158 research outputs found

    Measurement of unsteady aerodynamic characteristics of a subscale aerobatic aircraft in high angle-of-attack maneuvers

    Get PDF
    High angle-of-attack flight testing was performed using the UIUC Subscale Sukhoi, which is a 35% scale, 2.6 m (102 in) wingspan Sukhoi 29S electric model aircraft that was developed at the University of Illinois at Urbana-Champaign. The aircraft was instrumented with a custom sensor data acquisition system that allowed the motion and control inputs of the aircraft to be captured at a rate of 100 Hz. During the spring, summer, and fall of 2015, the UIUC Subscale Sukhoi was flown through a variety of high angle of attack maneuvers, specifically unpowered aggravated stalls, descending harriers, walls, and wing rock flight, during which flight data was recorded by the sensor data acquisition system. The flight data recorded during the maneuvers was processed to produce flight path trajectory plots, time histories and aircraft aerodynamic coefficient data. These plots showed unsteady aerodynamic effects exhibited by the aircraft. Among these results was one version of wing rock, where given a certain aircraft configuration with constant control surface inputs, the aircraft would wing rock with a constant frequency while the lift and drag coefficient oscillated with rapidly increasing then decreasing amplitudes, which has yet to be described in the literature

    Lateral Control Design for Autonomous Vehicles Using a Big Data-Based Approach

    Get PDF
    In the paper an improved Model Predictive Control (MPC) design is presented for autonomous vehicles. The improvement of the control design is based on big data analysis of the lateral vehicle dynamics. In the big data analysis, the decision tree algorithm, C4.5 is used to determine the stable regions of the vehicle. Moreover, C4.5 is extended with the MetaCost algorithm, which is able to weight the percentages of certain misclassifications. In this way, the safe motion of the vehicle can be guaranteed. The results of the big data analysis are states-sets, which are used as constraints in the MPC control design

    Improving perception and locomotion capabilities of mobile robots in urban search and rescue missions

    Get PDF
    Nasazení mobilních robotů během zásahů záchranných složek je způsob, jak učinit práci záchranářů bezpečnější a efektivnější. Na roboty jsou ale při takovém použití kladeny vyšší nároky kvůli podmínkám, které při těchto událostech panují. Roboty se musejí pohybovat po nestabilních površích, ve stísněných prostorech nebo v kouři a prachu, což ztěžuje použití některých senzorů. Lokalizace, v robotice běžná úloha spočívající v určení polohy robotu vůči danému souřadnému systému, musí spolehlivě fungovat i za těchto ztížených podmínek. V této dizertační práci popisujeme vývoj lokalizačního systému pásového mobilního robotu, který je určen pro nasazení v případě zemětřesení nebo průmyslové havárie. Nejprve je předveden lokalizační systém, který vychází pouze z měření proprioceptivních senzorů a který vyvstal jako nejlepší varianta při porovnání několika možných uspořádání takového systému. Lokalizace je poté zpřesněna přidáním měření exteroceptivních senzorů, které zpomalují kumulaci nejistoty určení polohy robotu. Zvláštní pozornost je věnována možným výpadkům jednotlivých senzorických modalit, prokluzům pásů, které u tohoto typu robotů nevyhnutelně nastávají, výpočetním nárokům lokalizačního systému a rozdílným vzorkovacím frekvencím jednotlivých senzorů. Dále se věnujeme problému kinematických modelů pro přejíždění vertikálních překážek, což je další zdroj nepřesnosti při lokalizaci pásového robotu. Díky účasti na výzkumných projektech, jejichž členy byly hasičské sbory Itálie, Německa a Nizozemska, jsme měli přístup na cvičiště určená pro přípravu na zásahy během zemětřesení, průmyslových a dopravních nehod. Přesnost našeho lokalizačního systému jsme tedy testovali v podmínkách, které věrně napodobují ty skutečné. Soubory senzorických měření a referenčních poloh, které jsme vytvořili pro testování přesnosti lokalizace, jsou veřejně dostupné a považujeme je za jeden z přínosů naší práce. Tato dizertační práce má podobu souboru tří časopiseckých publikací a jednoho článku, který je v době jejího podání v recenzním řízení.eployment of mobile robots in search and rescue missions is a way to make job of human rescuers safer and more efficient. Such missions, however, require robots to be resilient to harsh conditions of natural disasters or human-inflicted accidents. They have to operate on unstable rough terrain, in confined spaces or in sensory-deprived environments filled with smoke or dust. Localization, a common task in mobile robotics which involves determining position and orientation with respect to a given coordinate frame, faces these conditions as well. In this thesis, we describe development of a localization system for tracked mobile robot intended for search and rescue missions. We present a proprioceptive 6-degrees-of-freedom localization system, which arose from the experimental comparison of several possible sensor fusion architectures. The system was modified to incorporate exteroceptive velocity measurements, which significantly improve accuracy by reducing a localization drift. A special attention was given to potential sensor outages and failures, to track slippage that inevitably occurs with this type of robots, to computational demands of the system and to different sampling rates sensory data arrive with. Additionally, we addressed the problem of kinematic models for tracked odometry on rough terrains containing vertical obstacles. Thanks to research projects the robot was designed for, we had access to training facilities used by fire brigades of Italy, Germany and Netherlands. Accuracy and robustness of proposed localization systems was tested in conditions closely resembling those seen in earthquake aftermath and industrial accidents. Datasets used to test our algorithms are publicly available and they are one of the contributions of this thesis. We form this thesis as a compilation of three published papers and one paper in review process

    Trends in vehicle motion control for automated driving on public roads

    Get PDF
    In this paper, we describe how vehicle systems and the vehicle motion control are affected by automated driving on public roads. We describe the redundancy needed for a road vehicle to meet certain safety goals. The concept of system safety as well as system solutions to fault tolerant actuation of steering and braking and the associated fault tolerant power supply is described. Notably restriction of the operational domain in case of reduced capability of the driving automation system is discussed. Further we consider path tracking, state estimation of vehicle motion control required for automated driving as well as an example of a minimum risk manoeuver and redundant steering by means of differential braking. The steering by differential braking could offer heterogeneous or dissimilar redundancy that complements the redundancy of described fault tolerant steering systems for driving automation equipped vehicles. Finally, the important topic of verification of driving automation systems is addressed

    Safe navigation for vehicles

    Get PDF
    La navigation par satellite prend un virage très important ces dernières années, d'une part par l'arrivée imminente du système Européen GALILEO qui viendra compléter le GPS Américain, mais aussi et surtout par le succès grand public qu'il connaît aujourd'hui. Ce succès est dû en partie aux avancées technologiques au niveau récepteur, qui, tout en autorisant une miniaturisation de plus en plus avancée, en permettent une utilisation dans des environnements de plus en plus difficiles. L'objectif aujourd'hui est de préparer l'utilisation de ce genre de signal dans une optique bas coût dans un milieu urbain automobile pour des applications critiques d'un point de vue sécurité (ce que ne permet pas les techniques d'hybridation classiques). L'amélioration des technologies (réduction de taille des capteurs type MEMS ou Gyroscope) ne peut, à elle seule, atteindre l'objectif d'obtenir une position dont nous pouvons être sûrs si nous utilisons les algorithmes classiques de localisation et d'hybridation. En effet ces techniques permettent d'avoir une position sans cependant permettre d'en quantifier le niveau de confiance. La faisabilité de ces applications repose d'une part sur une recherche approfondie d'axes d'amélioration des algorithmes de localisation, mais aussi et conjointement, sur la possibilité, via les capteurs externes de maintenir un niveau de confiance élevé et quantifié dans la position même en absence de signal satellitaire. ABSTRACT : Satellite navigation has acquired an increased importance during these last years, on the one hand due to the imminent appearance of the European GALILEO system that will complement the American GPS, and on the other hand due to the great success it has encountered in the commercial civil market. An important part of this success is based on the technological development at the receiver level that has rendered satellite navigation possible even in difficult environments. Today's objective is to prepare the utilisation of this kind of signals for land vehicle applications demanding high precision positioning. One of the main challenges within this research domain, which cannot be addressed by classical coupling techniques, is related to the system capability to provide reliable position estimations. The enhancement in dead-reckoning technologies (i.e. size reduction of MEMS-based sensors or gyroscopes) cannot all by itself reach the necessary confidence levels if exploited with classical localization and integration algorithms. Indeed, these techniques provide a position estimation whose reliability or confidence level it is very difficult to quantify. The feasibility of these applications relies not only on an extensive research to enhance the navigation algorithm performances in harsh scenarios, but also and in parallel, on the possibility to maintain, thanks to the presence of additional sensors, a high confidence level on the position estimation even in the absence of satellite navigation signals

    Robust state estimation methods for robotics applications

    Get PDF
    State estimation is an integral component of any autonomous robotic system. Finding the correct position, velocity, and orientation of an agent in its environment enables it to do other tasks like mapping and interacting with the environment, and collaborating with other agents. State estimation is achieved by using data obtained from multiple sensors and fusing them in a probabilistic framework. These include inertial data from Inertial Measurement Unit (IMU), images from camera, range data from lidars, and positioning data from Global Navigation Satellite Systems (GNSS) receivers. The main challenge faced in sensor-based state estimation is the presence of noisy, erroneous, and even lack of informative data. Some common examples of such situations include wrong feature matching between images or point clouds, false loop-closures due to perceptual aliasing (different places that look similar can confuse the robot), presence of dynamic objects in the environment (odometry algorithms assume a static environment), multipath errors for GNSS (signals for satellites jumping off tall structures like buildings before reaching receivers) and more. This work studies existing and new ways of how standard estimation algorithms like the Kalman filter and factor graphs can be made robust to such adverse conditions without losing performance in ideal outlier-free conditions. The first part of this work demonstrates the importance of robust Kalman filters on wheel-inertial odometry for high-slip terrain. Next, inertial data is integrated into GNSS factor graphs to improve the accuracy and robustness of GNSS factor graphs. Lastly, a combined framework for improving the robustness of non-linear least squares and estimating the inlier noise threshold is proposed and tested with point cloud registration and lidar-inertial odometry algorithms followed by an algorithmic analysis of optimizing generalized robust cost functions with factor graphs for GNSS positioning problem

    Enhanced vision-based localization and control for navigation of non-holonomic omnidirectional mobile robots in GPS-denied environments

    Get PDF
    New Zealand’s economy relies on primary production to a great extent, where use of the technological advances can have a significant impact on the productivity. Robotics and automation can play a key role in increasing productivity in primary sector, leading to a boost in national economy. This thesis investigates novel methodologies for design, control, and navigation of a mobile robotic platform, aimed for field service applications, specifically in agricultural environments such as orchards to automate the agricultural tasks. The design process of this robotic platform as a non-holonomic omnidirectional mobile robot, includes an innovative integrated application of CAD, CAM, CAE, and RP for development and manufacturing of the platform. Robot Operating System (ROS) is employed for the optimum embedded software system design and development to enable control, sensing, and navigation of the platform. 3D modelling and simulation of the robotic system is performed through interfacing ROS and Gazebo simulator, aiming for off-line programming, optimal control system design, and system performance analysis. Gazebo simulator provides 3D simulation of the robotic system, sensors, and control interfaces. It also enables simulation of the world environment, allowing the simulated robot to operate in a modelled environment. The model based controller for kinematic control of the non-holonomic omnidirectional platform is tested and validated through experimental results obtained from the simulated and the physical robot. The challenges of the kinematic model based controller including the mathematical and kinematic singularities are discussed and the solution to enable an optimal kinematic model based controller is presented. The kinematic singularity associated with the non-holonomic omnidirectional robots is solved using a novel fuzzy logic based approach. The proposed approach is successfully validated and tested through the simulation and experimental results. Development of a reliable localization system is aimed to enable navigation of the platform in GPS-denied environments such as orchards. For this aim, stereo visual odometry (SVO) is considered as the core of the non-GPS localization system. Challenges of SVO are introduced and the SVO accumulative drift is considered as the main challenge to overcome. SVO drift is identified in form of rotational and translational drift. Sensor fusion is employed to improve the SVO rotational drift through the integration of IMU and SVO. A novel machine learning approach is proposed to improve the SVO translational drift using Neural-Fuzzy system and RBF neural network. The machine learning system is formulated as a drift estimator for each image frame, then correction is applied at that frame to avoid the accumulation of the drift over time. The experimental results and analyses are presented to validate the effectiveness of the methodology in improving the SVO accuracy. An enhanced SVO is aimed through combination of sensor fusion and machine learning methods to improve the SVO rotational and translational drifts. Furthermore, to achieve a robust non-GPS localization system for the platform, sensor fusion of the wheel odometry and the enhanced SVO is performed to increase the accuracy of the overall system, as well as the robustness of the non-GPS localization system. The experimental results and analyses are conducted to support the methodology
    corecore