16 research outputs found

    Decomposition of Multiple Coverings into More Parts

    Full text link
    We prove that for every centrally symmetric convex polygon Q, there exists a constant alpha such that any alpha*k-fold covering of the plane by translates of Q can be decomposed into k coverings. This improves on a quadratic upper bound proved by Pach and Toth (SoCG'07). The question is motivated by a sensor network problem, in which a region has to be monitored by sensors with limited battery lifetime

    Making Triangles Colorful

    Get PDF
    We prove that for any point set P in the plane, a triangle T, and a positive integer k, there exists a coloring of P with k colors such that any homothetic copy of T containing at least ck^8 points of P, for some constant c, contains at least one of each color. This is the first polynomial bound for range spaces induced by homothetic polygons. The only previously known bound for this problem applies to the more general case of octants in R^3, but is doubly exponential.Comment: 6 page

    Coloring Hypergraphs Induced by Dynamic Point Sets and Bottomless Rectangles

    Full text link
    We consider a coloring problem on dynamic, one-dimensional point sets: points appearing and disappearing on a line at given times. We wish to color them with k colors so that at any time, any sequence of p(k) consecutive points, for some function p, contains at least one point of each color. We prove that no such function p(k) exists in general. However, in the restricted case in which points appear gradually, but never disappear, we give a coloring algorithm guaranteeing the property at any time with p(k)=3k-2. This can be interpreted as coloring point sets in R^2 with k colors such that any bottomless rectangle containing at least 3k-2 points contains at least one point of each color. Here a bottomless rectangle is an axis-aligned rectangle whose bottom edge is below the lowest point of the set. For this problem, we also prove a lower bound p(k)>ck, where c>1.67. Hence for every k there exists a point set, every k-coloring of which is such that there exists a bottomless rectangle containing ck points and missing at least one of the k colors. Chen et al. (2009) proved that no such function p(k)p(k) exists in the case of general axis-aligned rectangles. Our result also complements recent results from Keszegh and Palvolgyi on cover-decomposability of octants (2011, 2012).Comment: A preliminary version was presented by a subset of the authors to the European Workshop on Computational Geometry, held in Assisi (Italy) on March 19-21, 201

    Colorful Strips

    Full text link
    Given a planar point set and an integer kk, we wish to color the points with kk colors so that any axis-aligned strip containing enough points contains all colors. The goal is to bound the necessary size of such a strip, as a function of kk. We show that if the strip size is at least 2k12k{-}1, such a coloring can always be found. We prove that the size of the strip is also bounded in any fixed number of dimensions. In contrast to the planar case, we show that deciding whether a 3D point set can be 2-colored so that any strip containing at least three points contains both colors is NP-complete. We also consider the problem of coloring a given set of axis-aligned strips, so that any sufficiently covered point in the plane is covered by kk colors. We show that in dd dimensions the required coverage is at most d(k1)+1d(k{-}1)+1. Lower bounds are given for the two problems. This complements recent impossibility results on decomposition of strip coverings with arbitrary orientations. Finally, we study a variant where strips are replaced by wedges

    Making Octants Colorful and Related Covering Decomposition Problems

    Full text link
    We give new positive results on the long-standing open problem of geometric covering decomposition for homothetic polygons. In particular, we prove that for any positive integer k, every finite set of points in R^3 can be colored with k colors so that every translate of the negative octant containing at least k^6 points contains at least one of each color. The best previously known bound was doubly exponential in k. This yields, among other corollaries, the first polynomial bound for the decomposability of multiple coverings by homothetic triangles. We also investigate related decomposition problems involving intervals appearing on a line. We prove that no algorithm can dynamically maintain a decomposition of a multiple covering by intervals under insertion of new intervals, even in a semi-online model, in which some coloring decisions can be delayed. This implies that a wide range of sweeping plane algorithms cannot guarantee any bound even for special cases of the octant problem.Comment: version after revision process; minor changes in the expositio

    Set It and Forget It: Approximating the Set Once Strip Cover Problem

    Full text link
    We consider the Set Once Strip Cover problem, in which n wireless sensors are deployed over a one-dimensional region. Each sensor has a fixed battery that drains in inverse proportion to a radius that can be set just once, but activated at any time. The problem is to find an assignment of radii and activation times that maximizes the length of time during which the entire region is covered. We show that this problem is NP-hard. Second, we show that RoundRobin, the algorithm in which the sensors simply take turns covering the entire region, has a tight approximation guarantee of 3/2 in both Set Once Strip Cover and the more general Strip Cover problem, in which each radius may be set finitely-many times. Moreover, we show that the more general class of duty cycle algorithms, in which groups of sensors take turns covering the entire region, can do no better. Finally, we give an optimal O(n^2 log n)-time algorithm for the related Set Radius Strip Cover problem, in which all sensors must be activated immediately.Comment: briefly announced at SPAA 201

    Octants are cover-decomposable into many coverings

    Get PDF
    We prove that octants are cover-decomposable into multiple coverings, i.e., for any k there is an m(k)m(k) such that any m(k)m(k)-fold covering of any subset of the space with a finite number of translates of a given octant can be decomposed into k coverings. As a corollary, we obtain that any m(k)m(k)-fold covering of any subset of the plane with a finite number of homothetic copies of a given triangle can be decomposed into k coverings. Previously only some weaker bounds were known for related problems [20]

    A Characterization of Visibility Graphs for Pseudo-Polygons

    Full text link
    In this paper, we give a characterization of the visibility graphs of pseudo-polygons. We first identify some key combinatorial properties of pseudo-polygons, and we then give a set of five necessary conditions based off our identified properties. We then prove that these necessary conditions are also sufficient via a reduction to a characterization of vertex-edge visibility graphs given by O'Rourke and Streinu
    corecore