• It makes only sense when a new experiment is created. For already existing simulations

it is easier to reuse the existing instr-file than  recreating a new setup.

• Existing instr-files can often not directly be converted to a setup that mirrors the device

based setup of the instrument. While the existing E3 simulation description directly 

reflects the real structure of the instrument by modeling the axes as component blocks, 

the EN G INX  setup interweaves the device parameters with the code.

• The mstr-file need to be recreated every time when the simulation is started. This

slows down the simulation but can be solved by cashing the setup and recompiling it 

only in the situation of changes.

• It is a high effort to create OIM equivalents for all McStas components. This can 

be solved by a conversion algorithm that parses the McStas component interfaces and 

creates corresponding OIMs that mirror the parameters as OlProperties.

To map the McStas component design entirely to Open Inspire Modules, another problem 

needs to  be solved. Figure 5.29 shows a snippet of the E3 instr-file (see Appendix B .4 .1  on 

page 316), which contains the definition of the positioner xT.

i COMPONENT xt_motor = A r m () AT (XT, 0, 0) RELATIVE zt.motor ROTATED 
(0, 0, 0) RELATIVE zt_motor

Figure 5.29.: Definition of the McStas COMPONENT xT
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Here is clearly seen tha t the axis is not only modeled as a McStas component from type 

Arm () but also comes with geometrical coordinates for the position and rotation in a three- 

dimensional room. A component can have an absolute position, which is indicated by the 

keyword ABSO LU TE  and a preceding coordinate or have a relative position to an other 

component such as the example’s positioner zt_motor. In the second case it is tagged with 

the keyword RE LA TIV E  and three values tha t describe the distance to the object it is relative 

to. To describe the rotation of an object it is beyond tha t possible to describe the rotation of 

the object using the keyword ROTATED. It is as well configured through three values for the 

three rotation axes and can in the same way be ABSO LU TE  or R E LA TIV E  to the rotation 

of an other object.

OIMs have no geometry informations by default, but these are necessary to describe the 

position of a McStas component when the instr-file should be created from the Assembly. 

One solution would be to add coordinates to each device but this has the drawback th a t the 

OIMs become overloaded with meta information when it is not necessary and th a t the OIMs 

become coupled to the specific McStas coordinate model. This is why it is more meaningful to 

create a separate Geometry OIM th a t holds the information about the position and rotation. 

When a position or rotation is relative, it can simply be linked to another object using an 

OlProperty. To create the relation between Geometry- and -Demce-OIMs, a Geometry OIM 

possesses an additional OlPort that can hold a reference to the OIM whose position shall 

be described. When the McStas simulation file is created, it is now possible to search for all 

Geometry OIMs in the Assembly, query the linked Device OIM and create the corresponding 

McStas component blocks. Each Geometry OIM can be queried for an absolute position. 

When the OIM is relative, all position and rotation offsets are accumulated by following the 

links to the next OIM with absolute position or rotation. The usage of Geometry OIMs is not 

only useful for the creation of McStas setups but can also be used to model the instrument 

geometry in a three-dimensional. For instance to view the setup by means of a CAD program.

5.5.2. McStas Components

For all instruments covered in this thesis, an existing McStas instr-file is already available. 

This and the fact that the ENG IN-X  McStas model cannot be simply converted to an Assem
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bly-based setup26 make it meaningful to implement the McStas OIMs using the first approach 

where an existing instrument file is loaded instead of generating it on the fly.

To make the Caress or Demo OIMs directly replaceable by McStas OIMs, the three OIMs 

McStasPositioner, McStasCounter and McStasDetector are available and derive from the 

corresponding interfaces from domain-science. Beside these OIMs, an additional OIM called 

McStasProxy handles the communication between the McStas OIMs and McStas. This con

cept is already known from the CaressProxy (section 5.4.3 on page 213). Since the instrument 

geometry is already defined inside the McStas mstr-file, no Geometry OIMs are required.

McStas Positioner

Since the McStasPositioner derives from the Positioner in domain-science it has the same 

base OlPropertes and OlPorts such as the CaressPositioner or DemoPositioner. The only 

difference in the configuration is the additional reference to the McStasProxy OIM, which 

queries the McStasPositioner for setpoints and updates its current position. While the Ca

ressPositioner has a delay between setting and reaching a setpoint due to concrete hardware 

tha t needs to be driven and the DemoPositioner has a delay because an internal thread sim

ulated the positioning, the McStasPositioner immediately reached the given setpoint. It is a 

container for the setpoint value that is queried from the McStas OIM and not a simulation 

of the positioners interness.

McStas Counter

Similar to the McStasPositioner, the McStas counter only holds the value for a neutron 

count that should be reached during the experiment and is passed to the McStas Simulation 

Engine. But this time, the count value does not directly reach the setpoint but is updated 

corresponding to the simulation state so th a t the actual simulated neutron count can be read. 

It is up to the simulation setup if a neutron counter or timer is used.

26Due to the already covered problem that the parameters are interwoven with the McStas code.
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McStas Detector

The McStasDetector is a facade to the actual detector values of the experiment. Is is autom at

ically updated by the McStasProxy when the matrix of the simulated 2D-detector changes. 

Due to a periodical update it always holds the current detector m atrix subject to the current 

update interval.

McStas Parameter

The McStasParameter is an additional OIM that allows to pass arbitrary String values to 

McSt.as. Until OIMs are available that reflect all possible McStas components it is with it 

possible to pass additional values such as a tem perature or the state of a switch.

McStas Proxy

The McStasProxy finally handles the communication between OI and McStas. Appendix 

B.1.1 (page 309) contains an example Assembly for a McStas simulation on E3 and appendix 

B.4.1 (page 316) the corresponding McStas mstr-file.

Configuring the McStasProxy is not more than setting three OlProperties. A path  to a 

folder where the simulation files are stored, the name of the instr-file and the name of the 

simulation output. To interlink the McStas OIMs with the McStasProxy, all McStas OIMs 

have a port named mcStasProxy, which accept a reference to a McStasProxy. W hen the 

McStasProxy is started, it reads and validates the corresponding instr-Sle and checks if the 

input parameters of the scan correlate with the ids of the McStasPositioner, McStasDetectors 

and McStas Counters. If the file is valid, OI calls the McStas compiler to create an executable 

simulation.

5.5.3. Scanning with McStas

The scan engines (section 5.3 on page 195) that have already been used with the Caress- and 

Derao-OIMs, can be used in the same way with the McStas OIMs. The setup is identical 

with the one in figure 5.7 (page 196) except from the device OIMs, which are substituted by 

the McStas equivalents.
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Figure 5.30.: McStas Communication Diagram

Figure 5.30 shows the internal dataflow between the McStas OIMs, a Scan OIM and McStas 

itself. While step Initialization, Snapshot and Long-term Storage of the demonstration scan 

(figure 5.8 on page 198) are identical for all Device OIMs, the internal realization of the data 

flow during the positioning and detection makes the difference.

P o s i t i o n i n g : When the scan reaches the Positioning step, the setpoints are passed to 

the McStasPositioner OIMs but since no real hardware is driven, the current position values 

immediately follow the setpoints. The Sync, by Event command consequently directly unblocks 

so tha t the detection step follows without delay.

D e t e c t i o n : Prior to the detection, the time or number of neutrons used to limit the de

tection period are set as an OlProperty of a McStasCounter OIM. Starting the detection 

by calling s ta r tD e te c tin g  and s ta r tC o u n tin g  now triggers the McStasProxy to  read the 

setpoints from the McStasCounter and McStasPositioner OIMs. These values are passed as 

parameters to the simulation executable, which has been created from the instr-file.

To allow Open Inspire getting the simulation state while the simulation is running, the McStas 

component P rog ress_bar needs to be added to the instr-file2' . This component periodically 

writes the current count and detector values to a file. Otherwise the simulation runs in 

background and OI only gets a feedback when the simulation is complete. The McStasProxy 

automatically detects when the output files change, reads the current values and passes them

7Appendix B.4.1 on page 316 shows the usage of the McStas Progress_bar component.
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to the McStasCounter and McStasDetector OIMs. These in turn  notify listeners such as GUI 

widgets or a Scan OIM25.

OI comes with the three sample Assemblies E3-McStas, ENGINX-McStas and Vanadium 

Example. To run these Assemblies it is necessary to make sure the the instr-files are available 

at the path given as property of the McStasProxy and tha t McStas is installed and made 

available through the system path.

5 .5 .4 . L im ita tions, O p tim iza tio n s  and  O u tlook

The fact tha t original McStas instr-files can be used to model an experiment and the ability 

to pass arbitrary parameters makes it possible to control nearly any McStas experiment with 

Open Inspire. Unfortunately a technical limitation of the McStas Progress_bar component 

hinders OI to get status updates until 30% of the simulation is already progressed. This 

however has no effect on the result of the experiment but prevents the UI to update values 

during the first part of each instrument step.

McStas normally counts until a fixed number of neutrons have been processed but not until a 

number of neutrons reach an independent detector such as a monitor or until a specific time 

is reached. To get results for such scenarios it is possible to split the simulation process in 

a large number of short measurement steps. After each step the results are compared and 

checked if the target value has been reached. If this is true, the simulation stops and all values 

are accumulated and returned to the McStasProxy. Otherwise the simulation continues until 

the values or a measurement time is reached.

If a continuous texture analysis shall be performed with the McStas OIMs, it is not possible to 

manipulate the positioner axes while the simulation is running. This makes the result of the 

experiment with Caress differ from the results with McStas. The solution here is similar to 

the solution in the last paragraph by splitting the simulation into short measurement steps, 

driving the axes between these substeps and accumulating the measurement results. The 

drawback is a significantly reduced speed of the overall simulation process due to the larger 

number of individual simulation steps.

28For instance to refresh a widget that displays the detector matrix or to inform the Scan OIM that the current 
scan step has completed.
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5.6. Autonomous Instrument Alignment

The final example demonstrates Open Inspire’s strength in combining various technologies. 

It integrates a legacy system as well as new hardware, OIMs that perform mathematical 

operations, OI’s remote service infrastructure and uses a specialized User Interface Client.

The function of the setup is an automatic alignment of a specimen on a diffractometer’s 

goniometer table as well as the adjustment of slits that allow limiting the neutron beam to a 

defined shape and position where it shall intersect the sample.

5 .6 .1 . T h e  classical calib ration  p rocess

Figure 2.2 on page 26 shows a neutron diffractometer with a specimen (red crystal) on the 

goniometer table (figure 2.4 on page 28). Positioning this specimen exactly in the middle of 

the table is typically done manually by means of an optical levelling system (dumpy level). 

This alignment is time consuming because various measurements and calculations need to 

be performed so tha t the specimen remains in the center even when the u  axis (horizonal 

rotation) or the axes 0 (vertical rotation) and % (tilt) of the eulerian cradle (figure 2.7 on 

page 29) are driven.

When the sample is centered at the table, the neutron beam can pass through it, but as long 

as the beam comes directly from the neutron source without adjusting its size and shape, the 

scattering results are inaccurate29. This problem can be solved with help of a cadmium30 slit 

(figure 2.3 on page 27) between the source and the specimen. This slit constrains the beam 

usually to a cross-section of lx l  or 2x2 mm2 and can be adjusted using the three positioning 

axes P S T  (translation), PSR  (rotation) and PSD  (distance). Aligning theses axes is done by 

measuring the neutrons th a t pass the specimen while varying the slit axes until the majority 

of neutrons hit the sample at the desired position. For the neutron detection a single detector 

(2.6 on page 29) is mounted behind the specimen and for the selection of the desired sample 

position, a second slit is mounted at the sample position.

29The reason is the irregular shape of the neutron beam and its ambiguous intersection with the sample.
30Cadmium is a good neutron absorber and blocks neutrons from passing the slit around the opening.
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5 .6 .2 . T h e  A u to m ate d  A lignm en t - H ardw are S e tu p

While a manual instrument calibration 1) takes a considerable amount of time and 2) hardly 

reaches the same accuracy as a machine-driven alignment, an autom ated alignment solves 

the two stated problems and beyond tha t makes the instrument calibration reproducible. For 

such an autom ated alignment hardware enhancements have been applied to the instruments 

and extensively been covered within the scope of the diploma thesis [Flc05].

Optical Position Recognition

The first extension is an optical system that is pannable to the goniometer table and grabs 

the position of a sample. Figure 5.31 shows tha t the system consists of a camera th a t is 

directed towards the sample and a light source that illuminates the sample from the back.

Light Source

Camera-Arm

Specimen
Camera

Sample Table

Figure 5.31.: Calibration - Camera Setup Figure 5.32.: Pin and Slit

To gain a high recognition accuracy of the sample position, the whole setup has been opti

mized for a high-definition edge detection. The active optics thus consists of a monochrome 

camera with a resolution of 1280x1024 pixels and sensibility of 380 to 1000 nm. To avoid 

deformations during the variation of the sample distance, a telecentric objective with a re

production scale of 1:1 is mounted in front of the 2,3" Progressive Scan CCD sensor.

To process the data, which is transferred to a PC using a Siso Microenable I I I  frame grabber 

card, the image processing system Common Vision Blox [cvbl2] is used. The system is only 

available for Windows, which makes it necessary to separate the camera processing system 

from the Linux-based instrument control components. Software details follow in section 5.6.3.
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Calibration Standard Sample

The second extension is a calibration sample, which consists of a pin, powder-tube and slit. 

It is shown in figure 5.32 and can be mounted centrally on the goniometer table. Driving 

the slit in the neutron beam effects that neutrons which do not pass the central window are 

caught by the sidewise cadmium masks. Driving the sample in height of the pin or powder 

tube into the beam allows to create a predefined scattering result. And driving the pin in 

the camera’s range of vision allows to  accurately detect the position of the sample on the 

goniometer.

Primary Slit Automation

The third extension finally equips the three axes of the primary slit P ST , PSR  and PSD  

with motors and encoders. These allow to automatically drive the axes and read back their 

positions and are an important prerequisite for the automatic calibration of the beam-shape 

and position.

5 .6 .3 . T h e  A u to m ate d  A lignm en t - Softw are  S e tu p

Figure 5.33 shows an OI Assembly for a calibration setup. It includes controller OIMs for 

three calibration steps (orange), hardware proxies (blue), the ServiceRegistry OIM (grey), 

known from section 4.4.1 (page 141) and two helper OIMs (grey) that provide mathematical 

fitting and general calibration routines, which are shared between all calibration OIMs.

T he Caress Devices

The Assembly contains proxies for the goniometer positioners x T , yT , zT  and omgs as well 

as the primary slit axes P ST , PSR  and PSD. The detection is carried out by monitor-counter 

MON, which detects all neutrons tha t enter the experiment environment, and counter-tube 

SDET, which detects the neutrons that leave the experiment in beam direction (see paragraph

2.3.1 on page 29).
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Figure 5.33.: Calibration Assembly

The Camera Service

The CameraService OIM acts as a device proxy to the Optical Position Recognition System , 

which allows to obtain access to the camera picture and edge information. The camera system 

is restricted to run an Windows systems so that it has been decoupled from the Ol-Server 

using a web service. This does not only prevent OI in loosing its platform independency, it 

also allows tha t multiple devices can have read access to the camera server at the same time.

The camera server OI CamServer can be downloaded from the OI store31. It is realized in the 

form of a  C++ application and uses the library Common Vision Blox [cvbl2] from Stem m er 

Imaging to receive and process the image data. Beside a server-side GUI that displays the 

image and edge informations, a SOAP based webservice has been introduced to publish the 

information over a network connection. OI is thus able to receive the current camera image 

and to remotely access the image processing capabilities of CVB. Figure 5.35 shows the values 

of the goniometer axes and a live view of the camera as part of the OI Monitoring Client The 

silhouette projection (page 26 of [BK04]) of the calibration pin allows to clearly differentiate

31The OI CamServer in its current version 1.23 can be found in the sources section of the OI webportal.
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Figure 5.34.: Optical Alignment - Side-face Figure 5.35.: Camera Monitoring Client

between the dark pixels of the pin and the light background. Considering the edges of the 

projection it is possible to correlate the detected32 edges of the pin with its absolute position 

on the goniometer table. Figure 5.34 shows that an uncentered pin on the goniometer results 

in horizontally oscillating movement of the grey bar in the image.

Fitting- and Calibration Routines

Since it is not possible to optically evaluate the exact positions in a three-dimensional way, 

a mathematical model is necessary tha t establishes the relationship between the 2D-camera 

image, the relative values of the Positioner axes and the absolute position of the calibration 

sample. For this purpose, a model function is built that links the edge locations of the image 

to  the values of the positioner axes. After collecting a sufficient number of measured edge- 

and its respective Positioner-values, it is hence possible to determine the unknown variables 

of the model function using a fitting algorithm.

The fact that such a fitting algorithm is predestinated to be reused in other use-cases, such 

as the slit alignment, makes it meaningful to implement it in a general way, which allows 

to share it between different scenarios. OI hence comes with the OIM org-openinspire-oim- 

lib-math-fitting, which provides an optimized Levenberg-Marquard-based least-square fitting 

algorithm. The algorithm has been ported from Numerical Recipes in C [FPTV92] to Java,

32OI allows three edge-detection mechanisms based on the threshold, contrast and 2nd derivation, which are 
described in more details on page 68 of [FleOS].
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optimized and equipped with a customizable interface. Each OIM that requires to use the 

algorithm can add it as OIM dependency and use it with an arbitrary model function.

Several interfaces and algorithms, which would be redundant in all calibration steps but 

uninteresting outside the context of an instrument alignment have been added to the OIM 

org-openinspire-oim-lib-calibration. This is added as dependency for all alignment steps.

5 .6 .4 . T h e  A lignm en t S te p s

Figure 5.33 shows tha t each step of the alignment process comes in form of an independent 

OIMs. Since they all inherit from the interface StateControlFeedback (domain-science), they 

come with s ta r t - ,  s to p  - methods and a registry that allows to register listeners for status 

messages. This allows them to be controlled with the same StateControlFeedback-widgets used 

for all other scans. Customized widgets tha t bind against the interfaces of the individual steps 

are as well available and visible in screenshot 5.40 at the end of the chapter.

The following sections give a brief survey of the calibration steps33:

Step 1: Orientation Alignment

Performing an Orientation Alignment is a precondition for all other calibration steps and is 

thus always the first step. It identifies the orientation of the translation axes in relation to 

the camera picture, because the manifold number of positioner axes are indeed mounted at 

defined positions but their global orientations and correlations vary between the instruments. 

Reasons are different hard- and software settings, differences in the setup of the motors and 

gears as well as varying encoder orientations. Driving omgs in positive direction can thus 

result in a clockwise- but as well in a counter-clockwise rotation and the global direction of 

a translation axis such as x T  not only depends on the setup but also on the current rotation 

of the goniometer table34

The Orientation Alignment provides an automatic evaluation of the axes parameters so that 

the subsequent calibration steps are applicable on all instruments, independent from their

33More details to the mathematical backgrounds can be found in [FleOo] on page 134 to page 140.
34Figure 2.2 (page 26) shows that xT  and y T  are both mounted on the goniometer and can thus be rotated 

using the table rotation axis omgs. Driving omgs 180° e.g. inverts their directions in the video image.



250 Open Inspire in the Field

setups. Figure 5.33 shows that the OrientationAlignment uses the four Caress positioners 

xT, yT , zT  and omgs, the CameraService as well as the mathematical Fitting OIM.

Prerequisite for the orientation determination is tha t the calibration sample is mounted on the 

goniometer table and that its pin is visible in the camera image. The Orientation Alignment 

now drives the pin for 12 equidistant distributed w-positions over a measurement range of 

180° to different x  and y positions and optically determines the horizontal center of the pin. 

W ith these measurement values it is possible to calculate the scale-factors, offsets and the 

horizontal alignment of the axes in relation to the camera orientation.

P(w, x T , yT) = P c e n t e r  +  Fx(xT  + xo)cos(uj +  u;o) +  Fy(yT  +  yo)sin(uj +  wo) (5.1)

Equation 5.1 shows the model function, which is fitted using the Levenberg-Marquard (org- 

openinspire-oim-lib-math-fitting). P  describes the optical edge position of the pin center as 

a function of the Positioner axes u , x T  and yT. The refinable parameters are the linear 

offsets xq, 2/0 and a/o, the scale factors Fx and Fy of the translation axes and the center of the 

goniometer table P c e n t e r  in camera coordinates. W ith 16 measurement positions, it is already 

possible to position the pin with an accuracy of «  10 pm  on the goniometer table’s center.

S tep 2: Pin Centering

If the results of the Orientation Alignment steps are already available, it is possible to use 

the information about the relation between camera pixels and the translation axes as well as 

the scale factors to perform a simplified centering of a cylindrical sample. Responsible for 

the simplified centering is the OIM org-openinspire-oim-calibration-pinCentering. It makes 

use of the same hardware setup, which has already been introduced in Step 1 : Orientation 

Alignment but differs in its internal software algorithm.

P ( u )  =  P c e n t e r  +  A  sin (u  +  <f>) (5.2)

This algorithm rotates only u  180° and collects edge data for 36 w-positions. If the sample 

is not centered, the edges sinusoidally oscillate around the center. This behavior can be
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described by equation 5.2. Fitting this function results in Amplitude A, which represents 

the maximal deflection of the cylinder’s center P  from the goniometer table’s center Pcenter 

and the phase <j>, which contains the information about the compensatable motion of x T  and 

yT . More detailed information about the mathematics and used algorithms can be found in 

thesis [Fle05] and the org-openinspire-oim-calibration-pinCentering OIM.

Step 2: Primary Slit Alignment

The third alignment step is subdivided in three sub steps and made available through the 

OIM org-openinspire-oim-calibration-beamOrientation. It automatically aligns the primary 

slit (see figure 2.3 on page 27) so that the neutron beam intersects the specimen with a 

defined shape at a defined position.

To achieve it, it is at first necessary to determine the direction of the beam. The calibration 

sample (figure 5.32) is for this purpose mounted at the previously determined center of the 

goniometer table. However, this time the axis z T  is positioned in such a way th a t the neutron 

beam hits the slit of the calibration sample. Now us is rotated in 72 steps around an angle of 

180° and the neutron intensity at single detector SDET is measured.
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"S 

8
^  4 0 0 .0 -4̂

200.0  -

0.0 -

- 200.0 - 100.0 0.0 100.0 200.0

omega

Figure 5.36.: SDET Intensity versus Omega (SLIT Alignment)
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Figure 5.36 shows the result of the measurement in the full co range of 360°. The wide 

maximum at ~ 0 °  show the position where the beam passes the center of the slit while the 

w-positions -100° and 80° show artifacts that occur when the slit is aligned in parallel to the 

beam. The function can approximatively be expressed with help of the equation 5.3.

T( , . - ( u - u o)2 . - (o ; -u ;o  +  900)2 —(u -  lj0 -  90°)2I (u )  =  A0 e x p -----^ - 2 -------+  Ai e x p  ^ - 3 ----- -J- -  exp-- i ------— 5----------------(5.3)

Figure 5.37 shows the setup with the calibration sample in the center of the goniometer table. 

Due to the size of the beam it is not necessary that the center of the beam exactly hits the 

center of the slit. To refine the results and to get the exact position of the maximum, it is 

now possible to drive the sample in direction of the single detector SDET and to  continue 

the measurement as shown in figure 5.38. W ith the information of the first scan it is now 

sufficient to rotate the slit with a smaller angular interval of about 10°.

Single Detector

PST
PSR

Single Detector

•O

PSDU

PST

Figure 5.37.: Primary Slit Alignment 1 Figure 5.38.: Primary Slit Alignment 2

W ith the calibration sample at the position where the beam shall hit the specimen it is now 

possible to align the primary slit. For this purpose, the aperture seen in the bottom left corner
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of photo 2.3 on page 27 is moved into the beam to restrict it to the size of the apertures 

opening. Figure 5.39 shows that the slit can be moved forward and backward using the axis 

Prim ary Slit Distance (PSD) so tha t it can be positioned directly at the position where the 

beam leaves the beam-tube and a position directly in front of the sample.

© • Specimen

Cadmium-Mask
P SD h

PST
PSR

Neutron Beam

Figure 5.39.: Calibration - Beam, Orientation

For these both PSD positions, the axis Primary Slit Translation (PST) is moved transver- 

sally to the neutron beam. The single detector SDET is now used to measure the neutron 

intensity for several PST positions analogous to the previous measurement with the slit of the 

calibration sample. The resulting gaussian curves can subsequently be fitted to obtain the 

PST positions where the neutron maximums occur. W ith these two positions it is possible 

to geometrically calculate the beam angle and to respectively rotate the axis Prim ary Slit 

Rotation (PSR). The alignment of the PST axis and the PSR axis can now be repeated until 

the primary slit construction is aligned with the desired accuracy.

The beam is now restricted to the shape of the primary slit and intersects the sample a t the 

favored position. Due to the previous centering it is now possible to horizontally rotate the 

specimen using the omgs axis and to vertically rotate and tilt it using the eulerian cradle’s 

phi and chi axes while the intersection with the beam remains in the center of the sample.
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5 .6 .5 . T h e  U ser Interface

Figure 5.33 on page 247 shows that the Registry Service registry is used to publish the service 

interfaces of all OIMs over the network. Figure 5.40 shows a GU ! that acts as remote client 

for the calibration process. It can be connected to the remote registry and provides widgets 

that show the positioner information, a live camera view and a wizard for the configuration 

and execution of the calibration steps.
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F igure 5.40.: Calibration GUI Client

5 .6 .6 . U sa g e  and L im itations

The setup is either partially or completely in use at the instruments E3 and E7  (! I ! in 

Berlin), at StressSpec (PRM-1! Garching), at XECSA (South Africa) and ANSTO (Australia).

As quoted on page 249, the setup allows to position a specimen with an accuracy of 1 0  pm  

(E3, F7, StressSpec). Depending on the user requirements and nature of the experiment, a 

higher resolution is reachable by decreasing the positioner tolerances, which however increases 

the calibration duration, since more positioning steps are required. The overall accuracy is 

limited by the accuracy of the positioners, encoders and the camera resolution.



CHAPTER

S I X

SUMMARY, CONCLUSION AND OUTLOOK

6.1. Summary

The PhD thesis has demonstrated that it is possible to answer the research question by 

introducing a new software and collaboration concept that was proved by the realization of 

the novel instrument control and data acquisition system Open Inspire.

Chapter 2 contains the current most complete review of instrument software for neutron 

diffraction experiments. The concepts learned from these systems, interviews with instrument 

responsibles and the evaluation of contemporary best practices in software design motivated 

the creation of the Software Requirements Specification found in chapter 3. As a starting 

point for everyone who wants to develop an instrument system it contains a stakeholder 

analysis, summarizes the goals and project constraints and a comprehensive list of functional 

and non-functional requirements. Chapter 4 introduces the reference implementation of a 

novel instrument system, which meets all stated functional requirements and more than  99% 

of the ~115 non-functional requirements. The system named Open Inspire builds on a flexible 

and extensible Inversion of Cont rol-based container architecture and comes with a cloud-based 

collaboration infrastructure to tackle the requirements on a system that reduces redundancy 

by sharing common functionality. Particular challenges such as meeting requirement [El 3.1.7],
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which demands that the system combines the power of a monolithic system with the flexibility 

of a modular system, have been tackled through OI’s Inversion of Control-based container 

architecture. The time constraints of requirement p  *2.3.2], p  2.3.3], p  2.3.4], p  2.3.5] and p  

2.3.6] have been verified with help of students. Only the documentation requirement p  2.3.9]1 

and the automatic continuation of experiments after crashes p  3.4.3]2 have been shifted to a 

later release. Chapter 5 demonstrates, that the system design and implementation is usable 

in real instrument environments. All requested features such as a flexible UI, the ability 

to  store measurement data in the NeXus format, the execution of scans, the compatibility 

with legacy hardware, the simulation of experiments and the ability to quickly implement 

completely new features have been achieved. New functionality can be developed by the 

community, published in the form of OIMs using the OI store and immediately be used by 

everyone who operates an OI server or wants to use the OIM as library in its own development.

6.2. Conclusion

This conclusion section briefly summarizes the advantages resulting from the work of the 

thesis. Instead of an evaluation of the individual chapters, a form has been chosen that 

illustrates the impact of the work on the stakeholders (p. 58) that may be confronted with 

the system.

6 .2 .1 . T h e  O u tco m e  for R esearch  Facilities

The first directly affected group form the Research Facilities or establishments that operate 

the instrument system. They already profit from the summary of instrument systems in 

chapter 2, which facilitates the decision if an existing system shall be introduced.

If Open Inspire is to be introduced as a new system, the SRS in chapter 3 can be used to 

verify if the operators desired requirements match the requirements met by Open Inspire. If 

so, they can browse the OI store to identify the modules that are required for the experiments 

th a t shall be performed at the instruments. If functionality is not yet provided by available 

OIMs, such as hardware support for proprietary in-house devices, it can be commissioned

1The documentation will be extracted from the thesis when it has been published.
2[E3 3.4.3] requires instructing OIM developers to integrate mechanisms that save the OIM state after a crash.



6.2 Conclusion 257

for development. The advantage is tha t only necessary functionality needs to be developed 

and that the development can be split into small OIM-based working packages. This allows 

a parallel development, a better distribution of the work and results in a faster and more 

focused development process. Publishing the modules over the store lets other institutes 

benefit from new developments, so tha t a natural symbioses emerges, which again lowers 

expenses and prevents development redundancy. If multiple institutes use the same modules 

it is furthermore presumable tha t the functionality is liable to more tests and corporate 

enhancements. Updates and bug fixes are centrally available and automatically installed by 

the OI container when they are requested, which simplifies the overall update-process. Open 

Inspire allows the mixing of modules and operating of new and legacy hardware in parallel, 

which in turn, allows the smooth application of upgrades step-by-step, rather than requiring 

the shutting down of the instrument for the replacement of the whole instrument software. 

It is the only instrument system that provides such a level of collaboration and sharing of 

functionality while being Open Source and free for everyone to inspect the code and making 

sure tha t the code satisfies all security and quality interests.

Institutes usually plan to use instrument software for a large period of time such as 10 or 

20 years. Open Inspire does not need a global maintainer and even if the development of 

the core project is stopped, it has no effect on the further process, because OI modules are 

decoupled from the core and as long the community provides new features, the development 

can continue. To be independent from the global OI store it is furthermore possible to mirror 

it in-house and if OI is replaced by another system, it is possible to convert OIMs to plain 

Java libraries and reuse them in other developments.

W ith the examples in chapter 6, OIMs are available that provide the base functionalities 

for any neutron experiment and, as with the calibration example, a new feature is directly 

usable so that the setup time of experiments is significantly reduced and the quality and the 

reproducibility improved.
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6 .2 .2 . T h e  O u tco m e  for E xperim en ters  and  O bservers

Experimenters will benefit in a similar way to the research facilities from the summary of 

instrument systems in chapter 2 because it helps selecting the software that is capable of 

performing a particular research experiment in the preferred way. If Open Inspire has been 

selected as experiment software, there are two ways for the user to prepare himself for the 

experiment, dependent on the privileges the administrator gives to the experimenter. The 

first way is to use a preconfigured experiment setup. The configurator in this case has 

already setup the whole experiment assembly and restricts the user being only able to start 

/  stop the experiment, configure it using the controls provided by a preselected UI and 

collect the measurement data. The second way gives the user the flexibility to create a 

customized OI Assembly. For this purpose it is possible to browse the OI store, pick up 

desired OIMs and assemble them for a particular experiment assembly or simply modify an 

existing OI Assembly, which might come preconfigured by the instrument configurator or 

may be downloaded from the store. All OIMs hide their complexity behind simple interfaces 

and can be configured and interlinked through an XML-based Assembly file. Open Inspire is 

hence the only instrument system that allows the creation of highly customized experiment 

setups without programming knowledge. Only Lab View has similar capabilities of allowing to 

graphically wire and configure instruments but LabVIEW  is not a free Open Source product 

and does not come with a cloud-based component store. Beyond that, LabVIEW  is not 

supported on all platforms in the same way3.

Open Inspire in contrast can be used in the same way on Windows, UNIX, Linux and Mac OS 

and is freely installable on any computer. Experimenters can hence perform dry-runs on their 

own equipment and simply switch between a simulated and real hardware-based experiment 

to identify issues in advance. All OIMs and OILs stated in an Assembly are automatically 

downloaded so tha t a user does not need to take care if the software is identically setup on its 

own device. If a scan is running, the network service allows the monitoring of the experiment 

remotely from any device4 a t any location tha t has network access to the OI Application 

Server.

3Many extensions for example only run on Windows and are only partially supported on other platforms.
4A device can for instance be a computer, a smartphone or a tablet.
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6 .2 .3 . T h e  O u tco m e  for A dm in is tra to rs  and  C onfigu ra to rs

Administrators and Configurators especially benefit from Open Inspire’s maintainability and 

security features.

Maintainability

Open Inspire is easy and quick to install due to its platform independency and thus removes 

the need to buy new hardware since it is runnable on existing instrument computers. To install 

OIMs and OILs, no additional work its necessary since they are automatically downloaded 

and installed from the central OI Store. The collaboration features allow the publishing of 

Assemblies as blueprints and the sharing of them with other Configurators. In most situations, 

only minor modifications such as the replacement of the Hardware Proxy OIMs are necessary 

to create copies of other instrument setups.

If Open Inspire is integrated into existing environments it is possible to migrate instruments 

step-by-step, to smoothly upgrade partial functionality and to operate new and legacy func

tionality in parallel. A legacy system such as Caress can hence remain in operation while a 

subset of functionality is carried out by OI thereby making use of exiting Caress hardware. 

Complete migrations in one step are thus unnecessary, which saves money, allows the use of 

functionality that cannot be migrated to OI and prevents the need for shutdowns to perform 

upgrades.

If functionality needs to be updated, OI automatically performs OIM and OIL updates in 

the background by automatically resolving all dependencies, downloading the correct version 

and installing them without any intervention and without the need to shutdown the system. 

If a new version of an OIM is requested by an Assembly, it can be installed separately beside 

older versions so that other Assemblies can still link to the version they are designed for.

Security and Stability

To prevent hardware damage or the unprivileged access to file resources, users can be re

stricted using the role management of OI’s Authentication Service (page 140). Users can, 

for example, be restricted in their right to access the instrument from external networks, be
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limited to access specific hardware or disallowed to edit Assemblies. The administrator can 

for instance restrict the user to the usage of a fixed set of preconfigured Assemblies without 

allowing them  to create or modify them. Users need to login with a username and a password 

and obtain access to the functionality, which has been approved by the administrator. To 

prevent the read-out of passwords, they are stored in encrypted form.

To restrict the network access, OI intentionally uses only a limited number of fixed network 

ports that can be filtered, forwarded or easily tunnels through any firewall to prevent denial 

of service attacks or intrusion. If no internet access is available inside a restricted instrument 

network, it is possible to create a locally accessible mirror of the OI store, which also allows 

filtering particular unwanted modules and save bandwidth.

Due to the central bug reporting, issue tracking tools and continuous integration tools, it is not 

necessary to  provide a local development infrastructure. Handling bugs and issues centrally 

allows the collaborative increase of code quality by reporting problems or submitting patches. 

If a bug caused invalid measurement results it is possible to scan Assemblies if a faulty OIM 

has been used and in particular situations to subsequently correct systematic errors in existing 

measurements files. This is only possible since a measurement can be associated with an 

Assembly th a t exactly reproduces the setup at the time of the measurement. Finding issues 

can be eased with help of the log files th a t are written during the execution of Open Inspire.

6 .2 .4 . T h e  O u tco m e  for D evelopers and  S oftw are Engineers and  T es te rs

Open Inspires (OIs) has been designed to be quickly and easily extensible without loos

ing flexibility. A developer can checkout OI from its Mercurial Repository using hg clone 

h t tp : / /h g .o p e n in s p i r e .o r g  o i and build it with the command an t b u ild . OI autom at

ically detects the OS and architecture, downloads platform specific dependencies and builds 

the system. If the developer wants to use an Integrated Development Environment, it is fur

thermore possible to  let OI create all necessary project files to open it with the NetBeans IDE. 

W ith help of the preconfigured toolchain and IDE integration, it is possible to quickly start 

with the development and to make use of the advanced development features of NetBeans.

http://hg.openinspire.org
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It is possible to setup the complete environment in less then 30 minutes, which matches 

requirement p  2.3.4].

If an OIM is to be developed, a developer can clone an OIM tem plate0, select a device from 

the Science Domain and let NetBeans create all method bodies tha t are to be implemented 

with custom functionality. If an OIM outside the Science Domain shall be developed, it 

is only necessary to tag the methods that should act as interface to the outside with the 

Annotations OOIPort and OOIProperty. The experiment afterwards sees the OIM as a black 

box with several configuration properties and ports tha t allow the interlinking of OIMs to an 

Assembly. Setting the name, description, icon and configuring of the OIM’s dependencies can 

be done using a properties file. No further proprietary interface definitions need to be created 

and no mandatory interfaces or communication functionality needs to be implemented, which 

allows a quick understanding of the concepts and enables an immediate start on the actual 

programming. The setup of a new OIM should hence not exceed 30 minutes and thereby 

fulfills requirement p  2.3.5]. Understanding the relevant anatomy of an OIM should not take 

more than 15 minutes.

If an OIM or OIL is published over the OI Store, every developer can use the functionality and 

add it as dependency. Especially for OILs, this has advantages, since libraries can be shared 

between modules, only need to be downloaded once and can be updated globally so th a t every 

OIM that depends on an OIL automatically profits from bug fixes and enhancements. W ith 

the central issue tracker JIRA  and code review tool Crucible, it is possible to collaboratively 

fix bugs, review code and suggest features and enhancements directly inside the code.

6.3. Outlook

While the design of Open Inspire is considered complete and requiring no further modifica

tions, the implementation is a prototype and can thus be enhanced in several aspects. In the 

context of the thesis, it was necessary to concentrate on main aspects, so that several topics 

are only briefly touched on, to the extent to make OI work. This concerns in particular the 

UI implementations, a revision and extension of OI’s Domains (page 123), an integration

5The name of the OIM Template is org-openinspire-oim -tem plates-m odule
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of the simulation implementation (page 236) and the support for additional scripting and 

progr amming-languages.

6 .3 .1 . OI In fra s tru c tu re  E n h an cem en ts

The design and implementation of the OI Application Server is considered complete. Al

though the server is fast enough to allow an uninterrupted operation, there is still potential 

to speed up the container startup. W ith help of caching mechanisms, preloading, concurrent 

tasks as well as the usage of advanced libraries tha t improve the reflection and thus the in

jection process, it is still considered possible to  speedup the container, so that it starts up to 

40 times faster.

Concerning the OIMs and OIL it is meaningful to update all meta descriptions and to add 

a  description of the module features and usage. Currently all descriptions are in english so 

th a t a translation could be added in multiple languages using a translation file. Some OILs 

come with a license file so that a mechanism needs to be added that allows users to accept it 

and comply with the license.

The prototype exclusively uses OIMs, which are written in Java. The design however also 

allows the use of any other of the scripting languages supported by the ,TSR 223 such as 

Jython, Groovy, Ruby or Java Script since they all compile to standard Java classes. To 

support these scripting languages, examples need to be provided showing how to create an 

OIM. To improve the development process, it is hence meaningful to provide a toolchain to 

build OIMs in other languages and to extend the IDE integration with support for the new 

type of OIMs. In an additional step it is even possible to  run OIMs in completely different 

languages such as C /  C++. Here it is however necessary to provide means that allow 

bridging between the interfaces of the custom language and Java.

Since custom languages cannot implement the Java interfaces of the Domain Science or other 

Domains it is necessary to generate interfaces for other languages or corresponding function 

bodies. Here it would be possible to switch to XML files that describe the interfaces of a 

Domain  and use them to create the interfaces for the specific languages. Java interfaces how



6.3 Outlook 263

ever have the advantage that their information can be easily converted to other languages so 

tha t it is reasonable to keep them as standard interface for all conversions in other languages.

W ith this paradigm, OI would be the only system that is even language independent, allowing 

users to select their preferred language and enabling access and opening the system to the 

integration of existing functionality written in other languages.

Services and Configuration

The OI server uses a number of global services (see page 139), which are pluggable but 

only registrable directly on the code base. This makes it more complicated for users to, for 

example, replace the network model. Since these services are essential for the operation of the 

container, they cannot be simply dropped since they mandatorily need to be loaded at the 

server startup. Here it would be possible to move the functionality to OIMs and introduce a 

construct that allows the automatic loading of these OIMs independently from the Container 

Lifecycle, prior to when the server starts up.

T h e  i n d i v i d u a l  s e r v ic e s  c o u l d  b e  e n h a n c e d  b y  s e v e r a l  n e w  f e a t u r e s :

To improve the usage of the Authentication Service, a better interface could be developed 

tha t is accessible from OIMs to query the users privileges. A new example template could 

thus help to understand how to deal with user roles and privileges.

Improvements for the Container Service would be a more verbose feedback and control inter

face, which for example provides the client with descriptions and graphical symbols for the 

individual steps, which can be displayed when an Assembly is started, or more methods to 

interact with the container.

For the network service currently only one example is provided tha t uses an XML-based 

protocol for the data transfer. The advantage is that it is usable with all programming 

languages. The drawback is its overhead since it is text-based and hence not very efficient. 

Here it would be possible to use a binary protocol such as provided by ZeroC Ice [HenO l]. 

This middleware solution is based on a fast binary protocol and provides functionality to
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generate interfaces for all common programming languages. In contrast to CORBA, it is 

more firewall friendly, because it can be simply restricted to a selected set of network ports.

The third global service is the Logging Service. This service writes log files dependent on 

the set log level. To access the log files from the client, the FileSystemService is used. This 

service could however be improved by adding the means to remotely query log files and apply 

dynamic filters to them.

The configuration is currently only accessible by editing the configuration files on the servers 

filesystem. To allow clients to configure the OI Server remotely, an interface could be added, 

which would allow access to the configuration by the client and provide an easy to use user 

interface, depending on the users privileges.

6 .3 .2 . Library an d  M edia  P la tfo rm

To provide a central access to documentation and resources, the Open Inspire Library and 

Media Platform (OI-LAMP) has been introduced in section 4.5. While the infrastructure 

at h ttp ://w w w .o p e n in sp ire .o rg  is already in productive use, it still lacks content. This 

will change after the thesis is submitted, because parts of it will be published as PDF and 

HTML-based web documentation.

Furthermore it is planned to publish screencasts that show how to install 01 on different 

platforms, how to configure it and how to develop OIMs. The current introductory videos 

(01 2009) will be removed and replaced by videos that reflect the final state of 01. To 

quickly and easily make oneself familiar with OI, a preconfigured virtual machine will be 

published, which comes with multiple examples Assemblies and illustrations of the usage of 

OI in different scenarios.

The Download section allows the obtaining of prebuilt OI installers for multiple platforms. 

Currently customized installers are available for Windows, Gentoo/Sabayon Linux and plat

form independent installation packages for Mac OSX and all other Linux distributions. It 

is planned to extend the list with a native OSX installation package and packages for the 

common Linux distributions in form of deb-packages (Debian, Ubuntu, M int) and rpm (Red 

Hat, Centos, SUSE). The automatic creation of installation packages, with the help of the

http://www.openinspire.org
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continuous build system, guarantees that all packages will always come in the latest version. 

Since OI is free Open Source software, it is possible to publish OI using distribution specific 

package databases.

As a new category, it is planned to publish the list of software systems from section 2.4 as 

a centrally maintained directory. The size of the thesis did not allow the evaluation of all 

systems, so tha t this directory would be a place to add some uncommon systems and extend 

it step-by-step with new developments.

6 .3 .3 . Build S ystem

The OI Build System  is able to generate all files to open Open Inspire directly as a NetBeans 

IDE project. OI is though not bound to NetBeans, and it is an objective to provide additional 

generators that allow the creation of files for other IDEs such as Eclipse or IDEA.

All of these IDEs allow the performing of software tests and the profiling of applications to 

provide feedback about performance problems and memory leaks. The build system currently 

does not support Unit Tests and Profiling so that adding these features by means of two new 

build targets will be the next step in the enhancement of the Build System.

6 .3 .4 . Exam ple A pplications

The thesis introduces a selected number of sample applications to prove the usability of the 

OI design. All of these applications are minimal examples and so there is still room for 

enhancements.

User Interfaces

The focus of the thesis was to develop the OI Server so that the UI’s introduced in section

5.1 are only very limited examples that illustrate how a UI for Open Inspire could look like 

and how they could be integrated. For the overall usability of OI they are however essential 

so that the development of a full featured UI is an important target.
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For a new development it is in the meantime more meaningful to use Android6 as the target 

platform so that it is runnable on a tablet. A touch screen based UI simplifies the interaction 

with the instrument because it is more intuitive to manipulate a setting using a touchable 

widget. Moreover it is no longer necessary to control the experiment from a fixed place 

but will be possible to access the instrument from any location. A user can hence have a 

component such as an axis directly in his field of vision while being able to manipulate the 

device without the need to go to a fixed terminal. Further, monitoring the instrument when 

in transit is more convenient when only a smartphone or tablet need to be entrained.

A UI that provides access to the OI Store has been developed in Java F X  since it allows 

execution as a standalone application or when embedded into the OI website. Oracle un

fortunately decided to stop the development of Java F X  Script so tha t the development of 

the OI Store Browser has also been canceled. A new graphical fronted to the OI Store is in 

development in form of a web application for the OI Website, as an Android App and as a 

Java Desktop Client.

N eX us Integration

W hen the NeXus integration for OIs was developed, it was necessary to  wrap the original C- 

based NeXus API due to the lack of a means that allows to write HDF5 files in pure Java. In 

the meantime the Java HDF5 writer Nujan [nujll] has emerged, which allows the handling of 

HDF5 files without the need for a native library integration. Implementing the NeXus support 

entirely in Java allows the creation of a NeXus API with an object oriented interface, random 

access to the NeXus tree, the possibility to modify existing data and makes the native NeXus 

OILs obsolete. The implementation effort is however very high since all NeXus functionality 

need to be reimplemented.

Scan Implementations

The scan examples are as well as the UI implementations a minimal proof of concept. Here it 

is especially necessary to revise the Sequencer Script to make it more flexible and to provide 

UIs for the control and monitoring of the different scan engines.

6Other platforms are also conceivable but Android restricts developers least of all and supports Apps in Java.
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Hardware Control w ith Caress

The Caress implementation is prepared to support any of the more than 100 different Caress 

devices. To have access to all these devices from an Assembly it is however necessary to 

provide additional Device OIMs beside the example OIMs for Positioners, Counters and 

Detectors to enable the access to devices such as temperature controllers or binary switches.

If OI is to be used at instruments tha t already use Caress, instr-files are available that contain 

the complete hardware configuration of the devices. Providing a tool, which is able to convert 

Caress instr-files to OI Assemblies is relatively easy to realize and saves the time required to 

configure all devices inside a newly created Assembly manually.

Simulation with M cStas

Section 5.5.1 introduced two different methods for how McStas could be supported by Open 

Inspire. The example implementation has been realized by creating an interface to the McStas 

Simulation Engine and by using the native McStas configuration file for the simulation setup. 

Another solution is the modeling of the complete McStas experiment inside an OI Assembly.

It is a future target to support such a modeling of McStas setups entirely by OI Assemblies.

Instrument Alignment

The instrument E3 comes with a secondary slit, which is located directly in front of the 

detector and used to mask all neutrons around a selected area. This axes of this slit are 

however only manually adjustable. Adding Positioners to these axis would allow to add an - 

additional step for the calibration of the secondary slit.

6 .3 .5 . In tro d u c tio n  o f  new  D om ains

A fundamental paradigm of the OI Design is, th a t component interfaces are not interwoven 

with a framework but completely decoupled from the system. This is the essence underlying 

the flexibility because it is easy to use OI for completely different use-cases without needing 

to touch the framework.
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This characteristic is especially important considering the community based standards for 

device interfaces that may be found in future. In this situation it would be possible to simply 

create a new Domain O IM , which defines the standard interfaces and to publish it using the 

OI store. Changes to the OI server are unnecessary. Even devices that build against the 

existing Domain Science (see 4.3.3) do not need to be changed. Here it would be possible to 

create an Adapter OIM that converts between the two different interface standards.

Open Inspire is decoupled from a specific use-case which makes it easy to define domains for 

new scenarios such as Industrial Automation, Smart Home or different scientific applications.
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Figure 6.1.: Open Inspire Smart Home Client

A domain for Home Automation tasks can for instance contain On Off Switches, Dimmer 

Switches, Window Contacts, Temperatur Control Devices, PID Controllers, Rain Sensors etc.

Figure 6.1 shows the concept of a client that monitors several devices within a flat and allows 

the central switching of lights, control of radiators or even reacts to phone calls.
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SOFTWARE REQUIREMENTS SPECIFICATION

A .I. Look and Feel Requirements

The work of this thesis only includes the development of a minimal reference User Interface 

tha t exclusively covers the most important functions. The UI shall be easily exchangeable so 

tha t the following requirements both apply to the reference UI and every later independent 

UI developments.

A .1.1 . A p p earan ce  an d  S ty le  R equ irem en ts

Requirement 1.1.1.

&

T he UI shall be  consisten t w ith in  th e  w hole application; and-resources. ■

A unified UI with a clear line allows the user to intuitively understand dialogs and 

controls by transferring the knowledge between already known and new dialogs.

The whole application /  webresources uses the same style with unified colors and fonts 

and only a small selection of recurring controls .
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Requirement 1.1.2.

&

•The U I shall he co n sis ten t. o n :a i! : instrum ents',^egar'd less of th e  - o perating  

system.

Users switch between different instruments and do not want to relearn the operation 

and interpretation of multiple different user interfaces.

All instruments have the same hook and 1'eel and Ai l structures.

r-flx] Requirement 1.1.3.

&

✓

T h e  U I shall be "clear an d  in tu itively ,tisab le  /  understandab le . me.

Users want to be able to use the UI without reading a manual.

The IT shall be clearly structured, use common controls, come with a subtle style that 

only highlights the most important functionality and hides unnecessary details

Requirement 1.1.4.

ITlie system  should-be sw itehable b e tw een ia -.consistent. UI t h a t  is unique - on ■ 

all O perating Systems or a UI thni. m atches the Operating System specific 

look and  feel. .

OS’s have different LnFs so that a consistent bnF can mean a unique LnF between the 

developed application and other applications running on the OS or the same LnI ' of 

the application on all OS although it then differs from the OS’s standard LnF.

A user shall be able to switch between a system and a  cross platform Look and Fed.
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A.2. Usability Requirements

A .2 .1 . E ase o f U se and  C larity R equ irem en ts

Requirement 2.1.1.

T he user sh a ll  n o t be overw helm ed w ith  irrelevant in form ation . ■• ••••

Users want to quickly understand dialogs and get the relevant information without 

searching for it.

The software shall hide information that is not necessary for the current task. For 

instance use stepwise wizards instead of overloaded dialogs.

Requirement 2.1.2.J-

[gp T he system  should  provide d irec t access' to  reiew int in form ation hrid-detailed  

access'on dem and. . . Of d-V'-'--' ;

Normally only a subset of the overall functionality of the software is used so that 

complex or detailed information, which would empede the ease of use is hidden unless 

required.

The user should only see the relevant information and decide if additional special func

tions should be made available.

Requirement 2.1.3.

T h e ■system should  give feedback a b o u t"the' valid ity  an d  s ta te  o f en te red  

d a ta .

Validating data when it is entered allows immediate error notifications, which saves 

time and avoids interrupting the workflow.

The system should mark fields when they are invalid or show immediate information 

about the state of a control.
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R e q u ire m e n t 2.1.4.

The system  should be easily configurable without program ming arid script

ing skills.

Users that configure the software are not automatically developers.

A user should be able to understand and change the system configuration without 

programming skills or an extensive system understanding.

A .2 .2 . P ersona liza tion  and  In te rn a tio n a liza tio n  R equ irem en ts

R e q u ire m en t 2.2.1.

☆

✓

The system  shall come w ith preconfigured user profiles.

Specific settings and constraints shall be applicable dependent on the current user. 

The system provides user profiles that store individual user presets.

IE R e q u ire m en t 2.2.2. V

&

The system  shall come with preconfigured group profiles.

Groups are allowed to apply settings for a role instead of individual users, which lowers 

the administration effort, allows the constraining of user privileges and the hiding of 

secondary features.

The system allows the application of role-based presets that apply to all users in the 

same group.

R e q u ire m e n t 2.2.3.

☆

The system  shall allow users to personalize their user profile.

Users want to personalize their account settings, (such as language) and have easy 

access to customized data such as the history of recently opened files.

A user is able to save individual settings to a persistent user profile and override ap

proved group settings.
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r~[KI R equirem ent 2.2.4?

The system  shall allow;',the application" of-role''based personalization. :

Each group of users (see page 59 ff.) has specific demands on the software’s functionality 

and presets.

The system provides mechanisms that allow for role-specific settings concerning the 

user interface, accessible functionality or specific settings that override the presets.

R equirem ent 2.2.5.

T he'system 's:default language -shall t>e;english. ■■■ T ; ;  y ; ■

English is spoken by almost every scientist or developer and the main language for 

publications.

All dialogs, controls, descriptions text and documentation of the software and related 

developments are in english.

R equirem ent 2.2.6.

dP

☆

✓

The system s h o u l d  bo  e a s i l y  internalionalizable.

Some clients want a country specific localization and locale text encoding.

Translations of the software can be added as localization files without changing the 

programming code and UTF-8 is used for the international text encoding.
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A .2.3 . Learning R equirem ents

R e q u ire m en t 2.3.1.

Experim enters shall be able to  learn how to load, s ta rt and stop a prebuilt 

experim ent in less then  15 minutes.

The time available for experimenters at an instrument is expensive so that performing 

the instrument main tasks need to be easy and quick to understand and perform.

An experimenter understands in less then 15 minutes how to perform the base opera

tions required to control an experiment.

R e q u ire m en t 2.3.2.

Configurators shall be able to learn how to setup a simple experim ent in 

less than  30 minutes.

A main focus is the simplification of custom experiment setups so that it is important 

that an experiment can be intuitively setup in short time

Configurators can learn how to setup a simple experiment in less than 30 minutes using 

a tutorial or screencast.

R e q u ire m en t 2.3.3.

A dm inistrators shall be able to  learn how to install the  system  in less than  

30 minutes.

If the time for a standard system setup takes more than 30 minutes, the administrator 

is frustrated and the acceptance drops.

An easy installer automates as much as possible and guides the administrator in less 

than 30 minutes through the setup of a basic system.
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R equirem ent 2.3.4.

&

Developers -shall be able to learn .'.how 'to create a simple extension. m odule 

In less th an  45 m inutes \

A developer must benefit from a framework in order to continue to use it. When the 

system is too complex, they will use other solutions or develop without a framework.

Documentation shall be available that enables an understanding of how to develop an 

extension in less then 45 minutes.

R equirem ent 2.3.5.

Developers should-be able to learn how to use'ithe'deyelopineiit environm ent

in less than  lh . W - ■

Developers are important to advance the system so that they should not flinch from 

using the system due to complex and time consuming setups of the development envi

ronment.

Developers can configure their environment and start to develop for the system in less 

than lh.

R equirem ent 2.3.6.1-

- The-tim e needed to learn the; A PI and system  design shall; be small against 

the  tim e used for the development of m odules.

The development becomes unproductive when the usage of the API and system takes 

far longer than the development of new functionality.

The API and system design is mainly self-explanatory and easy to understand and 

supports the developers workflow.
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R equirem ent 2.3.7.

■®)

V?

•The system shall 'provide an interactive help:th a t hialces the' p ro g ram :usable;' 

w ithout prior training.

Software that comes with an interactive help saves time and improves the users moti

vation because it is often not necessary to read external documentation.

The system comes with context sensitive help and descriptions directly where data is 

entered or information is queried.

R equirem ent 2.3.8/}-

&

.The -system shalftcqme' with clocum entation that allow learning the system , 

;features step-by-step.'; ' edv, -pmem ftm '' 'ft

Step-by-step tutorials direct users through the main features of a system without the 

requirement to read a comprehensive manual.

Tutorials are provided that allow to learn the primary system features in a guided tour.

A.2.4. Understandability and Politeness Requirements

R equirem ent 2.4.1. j-

v?

Users shall: be'.able:, to  instantly understand 'what: the. software -will

him. -tft---,:■; .■ -ft-ft :'-ft :...ft;

The time necessary to read manuals can be cut down when a user is intuitively able to 

understand what a switch or function will do for him.

The understanding of a feature directly emerges from the context or is explained beside 

the control or indicator.
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R equirem ent 2.4.2.

ffl Users shall be able to understand the  m ain system functions w ithout tra in 

ing* ■S.x't

User often try to figure out functionality without having first read any instructions. 

Leading the user through the program by an intuitive operation increases the motivation 

to use the product.

The system’s main functionality is easily discoverable by trial and error.

R equirem ent 2.4.3.

Inform ational and warning messages sliall; he 'clearly imderstaiidable- by ob

servers th a t are  new to  th e  systems, v . .

If a system error occurs but only staff such as a security agency is on location, messages 

must be clear enough to understand if it is a harmful misoperation and how it can be 

solved.

Messages are clear and non-cryptic and contain a description that can be understand 

by unexperienced users.

R equirem ent 2.4.4.

W

&

W izards and dialogs shou ld ‘be used to lim itTheTinfomiationvlead the: user, 

through, the functionality and guide them  to the im portantdnform ation. y

If a description is not clear or too long it constrains the workflow and interrupts a user 

by requiring them to read external manuals.

Descriptions are short and clear so that they are directly understandable. Additional 

information can be displayed on demand or by a link refering to detailed descriptions.
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R e q u ire m en t 2 .4 .5 .V

The system  shall not expect users to  know and learn functions th a t are 

unrelated to their business problems.

Different groups of users have a different background and knowledge so that it makes 

sense that a user only needs to know the information that is really required to solve 

the problem and is not overwhelmed by nice but not necessary additional features that 

relate to other user groups.

Dialogs and configuration files contain only the information, and require only the input 

that is absolutely necessary to solve the problem.

R e q u ire m en t 2.4.6.

&

The system  shall hide im plem entation details and should not require users 

to learn the term s and details relating to  the  system internals.

Details of how a function is implemented internally are not relevant for an operation and 

should be hidden as otherwise they will detract from important features and usability 

will be impaired.

The system comes with a facade that hides all implementation details and which is 

automated, as much as possible, in order to reduce the complexity.

R e q u ire m e n t 2.4.7.

Advanced users should be able to enable additional complex functionality 

on demand.

The system hides all complex functionality but appropriate ’expert’ users may be al

lowed access to additional features.

Users can enable advanced features by activating an additional layer of expert func

tionality.
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R equirem ent 2 .4 .8 .J-

Tlie user'-shall he intuitively guided -by naturally understandabie symbols 

and. texts.

Naturally understandable symbols help to explain functionality at one one glance, with

out imposing the need to read texts, and allowing complex features to be made more 

clear.

Symbols and graphics complement descriptions to advance the quick understanding of 

system functionality.

A.3. Performance Requirements 

A.3.1. Speed and Latency Requirements

R equirem ent 3.1.1.

&

The System shall provide soft real-tim e capabilities in the  range of seconds.'

Hard real-time processing e.g. for the generation of motor control signals is provided by 

hardware servers or the hardware’s firmware. The system to be developed shall be able 

to send and collect data at predetermined time intervals and perform soft realtime-tasks 

in the range of seconds. Time critical tasks are synchronized between hardware servers 

and not the Supervisory Control and Data Acquisition (SCADA) system.

The system is able to trigger hardware or collect data within a range of less than 10 

seconds.
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Ex] R equirem ent 3.1.2.]-

:Tlie System latencies shall he predictable so th a t the 'collection of one s e t : 

of d a ta  < an be scheduled to be finished before new data  arrives.

The correct result at the wrong time is in real-time systems a wrong result. This requires 

that the processing time of tasks need to be predictable. A detector, for example, needs 

to be ready to detect before a new positioning is started.

Data need to be reliable processible in predetermined time intervals (soft real-time).

R equirem ent 3.1.3.

m The System shall come with' event /mechanisms tha t Allow the  collection of 

da ta  when it is first c.reated in order to  reduce delays.

Polling the hardware for available data creates unnecessary traffic when the trigger 

interval is small and reduces the responsiveness when it is too large.

The system will be notified when a property changes or new data is available.

R equirem ent 3.1.4.

133 A utom ated m easurem ents shall:be  significantly':faster than  manual m ea-: 

;s u r e m e n t s . . . ■ f t

The automation of functionality shall be a speed enhancement. When manual mea

surements are faster, it would be without advantage to run an automated experiment.

The same functionality, such as the driving of an experiment, must be faster when it 

is automated than done in a manual way.
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R e q u ire m en t 3.1.5.

The UI shall run on current com puter hardw are without noticeable laten

cies.

Latencies restrict the workflow and should only result from waiting times for important 

processes and never from the user interface being overloaded with dialogs or renderings 

that are not fast enough for current computers or mobile devices.

The user interface is snappy and matches the speed of current computers or mobile 

devices.

R e q u ire m en t 3.1.6.

The system  shall not loose responsiveness when large am ounts of da ta  are 

transferred or complex tasks are executed.

If the user interface is too slow to render information provided by system tasks it can 

become unresponsive and in the worst case block due to a growing data queue that 

cannot be processed fast enough.

The system only renders important information and drops unimportant data packages 

when the rendering task is not able to draw the data fast enough.

R e q u ire m en t 3.1.7.

The system  shall high internal th roughput and low latencies, equivalent to 

monolithic applications, although all com ponents are loosely coupled.

Loosely coupled components need to interchange data through defined interfaces. When 

these interfaces are a bottleneck (e.g. because of slow serialization and deserialization 

mechanisms) it is not possible to use the system for applications requiring fast or 

reactive processes.

The component interfaces do not limit the throughput and guarantee small latencies.
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A.3.2. Safety-Critical R equirem ents

R equirem ent 3.2.1.

&

.Tlite system slmll:coine: witli'Air enifergency^skdtclowii/mechaiiism: th a t vstops 

a!I:devices ari.d tasks-and brings :the system to  a safe state . ■'

Misoperation of the system can be harmful so that a user must be able to immediately 

stop the system and all mechanical components to prevent damage and injuries.

An emergency shutdown is available in all situations and stops all running devices and 

tasks with a minimum latency and high priority.

R equirem ent 3.2.2.

’Tfie system;shall be usable and woi-k.reliably in safety c ritica leiivirdnnients..

The system will run in security critical environments where failures can result in ex

pensive delays, damages, or injuries.

The system is designed to work reliably and comes with a crash protection, fallback 

functionality and redundant error prevention mechanisms.

K1 R equirem ent 3.2.3.1-

^The-,-system..shall• prevent-damages-,caused • by incorrect operation.

If user input is not sufficiently checked for its validity it can cause harm and damage 

during automatic operation.

The system verifies all user input and directly prompts for corrections when invalid or 

when implausible data is entered.
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R equirem ent 3.2.4.

The system  shall be .fault-tolerant so th a t  errors only affect restricted  areas 

and do to  spread across o ther parts  of the  software.

If subsystems are not cleanly separated from each other, errors can propagate between 

subsystems and effect the entire application.

All subsystems are loosely coupled and mechanisms catch errors before propagation to 

other subsystems can occur.

R equirem ent 3.2.5.

The  system  shall;he able-to .'perform unattended  scans -without''causing any 

personal or property  damage.

A main advantage of the system shall be the saving of time gained by the ability to 

run unattended scans, which requires a high degree of stability since users will not be 

in place to resolve problems.

The system is designed to work unattended and comes with mechanisms that bring the 

system into a secure state, even when severe errors occur.

R equirem ent 3.2.6. j-

,The system  m ust tak e :care th a t /users'-cannot destroy devices /by im proper 

handling.

Many damages have their origin in manual misoperation and can be avoided when the 

system comes with security mechanisms that detect and inhibit such mishandling.

The system detects misuse and warns or blocks the user when harmful commands are 

applied.
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R equirem ent 3.2 .7 .]-----------------------------------------------------------------------------—

:W : ; The system  shall allow '. access to critical functionality> to. be .restricted to 

selected users mid  groups.

Some functionality is often only reserved for advanced users and so access to this func

tionality should be restrictable.

The system provides an authentication and authorization system which allows func

tionality to be restricted depending on the current user and group.

A .3.3. Precision or Accuracy R equirem ents

R equirem ent 3.3.1.

;The .system -shall be. capable .to .perform -.precise scientific m easurem ents.

The systems transfers data from and to other systems within the environment that this 

needs to be processed without information loss. To avoid precision-loss, all internal 

calculation shall be handled with a sufficient number of decimal places.

The standard precision of internally used floating-point values is 32 bit and can be 64 

when necessary.

R equirem ent 3.3.2.

'RT

.The Ul^slialljdisplay ;fioati!;ig-point;vVa,iues in a^legible way. ...f:'.

A user normally has no interest to read the complete number of decimal places but 

want to see a rounded and short visualization of the necessary information.

While a floating-point value is internally processed with full precision, its visualization 

shall be rounded and rendered in a short form to keep the UI clearly readable.
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R equirem ent 3.3.3.

The UI.shall allow high precision. -values to be viewed on dem and.

Sometimes it is necessary to check a visualized value with a higher precision although 

it’s standard visualized is in rounded form.

Mouse-over effects allow high precision values to be displayed, when required.

A.3.4. Reliability and Availability R equirem ents

x-f[Xl R equirem ent 3 .4 .1 .--------------------- -------------

m

&

The 'system'shall; work'./reliably,without''crashing, over -long periods of time.

When an instrument system is started, it will normally run for several months around 

the clock without restart. If the system crashes the work of several days, weeks or 

months may be waisted, leading to a loss of time and money.

The core system is reliable 24 hours of the day, 365 days of the year, without restart.

R equirem ent 3.4.2.

The sta te  before an -error- occurred shall be recoverable, v, ; dpi

When an error occurred it saves time and money when the measurement can be con

tinued from the latest stable state.

The system shall detect that an error occurred and continue the measurement when 

the system is recovered.

R equirem ent 3.4.3.

&

The system should autom atically res ta rt if small errors occur.

If a measurement is running and only an insignificant error occurs the problem shall 

be bypassed to avoid the whole experiment failing.

The measurement continues when a disfunction is exiguous.
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13 R equirem ent 3.4.4.

m M igrating to the new 'system-shall he smooth and cause minimum' downtime. •

Measurement time at the instrument is valuable so that downtimes need to be kept 

small.

The migration can be done in parallel without obstructing the regular operation of the 

legacy system.

R equirem ent 3.4.5.

U pdates shall be able to : be installed witli minimal tim e effort’ In order to 

red nee downtime.

Installing updates interrupts the system operation. Updates will never be installed 

during an experiment run but should be installable without requiring the system to be 

restarted.

Updates can be automatically installed while the system is running on the condition 

that no experiment is in progress.

A .3.5. R obustness and Fault-Tolerance R equirem ents

^-[t3 R equirem ent 3 .5 .lTj-

-/Errors shall be lim ited to  the  subsystem  where they -occim. -

Errors often affect not only the region where they appear but also compromise the func

tionality of other software subsystems or the complete software. This lack of decoupling 

can result in damage of affected subsystems.

The system is separated into decoupled components and subsystems so that errors are 

contained to the region in which they occured.
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Requirement 3.5.2.

☆

The system  shall differentiate-between errors and continue, a  m easurem ent 

even when ;minor;pr0 hlems. o c c u r v - . . ■ a,V..

Measurements are often unattended and take several hours. When a minor error occurs 

and the system completely shuts down, the complete measurement time is lost so that 

a measurement should continue in case of minor problems and let the user decide 

subsequently if the result is still usable.

The system continues a measurement in case of minor faults that cause no tangible or 

personal harm and logs /  informs the user about the incident.

Requirement 3.5.3.

ffl The system  shall contiiiLie witli all mihifected parts if htetwcirk errors dec ur

and try  to  recover the 'connection. .

Networks can have spontaneous latency or bandwidth problems that are mostly tem

porary.

The system shall continue with all calculations that are not affected from the network 

problem, inform the user and wait until the network is recovered.

Requirement 3.5.4.

&

The system shall imm ediately recognize 'or correct erroneous inputs.

When user input is checked at the moment it is entered instead of the moment it is 

used, errors can be avoided earlier.

User input is directly checked when it is entered, so that the user can be prompted for 

corrections before the input is used in a processing task.
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A .3 .6 . C apac ity  R equ irem en ts

Requirement 3.6.1.

W . TIie: system  sliall;be al>le to-process arid :Store very; large quantities of data.;

Modern detection systems produce an increasing amount of data that needs to be stored 

and transferred in time. Instrument E2 at the IIZB for instance creates more than 4GB 

data per measurement. This is too large to address in one step with a 32 bit system.

The system shall be able to process and store data with more than 4 GB using 64 bit 

addressing or streams.

Requirement 3.6.2.

The system; shall alk>w^tlie siiimltaiieoiiS iiahdliJig.Bf multiple:mserhbtworlc; 

■.client connections.

An important difference to classic systems that only have one integrated user interface 

is the ability to connect and get instrument data from multiple clients at the same time.

A controlling user and multiple observers can connect to the system at the same time 

and send commands or query data.

Kl Requirement 3.6.3.V

■The, system  ■ shall be able to process tasks of iimltiple .components or sub

systems; at-tlie; same tim e. V- ".'b':- '

It is possible to improve the measurement speed, when the next step is already calcu

lated or simulated while the current measurement step is still in progress.

The system allows to concurrently execute and synchronize multiple tasks in loosely 

coupled components.
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A.3.7. Scalability and Extensibility Requirements

R equirem ent 3.7.1.

•The' system  sha.l!;-be:easily;and quickly:extensible. .

A scientific environment often requires frequent changes to setups and adjustments that 

cannot be predicted in advance. The software needs to be flexible enough to implement 

new features in a short time.

The system comes with a component model that allows to quickly add new features 

without touching the core system.

R equirem ent 3.7.2.

The system-shall be .highly;scalable.: ' y, ; ' t  . T  a' - .

System limitations such as the fixed size of datatypes, array lengths, buffer sizes or the 

maximal addressable space may make sense at the time a feature is developed but they 

limit scalability when the system requires new functionality.

The size of datatypes, arrays, buffers as well as time constraints such as minimum 

latencies or maximal bandwidths are not artificially limited.

R equirem ent 3.7.3.

: T h e ; extension system  ■and:: comm unication '-between components should not 

be a bottleneck in. the transfer of data., dV T f '

A component-based system needs to interchange data between components. Depending 

on the communication mechanisms used this can be slow and can consume much com

putational power. The serialization and deserialization of data is for example slower 

than shared-memory based transfers.

The data interchange between components of the extension system is of a similar speed 

to the data-transfer in monolithically applications.



290 Software Requirements Specification

R equirem ent 3.7.4.

m .;T-He'^Update;’nieMianisiir and iiifrastructure Thali be ..'designed■ t o : scale witli. 

an increasing num ber of users.

Users download components and updates from a central repository whose availability 

and scalability is important to guarantee a fast, secure and reliable operation of the 

system. If the system does not scale with the number of users, it is a bottleneck that 

will impair productivity.

The update system can be easily scaled by adding new mirrors and by balancing the 

load between them.

A.3.8. Longevity Requirements

R equirem ent 3.8.1.

■ The'Bystenrshall be^expected to operate for a xniriiinum.ofTO years.-p.

Instrument systems often have lifetimes of more than 10 or 20 years due to the fact that 

the purchase of expensive hardware and the time for the setup of the complex experi

ment environment must be worthwhile. The instrument software is thus developed for 

the whole instrument lifecycle and even updates are installed rarely. An important rule 

is "Never touch a running system" to prevent unwanted side effects and avoid additional 

training.

The system is still usable after 10 years and can be easily adopted to new problems or 

future requirements.
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jr-fCB] R equirem ent 3.8.2.

The system  should ’still 'be'Coxripatible with legacy plugins and configurations 

after upgrades or updates are; performed.

Updates often affect interfaces or connection mechanisms and make old system com

ponents unusable. This wasts valuable development time and prevents updating just 

because of compatibility problems with legacy components.

Legacy components or other components may still be used together with new function

ality when updates are performed.

R equirem ent 3.8.3.

m

&

The sy s te m . shall be kept aip-to-date with the ■■■■■help ■ of regular increm ental 

updates. - .--■■■

Small updates are easier to test and are more easily rolled-back when problems occur 

than major changes. If updates occur automatically it is possible to provide fast patches 

and avoid the delay of waiting for aggregated updates.

Fine grained updates are made globally available and automatically installed in prefer

ence to the installation of new versions of the overall system.

R equirem ent 3.8.4.

V?

The system docum entation shall bo kept up-to-date.

When the system development goes on, the corresponding documentation always needs 

to be synchronized with the current system functionality and APIs.

The provided documentation reflects the current development state and is kept up-to- 

date.
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R equirem ent 3.8.5.

m The system  shall allow for the: rec6yefy;'of an o lder' system 'state if a failure 

m'CClirS. :->v f .. ;C yyh y v-y . y-x.yy,y

Misuse can destroy the system integrity. If no backup is available, recovering classical 

systems is complex or they need to be reinstalled.

Components, dependencies and configurations can be recovered, deleted or invalid com

ponents will be detected and automatically reinstalled.

A.4. Operational and Environmental Requirements

A.4.1. Expected Physical Environment

IEI R equirem ent 4.1.1.J-

■The system  shall be operable ■iti‘:.safety-.critical; areas with lim ited physical 

access. ■

The software runs in radioactive environments and may control devices that can cause 

personal injury. Due to the radiation it is not possible to access all parts of the instru

ments during experiments.

The system continues to operate reliable and is remotely maintainable when a direct 

access is not possible due to security restrictions.
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A.4.2. Requirements for Interfacing with Adjacent Systems

R equirem ent 4.2.1.

'.The system  must be /able to  coiitrol/tiie'lim'clwaix?. of the instiuimeiits, intro- • 

dueecl in/section 2.3/on page 2<4.' ■/■

The instruments E3 and E7 at the IIZB have been selected for the reference imple

mentation and are available as platform for development tasks.

The system is able to control and query data from all devices at the instruments E3 

and E7 at BBR-ll and StressSpec at I'H Xi-fl

R equirem ent 4.2.2.

The system  must be able to  comm unicate .with Caress -Hardware Servers.

All devices at the research diffractometers E3 and E7 (2..‘1.2) and nearly all devices at 

the IIZB use Caress to interface the hardware.

The system allows to interface Caress Hardware Servers, control devices and query 

data.

R equirem ent 4.2.3.

The system  must be able to create jVeXus compatible output.

The standard format for neutron diffraction experiment results is NeXus.

It is possible to create valid NeXus files with all measurement data collected during a 

diffraction scan.
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A.4.3. Productization Requirements

R equirem ent 4.3.1.

?Th<* system  shall coiua w ith installers for all m ajor operating systems

Operating system specific installers provide a fast way to cleanly install and deinstall 

software while meeting all operating system specific particularities.

The system comes with installers for Windows, Linux and Mac OSX.

R equirem ent 4 .3 .2 . j-

&

The system:'shall be published in the  form  of platform  iliflepehcient packages..

Platform independent packages allow the system to be used on architectures and OSss 

where no explicit installer is available. Every operating system has a preferred archive 

standard so that archives should be published in multiple formats to increase the chance 

to unpack it under all OSs

Platform independent packages with all data required to run the system are published 

as zip, tgz and tbz archives.

Requirem ent 4.3.3.

■■The. core system  ■sliali b e  installable standalone w ithout the  need'.for other,

dependent software.

Collecting, downloading, installing and keeping dependent software up-to-date com

plicates the installation process, increases the maintenance effort and evokes version 

conflicts and compatibility problems.

The system runs on all major platforms and automatically resolves all dependencies for 

the specific OS and architecture.
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1X1 R equirem ent 4.3.4.}-

✓

The main package shall be small enough to he downloaded in short tim e, 

even w ith slow internet connections. ,

Instrument systems

The installation package is not bigger than 10MB.

R equirem ent 4.3.5.

The installation shall only contain all; absolutely iiecessary m iiltl-platform  

da ta  and-'reload'- additional platform  specific: da ta  dtiriiig the  .installation..'.''.'

If the main installation package only contains the functionality that is absolutely nec

essary to run the system and additional components can be downloaded on demand, it 

is possible to reduce download times and lower the required bandwidth.

The installation package only contains the main functionality while additional func

tionality is downloaded on demand.

A.4.4. Release Requirements

R equirem ent 4.4.1.

The' system  shall .come.'with"'^.'completely -automated build•-and.'.release sys-: 

tern..: .'Ty/vy w h.-W: .h-;-

Building, packaging and delivering the software manually, takes much time so that this 

task is often performed rarely so that users need to wait for aggregated updates. Using 

a continuous delivery always keeps the user up-to-date with the latest version even in 

case of small fixes or minor improvements.

A continuous delivery system is triggered when code changes and automatically builds, 

tests, packages and uploads the system.
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R equirem ent 4.4.2.

The 'la te s t ' installation, packages..shall always be'-ready To be freely Mown- 

'ioadeci; through-a public website. : ; T ;

Users do not want to search for the latest updates but prefer one fixed central place 

where they know to download always the latest version. Third-party systems shall be 

able to have one fixed link that always points to the latest version.

The latest installable system binaries are always downloadable from a fixed place on 

the project webpage.

R equirem ent 4.4.3.

M ajor versions shall be, published a t regular tim e intervals. 'yT

In addition to the automatically delivered versions, publishing major versions allows to 

integrate larger numbers of fixes and new features that are ready to be publishes as a 

whole. These builds are generally more stable and consistent since they underly more 

comprehensive quality checks and manual tests.

A major version with aggregated fixes and improvements shall be manually tested and 

publishes in intervals of 6 months.

R equirem ent 4.4.4.

The/latest , sources shall be publicly "available.;

The system is an Open Source development and everyone shall be able to work with 

the latest version, inspect the quality or make changes.

The latest sources are downloadable in the form of archives from the project webpage 

or directly browseable and downloadable from the VCS.
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A.5. Maintainability and Support Requirements 

A.5.1. Maintenance Requirements

R e q u ire m en t 5.1.1.

The application of updates shall not take longer than 10 m inutes on average.

The core system should be small, lightweight and without any ballast that makes up

dates take longer than absolutely necessary. Small updates consume less time and are 

less fault-prone.

The download, extraction and installation time with a internet connection faster than 

10 MBit takes not longer than 10 minutes.

R e q u ire m en t 5.1.2.

The installation of components /  plugins shall not take longer than  the 

installation of a core update  on a monolithic system.

When a system is built from multiple loosely coupled components rather than in form 

of a monolithic system, installing only the individual updates that are necessary for the 

specific system decreases download time and required storage space.

The average installation /  update time for components is small against the time for 

updates of monolithic systems.

R e q u ire m en t 5.1.3.

&

The creation and configuration of component assemblies /  instrum ent setups 

shall be fast and intuitively performable.

The main advantage of the developed system shall be the flexible, easy and fast creation 

and configuration of system setups that can be created and modified by users without 

extensive training.

Users without programming skills are able to setup an experiment setup /  component 

assembly using prebuilt components.
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R equirem ent 5.1.4.

The installation of updates and components shall be perform able from users 

w ith little  software experience.

When the installation of updates can be performed automatically, it is not necessary 

to have specially trained administrators that keep the system up-to-date.

Necessary updates will be initiated downloaded, configured and performed automati

cally without user interaction when they are required.

A.5.2. Supportability Requirements

R equirem ent 5.2.1.

Software support shall be provided by the  community using web-based com

m unity services.

The project is intended to be a free Open Source project so that cost-free services can 

only be offered by people that provide support with no charge. Web-based collaboration 

services shall help to aggregate all community services at a central place.

Active help is provided by community members using a web-based community portal.

R equirem ent 5.2.2.

'm

/eb- shall be dded as main collaboration service.

Forums allow community members to ask questions and obtain answers from the com

munity without charge. The advantage compared to mailing lists is the persistence 

of the responses, so that historic browse threads can be searched for existing answers 

to questions. In addition this format provides the ability to format code, or insert 

meta-data.

A central forum is available through a web portal that is grouped into topics for be

ginners or developers. Questions will be answered between community members and 

regularly checked by advanced users and developers.
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R e q u ire m en t 5.2.3.J-

Frequently Asked Questions (FAQs) shall be collected and answered cen

trally.

Many questions are asked again and again so that it makes sense to collect these 

questions and publish them on a website with the respective answers. This keeps the 

forum free from redundant answers for the same question and allows the publishing of 

a correct and comprehensive answer.

A section with aggregates all common questions and their

answers at a central place and is shipped with the installation packet.

R e q u ire m e n t 5.2.4.

It shall be possible to get the  exact s ta te  and configuration of the  system  

for debugging purposes.

It is often hard to find an error when the exact configuration cannot be reproduced. 

This is why it is important to have a possibility to obtain information about the exact 

setups that has a problem.

It is possible to output the system configuration, installed components and current 

state when a problem occurs.

A.5.3. Adaptability Requirements

R e q u ire m en t 5.3.1.

The system  should be directly usable w ithout changing the hardw are of 

existing instrum ent environments.

If the instrument software of an existing environment shall be migrated to the new 

system it should be unnecessary to change the hardware or software interfaces to save 

money and time.

The system is directly able to communicate with already existing instrument hardware.
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R equirem ent 5.3.2.

;T iiesystem  shall .be platfoi'm  independent; V' . h-

Running the software on existing instrument computers eases the migration and prevent 

investments in new hardware. Making the software available on as many systems as 

possible opens it to a wide range of users.

The system runs on common .OSs-, Windows, Linux, Mac OS and UNIX systems such 

as BSD or Solaris both on 32 and 64 bit systems.

K1 R equirem ent 5.3.3.

(Si ,-Tiie.- system ' shall/^bC: easily''inteimatidiializ'abld.' • -

While the software’s standard language shall be english, it should be prepared to be 

easily adaptable to other languages without the need for source code changes. This 

enables new languages to be added quickly when customer specific regulations prescribe 

other languages than english.

The system comes with internationalization support that allows the adding of new 

languages using translation files which include country-specific notations such as the 

different delimiter symbols.
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R equirem ent 5.3.4.

ffl The system  shall be operable directly a t the .instrument, from the office and 

while in transit between the  two.

For the setup of an experiment it is necessary to have direct access to the instrument 

and to run a user interface directly at the experiment. During the experiment run 

it is normally not necessary to interfere with the experiment so that a monitoring 

should be possible from the office that provides a more secure and comfortable working 

environment. When an experiment is running over night is makes sense to be able to 

monitor the experiment from home, or while traveling, to get immediate feedback in 

case of failures.

The network mechanisms allow secure connection, via firewalls, to the system from 

anywhere and comes with clients for the common computer OSs and mobile devices.

R equirem ent 5.3.5.

m The system  shall.allow for simple interfacing to th ird  party  systemsy in d e-■ 

pendent, from' their network im plem entation and protocols.

The system is intended to be a middleware that bridges different instrument system 

and hardware solutions so that systems with different network and communication 

implementations need to be addressable.

It is possible to communicate with different third-party instrument systems and hard

ware that all build on different network mechanisms at the same time.

R equirem ent 5.3.6.

The system, shall reuse already existing free software if possible.

Reinventing the wheel and reimplementing already existing free third-party software is 

ineffective and costs development and maintenance time.

When free-third-party software already provides required functionality, it will be incor

porated or interfaced.
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R equirem ent 5.3.7.

./TheV:,system .shall be adaptable to; fiei compatible ■ with fiiture .tltircl-party 

instrum ent systems and hardw are.

Systems mostly come with one or a limited set of communication protocols that allow 

hardware to be addressed. Adding new protocols is either not possible, or requires 

comprehensive changes which makes it hard to adopt the system to future environment.

The system is not restricted to a limited set of protocols and communication mecha

nisms but open to quickly adding communication mechanisms so that future instrument 

hardware may be addressed.

R equirem ent 5.3.8.

dP " Tile' system' shall Be quickly -adaptable to  futiire'i-sfaiidards w ithout the  need 

for core changes.

Fixed communication interfaces, that are interweaved with the system core, are difficult 

to change in response to new standards. For this reason changes often make the system 

incompatible with software that builds on the legacy interface definitions.

The interfaces definitions required for the communication with third-party systems are 

decoupled from the system core.

R equirem ent 5.3.9.

T he system  shall provide components th a t  ■can b e ^reused 'in  th ird -party

systems, c o

The usability and acceptance of a component standard increases when they are also 

usable in other independent software systems.

The components are decoupled from the system core so that the can be reused in 

third-party systems.



A .6 Security Requirements 303

A.6. Security Requirements 

A.6.1. Access R equirem ents

^  R equirem ent 6.1. l.J-

T he system''shall;:be p ro tec tab le  against ■ unprivileged-access, t  yw  . -a;

Driving devices or executing specific functionality from unprivileged users can cause 

harm or destroy components. If functionality can be restricted to selected users, access 

to critical functionality can be constrained.

The system comes with user and group based permission profiles that allow to restrict 

functionality to specific users or user groups.

R equirem ent 6.1.2.J-

:The sy stem  shall forbid all. users except 'for adm inistrators" to  'changeT he 

system  coixfigxiihtion. 'T  V 'Ty-t'

The system configuration includes sensible data such as user configurations or access 

privileges and should be restrictive to administrators with elevated privileges.

Only users that are part of a preinstalled administrator group have write access to the 

system configuration.

R equirem ent 6.1.3.

ffi The netw ork-based access to .the sys tem  shall only be allowed a fte r a positive 

user authentication.

If the network-based access to the system is not restricted, anyone can query or change 

data remotely, which results in a major security problem.

The remote access to the system is only possible after a successful user authentication.
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R equirem ent 6.1.4.

m

&

.-'The system  shall re s tr ic t observers to  tlie  querying';of ptiblictinforhiatioii.:;'

Observers can be public users and should only have readable access to general infor

mation so that they cannot read protected data or manipulate the system.

Observers are restricted to have read-only access to public data.

A .6.2. Integrity Requirem ents

R equirem ent 6 .2 .l.J-

:Tlie system  shall .catch an d  verify erroneous u s e r : input direc tly  w hen it is 

en tered .

When a user submits faulty information for a process that is running later, the problem 

is only discovered when the process is running. This results in a crash or stop until 

correct data will be submitted and hinders an autonomous operation.

User input is verified directly when it is submitted to prevent starting misconfigured 

operation.

R equirem ent 6.2.2.

W The system  shall allow easy recovery of a  form er;;state of th e  system  from  

.backups.

If a misconfiguration or data-loss prevents the operation of the system it is often neces

sary to reinstall the instrument software or spend much time to bring the system back 

to the last working state.

If an error occurs, the system allow the automatic recovery of the system to the last 

working state.
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R equirem ent 6.2.3.

T he system -shaii:'allow..:.tiie^reconstruction  of the' exact in s tru m en t se tu p  a t 

the. .time o f  am experim en t when: a n : experim ent configuration file i s ; loaded.

Recovering the exact software setup of a previous experiment, even when years old, 

is often impossible due to the ongoing development of the system and the resulting 

incompatibilities.

Loading a setup /  instrument configuration causes the system to automatically recover 

the exact state of the system when the configuration was created.

R equirem ent 6.2.4^

m T he system  shall allow system atical se tu p  o r  softw are erro rs to  be discovered, 

■and co rrec ted  w hen .they; becom e kii.own.

When a series of measurements has been performed and it is announced that the setup 

or software was faulty its hard to correct old measurements because the data does not 

contain the exact software setup applicable at the time of the measurement.

The description file for an instrument setup contains the exact software setup of the 

experiment and is added to the measurement results.

A .6.3. Privacy R equirem ents

R equirem ent 6.3.1.

m T he system  shall s to re  and tran sfe r.safety critical '.user'.data such as p a s s 

words in encrypted-form . .•

If the transferred data is not encrypted, the system is vulnerable to man-in-the-middle 

attacks where attackers are able to get confidential data by sniffing the network traffic.

All data that is transferred over the network between the system and other system is 

encrypted.
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R e q u ire m e n t 6.3.2.

The system  shall be configurable to  meet the  security requirem ents of the  

operator.

For m an y  o p e ra to rs  it is im p o rta n t to  m eet specific req u irem en ts  concern ing  th e  secu rity  

co n figu ra tion  o f softw are so th a t  th ese  p ro p e rtie s  shou ld  be  easily  configurab le  w ith o u t 

chang ing  th e  softw are itself.

T h e  softw are com es w ith  configurab le  secu rity  se ttin g s  such as th e  en c ry p tio n  o f user 

d a ta  o r tr a n s p o r t  s tream s.

A .6 .4 .  Audit R equirem ents

R e q u ire m en t 6.4.1.

The system shall come with a protocol /  logging mechanism.

A logbook helps debugg ing  th e  sy s tem  by finding an d  analyz ing  m a lfunc tion , discover

ing b reak -in  a tte m p ts  o r c rea tin g  usage s ta tis tic s . A n exam ple  is th e  logging of logins 

o r logou ts to  discover unpriv ileged  access a t te m p ts  or th e  logging d u rin g  m easu rem en ts  

to  com prehend  th e  com ple te  m easu rem en t process.

T h e  sy s tem  com es w ith  a  logger for sy s tem  m essages, w arn ings an d  errors.

R e q u ire m en t 6.4.2.

V?

The logging entries shall contain all inform ation necessary to  comprehend, 

filter and analyze the logged issue.

Incom ple te  d esc rip tio n s of issues m ake it h a rd  to  analyze  a  p rob lem  so th a t  th e  tim e, 

logging-level (IN FO , W A R N IN G , E R R O R , S E V E R E ), a  d escrip tion  an d  th e  location  

of th e  issue (com ponen t /  c lass /  m e th o d ) shou ld  be ad d ed  to  a  log entry .

E ach  log m essage co n ta in s  th e  tim e, log-level, ty p e  of m essage, th e  logging m essage 

itse lf an d  th e  p ro g ram  p a r t  w here th e  logged issue occurred .
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A.6.5. im m unity R equirem ents

R equirem ent 6.5.1.1-

T he system  shall be easily -sliieldeable; Against -attacks ■ from  th e  outside. e : ■

When software comes with non-transparent communication mechanisms and opens 

many dynamical ports or uses uncommon protocols, it is hard to filter malicious pack

ages by firewalls.

The network protocols for the main system can be easily filtered, they are tunnable 

and the number of required ports is kept small.

A.7. Legal Requirements

A .7.1. Com pliance R equirem ents

R equirem ent 7.1.1.

T he system  must be published .as O pen Source P ro d u c t. ■ ' .-yl

A cooperation with the Internat ional Atomic Energy Agency (IAEA) makes it necessary 

to make all sources available. When all sources are available everyone can assure himself 

that the software comes with no backdoors or security flaws and is able to change or 

add functionality.

All source codes are freely accessible and published under a Open Source Initiative 

(OSI) compliant license.
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R equirem ent 7.1.2.

|3P T h e  s y s t e m  m u s t  b o  free; o f  d e p e n d e n c ie s  t o  c o m m e r c i a l  t h i r d - p a r t y  p r o d 

u c ts .  •TyV .t'■ t 'T  ■:V ';'T h v'

^  When commercial third-party code is included into the system, it cannot be guaranteed 

that the software can be freely published without violating any third part rights and it 

is not possible to publish the complete source.

The system does not violate any patent and license rights and exclusively includes or 

links to free third-party libraries or modules.

R equirem ent 7.1.3.

T hesy sfe iiiiim sfco rriig iirab ie ;to  com ply w itli th e  guidelines of tlie  operating1- 

in stitu te  or company. •

Clients often have guidelines that forbid specific functionality that for example breaks 

local security rules.

All system functionality can be flexibly configured to the operators guidelines or be 

disabled.

A .7.2. S tandards R equirem ents

R equirem ent 7.2.1.

ffl :The':syst€mi.;sbalIjise i^ ie /N eX us  fo rm at to  sto re  n eu tro n - .diffraction data.:

The NeXUs format is the standard format used to store and interchange neutron diffrac

tion measurement data.

It is possible to save measurement data in the NeXus format.
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B .l. 01 Assemblies

B.1.1. E3-M cStas.xm l

<oi-assembly ... >
< ! - -  The McStas Proxy -->

<oim id="proxy" type="org-openinspire-oim-mcstas-proxy" 
version="1.3.0 _alpha">

<p r o p e r t y  name = 11 simulationFolder 11 value = "/path/to/E3sim" /> 
< p r o p e r t y  name="instrumentFileName" value="E3.instr" /> 
< p r o p e r t y  name="executableFileName" value="E 3 .out" />

</oim>

<!—  The Positioners — >
<oim id="TTHS" type="org-openinspire-oim-mcstas-positioner" 

version = "1.3. 0_alpha11 >
<property name="value" value="90.0" />
<property name="minimum" value®"-120.0" />
<property name® "maximum" value®" 120 . 0 11 />
<port name="mcStasProxy" ref="proxy" />

</oim>

<oim id="OMGS" type="org-openinspire-oim-mcstas-positioner" 
version="1.3.0_alpha">
<property name="minimum" value®"-360.0" />
<property name="maximum" value®"360.0" />
<port name="mcStasProxy" ref="proxy" />

</oim>

<oim id="XT" type="org-openinspire-oim-mcstas-positioner" 
version="1.3.0 _alpha">
<property naine = "minimum " value®"-200 . 0 " />
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<property name="maximum" value®"200.0" />
<port name®"mcStasProxy" ref="proxy" />

</oim>

<oim id="YT" type®"org-openinspire-oim-mcstas-positioner" 
version®"1.3.0 _alpha">
<property name®"minimum" value®"-200.0" />
<property name="maximum" value®"200.0" />
<port narae = "mcStasProxy " ref="proxy" />

</oim>

<oim id="ZT" type®"org-openinspire-oim-mcstas-positioner" 
version®"1.3.0_alpha">
<property name="minimum" value="-200.0" />
<property name="maximum" value®"200.0" />
<port naffie="mcStasProxy" ref="proxy" />

</oim>

<oim id="CHIS" type®"org-openinspire-oim-mcstas-positioner" 
version®"1.3.0_alpha">
<property name®"minimum" value®"-200.0" />
<property name="maximum" value®"200.0" />
<port name®"mcStasProxy" ref="proxy" />

</oim>

<oim id®"PHIS" type®"org-openinspire-oim-mcstas-positioner" 
version®"1.3.0_alpha">
<property name="minimum" value®"-200.0" />
<property name®"maximum" value®"200.0" />
<port name®"mcStasProxy" ref®"proxy" />

</oim>

<!-- The Counters — >
<oim id®"neutronCounter "

type®"org-openinspire-oim-mcstas-counter" 
version®"1.3.0_alpha">
<port name="mcStasProxy" ref="proxy" />

</oim>

<oim id®"progressCounter"
type®"org-openinspire-oim-mcstas-counter" 
version®"1.3.0_alpha">
<port name="mcStasProxy" re£="proxy" />

</oim>

<!-- The Detector -->
<oim id®"detector" type="org-openinspire-oim-mcstas-detector" 

version="1.3.0_alpha">
<property name="nX" value®"256"/>
<property name="nY" value®"256"/>
<port name="mcStasProxy" ref="proxy" />

</oim>

<!-- The Scan Engine -->
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<oim id="genericScan" type="org-openinspire-oim-scans-generic" 
version*"1.3.0_alpha">
<port name="positioners' 
<port naae="positioners' 
<port name*"positioners' 
<port name = "positioners' 
<port name="positioners1 
<port naae="positioners' 
<port name*"positioners'

r e f = "TTHS" /> 
ref = "0MGS" /> 
ref = "XT" /> 
ref = "YT" /> 
ref = "ZT" /> 
ref = "CHIS" /> 
ref = "PHIS" />

<port name="counters" ref="neutronCounter"/>
<port name="counters" ref="progressCounter"/>

<port name = " detectors " ref = " detector " />

<port name="activePositioner" ref="TTHS"/>
<port nas!e = "activeCounter" ref = "neutronCounter "/>
<port name="activeDetector" ref=" detector"/>

<property name*"fileNamePrefix" value*"scan"/>
<property nase*"scanName" value= "0neuAxisu Diffractionu S can"/> 
<property name*"activePos it ionerStartValue" value*"85.0"/> 
<property name*"activePositionerEndValue" value*"95.0"/> 
<property name*"countsPerStep" value*"5 0 0 0 0 0 0 "/>
<property naae = " steps " value = " 6 11/>

</oim>

<!-- The Summation Module — >
<oim id*"debyeSum"

type= " org-openinspire-oim-math-sum-debyesherrer" 
version= " 1 . 3 . 0  _alpha">
<property name= "wavelength" value*" 1 . 3 7 4 "/>
<property name*" distance " value = " 0 . 7 11 />
<port name="detector" ref="detector" />
<port name*"positioner" ref="TTHS" />

</oim>

<!-- The visualization -->
<oim id="widgetTestcenter"

type="org-openinspire-oim-debug-widgettestcenter" 
version*" 1 . 3 . 0  _alpha">
<port nam<3 = " components 11 ref="detector" />
<port nasu3="components" ref = "TTHS" />
<port naiinb= " components" ref = "0MGS" />

<port naira3="components" ref = "neutronCounter" />
<port nanx=; = " components " ref = "progressCounter" />
<port n am ia="components" ref="genericScan" />
<port nam<a="components" ref="debyeSum" />

</oim>

</oi-assembly>
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B.2. Scan Configuration Files

B .2 .1 . scanS equence .xm l

<?xml version="1.0" encoding="UTF-8"?> 
<sequence >

<init >
<nexus id ="nx" filename®"scan.hd5" type="hdf5"/>
<nexus cmd="addgroup" name®"entry1" type="NXentry"/>
<nexus cmd®"addgroup" name®"instrument" type®"NXinstrument"

parent ="entry1"/>
< / init >
<steps>

<step>
<oim id="xT" call®"setpoint">0</oim>
<oim id®"y T " call®"setpoint">0</oim>
<oim id="zT" call®"setpoint">0</oim>
<oim id®"omgs" call®"setpoint">0</oim>
<block-until state®"IDLE"> x T ,y T ,zT ,omega</block-until>
<oim id®"detector" call®"clearMatrix"/>
<oim id®"counter" call®"resetCounts"/>
<oim id®"counter" call="setSetpoint">0</oim>
<oim id®"detector" call®"startDetect ing"/>
<oim id®"counter" call®"startCounting"/>
<block-until state®"IDLE">counter</block-until>
<oim name®"counter" call®"stopCounting"/>
<oim name®"counter" call®"stopDetecting"/>
<nexus cmd=" snapshot11

parent = " instrument" >xT , yT , zT , omgs , detector </nexus >
</step>
<step>

<oim id="orags" call="setpoint">20</oim>
<block-until state="IDLE">omega</block-until>
<oim id="detector" call®"clearMatrix"/>
<oim id="counter" call="resetCounts"/>
<oim id="detector" call="startDetecting"/>
<oim id="counter" call="startCounting"/>
<block-until state®"IDLE">counter</block-until>
<oim name="counter" call®"stopCounting"/>
<oim name="counter" call="stopDetecting"/>
<nexus cmd®"snapshot"

parent®"instrument">omgs,detector</nexus>
</step>
<step>

<oim id="omgs" call="setpoint">40</oim>
<block-until state®"IDLE">omega</block-until>
<oim id="detector" call®"clearMatrix"/>
<oim id="counter" call="resetCounts"/>
<oim id®"detector" call®"startDetecting"/>
<oim id="counter" call®"startCounting"/>
<block-until state®"IDLE">counter</block-until>
<oim name®"counter" call®"stopCounting"/>
<oim name®"counter" call®"stopDetecting"/>
<nexus cmd="snapshot"

parent®"instrument">omgs.detector</nexus>
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</step>
<step>

<oim id="omgs" call="setpoint">60</oim>
<block-until state="IDLE">omega</block-until> 
<oim id=11 detect or " call = " clearMatrix "/>
<oim id="counter" call="resetCounts"/>
<oim id="detector" call="startDetecting"/>
<oim id="counter" call®"startCounting"/>
<block-until state = "IDLE">counter</block-unt il> 
<oim name®"counter" call="stopCounting"/>
<oim name®"counter" call="stopDetecting"/> 
<nexus cmd="snapshot"

parent = " instrument">omgs,detector</nexus >
</step>
<step>

<oim id="omgs" call="setpoint">80</oim>
<block-until state®"IDLE">omega</block-until> 
<oim id="detector" call®"clearMatrix"/>
<oim id="counter" call="resetCounts"/>
<oim id®"detector" call®"startDetecting"/>
<oim id="counter" call®"startCounting"/> 
<block-unt il state = "IDLE">counter</block-unt il> 
<oim name®"counter" call®"stopCounting"/>
<oim name®"counter" call®"stopDetecting"/> 
<nexus cmd®"snapshot"

parent®"instrument">omgs,detector</nexus>
</step>
<step>

<oim id="omgs" call®"setpoint">100</oim> 
<block-until state®"IDLE">omega</block-until> 
<oim id®"detector" call®"clearMatrix"/>
<oim id="counter" call®"resetCounts"/>
<oim id®"detector" call®"startDetecting"/>
<oim id="counter" call®"startCounting"/> 
<block-unt il state = "IDLE">counter</block-unt il> 
<oim name®"counter" call®"stopCounting"/>
<oim name®"counter" call®"stopDetecting"/> 
<nexus cmd®"snapshot"

parent®"instrument">omgs,detector</nexus>
</step>
<step>
<nexus id="nx" cmd="save" group®"entry1" />
</step>

</steps >
</sequence>

B.3. CARESS Files

The following pages give an overview about configuration files used as information and design 

source for the Open Inspire CARESS support modules. All templates are captured from the 

setup of the instrument E7 but are similar on the instruments E3 and StressSpec.
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B.3.1. hardware modules e7.dat

E7 hardware components

K.H. Degenhardt 
S. Flemming 
14-jun-2005

;components controlled by server running on nvmee7 
SLAVE1 1000

;JOERGER VSC counter
; name kind bus addr no
MON 116 11 0x1000000 1
TIM1 116 11 0x1000000 2
TIM2 116 11 0x1000000 3

#if ADET
;X18 histogram module
;nase kind bus addr lov/high_pattern x_chan y_chan
ADET 121 11 0X8000000 0X400 128 128
NYS 0
YSD 0
#endif

#if LDET
; J0ERGER counter
inane kind bus addr offset chans
LDET 113 11 0xe6000000 0 5
YSD 0
;single detector selection 
inane kind x_chan y_chan region
D1 109 1 0 0
#endif

#if SDET 
;single detector
inane kind bus addr no
SDET 116 11 0x1000000 4
#endif 
#if ALL
M0N2 116 11 0x1000000 4
#endif

; 1024 1/0 module
inane kind bus addr input_mask 
I0REG 120 11 Oxffff6000 0x0

;motor control EKF 
inane kind bus

44520
addr n o . ratio vmax accel enct reso dx_max dir pads PID umax scale p I D

o_shoot 
OMGS 114 11 OxfOfIcOOO 1 -4096 2000 200 2 24 50 0 0 1 3000 1 10 0 0 0
TTHS 114 11 OxfOfIcOOO 2 4096 2000 200 2 24 50 -1 11 1 3000 1 10 0 0
0MGM 114 11 OxfOfldOOO 2 4096 10000 1000 2 24 100 1 0 1 3000 1 10 0 0

# if EULER IALLM0TS 
PHIS 115 11

1 ALIGNM 1 
OxfOfldOOO

ALL
4 3200 2000 200 1 0 0 0 0 1 5000 1 10 0 0 0

CHIS 115 11 OxfOfldOOO 3 -6400 2000 200 1 0 0 0 0 1 5000 1 10 0 0 0
#endif

;standard translation modules 
XT 114 11 OxfOfIcOOO 3 8192 10000 1000 2 24 100 -1 0 1 5000 1 10 0 0 0
YT 114 11 OxfOfIcOOO 4 8192 10000 1000 2 24 100 -1 0 1 5000 1 10 0 0 0
ZT 114 11 OxfOfldOOO 1 16000 10000 1000 2 24 100 -1 0 1 5000 1 10 0 0 0

#if TRANS
XE 115 11 OxfOfleOOO 1 3200 10000 1000 1 0 0 0 0 1 5000 1 10 0 0 0
YE 115 11 OxfOfleOOO 2 3200 10000 1000 1 0 0 0 0 1 5000 1 10 0 0 0
ZE 115 11 OxfOfleOOO 3 32000 10000 1000 1 0 0 0 0 1 5000 1 10 0 0 0
#endif

if ALIGNM I ALL
;PST
; PSR
; SST
#endif

;motor control multiplex ST180 
inane kind bus term unit#
MUX3 38 4 /t4 1
iMUX modules (attention: velo and accel in steps per s, CARESS converts these 
;natural unit into the obscure ST180 unit)
; name sind mux lun motor# ratio velo accel cof
Ml.CHI 39 3 1 1 -400.0 200 100
Ml.FOC 39 3 1 2 -400.0 200 100
Ml.TR 39 3 1 3 400.0 200 100
M2.CHI 39 3 1 4 -400.0 200 100
M2_F0C 39 3 1 5 -400.0 200 100
M2_TR 39 3 1 6 400.0 200 100
M3.CHI 39 3 1 7 -400.0 200 100
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91 M3.F0C 39 3
92 M3.TR 39 3
93
94 NALE7 1000
95
90 ; Keithley DMM199
97 ;name kind bus
98 HE.CM 27 2
99

100 #if TEMP
101 ;LakeShore temp c
102 ;name kind bus
103 TEMP 25 2
101 •endif

gpibadr 
5 16

XXX
12

-400.0
400.0

200
200

100
100

fact, settl. func. range 
1 0 . 0 1 2  0 0

XXX

14

B.3.2. param s_e7 .com

27
28
29
30
31
32
33
34

30
37
38
39
40
4142
43  
4 4 
45 
40
47
4 8

param7_e7.com

K.H. Degenhardt 
S. Flemming
last update: 14-jun-2005

define instrument type and mode 
EXPTYPE E7 A2 ADET ALL TRANS TEMP MAGF 
USN USER 
TITLE TITLE
RELA TTHS = 128 ,64,0.151181 NYS=128,64,0.151181 YSD=0 

;define parameters for drive components
BLS 0MGS=-200,200 TTHS=-200,200 PHIS=-200,200 CHIS=-200,200 0MGM=-200,200 
BLS XT=-200,200 YT=-200,200 ZT=-200,200 XE=-200,200,YE=-200,200 ZE=-200,200 
BLS PSR=-200,200 PST=-200 ,200 SST=-200 ,200 TEMP=0,100 MAGF=0,5 
BLS TTHM=-200,200 TRANSM=-200,200 Ml_TR=-600,600 Ml.CHI=-600,600 M1_F0C=0,4096 
BLS M2_TR=-600 ,600 M2_CHI = -600 ,600 M2_F0C=0 ,4096 M3_TR=-600 ,600 M3_CHI=-600 600 
BLS M3_F0C=O,4096
TOL OMGS=0.01 TTHS=0.01 PHIS=0.01 CHIS=0.01 0MGM=0.01 XT=0.01 YT=0.01 ZT=0.01 
TOL XE=0.01 YE=0.01 ZE=0.01 PSR=0.01 PST=0.01 SST=0.01 TEMP=0.01 MAGF=0.01 
TOL TTHM=0.01 TRANSM=0.01 M1_TR=0.01 M1_CHI=0.01 M1_F0C=0.01 M2_TR=0.01 
TOL M2_CHI=0.01 M2_FOC=0.01 M3_TR=0.01 M3_CHI=0.01 M3_FOC=0.01 
SOF 0MGS=0 TTHS=0 PHIS=0 CHIS=0 0MGM=O XT=0 YT=0 ZT=0 XE=0 YE=0 ZE=0 
SOF PSR=0 PST=0 SST=0
SOF TTHM=0 TRANSM=0 M1_TR=0 M1_CHI=0 M1_F0C=0 M2_TR=0 M2_CHI=0 M2_F0C=0 
SOF M3_TR=0 M3_CHI=0 M3_F0C=0
TMO 0MGS=60 TTHS=60 PHIS=60 CHIS=60 OMGM=60 XT=60 YT=60 ZT=60 
TMO XE=60 YE=60 ZE=60 PSR=60 PST=60 SST=60 TEMP=60 MAGF=60
TMO TTHM=60 TRANSM=60 M1_TR=60 M1_CHI=60 M1_F0C=60 M2_TR=60 M2_CHI=60 M2_F0C=60 
TMO M3_TR=60 M3_CHI=60 Mi_F0C=60

; define sample parameter 
SAM SAMPLE 
WAV 1.7 
SET YSD=50

WINDA Wl=l 128 1 128

PRT ON 
DISP ON 
DISP LIV 10

/ / + + + + - M

II
/ I  CORBA IDL file for CARESS "abstractudevice’ 
II
I I  omniidl -bcxx -Wba absdev.idl 
I I
I I  file: absdev.idl 
I I  author: K.H. Degenhardt
I I  last update: 29-mar-2000 
I I  

I I

II ---------------- ------------------- ------
#ifndef __ABSDEV_IDL__
•define __ABSDEV_IDL__

// max. items in a data block 
const long MAX.ITEMS = 4096;

I I  define module info
typedef sequence<any> module.info_seq_t; 

I I  define block data info
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typedef sequence<char> char.data.seq.t; 
typedef sequence<short> short.data.seq.t; 
typedef sequence<long> int_data_seq_t; 
typedef sequence<float> float_data_seq_t;

interface absdev 
{

I I  init system
long init_system_orb(in long kind_of_init_system, out long system_status);

// release system
long release_system_orb(in long kind.of.release.system);

// init module
long init_module_orb(in long kind_of_init_module, in long module.id, in string module_line, out long 

module_status);

I I  read module (out replaced by inout)
long read_module_orb(in long kind_of_read_module, in long module_id, inout module_info_seq_t module.info.seq);

I I  drive module
long drive_module_orb( in long kind_of_drive_module , in module_info.seq.t module_info_seq, in long event.number , 

inout long calculated.timeout , out long event_used, out long delay_status , out long module_status) ;

I I  load module
long load_module_orb(in long kind_of_load_module , in module_info_seq_t module.info.seq , in long event_number , 

out long event.used, out long module.status);

I I  stop module
long stop_module_orb(in long kind.of.stop.module , in long module.id, out long module.status);

// stop all modules
long stop_all_orb(in long kind.of.stop.all , out long stop_all_status);

I I  start acquisition
long start_acquisition_orb(in long kind.of_start_acquisition, in long run.no, in long mesr.count, out long 

acquisition.status);

I I  stop acquisition
long stop.acquisition.orb(in long kind.of.stop.acquisition, out long acquisition.status);

I I  get parameters of block data
long readblock.params.orb( in long kind.of.readblock.module, in long module.id, inout long start.channel, inout 

long end.channel, inout long channel.type);

I I  read block data for char, short, long or float
long char_readblock_module_orb(in long kind.of.readblock.module, in long module.id, in long start.channel, in 

long end.channel, out long module.status, inout char.data.seq.t data.seq);

long short.readblock.module.orb(in long kind.of.readblock.module, in long module.id, in long start.channel, in 
long end.channel, out long module.status, inout short.data.seq.t data.seq);

long int_readblock_module_orb(in long kind.of.readblock.module, in long module.id, in long start.channel, in 
long end.channel, out long module.status, inout int.data.seq.t data.seq);

long float_readblock_module_orb(in long kind.of.readblock.module, in long module.id, in long start.channel, in 
long end.channel, out long module.status, inout float.data.seq.t data.seq);

I I  load block data for char, short, long or float
long char.loadblock_module.orb(in long kind.of.loadblock.module, in long module.id, in long start.item, in long 

end.item, in long item.type, out long module.status, in char.data.seq.t data.seq);

long short.loadblock.module.orb(in long kind.of.loadblock.module, in long module.id, in long start.item, in long 
end.item, in long item.type, out long module.status, in short.data.seq.t data.seq);

long int.loadblock.module.orb(in long kind.of.loadblock.module, in long module.id, in long start.item, in long 
end.item, in long item.type, out long module.status, in int.data.seq.t data.seq);

long float.loadblock.module.orb(in long kind.of.loadblock.module, in long module.id, in long start.item, in long 
end.item, in long item.type, out long module.status, in float.data.seq.t data.seq);

// read all modules (out replaced by inout)
long read allmodules.orb( in long kind of read allmodules, inout module info seq t module info seq);

};
#endif

B.4. McStas Instrument Files

B.4.1. E3.instr

1 /*
2 * Instrument : E3 at HMI (Re sidual Stress
3 * written by: Mi rko Boin
■I * data collect ed by Robert Wimpory
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* last change: 30.05.2008 
* /

/* possibility to set motors and slit dimensions */
DEFINE Instrument E 3 ( TTHS=90.0, 0MGS=45.0, XT=0.0, YT=0.0, 

CHIS=0.0, PHIS =0.0 )

DECLARE

/* initialize instrumental defaults here */
double monochromator_tth = 27.3064; // (111) Si reflection
double monochromator_sampleTable_distance = 2.350;
double tubeSlit_monochromator_distance = 0.85;
double tubeSlit_width = 0.11;
double tubeSlit_height = 0.11;

/* this usually belongs to the experiment (sample) */
double primarySlit_width = 0.02;
double primarySlit_height = 0.02;
double secondarySlit_width = 0.02;
double secondarySlit_height = 0.02;
double primarySlit_sampleTable_distance = 0.15;
double secondarySlit_sampleTable_distance = 0.15;
double sampleTable_detector_distance = 1.300;
*/.}

INITIALIZE
u
7«>

TRACE

/* status of the progress while simulating */
COMPONENT origin = Progress_bar( 

profile = "progress.txt",
//percent =1, 
flag_save=l, 
minutes =0.01 

) AT (0,0,0) ABSOLUTE

/* source */
COMPONENT source = Source_div( 

width=0.01, 
height =0.01, 
hdiv=0.002, 
vdiv=0.002,
LambdaO = 1.48, 
dLambda = 0.01, 
gauss = 0 

) AT (0, 0, 0) ABSOLUTE

/* slit or collimator? or both? */
COMPONENT tubeSlit = Slit( 

width = tubeSlit_width, 
height = tubeSlit_height

Z T = 0 . 0 ,
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) AT (0, 0, 1) RELATIVE source ROTATED (0, 0, 0) RELATIVE source

/* monochromator (here: perfectly bent focussing) */
COMPONENT monochromator_center = Arm () AT (0, 0,

tubeSlit_monochromator_distance) RELATIVE tubeSlit ROTATED (0, 0,
0) RELATIVE tubeSlit 

COMPONENT monochromator = Monochromator_flat( 
width = 0.2, 
height = 0.2, 
mosaich = 30.0, 
mosaicv = 30.0, 
rO = 0.9,
Q = 2.004

) AT (0, 0, 0) RELATIVE monochromator_center ROTATED (0,
-monochromator_tth/2.0, 0) RELATIVE monochromator_center

COMPONENT monochromator_out = A r m O  AT (0, 0, 0) RELATIVE
monochromator_center ROTATED (0, -monochromator_tth, 0) RELATIVE 
monochromator_center

/ *  primary slit */
COMPONENT primarySlit = Slit( 

width = primarySlit_width , 
height = primarySlit_height 

) AT (0, 0,
monochromator_samp1eTable_distance-primarySlit_sampleTable_distance) 
RELATIVE monochromator_out ROTATED (0, 0, 0) RELATIVE 
monochromator_out

/* sample table including eulerian cradle */
COMPONENT sampleTable_center = A r m O  AT (0, 0,

primarySlit_sampleTable_distance) RELATIVE primarySlit ROTATED 
(0, 0, 0) RELATIVE primarySlit 

COMPONENT omgs_motor = A r m O  AT (0, 0, 0) RELATIVE 
sampleTable_center ROTATED (0, OMGS, 0) RELATIVE 
sampleTable_center 

/* X, Y, Z tables */
COMPONENT zt_motor = A r m O  AT (0, Z T , 0) RELATIVE omgs_motor 

ROTATED (0, 0, 0) RELATIVE omgs_motor
COMPONENT xt_motor = A r m () AT (XT, 0, 0) RELATIVE zt_motor

ROTATED (0, 0, 0) RELATIVE zt_motor
COMPONENT yt_motor = Arm () AT (0, 0, -YT) RELATIVE xt_motor

ROTATED (0, 0, 0) RELATIVE xt_motor 
. /* Eulerian Cradle (chis, phis) */
COMPONENT chis_motor = A r m O  AT (0, 0, 0) RELATIVE yt_motor 

ROTATED (0, 0, -CHIS) RELATIVE yt.motor 
COMPONENT phis_motor = A r m O  AT (0, 0, 0) RELATIVE chis_motor 

ROTATED (0, PHIS, 0) RELATIVE chis_motor
/* - X E , YE, ZE motors could also be implemented here ------  */
/* finally, the sample */
COMPONENT sample = Powderl ( 

d = 1.0465, 
xwidth = 0.13, 
yheight = 0.1, 
zthick = 0.05,
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37

38
no

1L10

101

102
103
104 

10.5 

108

107

108 

100  

110  

1.1 1 

112 

113 

1J 1 
115

118

117

d_phi = 10, 
radius = 0

) AT ( 0 ,  0 ,  0 )  RELATIVE phis_motor ROTATED ( 0 ,  0 ,  0 )  RELATIVE 
phis_motor

COMPONENT tths_motor = Arm() AT ( 0 ,  0 ,  0 )  RELATIVE sampleTable_center 
ROTATED ( 0 ,  TTHS, 0 )  RELATIVE sampleTable_center

/* secondary slit */
COMPONENT secondarySlit = Slit( 

width = secondarySlit_width, 
height = secondarySlit_height

) AT ( 0 ,  0 ,  secondarySlit_sampleTable_distance) RELATIVE tths_motor 
ROTATED ( 0 ,  0 ,  0 )  RELATIVE tths_motor

/* 2D detector */
COMPONENT detector = PSD_monitor( 

xwidth = 0 . 3 ,  
yheight = 0 . 3 ,  
nx = 256, 
ny = 256,
filename = "detector.p s d "

) AT ( 0 ,  0 ,  sampleTable_detector_distance) RELATIVE tths_motor 
ROTATED ( 0 ,  0 ,  0 )  RELATIVE tths_motor

END
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