97 research outputs found

    OAFuser: Towards Omni-Aperture Fusion for Light Field Semantic Segmentation of Road Scenes

    Full text link
    Light field cameras can provide rich angular and spatial information to enhance image semantic segmentation for scene understanding in the field of autonomous driving. However, the extensive angular information of light field cameras contains a large amount of redundant data, which is overwhelming for the limited hardware resource of intelligent vehicles. Besides, inappropriate compression leads to information corruption and data loss. To excavate representative information, we propose an Omni-Aperture Fusion model (OAFuser), which leverages dense context from the central view and discovers the angular information from sub-aperture images to generate a semantically-consistent result. To avoid feature loss during network propagation and simultaneously streamline the redundant information from the light field camera, we present a simple yet very effective Sub-Aperture Fusion Module (SAFM) to embed sub-aperture images into angular features without any additional memory cost. Furthermore, to address the mismatched spatial information across viewpoints, we present Center Angular Rectification Module (CARM) realized feature resorting and prevent feature occlusion caused by asymmetric information. Our proposed OAFuser achieves state-of-the-art performance on the UrbanLF-Real and -Syn datasets and sets a new record of 84.93% in mIoU on the UrbanLF-Real Extended dataset, with a gain of +4.53%. The source code of OAFuser will be made publicly available at https://github.com/FeiBryantkit/OAFuser.Comment: The source code of OAFuser will be made publicly available at https://github.com/FeiBryantkit/OAFuse

    Method for creating a lightfield using plenoptics

    Get PDF
    Este trabajo de grado propone un método para la obtención de campos de luz en notación de Levoy y un método para evaluar estos campos de luz con ayuda de las librerías del Lightfield Toolbox de Matlab para cámaras plenópticas, en especial las cámaras tipo 2.0 como la Raytrix R42. El método para la obtención de los campos de luz se basa en la implementación de un algoritmo diseñado en Python que emplea conceptos como la visión artificial, procesamiento de imágenes, inteligencia artificial y reconstrucción de imágenes. Por otra parte, el método de evaluación se basa en explicar, demostrar y aprovechar las librerías que esta herramienta de trabajo para los campos de luz ofrece, centrándose en desarrollar un método de evaluación de los campos de luz orientado a las librerías de reenfoque sintético.This degree project proposes a method for obtaining lightfields in Levoy’s notation, and a method for evaluating these lightfields using the Lightfield Toolbox libraries in Matlab for plenoptic cameras, especially type 2.0 cameras such as the Raytrix R42. The method for obtaining the lightfields is based on the implementation of an algorithm designed in Python that uses concepts such as computer vision, image processing, artificial intelligence, and image reconstruction. On the other hand, the evaluation method is based on explaining, demonstrating and taking advantage of the libraries that this tool for lightfields offers, focusing on developing a method for evaluating lightfields oriented to the synthetic refocusing libraries.Ingeniero (a) ElectrónicoPregrad

    Correlated-photon imaging at 10 volumetric images per second

    Full text link
    The correlation properties of light provide an outstanding tool to overcome the limitations of traditional imaging techniques. A relevant case is represented by correlation plenoptic imaging (CPI), a quantum-inspired volumetric imaging protocol employing spatio-temporally correlated photons from either entangled or chaotic sources to address the main limitations of conventional light-field imaging, namely, the poor spatial resolution and the reduced change of perspective for 3D imaging. However, the application potential of high-resolution imaging modalities relying on photon correlations is limited, in practice, by the need to collect a large number of frames. This creates a gap, unacceptable for many relevant tasks, between the time performance of correlated-light imaging and that of traditional imaging methods. In this article, we address this issue by exploiting the photon number correlations intrinsic in chaotic light, combined with a cutting-edge ultrafast sensor made of a large array of single-photon avalanche diodes (SPADs). This combination of source and sensor is embedded within a novel single-lens CPI scheme enabling to acquire 10 volumetric images per second. Our results place correlated-photon imaging at a competitive edge and prove its potential in practical applications.Comment: 13 pages, 6 figure

    Computational methods for 3D imaging of neural activity in light-field microscopy

    Get PDF
    Light Field Microscopy (LFM) is a 3D imaging technique that captures spatial and angular information from light in a single snapshot. LFM is an appealing technique for applications in biological imaging due to its relatively simple implementation and fast 3D imaging speed. For instance, LFM can help to understand how neurons process information, as shown for functional neuronal calcium imaging. However, traditional volume reconstruction approaches for LFM suffer from low lateral resolution, high computational cost, and reconstruction artifacts near the native object plane. Therefore, in this thesis, we propose computational methods to improve the reconstruction performance of 3D imaging for LFM with applications to imaging neural activity. First, we study the image formation process and propose methods for discretization and simplification of the LF system. Typical approaches for discretization are performed by computing the discrete impulse response at different input locations defined by a sampling grid. Unlike conventional methods, we propose an approach that uses shift-invariant subspaces to generalize the discretization framework used in LFM. Our approach allows the selection of diverse sampling kernels and sampling intervals. Furthermore, the typical discretization method is a particular case of our formulation. Moreover, we propose a description of the system based on filter banks that fit the physics of the system. The periodic-shift invariant property per depth guarantees that the system can be accurately described by using filter banks. This description leads to a novel method to reduce the computational time using singular value decomposition (SVD). Our simplification method capitalizes on the inherent low-rank behaviour of the system. Furthermore, we propose rearranging our filter-bank model into a linear convolution neural network (CNN) that allows more convenient implementation using existing deep-learning software. Then, we study the problem of 3D reconstruction from single light-field images. We propose the shift-invariant-subspace assumption as a prior for volume reconstruction under ideal conditions. We experimentally show that artifact-free reconstruction (aliasing-free) is achievable under these settings. Furthermore, the tools developed to study the forward model are exploited to design a reconstruction algorithm based on ADMM that allows artifact-free 3D reconstruction for real data. Contrary to traditional approaches, our method includes additional priors for reconstruction without dramatically increasing the computational complexity. We extensively evaluate our approach on synthetic and real data and show that our approach performs better than conventional model-based strategies in computational time, image quality, and artifact reduction. Finally, we exploit deep-learning techniques for reconstruction. Specifically, we propose to use two-photon imaging to enhance the performance of LFM when imaging neurons in brain tissues. The architecture of our network is derived from a sparsity-based algorithm for reconstruction named Iterative Shrinkage and Thresholding Algorithm (ISTA). Furthermore, we propose a semi-supervised training based on Generative Adversarial Neural Networks (GANs) that exploits the knowledge of the forward model to achieve remarkable reconstruction quality. We propose efficient architectures to compute the forward model using linear CNNs. This description allows fast computation of the forward model and complements our reconstruction approach. Our method is tested under adverse conditions: lack of training data, background noise, and non-transparent samples. We experimentally show that our method performs better than model-based reconstruction strategies and typical neural networks for imaging neuronal activity in mammalian brain tissue. Our approach enjoys both the robustness of the model-based methods and the reconstruction speed of deep learning.Open Acces

    Computational Imaging for Shape Understanding

    Get PDF
    Geometry is the essential property of real-world scenes. Understanding the shape of the object is critical to many computer vision applications. In this dissertation, we explore using computational imaging approaches to recover the geometry of real-world scenes. Computational imaging is an emerging technique that uses the co-designs of image hardware and computational software to expand the capacity of traditional cameras. To tackle face recognition in the uncontrolled environment, we study 2D color image and 3D shape to deal with body movement and self-occlusion. Especially, we use multiple RGB-D cameras to fuse the varying pose and register the front face in a unified coordinate system. The deep color feature and geodesic distance feature have been used to complete face recognition. To handle the underwater image application, we study the angular-spatial encoding and polarization state encoding of light rays using computational imaging devices. Specifically, we use the light field camera to tackle the challenging problem of underwater 3D reconstruction. We leverage the angular sampling of the light field for robust depth estimation. We also develop a fast ray marching algorithm to improve the efficiency of the algorithm. To deal with arbitrary reflectance, we investigate polarimetric imaging and develop polarimetric Helmholtz stereopsis that uses reciprocal polarimetric image pairs for high-fidelity 3D surface reconstruction. We formulate new reciprocity and diffuse/specular polarimetric constraints to recover surface depths and normals using an optimization framework. To recover the 3D shape in the unknown and uncontrolled natural illumination, we use two circularly polarized spotlights to boost the polarization cues corrupted by the environment lighting, as well as to provide photometric cues. To mitigate the effect of uncontrolled environment light in photometric constraints, we estimate a lighting proxy map and iteratively refine the normal and lighting estimation. Through expensive experiments on the simulated and real images, we demonstrate that our proposed computational imaging methods outperform traditional imaging approaches

    Forum Bildverarbeitung 2020

    Get PDF
    Image processing plays a key role for fast and contact-free data acquisition in many technical areas, e.g., in quality control or robotics. These conference proceedings of the “Forum Bildverarbeitung”, which took place on 26.-27.11.202 in Karlsruhe as a common event of the Karlsruhe Institute of Technology and the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, contain the articles of the contributions

    Reconstruction from Spatio-Spectrally Coded Multispectral Light Fields

    Get PDF
    In this work, spatio-spectrally coded multispectral light fields, as taken by a light field camera with a spectrally coded microlens array, are investigated. For the reconstruction of the coded light fields, two methods, one based on the principles of compressed sensing and one deep learning approach, are developed. Using novel synthetic as well as a real-world datasets, the proposed reconstruction approaches are evaluated in detail

    Non-disruptive use of light fields in image and video processing

    Get PDF
    In the age of computational imaging, cameras capture not only an image but also data. This captured additional data can be best used for photo-realistic renderings facilitating numerous post-processing possibilities such as perspective shift, depth scaling, digital refocus, 3D reconstruction, and much more. In computational photography, the light field imaging technology captures the complete volumetric information of a scene. This technology has the highest potential to accelerate immersive experiences towards close-toreality. It has gained significance in both commercial and research domains. However, due to lack of coding and storage formats and also the incompatibility of the tools to process and enable the data, light fields are not exploited to its full potential. This dissertation approaches the integration of light field data to image and video processing. Towards this goal, the representation of light fields using advanced file formats designed for 2D image assemblies to facilitate asset re-usability and interoperability between applications and devices is addressed. The novel 5D light field acquisition and the on-going research on coding frameworks are presented. Multiple techniques for optimised sequencing of light field data are also proposed. As light fields contain complete 3D information of a scene, large amounts of data is captured and is highly redundant in nature. Hence, by pre-processing the data using the proposed approaches, excellent coding performance can be achieved.Im Zeitalter der computergestützten Bildgebung erfassen Kameras nicht mehr nur ein Bild, sondern vielmehr auch Daten. Diese erfassten Zusatzdaten lassen sich optimal für fotorealistische Renderings nutzen und erlauben zahlreiche Nachbearbeitungsmöglichkeiten, wie Perspektivwechsel, Tiefenskalierung, digitale Nachfokussierung, 3D-Rekonstruktion und vieles mehr. In der computergestützten Fotografie erfasst die Lichtfeld-Abbildungstechnologie die vollständige volumetrische Information einer Szene. Diese Technologie bietet dabei das größte Potenzial, immersive Erlebnisse zu mehr Realitätsnähe zu beschleunigen. Deshalb gewinnt sie sowohl im kommerziellen Sektor als auch im Forschungsbereich zunehmend an Bedeutung. Aufgrund fehlender Kompressions- und Speicherformate sowie der Inkompatibilität derWerkzeuge zur Verarbeitung und Freigabe der Daten, wird das Potenzial der Lichtfelder nicht voll ausgeschöpft. Diese Dissertation ermöglicht die Integration von Lichtfelddaten in die Bild- und Videoverarbeitung. Hierzu wird die Darstellung von Lichtfeldern mit Hilfe von fortschrittlichen für 2D-Bilder entwickelten Dateiformaten erarbeitet, um die Wiederverwendbarkeit von Assets- Dateien und die Kompatibilität zwischen Anwendungen und Geräten zu erleichtern. Die neuartige 5D-Lichtfeldaufnahme und die aktuelle Forschung an Kompressions-Rahmenbedingungen werden vorgestellt. Es werden zudem verschiedene Techniken für eine optimierte Sequenzierung von Lichtfelddaten vorgeschlagen. Da Lichtfelder die vollständige 3D-Information einer Szene beinhalten, wird eine große Menge an Daten, die in hohem Maße redundant sind, erfasst. Die hier vorgeschlagenen Ansätze zur Datenvorverarbeitung erreichen dabei eine ausgezeichnete Komprimierleistung

    Application for light field inpainting

    Get PDF
    Light Field (LF) imaging is a multimedia technology that can provide more immersive experience when visualizing a multimedia content with higher levels of realism compared to conventional imaging technologies. This technology is mainly promising for Virtual Reality (VR) since it displays real-world scenes in a way that users can experience the captured scenes in every position and every angle, due to its 4-dimensional LF representation. For these reasons, LF is a fast-growing technology, with so many topics to explore, being the LF inpainting the one that was explored in this dissertation. Image inpainting is an editing technique that allows synthesizing alternative content to fill in holes in an image. It is commonly used to fill missing parts in a scene and restore damaged images such that the modifications are correct and visually realistic. Applying traditional 2D inpainting techniques straightforwardly to LFs is very unlikely to result in a consistent inpainting in its all 4 dimensions. Usually, to inpaint a 4D LF content, 2D inpainting algorithms are used to inpaint a particular point of view and then 4D inpainting propagation algorithms propagate the inpainted result for the whole 4D LF data. Based on this idea of 4D inpainting propagation, some 4D LF inpainting techniques have been recently proposed in the literature. Therefore, this dissertation proposes to design and implement an LF inpainting application that can be used by the public that desire to work in this field and/or explore and edit LFs.Campos de luz é uma tecnologia multimédia que fornece uma experiência mais imersiva ao visualizar conteúdo multimédia com níveis mais altos de realismo, comparando a tecnologias convencionais de imagem. Esta tecnologia é promissora, principalmente para Realidade Virtual, pois exibe cenas capturadas do mundo real de forma que utilizadores as possam experimentar em todas as posições e ângulos, devido à sua representação em 4 dimensões. Por isso, esta é tecnologia em rápido crescimento, com tantos tópicos para explorar, sendo o inpainting o explorado nesta dissertação. Inpainting de imagens é uma técnica de edição, permitindo sintetizar conteúdo alternativo para preencher lacunas numa imagem. Comumente usado para preencher partes que faltam numa cena e restaurar imagens danificadas, de forma que as modificações sejam corretas e visualmente realistas. É muito improvável que aplicar técnicas tradicionais de inpainting 2D diretamente a campos de luz resulte num inpainting consistente em todas as suas 4 dimensões. Normalmente, para fazer inpainting num conteúdo 4D de campos de luz, os algoritmos de inpainting 2D são usados para fazer inpainting de um ponto de vista específico e, seguidamente, os algoritmos de propagação de inpainting 4D propagam o resultado do inpainting para todos os dados do campo de luz 4D. Com base nessa ideia de propagação de inpainting 4D, algumas técnicas foram recentemente propostas na literatura. Assim, esta dissertação propõe-se a conceber e implementar uma aplicação de inpainting de campos de luz que possa ser utilizada pelo público que pretenda trabalhar nesta área e/ou explorar e editar campos de luz

    Reconstruction from Spatio-Spectrally Coded Multispectral Light Fields

    Get PDF
    In dieser Arbeit werden spektral kodierte multispektrale Lichtfelder untersucht, wie sie von einer Lichtfeldkamera mit einem spektral kodierten Mikrolinsenarray aufgenommen werden. Für die Rekonstruktion der kodierten Lichtfelder werden zwei Methoden entwickelt, eine basierend auf den Prinzipien des Compressed Sensing sowie eine Deep Learning Methode. Anhand neuartiger synthetischer und realer Datensätze werden die vorgeschlagenen Rekonstruktionsansätze im Detail evaluiert
    corecore