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Abstract. A notion of probabilistic lambda-calculus usually comes with
a prescribed reduction strategy, typically call-by-name or call-by-value,
as the calculus is non-confluent and these strategies yield different results.
This is a break with one of the main advantages of lambda-calculus:
confluence, which means that results are independent from the choice
of strategy. We present a probabilistic lambda-calculus where the proba-
bilistic operator is decomposed into two syntactic constructs: a generator,
which represents a probabilistic event; and a consumer, which acts on
the term depending on a given event. The resulting calculus, the Prob-
abilistic Event Lambda-Calculus, is confluent, and interprets the call-
by-name and call-by-value strategies through different interpretations of
the probabilistic operator into our generator and consumer constructs.
We present two notions of reduction, one via fine-grained local rewrite
steps, and one by generation and consumption of probabilistic events.
Simple types for the calculus are essentially standard, and they convey
strong normalization. We demonstrate how we can encode call-by-name
and call-by-value probabilistic evaluation.

1 Introduction

Probabilistic lambda-calculi [24,22,17,11,18,9,15] extend the standard lambda-
calculus with a probabilistic choice operator N ⊕pM , which chooses N with
probability p and M with probability 1− p (throughout this paper, we let p be
1/2 and will omit it). Duplication of N ⊕M , as is wont to happen in lambda-
calculus, raises a fundamental question about its semantics: do the duplicate
occurrences represent the same probabilistic event, or different ones with the
same probability? For example, take the term >⊕⊥ that represents a coin flip
between boolean values true > and false ⊥. If we duplicate this term, do the
copies represent two distinct coin flips with possibly distinct outcomes, or do
these represent a single coin flip that determines the outcome for both copies?
Put differently again, when we duplicate >⊕⊥, do we duplicate the event, or
only its outcome?

In probabilistic lambda-calculus, these two interpretations are captured by
the evaluation strategies of call-by-name ( cbn), which duplicates events, and
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call-by-value ( cbv), which evaluates any probabilistic choice before it is du-
plicated, and thus only duplicates outcomes. Consider the following example,
where = tests equality of boolean values.

> cbv (λx. x = x)(>⊕⊥) cbn >⊕⊥

This situation is not ideal, for several, related reasons. Firstly, it demonstrates
how probabilistic lambda-calculus is non-confluent, negating one of the central
properties of the lambda-calculus, and one of the main reasons why it is the
prominent model of computation that it is. Secondly, it means that a probabilis-
tic lambda-calculus must derive its semantics from a prescribed reduction strat-
egy, and its terms only have meaning in the context of that strategy. Thirdly,
combining different kinds of probabilities becomes highly involved [15], as it
would require specialized reduction strategies. These issues present themselves
even in a more general setting, namely that of commutative (algebraic) effects,
which in general do not commute with copying.

We address these issues by a decomposition of the probabilistic operator into
a generator a and a choice

a
⊕ , as follows.

N ⊕M
∆
= a . N

a
⊕M

Semantically, a represents a probabilistic event, that generates a boolean value
recorded as a. The choice N

a
⊕M is simply a conditional on a, choosing N if a is

false and M if a is true. Syntactically, a is a boolean variable with an occurrence
in

a
⊕ , and a acts as a probabilistic quantifier, binding all occurrences in its

scope. (To capture a non-equal chance, one would attach a probability p to a
generator, as a p, though we will not do so in this paper.)

The resulting probabilistic event lambda-calculus ΛPE, which we present in
this paper, is confluent. Our decomposition allows us to separate duplicating
an event, represented by the generator a , from duplicating only its outcome
a, through having multiple choice operators

a
⊕ . In this way our calculus may

interpret both original strategies, call-by-name and call-by-value, by different
translations of standard probabilistic terms into ΛPE: call-by-name by the above
decomposition (see also Section 2), and call-by-value by a different one (see Sec-
tion 7). For our initial example, we get the following translations and reductions.

cbn : (λx. x=x)( a .> a
⊕⊥) β ( a .> a

⊕⊥)=( b .> b
⊕⊥) >⊕⊥ (1)

cbv : a . (λx. x=x)(> a
⊕⊥) β a . (> a

⊕⊥)=(> a
⊕⊥) > (2)

We present two reduction relations for our probabilistic constructs, both in-
dependent of beta-reduction. Our main focus will be on permutative reduction
(Sections 2, 3), a small-step local rewrite relation which is computationally ineffi-
cient but gives a natural and very fine-grained operational semantics. Projective
reduction (Section 6) is a more standard reduction, following the intuition that
a generates a coin flip to evaluate

a
⊕ , and is coarser but more efficient.

We further prove confluence (Section 4), and we give a system of simple
types and prove strong normalization for typed terms by reducibility (Section 5).
Omitted proofs can be found in [7], the long version of this paper.
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1.1 Related Work

Probabilistic λ-calculi are a topic of study since the pioneering work by Saheb-
Djaromi [24], the first to give the syntax and operational semantics of a λ-calculus
with binary probabilistic choice. Giving well-behaved denotational models for
probabilistic λ-calculi has proved to be challenging, as witnessed by the many
contributions spanning the last thirty years: from Jones and Plotkin’s early study
of the probabilistic powerdomain [17], to Jung and Tix’s remarkable (and mostly
negative) observations [18], to the very recent encouraging results by Goubault-
Larrecq [16]. A particularly well-behaved model for probabilistic λ-calculus can
be obtained by taking a probabilistic variation of Girard’s coherent spaces [10],
this way getting full abstraction [13].

On the operational side, one could mention a study about the various ways
the operational semantics of a calculus with binary probabilistic choice can be
specified, namely by small-step or big-step semantics, or by inductively or coin-
ductively defined sets of rules [9]. Termination and complexity analysis of higher-
order probabilistic programs seen as λ-terms have been studied by way of type
systems in a series of recent results about size [6], intersection [4], and refinement
type disciplines [1]. Contextual equivalence on probabilistic λ-calculi has been
studied, and compared with equational theories induced by Böhm Trees [19],
applicative bisimilarity [8], or environmental bisimilarity [25].

In all the aforementioned works, probabilistic λ-calculi have been taken as
implicitly endowed with either call-by-name or call-by-value strategies, for the
reasons outlined above. There are only a few exceptions, namely some works on
Geometry of Interaction [5], Probabilistic Coherent Spaces [14], and Standard-
ization [15], which achieve, in different contexts, a certain degree of indepen-
dence from the underlying strategy, thus accommodating both call-by-name and
call-by-value evaluation. The way this is achieved, however, invariably relies on
Linear Logic or related concepts. This is deeply different from what we do here.

Some words of comparison with Faggian and Ronchi Della Rocca’s work
on confluence and standardization [15] are also in order. The main difference
between their approach and the one we pursue here is that the operator ! in
their calculus Λ!

⊕ plays both the roles of a marker for duplicability and of a
checkpoint for any probabilistic choice ”flowing out” of the term (i.e. being
fired). In our calculus, we do not control duplication, but we definitely make use
of checkpoints. Saying it another way, Faggian and Ronchi Della Rocca’s work
is inspired by linear logic, while our approach is inspired by deep inference, even
though this is, on purpose, not evident in the design of our calculus.

Probabilistic λ-calculi can also be seen as vehicles for expressing probabilistic
models in the sense of bayesian programming [23,3]. This, however, requires an
operator for modeling conditioning, which complicates the metatheory consid-
erably, and that we do not consider here.

Our permutative reduction is a refinement of that for the call-by-name prob-
abilistic λ-calculus [20], and is an implementation of the equational theory of
(ordered) binary decision trees via rewriting [27]. Probabilistic decision trees
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have been proposed with a primitive binary probabilistic operator [22], but not
with a decomposition as we explore here.

2 The Probabilistic Event λ-Calculus ΛPE

Definition 1. The probabilistic event λ-calculus (ΛPE) is given by the follow-
ing grammar, with from left to right: a variable (denoted by x, y, z, . . . ), an
abstraction, an application, a (labeled) choice, and a (probabilistic) generator.

M,N ····= x | λx.N | NM | N a
⊕M | a . N

In a term λx.M the abstraction λx binds the free occurrences of the variable
x in its scope M , and in a . N the generator a binds the label a in N . The
calculus features a decomposition of the usual probabilistic sum ⊕ , as follows.

N ⊕M
∆
= a . N

a
⊕M (3)

The generator a represents a probabilistic event, whose outcome, a binary value
{0, 1} represented by the label a, is used by the choice operator

a
⊕ . That is, a

flips a coin setting a to 0 (resp. 1), and depending on this N
a
⊕M reduces to N

(resp. M). We will use the unlabeled choice ⊕ as in (3). This convention also
gives the translation from a call-by-name probabilistic λ-calculus into ΛPE (the
interpretation of a call-by-value probabilistic λ-calculus is in Section 7).

Reduction. Reduction in ΛPE will consist of standard β-reduction β plus an
evaluation mechanism for generators and choice operators, which implements
probabilistic choice. We will present two such mechanisms: projective reduc-
tion π and permutative reduction p. While projective reduction implements
the given intuition for the generator and choice operator, we relegate it to Sec-
tion 6 and make permutative reduction our main evaluation mechanism, for the
reason that it is more fine-grained, and thus more general.

Permutative reduction is based on the idea that any operator distributes
over the labeled choice operator (see the reduction steps in Figure 1), even other
choice operators, as below.

(N
a
⊕M)

b
⊕P ∼ (N

b
⊕P )

a
⊕(M

b
⊕P )

To orient this as a rewrite rule, we need to give priority to one label over another.
Fortunately, the relative position of the associated generators a and b provides
just that. Then to define p, we will want every choice to belong to some
generator, and make the order of generators explicit.

Definition 2. The set fl(N) of free labels of a term N is defined inductively by:

fl(x) = ∅ fl(MN) = fl(M) ∪ fl(N) fl(λx.M) = fl(M)

fl( a .M) = fl(M)r {a} fl(M
a
⊕N) = fl(M) ∪ fl(N) ∪ {a}

A term M is label-closed if fl(M) = ∅.
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(λx.N)M β N [M/x] (β)

N
a
⊕N p N (i)

(N
a
⊕M)

a
⊕P p N

a
⊕P (c1)

N
a
⊕(M

a
⊕P ) p N

a
⊕P (c2)

λx. (N
a
⊕M) p (λx.N)

a
⊕(λx.M) (⊕λ)

(N
a
⊕M)P p (NP )

a
⊕(MP ) (⊕f)

N(M
a
⊕P ) p (NM)

a
⊕(NP ) (⊕a)

(N
a
⊕M)

b
⊕P p (N

b
⊕P )

a
⊕(M

b
⊕P ) (if a < b) (⊕⊕1)

N
b
⊕(M

a
⊕P ) p (N

b
⊕M)

a
⊕(N

b
⊕P ) (if a < b) (⊕⊕2)

b . (N
a
⊕M) p ( b . N)

a
⊕( b .M) (if a 6= b) (⊕�)

a . N p N (if a /∈ fl(N)) ( 6�)

λx. a . N p a . λx.N (�λ)

( a . N)M p a . (NM) (if a /∈ fl(M)) (�f)

Fig. 1. Reduction Rules for β-reduction and p-reduction.

From here on, we consider only label-closed terms (we implicitly assume this,
unless otherwise stated). All terms are identified up to renaming of their bound
variables and labels. Given some terms M and N and a variable x, M [N/x] is
the capture-avoiding (for both variables and labels) substitution of N for the free
occurrences of x in M . We speak of a representative M of a term when M is not
considered up to such a renaming. A representative M of a term is well-labeled
if for every occurrence of a in M there is no a occurring in its scope.

Definition 3 (Order for labels). Let M be a well-labeled representative of a
term. We define an order <M for the labels occurring in M as follows: a <M b

if and only if b occurs in the scope of a .

For a well-labeled and label-closed representative M , <M is a finite tree order.

Definition 4. Reduction = β ∪ p in ΛPE consists of β-reduction β

and permutative or p-reduction p, both defined as the contextual closure of
the rules given in Figure 1. We write for the reflexive–transitive closure of

, and for reduction to normal form; similarly for β and p. We write =p

for the symmetric and reflexive–transitive closure of p.
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a . (λx. x=x)(> a
⊕⊥) p a . (λx. x=x)> a

⊕ (λx. x=x)⊥ (⊕a)

β a . (>=>)
a
⊕ (⊥=⊥)

= a .> a
⊕> p a .> p > (i, 6�)

Fig. 2. Example Reduction of the cbv-translation of the Term on p. 137.

Two example reductions are (1)-(2) on p. 137; a third, complete reduction is
in Figure 2. The crucial feature of p-reduction is that a choice

a
⊕ does permute

out of the argument position of an application, but a generator a does not,
as below. Since the argument of a redex may be duplicated, this is how we
characterize the difference between the outcome of a probabilistic event, whose
duplicates may be identified, and the event itself, whose duplicates may yield
different outcomes.

N (M
a
⊕P ) p (NM)

a
⊕(NP ) N ( a .M) 6 p a . N M

By inspection of the rewrite rules in Figure 1, we can then characterize the
normal forms of p and as follows.

Proposition 5 (Normal forms). The normal forms P0 of p, respectively
N0 of , are characterized by the following grammars.

P0 ····= P1 | P0⊕P
′
0

P1 ····= x | λx.P1 | P1 P0

N0 ····= N1 | N0⊕N
′
0

N1 ····= N2 | λx.N1

N2 ····= x | N2N0

3 Properties of Permutative Reduction

We will prove strong normalization and confluence of p. For strong normal-
ization, the obstacle is the interaction between different choice operators, which
may duplicate each other, creating super-exponential growth.3 Fortunately, Der-
showitz’s recursive path orders [12] seem tailor-made for our situation.

Observe that the set ΛPE endowed with p is a first-order term rewriting sys-
tem over a countably infinite set of variables and the signature Σ given by:

• the binary function symbol
a
⊕ , for any label a;

• the unary function symbol a , for any label a;
• the unary function symbol λx, for any variable x;
• the binary function symbol @, letting @(M,N) stand for MN .

3 This was inferred only from a simple simulation; we would be interested to know a
rigorous complexity result.
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Definition 6. Let M be a well-labeled representative of a label-closed term,
and let ΣM be the set of signature symbols occurring in M . We define ≺M as
the (strict) partial order on ΣM generated by the following rules.

a
⊕ ≺M

b
⊕ if a <M b

a
⊕ ≺M b for any labels a, b

b ≺M @, λx for any label b

Lemma 7. The reduction p is strongly normalizing.

Proof. For the first-order term rewriting system (ΛPE, p) we derive a well-
founded recursive path ordering < from ≺M following [12, p. 289]. Let f and g
range over function symbols, let [N1, . . . , Nn] denote a multiset and extend <
to multisets by the standard multiset ordering, and let N = f(N1, . . . , Nn) and
M = g(M1, . . . ,Mm); then

N < M ⇐⇒


[N1, . . . , Nn] < [M1, . . . ,Mm] if f = g

[N1, . . . , Nn] < [M ] if f ≺M g

[N ] ≤ [M1, . . . ,Mm] if f �M g .

While ≺M is defined only relative to ΣM , reduction may only reduce the signa-
ture. Inspection of Figure 1 then shows that M p N implies N < M .

Confluence of Permutative Reduction. With strong normalization, conflu-
ence of p requires only local confluence. We reduce the number of cases to
consider, by casting the permutations of

a
⊕ as instances of a common shape.

Definition 8. We define a context C[ ] (with exactly one hole [ ]) as follows, and
let C[N ] represent C[ ] with the hole [ ] replaced by N .

C[ ] ····= [ ] | λx.C[ ] | C[ ]M | NC[ ] | C[ ]
a
⊕M | N a

⊕C[ ] | a . C[ ]

Observe that the six reduction rules ⊕λ through ⊕� in Figure 1 are all of the
following form. We refer to these collectively as ⊕?.

C[N
a
⊕M ] p C[N ]

a
⊕C[M ] (⊕?)

Lemma 9 (Confluence of p). Reduction p is confluent.

Proof. By Newman’s lemma and strong normalization of p (Lemma 7), con-
fluence follows from local confluence. The proof of local confluence consists of
joining all critical pairs given by p. Details are in the Appendix of [7].

Definition 10. We denote the unique p-normal form of a term N by Np.
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4 Confluence

We aim to prove that = β ∪ p is confluent. We will use the standard
technique of parallel β-reduction [26], a simultaneous reduction step on a number
of β-redexes, which we define via a labeling of the redexes to be reduced. The
central point is to find a notion of reduction that is diamond, i.e. every critical
pair can be closed in one (or zero) steps. This will be our complete reduction,
which consists of parallel β-reduction followed by p-reduction to normal form.

Definition 11. A labeled term P • is a term P with chosen β-redexes annotated
as (λx.N)•M . The unique labeled β-step P • β P• from P • to the labeled reduct
P• reduces every labeled redex, and is defined inductively as follows.

(λx.N•)•M• β N•[M•/x] N•M• β N•M•

x β x N•
a
⊕M• β N•

a
⊕M•

λx.N• β λx.N• a . N• β a . N•

A parallel β-step P β P• is a labeled step P • β P• for some labeling P •.

Note that P• is an unlabeled term, since all labels are removed in the reduction.
For the empty labeling, P • = P• = P , so parallel reduction is reflexive: P β P .

Lemma 12. A parallel β-step P β P• is a β-reduction P β P•.

Proof. By induction on the labeled term P • generating P β P•.

Lemma 13. Parallel β-reduction is diamond.

Proof. Let P • β P• and P ◦ β P◦ be two labeled reduction steps on a term
P . We annotate each step with the label of the other, preserved by reduction,
to give the span from the doubly labeled term P •◦ = P ◦• below left. Reducing
the remaining labels will close the diagram, as below right.

P ◦• β P •◦ = P ◦• β P •◦ P ◦• β P•◦ = P◦• β P •◦

This is proved by induction on P •◦, where only two cases are not immediate:
those where a redex carries one but not the other label. One case follows by
the below diagram; the other case is symmetric. Below, for the step top right,
induction on N• shows that N•[M•/x] β N•[M•/x].

(λx.N◦•)◦M◦• β N•◦ [M•◦ /x] β N◦•[M◦•/x]
= =

(λx.N•◦)◦M•◦ β (λx.N◦• )◦M◦• β N•◦[M•◦/x]



144 U. Dal Lago et al.

4.1 Parallel Reduction and Permutative Reduction

For the commutation of (parallel) β-reduction with p-reduction, we run into the
minor issue that a permuting generator or choice operator may block a redex: in
both cases below, before p the term has a redex, but after p it is blocked.

(λx.N
a
⊕M)P p ((λx.N)

a
⊕(λx.M))P (λx. a . N)M p ( a . λx.N)M

We address this by an adaptation p of p-reduction on labeled terms, which is
a strategy in p that permutes past a labeled redex in one step.

Definition 14. A labeled p-reduction N• p M• on labeled terms is a p-
reduction of one of the forms

(λx.N•
a
⊕M•)•P • p (λx.N•)•P •

a
⊕(λx.M•)•P •

(λx. a . N•)•M• p a . (λx.N•)•M•

or a single p-step p on unlabeled constructors in N•.

Lemma 15. Reduction to normal form in p is equal to p (on labeled terms).

Proof. Observe that p and p have the same normal forms. Then in one
direction, since p⊆ p we have p⊆ p. Conversely, let N p M . On this
reduction, let P p Q be the first step such that P 6 p Q. Then there is an R
such that P p R and Q p R. Note that we have N p R. By confluence,
R p M , and by induction on the sum length of paths in p from R (smaller
than from N) we have R p M , and hence N p M .

The following lemmata then give the required commutation properties of the
relations p, p, and β . Figure 3 illustrates these by commuting diagrams.

Lemma 16. If N• p M
• then N• =p M•.

Proof. By induction on the rewrite step p. The two interesting cases are:

(λx.M•)•(N•
a
⊕P •) ((λx.M•)•N•)

a
⊕((λx.M•)•P •)

M•[(N•
a
⊕P•)/x] M•[N•/x]

a
⊕M•[P•/x]

p

β β

p

(x ∈ fv(M))

(λx.M•)•(N•
a
⊕P •) ((λx.M•)•N•)

a
⊕((λx.M•)•P •)

M• M•
a
⊕M•

p

β β

p

(x /∈ fv(M))
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How the critical pairs in the above diagrams are joined shows that we cannot
use the Hindley-Rosen Lemma [2, Prop. 3.3.5] to prove confluence of β ∪ p.

Lemma 17. N• =p Np•.

Proof. Using Lemma 15 we decompose N• p N
•
p as

N• = N•1 p N
•
2 p · · · p N

•
n = N•p

where (Ni)• =p (Ni+1)• by Lemma 16.

4.2 Complete Reduction

To obtain a reduction strategy with the diamond property for , we combine
parallel reduction β with permutative reduction to normal form p into a no-
tion of complete reduction . We will show that it is diamond (Lemma 19), and
that any step in maps onto a complete step of p-normal forms (Lemma 20).
Confluence of (Theorem 21) then follows: any two paths map onto complete
paths on p-normal forms, which then converge by the diamond property.

Definition 18. A complete reduction step N N•p is a parallel β-step fol-
lowed by p-reduction to normal form:

N N•p ··= N β N• p N•p .

Lemma 19 (Complete reduction is diamond). If P N M then for
some Q, P Q M .

Proof. By the following diagram, where M = N◦p and P = N•p, and Q = N◦•p.
The square top left is by Lemma 13, top right and bottom left are by Lemma 17,
and bottom right is by confluence and strong normalization of p-reduction.

N◦• N•◦ N•◦p

N◦• N◦• N◦p•

N◦•p N•p◦ N◦•p

β

β β

β

p

p

β

β

=p

=p

p

p

Lemma 20 (p-Normalization maps reduction to complete reduction).
If N M then Np Mp.

Proof. For a p-step N p M we have Np = Mp while β is reflexive. For a
β-step N β M we label the reduced redex in N to get N• β N• = M . Then
Lemma 17 gives Np• =p M , and hence Np β Np• p Mp.
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N M

P =p Q

p

β β

N M

P =p Q

p

β β

N M

P Q

N M

P Q

p p

Lemma 16 Lemma 17 Lemma 19 Lemma 20

Fig. 3. Diagrams for the Lemmata Leading up to Confluence

Theorem 21. Reduction is confluent.

Proof. By the following diagram. For the top and left areas, by Lemma 20 any
reduction path N M maps onto one Np Mp. The main square follows by
the diamond property of complete reduction, Lemma 19.

N M

Np Mp

P

Pp Q

p
p

p

5 Strong Normalization for Simply-Typed Terms

In this section, we prove that the relation enjoys strong normalization in
simply typed terms. Our proof of strong normalization is based on the classic
reducibility technique, and inherently has to deal with label-open terms. It thus
make great sense to turn the order <M from Definition 3 into something more
formal, at the same time allowing terms to be label-open. This is in Figure 4.
It is easy to realize that, of course modulo label α-equivalence, for every term
M there is at least one θ such that θ `L M . An easy fact to check is that if
θ `L M and M θ N , then θ `L N . It thus makes sense to parametrize on
a sequence of labels θ, i.e., one can define a family of reduction relations θ on
pairs in the form (M, θ). The set of strongly normalizable terms, and the number
of steps to normal forms become themselves parametric:

• The set SN θ of those terms M such that θ `L M and (M, θ) is strongly
normalizing modulo θ;

• The function snθ assigning to any term in SN θ the maximal number of θ

steps to normal form.
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Label Sequences: θ ····= ε | a · θ

Label Judgments: ξ ····= θ `L M

Label Rules:
θ `L x

θ `L M
θ `L λx.M

a · θ `L M
θ `L a .M

θ `L M θ `L N
θ `L MN

θ `L M θ `L N a ∈ θ
θ `L M a

⊕N

Fig. 4. Labeling Terms

Types: τ ····= α | τ ⇒ ρ

Environments: Γ ····= x1 : τ1, . . . , xn : τn

Judgments: π ····= Γ `M : τ

Typing Rules:
Γ, x : τ ` x : τ

Γ, x : τ `M : ρ

Γ ` λx.M : τ ⇒ ρ
Γ `M : τ

Γ ` a .M : τ

Γ `M : τ ⇒ ρ Γ ` N : τ

Γ `MN : ρ
Γ `M : τ Γ ` N : τ

Γ `M a
⊕N : τ

Fig. 5. Types, Environments, Judgments, and Rules

L1 ∈ SN θ · · · Lm ∈ SN θ

xL1 . . . Lm ∈ SN θ

ML1 . . . Lm ∈ SN θ NL1 . . . Lm ∈ SN θ a ∈ θ
M

a
⊕NL1 . . . Lm ∈ SN θ

M [L0/x]L1 . . . Lm ∈ SN θ L0 ∈ SN θ

(λx.M)L0 . . . Lm ∈ SN θ

ML1 . . . Lm ∈ SN a·θ ∀i.a 6∈ Li
( a .M)L1 . . . Lm ∈ SN θ

Fig. 6. Closure Rules for Sets SN θ

We can now define types, environments, judgments, and typing rules in Figure 5.

Please notice that the type structure is precisely the one of the usual, vanilla,
simply-typed λ-calculus (although terms are of course different), and we can thus
reuse most of the usual proof of strong normalization, for example in the version
given by Ralph Loader’s notes [21], page 17.

Lemma 22. The closure rules in Figure 6 are all sound.
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Since the structure of the type system is the one of plain, simple types, the
definition of reducibility sets is the classic one:

Redα = {(Γ, θ,M) |M ∈ SN θ ∧ Γ `M : α};
Redτ⇒ρ = {(Γ, θ,M) | (Γ `M : τ ⇒ ρ) ∧ (θ `L M) ∧

∀(Γ∆, θ,N) ∈ Redτ .(Γ∆, θ,MN) ∈ Redρ}.

Before proving that all terms are reducible, we need some auxiliary results.

Lemma 23. 1. If (Γ, θ,M) ∈ Redτ , then M ∈ SN θ.
2. If Γ ` xL1 . . . Lm : τ and L1, . . . , Lm ∈ SN θ, then (Γ, θ, xL1 . . . Lm) ∈ Redτ .
3. If (Γ, θ,M [L0/x]L1 . . . Lm) ∈ Redτ with Γ ` L0 : ρ and L0 ∈ SN θ, then

(Γ, θ, (λx.M)L0 . . . Lm) ∈ Redτ .
4. If (Γ, θ,ML1 . . . Lm) ∈ Redτ with (Γ, θ,NL1 . . . Lm) ∈ Redτ and a ∈ θ, then

(Γ, θ, (M
a
⊕N)L1 . . . Lm) ∈ Redτ .

5. If (Γ, a · θ,ML1 . . . Lm) ∈ Redτ and a 6∈ Li for all i,
then (Γ, θ, ( a .M)L1 . . . Lm) ∈ Redτ .

Proof. The proof is an induction on τ : If τ is an atom α, then Point 1 follows
by definition, while points 2 to 5 come from Lemma 22. If τ is ρ⇒ µ, Points 2
to 5 come directly from the induction hypothesis, while Point 1 can be proved
by observing that M is in SN θ if Mx is itself SN θ, where x is a fresh variable.
By induction hypothesis (on Point 2), we can say that (Γ (x : ρ), θ, x) ∈ Redρ,
and conclude that (Γ (x : ρ), θ,Mx) ∈ Redµ.

The following is the so-called Main Lemma:

Proposition 24. Suppose y1 : τ1, . . . , yn : τn ` M : ρ and θ `L M , with
(Γ, θ,Nj) ∈ Redτj for all 1 ≤ j ≤ n. Then (Γ, θ,M [N1/y1, . . . , Nn/yn]) ∈ Redρ.

Proof. This is an induction on the structure of the term M :
• If M is a variable, necessarily one among y1, . . . , yn, then the result is trivial.
• If M is an application LP , then there exists a type ξ such that y1 : τ1, . . . , yn :
τn ` L : ξ ⇒ ρ and y1 : τ1, . . . , yn : τn ` P : ξ. Moreover, θ `L L and θ `L P
we can then safely apply the induction hypothesis and conclude that

(Γ, θ, L[N/y]) ∈ Redξ⇒ρ (Γ, θ, P [N/y]) ∈ Redξ .

By definition, we get

(Γ, θ, (LP )[N/y]) ∈ Redρ .

• If M is an abstraction λx. L, then ρ is an arrow type ξ ⇒ µ and y1 :
τ1, . . . , yn : τn, x : ξ ` L : µ. Now, consider any (Γ∆, θ, P ) ∈ Redξ. Our
objective is to prove with this hypothesis that (Γ∆, θ, (λx.L[N/y])P ) ∈
Redµ. By induction hypothesis, since (Γ∆,Ni) ∈ Redτi , we get that
(Γ∆, θ, L[N/y, P/x]) ∈ Redµ. The thesis follows from Lemma 23.
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• If M is a sum L
a
⊕P , we can make use of Lemma 23 and the induction

hypothesis, and conclude.
• If M is a generator a . P , we can make use of Lemma 23 and the induction

hypothesis. We should however observe that a · θ `L P , since θ `L M .

We now have all the ingredients for our proof of strong normalization:

Theorem 25. If Γ `M : τ and θ `L M , then M ∈ SN θ.

Proof. Suppose that x1 : ρ1, . . . , xn : ρn `M : τ . Since x1 : ρ1, . . . , xn : ρn ` xi :
ρi for all i, and clearly θ `L xi for every i, we can apply Lemma 24 and obtain
that (Γ, θ,M [x/x]) ∈ Redτ from which, via Lemma 23, one gets the thesis.

6 Projective Reduction

Permutative reduction p evaluates probabilistic sums purely by rewriting. Here
we look at a more standard projective notion of reduction, which conforms more
closely to the intuition that a generates a probabilistic event to determine the
choice

a
⊕ . Using + for an external probabilistic sum, we expect to reduce a . N to

N0+N1 where each Ni is obtained from N by projecting every subterm M0
a
⊕M1

to Mi. The question is, in what context should we admit this reduction? We first
limit ourselves to reducing in head position.

Definition 26. The a-projections πa0 (N) and πa1 (N) are defined as follows:

πa0 (N
a
⊕M) = πa0 (N) πai (λx.N) = λx.πai (N)

πa1 (N
a
⊕M) = πa1 (M) πai (NM) = πai (N)πai (M)

πai ( a . N) = a . N πai (N
b
⊕M) = πai (N)

b
⊕ πai (M) if a 6= b

πai (x) = x πai ( b . N) = b . πai (N) if a 6= b.

Definition 27. A head context H[ ] is given by the following grammar.

H[ ] ····= [ ] | λx.H[ ] | H[ ]N

Definition 28. Projective head reduction πh is given by

H[ a . N ] πh H[πa0 (N)] +H[πa1 (N)] .

We can simulate πh by permutative reduction if we interpret the external
sum + by an outermost ⊕ (taking special care if the label does not occur).

Proposition 29. Permutative reduction simulates projective head reduction:

H[ a . N ] p

{
H[N ] if a /∈ fl(N)

H[πa0 (N)]⊕H[πa1 (N)] otherwise.
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Proof. The case a /∈ fl(N) is immediate by a 6� step. For the other case, observe
that H[ a . N ] p a . H[N ] by �λ and �f steps, and since a does not occur in

H[ ], that H[πai (N)] = πai (H[N ]). By induction on N , if a is minimal in N (i.e.

a ∈ fl(N) and a ≤ b for all b ∈ fl(N)) then N p π
a
0 (N)

a
⊕πa1 (N). As required,

H[ a . N ] p a . H[πa0 (N)]
a
⊕ H[πa1 (N)] if a ∈ fl(N) .

A gap remains between which generators will not be duplicated, which we
should be able to reduce, and which generators projective head reduction does
reduce. In particular, to interpret call-by-value probabilistic reduction in Sec-
tion 7, we would like to reduce under other generators. However, permutative
reduction does not permit exchanging generators, and so only simulates reducing
in head position. While (independent) probabilistic events are generally consid-
ered interchangeable, it is a question whether the below equivalence is desirable.

a . b . N
?∼ b . a . N (4)

We elide the issue by externalizing probabilistic events, and reducing with refer-
ence to a predetermined binary stream s ∈ {0, 1}N representing their outcomes.
In this way, we will preserve the intuitions of both permutative and projective
reduction: we obtain a qualified version of the equivalence (4) (see (5) below),
and will be able to reduce any generator on the spine of a term: under (other)
generators and choices as well as under abstractions and in function position.

Definition 30. The set of streams is S = {0, 1}N, ranged over by r, s, t, and i · s
denotes a stream with i ∈ {0, 1} as first element and s as the remainder.

Definition 31. The stream labeling Ns of a term N with a stream s ∈ S, which
annotates generators as a

i with i ∈ {0, 1} and variables as xs with a stream

s, is given inductively below. We lift β-reduction to stream-labeled terms by
introducing a substitution case for stream-labeled variables: xs[M/x] = Ms.

(λx.N)s = λx.Ns ( a . N)i·s = a
i. Ns

(N M)s = NsM (N
a
⊕M)s = Ns a⊕Ms

Definition 32. Projective reduction π on stream-labeled terms is the rewrite
relation given by

a
i. N π πai (N) .

Observe that in Ns a generator that occurs under n other generators on the
spine of N , is labeled with the element of s at position n + 1. Generators in
argument position remain unlabeled, until a β-step places them on the spine,
in which case they become labeled by the new substitution case. We allow to
annotate a term with a finite prefix of a stream, e.g. N i with a singleton i, so that
only part of the spine is labeled. Subsequent labeling of a partly labeled term is
then by (Nr)s = Nr·s (abusing notation). To introduce streams via the external
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probabilistic sum, and to ignore an unused remaining stream after completing a
probabilistic computation, we adopt the following equation.

N = N0 +N1

Proposition 33. Projective reduction generalizes projective head reduction:

H[ a . N ] = H[ a
0. N ] +H[ a

1. N ] π H[πa0 (N)] +H[πa1 (N)] .

Returning to the interchangeability of probabilistic events, we refine (4) by
exchanging the corresponding elements of the annotating streams:

( a . b . N)i·j·s

( b . a . N)j·i·s

a
i. b j . Ns

b
j . a i. Ns

πai (πbj(N
s))

πbj(π
a
i (Ns))

π

π

∼
=

=

= (5)

Stream-labeling externalizes all probabilities, making reduction determinis-
tic. This is expressed by the following proposition, that stream-labeling com-
mutes with reduction: if a generator remains unlabeled in M and becomes la-
beled after a reduction step M N , what label it receives is predetermined.
The deep reason is that stream labeling assigns an outcome to each generator in
a way that corresponds to a call-by-name strategy for probabilistic reduction.

Proposition 34. If M N by a step other than 6� then Ms Ns.

Remark 35. The statement is false for the 6� rule a . N p N (a /∈ fl(N)), as

it removes a generator but not an element from the stream. Arguably, for this
reason the rule should be excluded from the calculus. On the other hand, the
rule is necessary to implement idempotence of ⊕ , rather than just

a
⊕ , as follows.

N ⊕N = a . N
a
⊕N p a . N p N where a /∈ fl(N)

The below proposition then expresses that projective reduction is an invari-
ant for permutative reduction. If N p M by a step (that is not 6�) on a labeled
generator a

i or a corresponding choice
a
⊕ , then N and M reduce to a common

term, N π P π M , by the projective steps evaluating a
i.

Proposition 36. Projective reduction is an invariant for permutative reduction,
as follows (with a case for c2 symmetric to c1, and where D[ ] is a context).

a
i. C[N

a
⊕N ] a

i. C[N ]

πai (C[N ])

p

π π
i

a
i. C[(N0

a
⊕M)

a
⊕N1] a

i. C[N0
a
⊕N1]

πai (C[Ni])

p

π π
c1

a
i. C[D[N0

a
⊕N1]] a

i. C[D[N0]
a
⊕D[N1]]

πai (C[D[Ni]])

p

π π
⊕?
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λx. a i. N a
i. λx.N

λx. πai (N) πai (λx.N)

p

π π

=

�λ

( a i. N)M a
i. NM

πai (N)M πai (N M)

p

π π

=

�f

7 Call-by-value Interpretation

We consider the interpretation of a call-by-value probabilistic λ-calculus. For
simplicity we will allow duplicating (or deleting) β-redexes, and only restrict
duplicating probabilities; our values V are then just deterministic—i.e. without
choices—terms, possibly applications and not necessarily β-normal (so that our

βv is actually β-reduction on deterministic terms, unlike [9]). We evaluate the
internal probabilistic choice ⊕v to an external probabilistic choice +.

N ····= x | λx.N |MN |M ⊕v N (λx.N)V βv N [V/x]

V,W ····= x | λx.V | VW M ⊕v N v M +N

The interpretation JNKv of a call-by-value term N into ΛPE is given as follows.
First, we translate N to a label-open term JNKopen = θ `L P by replacing each
choice ⊕v with one

a
⊕ with a unique label, where the label-context θ collects the

labels used. Then JNKv is the label closure JNKv = bθ `L P c, which prefixes P
with a generator a for every a in θ.

Definition 37. (Call-by-value interpretation) The open interpretation JNKopen
of a call-by-value term N is as follows, where all labels are fresh, and inductively
JNiKopen = θi `L Pi for i ∈ {1, 2}.

JxKopen = `L x JN1N2Kopen = θ2 · θ1 `L P1P2

Jλx.N1Kopen = θ1 `L λx.P1 JN1 ⊕v N2Kopen = θ2 · θ1 · a `L P1
a
⊕P2

The label closure bθ `L P c is given inductively as follows.

b`L P c = P ba · θ `L P c = bθ `L a . P c

The call-by-value interpretation of N is JNKv = bJNKopenc.

Our call-by-value reduction may choose an arbitrary order in which to evalu-
ate the choices ⊕v in a term N , but the order of generators in the interpretation
JNKv is necessarily fixed. Then to simulate a call-by-value reduction, we cannot
choose a fixed context stream a priori; all we can say is that for every reduction,
there is some stream that allows us to simulate it. Specifically, a reduction step
C[N0 ⊕vN1] v C[Nj ] where C[ ] is a call-by-value term context is simulated by
the following projective step.

. . . a i. b j . c k . . . D[P0
b
⊕P1] π . . . a i. c k . . . D[Pj ]
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Here, JC[N0 ⊕v N1]Kopen = θ `L D[P0
b
⊕P1] with D[ ] a ΛPE-context, and θ giving

rise to the sequence of generators . . . a . b . c . . . in the call-by-value transla-
tion. To simulate the reduction step, if b occupies the n-th position in θ, then the
n-th position in the context stream s must be the element j. Since β-reduction
survives the translation and labeling process intact, we may simulate call-by-
value probabilistic reduction by projective and β-reduction.

Theorem 38. If N v,βv V then JNKsv π,β JV Kv for some stream s ∈ S.

8 Conclusions and Future Work

We believe our decomposition of probabilistic choice in λ-calculus to be an ele-
gant and compelling way of restoring confluence, one of the core properties of the
λ-calculus. Our probabilistic event λ-calculus captures traditional call-by-name
and call-by-value probabilistic reduction, and offers finer control beyond those
strategies. Permutative reduction implements a natural and fine-grained equiv-
alence on probabilistic terms as internal rewriting, while projective reduction
provides a complementary and more traditional external perspective.

There are a few immediate areas for future work. Firstly, within probabilistic
λ-calculus, it is worth exploring if our decomposition opens up new avenues in
semantics. Secondly, our approach might apply to probabilistic reasoning more
widely, outside the λ-calculus. Most importantly, we will explore if our approach
can be extended to other computational effects. Our use of streams interprets
probabilistic choice as a read operation from an external source, which means
other read operations can be treated similarly. A complementary treatment of
write operations would allow us to express a considerable range of effects, in-
cluding input/output and state.
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