3,297 research outputs found

    Ambient light modulation of exogenous attention to threat

    Full text link
    Planet Earth’s motion yields a 50 % day–50 % night yearly balance in every latitude or longitude, so survival must be guaranteed in very different light conditions in many species, including human. Cone- and rod-dominant vision, respectively specialized in light and darkness, present several processing differences, which are—at least partially—reflected in event-related potentials (ERPs). The present experiment aimed at characterizing exogenous attention to threatening (spiders) and neutral (wheels) distractors in two environmental light conditions, low mesopic (L, 0.03 lx) and high mesopic (H, 6.5 lx), yielding a differential photoreceptor activity balance: rod > cone and rod < cone, respectively. These distractors were presented in the lower visual hemifield while the 40 participants were involved in a digit categorization task. Stimuli, both targets (digits) and distractors, were exactly the same in L and H. Both ERPs and behavioral performance in the task were recorded. Enhanced attentional capture by salient distractors was observed regardless of ambient light level. However, ERPs showed a differential pattern as a function of ambient light. Thus, significantly enhanced amplitude to salient distractors was observed in posterior P1 and early anterior P2 (P2a) only during the H context, in late P2a during the L context, and in occipital P3 during both H and L contexts. In other words, while exogenous attention to threat was equally efficient in light and darkness, cone-dominant exogenous attention was faster than rod-dominant, in line with previous data indicating slower processing times for rod- than for cone-dominant visionThis research was supported by the Grants PSI2014-54853-P and PSI2012-37090 from the Ministerio de Economía y Competitividad of Spain (MINECO

    Software engineering for self-adaptive systems:research challenges in the provision of assurances

    Get PDF
    The important concern for modern software systems is to become more cost-effective, while being versatile, flexible, resilient, dependable, energy-efficient, customisable, configurable and self-optimising when reacting to run-time changes that may occur within the system itself, its environment or requirements. One of the most promising approaches to achieving such properties is to equip software systems with self-managing capabilities using self-adaptation mechanisms. Despite recent advances in this area, one key aspect of self-adaptive systems that remains to be tackled in depth is the provision of assurances, i.e., the collection, analysis and synthesis of evidence that the system satisfies its stated functional and non-functional requirements during its operation in the presence of self-adaptation. The provision of assurances for self-adaptive systems is challenging since run-time changes introduce a high degree of uncertainty. This paper on research challenges complements previous roadmap papers on software engineering for self-adaptive systems covering a different set of topics, which are related to assurances, namely, perpetual assurances, composition and decomposition of assurances, and assurances obtained from control theory. This research challenges paper is one of the many results of the Dagstuhl Seminar 13511 on Software Engineering for Self-Adaptive Systems: Assurances which took place in December 2013

    Computer Modelling as an Aid to Forest and Woodland Restoration

    Get PDF
    Reclamation of terrestrial ecosystems tends to be focussed on two main land uses, mining and degraded agricultural or forested lands. Modelling has great potential to assist in both situations. The aim of many restoration programs is to restore biodiversity and a self-sustaining, fully functional ecosystem, which is intimately linked with the return of the plants, the vertebrates and, particularly, the invertebrate fauna, whose presence plays a pivotal role in most ecosystem functions and processes. A thorough understanding of these plant-fauna associations is essential if restoration is to succeed. It could also equip us with the knowledge to decide how minimalistic our information needs can be when modelling progress with restoration, for instance: by quantifying certain biophysical parameters; these plus certain vegetation indices; or by both plus a range of faunal attributes. As well as streamlining the restoration monitoring process, this could lead to the enhancement of the conservation value of the restoration, and a clear understanding of the ecological links between flora and fauna would also help develop bioindicators as components of completion criteria schedules. Using Western Australian bauxite mining in the Jarrah (Eucalyptus marginata) forest as a case study, this paper reviews rehabilitation prescriptions and trends in development of plant assemblages, invertebrate colonization and litter decomposition, and applies a systems dynamic modelling approach model to test assumptions regarding the evolution of plant-fauna assemblages in time and assess whether it is feasible to predict temporal changes in the rehabilitation of this ecosystem. Secondly, in relation to efforts to purchase and rehabilitate land to reconnect remnant woodland vegetation close to the south coast of Western Australia, network analysis and multi-level simulations are applied in order to decide the best locations to acquire land and to restore it in order to optimise connectivity

    Games for learning

    Get PDF
    • …
    corecore