11 research outputs found

    Decomposing Probabilistic Lambda-Calculi

    Get PDF
    International audienc

    A note on confluence in typed probabilistic lambda calculi

    Get PDF
    On the topic of probabilistic rewriting, there are several works studying both termination and confluence of different systems. While working with a lambda calculus modelling quantum computation, we found a system with probabilistic rewriting rules and strongly normalizing terms. We examine the effect of small modifications in probabilistic rewriting, affine variables, and strategies on the overall confluence in this strongly normalizing probabilistic calculus.Comment: To appear at LSFA 202

    A deep quantitative type system

    Get PDF
    We investigate intersection types and resource lambda-calculus in deep-inference proof theory. We give a unified type system that is parametric in various aspects: it encompasses resource calculi, intersection-typed lambda-calculus, and simply-typed lambda-calculus; it accommodates both idempotence and non-idempotence; it characterizes strong and weak normalization; and it does so while allowing a range of algebraic laws to determine reduction behaviour, for various quantitative effects. We give a parametric resource calculus with explicit sharing, the “collection calculus”, as a Curry–Howard interpretation of the type system, that embodies these computational properties

    The Functional Machine Calculus

    Get PDF
    This paper presents the Functional Machine Calculus (FMC) as a simple model of higher-order computation with "reader/writer" effects: higher-order mutable store, input/output, and probabilistic and non-deterministic computation. The FMC derives from the lambda-calculus by taking the standard operational perspective of a call-by-name stack machine as primary, and introducing two natural generalizations. One, "locations", introduces multiple stacks, which each may represent an effect and so enable effect operators to be encoded into the abstraction and application constructs of the calculus. The second, "sequencing", is known from kappa-calculus and concatenative programming languages, and introduces the imperative notions of "skip" and "sequence". This enables the encoding of reduction strategies, including call-by-value lambda-calculus and monadic constructs. The encoding of effects into generalized abstraction and application means that standard results from the lambda-calculus may carry over to effects. The main result is confluence, which is possible because encoded effects reduce algebraically rather than operationally. Reduction generates the familiar algebraic laws for state, and unlike in the monadic setting, reader/writer effects combine seamlessly. A system of simple types confers termination of the machine

    A deep quantitative type system

    Get PDF
    We investigate intersection types and resource lambda-calculus in deep-inference proof theory. We give a unified type system that is parametric in various aspects: it encompasses resource calculi, intersection-typed lambda-calculus, and simply-typed lambda-calculus; it accommodates both idempotence and non-idempotence; it characterizes strong and weak normalization; and it does so while allowing a range of algebraic laws to determine reduction behaviour, for various quantitative effects. We give a parametric resource calculus with explicit sharing, the "collection calculus", as a Curry-Howard interpretation of the type system, that embodies these computational properties

    Some Remarks on Counting Propositional Logic

    Get PDF
    Counting propositional logic was recently introduced in relation to randomized computation and shown able to logically characterize the full counting hierarchy [1]. In this paper we aim to clarify the intuitive meaning and expressive power of its univariate fragment. On the one hand, we make the connection between this logic and stochastic experiments explicit, proving that the counting language can simulate any (and only) event associated with dyadic distributions. On the other, we provide an effective procedure to measure the probability of counting formulas

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Towards a logical foundation of randomized computation

    Get PDF
    This dissertation investigates the relations between logic and TCS in the probabilistic setting. It is motivated by two main considerations. On the one hand, since their appearance in the 1960s-1970s, probabilistic models have become increasingly pervasive in several fast-growing areas of CS. On the other, the study and development of (deterministic) computational models has considerably benefitted from the mutual interchanges between logic and CS. Nevertheless, probabilistic computation was only marginally touched by such fruitful interactions. The goal of this thesis is precisely to (start) bring(ing) this gap, by developing logical systems corresponding to specific aspects of randomized computation and, therefore, by generalizing standard achievements to the probabilistic realm. To do so, our key ingredient is the introduction of new, measure-sensitive quantifiers associated with quantitative interpretations. The dissertation is tripartite. In the first part, we focus on the relation between logic and counting complexity classes. We show that, due to our classical counting propositional logic, it is possible to generalize to counting classes, the standard results by Cook and Meyer and Stockmeyer linking propositional logic and the polynomial hierarchy. Indeed, we show that the validity problem for counting-quantified formulae captures the corresponding level in Wagner's hierarchy. In the second part, we consider programming language theory. Type systems for randomized \lambda-calculi, also guaranteeing various forms of termination properties, were introduced in the last decades, but these are not "logically oriented" and no Curry-Howard correspondence is known for them. Following intuitions coming from counting logics, we define the first probabilistic version of the correspondence. Finally, we consider the relationship between arithmetic and computation. We present a quantitative extension of the language of arithmetic able to formalize basic results from probability theory. This language is also our starting point to define randomized bounded theories and, so, to generalize canonical results by Buss
    corecore