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Abstract

Robust state estimation methods for robotics
applications

Shounak Das

State estimation is an integral component of any autonomous robotic system.
Finding the correct position, velocity, and orientation of an agent in its environment
enables it to do other tasks like mapping and interacting with the environment, and
collaborating with other agents. State estimation is achieved by using data obtained
from multiple sensors and fusing them in a probabilistic framework. These include
inertial data from Inertial Measurement Unit (IMU), images from camera, range data
from lidars, and positioning data from Global Navigation Satellite Systems (GNSS)
receivers. The main challenge faced in sensor-based state estimation is the presence of
noisy, erroneous, and even lack of informative data. Some common examples of such
situations include wrong feature matching between images or point clouds, false loop-
closures due to perceptual aliasing (different places that look similar can confuse the
robot), presence of dynamic objects in the environment (odometry algorithms assume
a static environment), multipath errors for GNSS (signals for satellites jumping off
tall structures like buildings before reaching receivers) and more. This work studies
existing and new ways of how standard estimation algorithms like the Kalman filter
and factor graphs can be made robust to such adverse conditions without losing per-
formance in ideal outlier-free conditions. The first part of this work demonstrates the
importance of robust Kalman filters on wheel-inertial odometry for high-slip terrain.
Next, inertial data is integrated into GNSS factor graphs to improve the accuracy
and robustness of GNSS factor graphs. Lastly, a combined framework for improving
the robustness of non-linear least squares and estimating the inlier noise threshold
is proposed and tested with point cloud registration and lidar-inertial odometry al-
gorithms followed by an algorithmic analysis of optimizing generalized robust cost
functions with factor graphs for GNSS positioning problem.
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1
Introduction

Estimation theory deals with the process of calculating values of desired variables in

a model using noisy observations. The observations come from a sensor, so the model

can be thought of as a sensor measurement model. Examples of estimation prob-

lems include locating aircrafts and submarines with radar and sonar measurements

respectively, estimating the underground depth of oil deposits from sound reflections,
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denoising electronic signals, tracking aircraft using radars, estimating the orbit of

an asteroid, aircraft performance parameter estimation from real-time data obtained

from onboard sensors and many more [12, 26, 63, 69, 100]. Any engineering control

system needs to estimate the current system variables of the model to calculate the

required control input [100]. For robotics applications, a very important problem is

estimating the position, attitude, and velocity of aerial or ground robots using on-

board sensors like cameras, lidars, and body acceleration measurements [12, 43, 64].

If the environment is unknown then the robot might need to map the environment

to find specific targets [20]. Another important application of estimation theory is

sensor calibration which is critical for autonomous systems [1, 122]. A more ubiqui-

tous application of estimation theory is positioning using signals from satellites [37]

which we use on a day-to-day basis without giving it much thought. Thus importance

of estimation theory in the modern world cannot be overstated. With the advent of

powerful computers, estimation for robotics has seen rapid developments resulting

in impressive achievements like self-driving cars [131], autonomous drones [59], and

highly automated robotic arms for industrial and medical applications [75].

1.1 Motivation

Correct estimation of desired variables of a system is critical for its safe operation.

However, sensors are inherently noisy and affected by the environment it senses. The

most commonly used sensors in robotics have their own limitations. For example,

pose estimation with two camera images is highly dependent on the number of fea-
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ture matches and the correctness of matches. Similarly calculating pose with two

point clouds requires accurate feature matching. Even though IMU is not affected

by environmental conditions, it suffers from error growth over time. GNSS signals

give the highest accuracy of positioning but can get degraded due to atmospheric and

multipath effects. Visual loop closures can help reduce pose errors by identifying re-

visited places and correcting the current pose using the pose from the last visit. But

loop closures can suffer from visual aliasing (two places looking similar even though

they are not nearby). It is crucial that the estimation algorithms be able to detect

such conditions and adapt accordingly to provide reliable estimation performance.

The algorithms that have been designed to be adaptive and deal with the outliers

mentioned above are called robust estimation algorithms.

1.2 Research Objective

The objective of this dissertation is to develop solutions to challenging robotics lo-

calization problems by exploring the use and development of novel robust estimation

methods. Problems related to measurement outlier rejection and sensor degradation

are considered. Further, multiple applications related to robotics localization are

considered including Global Navigation Satellite Systems, wheel-inertial odometry,

and point cloud registration. In order to offer insight, several different techniques

and estimation frameworks are compared and analyzed and a new robust estimation

algorithm is developed and analyzed using both real-world and synthetic data.
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1.3 Contributions

This dissertation looks at robust estimation from three different directions. The first

direction focuses on applying existing robust estimation algorithms to new problems.

One such problem discussed in the next chapter is wheel-inertial odometry on high-

slip terrain. The second direction is improving robustness by using a multi-sensor

approach. For this direction, a GNSS positioning algorithm is fused with inertial

data. The third direction aims to improve the adaptability of non-linear least squares

and learn inlier noise threshold for sensors in a combined approach.

The main contributions of this dissertation are discussed below:

• Five methods, chosen from robust Kalman filtering literature, have been ap-

plied to the problem of wheel-inertial odometry on high-slip terrain to offer

insight into their benefits and drawbacks to the research community. These

methods include the Huber Kalman filter, the covariance scaling Kalman filter,

and variational filters. An error-state Extended Kalman filter is implemented

with its update step augmented with these robust methods. Variational Kalman

filters perform the best in reducing the effect of erroneous wheel encoder mea-

surements. Parameter analysis shows the residual distribution to be close to

Gaussian. This work is presented in Chapter 3.

• Two different ways of fusing inertial data with GNSS factor graphs are presented

in Chapter 4. In one version, motion constraints are added to the GNSS factor

graph from a parallel running wheel-inertial Kalman filter. The other version

does not use inertial odometry directly but uses the information that the rover is
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static to constrain static nodes. Tests with real-world data demonstrate the su-

perior positioning performance of inertial-aided GNSS factor graphs compared

to GNSS factor graphs without odometry information.

• A novel way of increasing the adaptivity of non-linear least squares is presented

in Chapter 5. The new algorithm also estimates the inlier noise threshold

along with increasing adaptivity in a combined approach. The algorithm is

tested with synthetic and real-world point clouds and shown to have a more

robust registration performance than existing M-estimator-based methods in

the literature. Lastly, an analysis is presented on adaptive non-linear least

squares using square-root factors for GNSS positioning. It is demonstrated that

learning the shape parameter in a GNSS factor graph using Black-Rangarajan

duality can result in divergence of state estimates for some M-estimators.

1.4 Organization

The rest of the dissertation is divided into five chapters. Chapter 2 discusses the

fundamental estimation tools used in this dissertation. Chapter 3 contains a brief

overview of different robust Kalman filtering algorithms followed by their detailed im-

plementation and performance analysis for robust wheel-inertial odometry in high-slip

terrain. Chapter 4 presents two different frameworks for fusing inertial information

from an EKF into a GNSS factor graph to increase its robustness to multipath errors.

Chapter 5 presents a novel way of increasing the adaptivity of robust cost functions

and learning inlier noise thresholds in a combined framework. Adaptive cost function

5



optimization is implemented for both point cloud registration and GNSS positioning

problems. Chapter 6 concludes the thesis with more discussion on the results and

future research directions. Some robustness metrics of adaptive M-estimators are

discussed in Appendix A.
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2
Background

Even though estimation algorithms have become more complex over the years, theo-

retical foundations of all such algorithms like [129], [78], [77] and [107] have remained

the same. As discussed in much detail in [12] and [32], probability theory (especially

Gaussian), Bayes’ theory, linear algebra, and optimization (especially linear and non-

linear least squares) form the foundation for estimation in robotic systems. This
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chapter gives a brief overview of some of these key concepts which will be crucial for

understanding the rest of this work.

Most estimation problems in robotics can be formulated as

x̂ = arg min
x

∑
k

∥rk(x)∥2 , (2.1)

where

rk(x) = zk − hk(x). (2.2)

rk is called the residual error, which indicates how well the kth predicted measure-

ment fits the kth actual measurement. x is a vector of variables that can include

robot position, velocity, orientation, map points, camera intrinsic, and other model

parameters depending on the sensor. h() is the function that maps the parameters x

to the measurements z and is called the measurement function. The objective here

is to find x that minimizes the residual cost above; in other words best explains the

observed data. Unless mentioned separately, usually vectors will be referred to with

bold lower case letters, scalars in lower case non-bold letters, and matrices with upper

case non-bold letters.

2.1 Bayesian Probability

Bayesian estimation theory can be understood from two different perspectives. One is

the probabilistic point of view and the other is optimization. These are two sides of the

same coin and is important to understand from both perspectives. Probability theory
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is useful in modeling the fact that all sensor measurements are inherently noisy due

to their own manufacturing limitations and also the environment they sense. Thus

instead of assuming the unknown states and measurements as having fixed values,

they are assumed to be random variables that follow a specific distribution (usually

Gaussian).

Let X and Z be the random variables representing the state and measurement

respectively. The Bayes’ theorem states

P (X|Z)P (Z) = P (Z|X)P (X) = P (X,Z), (2.3)

where P (X) represents the prior belief of the unknown state, P (Z|X) is the likelihood

of a measurement given a state, P (Z) is the probability of the measurement and

P (X|Z) is called the posterior. P (X,Z) is called the joint probability of X and

Z. The main objective of Bayesian estimation is finding the posterior. There are

two frameworks for estimation from a probabilistic point of view. One is called the

Maximum Likelihood Principle (MLE), where given some measured Z, the state can

be solved as

X̂ = arg max
x

P (Z|X). (2.4)

Here the prior is not considered in the estimation. This is usually considered a non-

Bayesian approach since the idea of prior and posterior is not used. The other ap-

proach is considered the proper Bayesian approach called the Maximum A-Posteriori
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(MAP) problem, where the state is solved as

X̂ = arg max
x

P (Z|X)P (X). (2.5)

This problem takes into account the prior belief of your unknown state. The formu-

lation comes from

P (X|Z) ∝ P (Z|X)P (X). (2.6)

P (Z) can be ignored here since it is not a function of X. Assuming the prior and

likelihood are Gaussian distributions (note: the likelihood is not a true probability

distribution since Z is known and X is unknown; statisticians refer to it as a function

of X but the formulation remains the same as Gaussian), the maximization problem

can be converted to a minimization problem by using a negative logarithm operation.

MAP solves for the mode of the posterior, unlike Bayesian inference which tries to find

the full posterior distribution P (X|Z). For linear Gaussian cases, MAP and Bayesian

inference compute the same solution since the mean and the mode of a Gaussian

distribution are the same. For non-linear and non-Gaussian cases, these solutions do

not match. Due to the intractability of full posterior distribution inference in many

formulations, MAP or sampling-based methods are used.
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2.2 Least Squares

The optimization problem derived from MLE and MAP for the Gaussian case is called

the least squares problem. If the h() function is linear i.e represented by a matrix

z = Jx + ϵ,

where ϵ is Gaussian white noise, the problem

x̂ = arg min
x

(z− Jx)T (z− Jx)

has a closed-form solution given by

x̂ = (JTJ)−1JT z. (2.7)

Unfortunately, linear least square formulation is insufficient for most estimation prob-

lems in robotics due to non-linearity of h() function. The most common h() func-

tions like the inverse-projection function for visual odometry, range functions for

ranging measurements, and frame transformation functions for point clouds are all

non-linear [42]. In such cases, non-linear least square solvers need to be used. The

solution then changes to an iterative one which requires linearizing the non-linear

measurement function h() to form a matrix

H = ∂h(x)
∂x

11



called the Jacobian. The iterative solution is similar to the least squares solution and

can be obtained by solving for ∆x from the equation

(
HTH + λI

)
∆x = HT r. (2.8)

r = z − h(x0) where x0 is the initialization point or linearization point which is

updated every iteration i using

x0
i+1 = x0

i + α∆xi. (2.9)

∆x is the descent direction for minimizing the sum of the squared residuals. The

updated solution can be obtained by moving along the descent direction. The mag-

nitude of this movement is controlled by the parameter α. λ is a damping term set

to a large value when the current iteration is far from the solution but lowered when

it gets close giving it an almost quadratic convergence rate [72].

A batch version of non-linear least squares can also be solved by stacking residuals

and Jacobians to create

r =


r1

...

rn

 , H =


H1

...

Hn

 , W =


w1I · · · 0
... . . . ...

0 · · · wnI

 .

The weight matrix W sets the weight for the residual of each measurement epoch.

The solved state vector is a long vector where all the states along the trajectory

are stacked together x = [x1 ...xn]. Also common in batch non-linear least squares
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is segmenting the state variable of an epoch into blocks. For example, in visual

Simultaneous Localization and Mapping (SLAM) problems, the pose at time t (Tt)

will have its Jacobian block and a landmark tracked at the time (Lt) will have its

separate Jacobian. For every iteration, the Jacobians and residuals are calculated

using the current estimate of x and stacked to form r and H. W helps de-weight

outliers or noisy measurements.

The weighted non-linear least squares version of the solution is given by

(
HTWH + λI

)
∆x = HTWr. (2.10)

All optimization packages like Ceres [7], g2o [45], GTSAM [30] use some variation of

this descent strategy to get the best solution x̂.

2.3 Robustness Theory

The idea of robustness of an estimator follows from [50], where it is defined as ”insen-

sitivity to small deviations from the assumptions”. This insensitivity of the estimator

is measured from a probabilistic or distributional point of view. That is, robust es-

timators can estimate parameters even when the measurement noise does not follow

the assumed distribution, which is usually Gaussian. This non-Gaussian distribution

is called the contaminated Gaussian in [74]. That is (1 − ϵ) proportion of the mea-

surement is generated from a Gaussian and other ϵ is generated from an unknown

distribution. For example, the median and mean absolute deviation are more robust

estimators of the mean and spread of data respectively than the mean and stan-
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dard deviation when data follows a long-tailed distribution instead of the assumed

Gaussian distribution.

2.3.1 M-estimators

One popular choice of robust estimator is the M-estimator (Maximum likelihood type

estimator) which is formulated as

x̂ = arg min
x

∑
k

ρ (rk(x)) . (2.11)

This is equivalent to solving the equation

∑
k

ψ (rk(x)) ∂rk(x)
∂x = 0, (2.12)

where ψ(x) = ∂ρ(x)
∂x

. ρ replaces the standard squared loss function with a function with

a lower growth rate which reduces the effect of measurements with large residuals.

One measure of robustness for M-estimators is the change in the estimate with in-

finitesimal change ∆ in one of the measurements, called the Influence Function Curve

(IF curve) which is proportional to ψ. It represents the effect of a measurement on

the estimation process as a function of its residual. Diagrams of these ψ functions for

different M-estimators are shown in [18, 29]. Due to the nature of the loss functions,

the influence functions show constant, sub-linear, or re-descending (increasing first

and then decreasing) trends.

The distribution of M-estimators has been proved to be asymptotically normal.

That is, for n → ∞, the estimates obtained from M-estimators are normally dis-
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tributed around the true value [74]. For the scalar location problem, the estimate

follows the distribution

x̂ ∼ N (x∗, v
n

), (2.13)

where

v = EF (ψ(x− x∗))2

(EFψ′(x− x∗))2 . (2.14)

v is the asymptotic variance of that specific M-estimator. x∗ is the solution of

EFψ(r(x)) = 0 where F is the true error distribution. One way to compare esti-

mators is called efficiency (E) which gives a measure of estimator performance when

compared to a reference estimator. It is defined as

E = v0

v
, (2.15)

where v0 is the asymptotic variance of the reference estimator. For example, the

M-estimators will have higher asymptotic variance than the least squares estimator

when the true distribution of errors is Gaussian resulting in low efficiency but will

have less asymptotic variance in case of contaminated distribution producing higher

efficiency. As shown in table (2.2) of [74], for the case of location estimate with scalar

x, the asymptotic variance of the Huber M-estimator is slightly more than that of

least squares for the Gaussian case. Still, it has a much lower variance than least

squares for the contaminated Gaussian distribution.

Another metric that characterizes the robustness of an estimator is called the

Breakdown Point (BP). It refers to the largest fraction of outliers with which the

estimator still remains bounded. Theoretically, estimators cannot have BP more than
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0.5 due to it not being able to extract the true distribution from the contaminating

distribution [94]. Monotonic and re-descending ψ functions have a BP of 0.5 for

location estimation problems [74]. Huber and Laplace estimators have a higher BP

than Cauchy and Welsch estimators [18]. The least squares estimator has a BP of 0.

2.3.2 Solving M-estimators

Equation (2.11) is a continuous optimization problem by comparing it to a weighted

least square problem. For scalar residuals rk, the weighted least squares problem is

x̂ = arg min
x

∑
k

wkrk(x)2, (2.16)

where wk is the weight of the kth residual. Two types of methods are generally

used: line search methods, such as Gauss-Newton, and trust region methods, such as

Levenberg-Marquardt, both of which are iterative descent methods [44, 71]. Partially

differentiating the least squares and M-estimation expressions in their scalar forms

with respect to the unknown variable x we get,

1
2
∂ (wkr

2
k(x))

∂x = wkrk(x)∂rk(x)
∂x (2.17)

and
∂ (ρ (rk(x)))

∂x = ρ′ (rk(x)) ∂rk(x)
∂x . (2.18)
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Comparing these two expressions, it is apparent that M-estimation can be solved

exactly like a weighted least squares problem. The weights in this case are given by

wk = ρ′(rk(x))
rk(x)

. (2.19)

Any scalar multiplied to this expression can be ignored since it applies to all residuals.

This method of solving M-estimation problems is called Iterative Re-weighted Least

Squares (IRLS) [18]. The IRLS algorithm is described in chapter 4. The conditions

for convergence of IRLS solutions for M-estimators have been discussed in [2]. They

are:

• Functions ρ and r are continuous.

• ρ(
√
x) is concave and differentiable for x ≥ 0.

• arg min
x

∑
k
wkrk(x)2 is a continuous function of w.

• The sublevel set {x|∑
k
ρ (rk(x)) ≤ ∑

k
ρ (rk(x0))} is bounded.

These conditions also assume that the weighted least squares solution can be solved

efficiently. The concavity condition makes sure that minimizing the weighted least

squares cost results in the minimization of the robust cost expression. Given these

conditions, if the expression ∑
k
ρ (rk(x)) is convex then IRLS should converge to the

global minimum.

M-estimators fall within the de-weighting group of methods, which do not di-

rectly remove measurements. The intuition behind this is that, instead of assuming

a Gaussian distribution for the measurement noise, these M-estimators have heavier
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tails, which solve for the parameters that best fit the overall data. An interesting

connection between M-estimators and elliptical distributions was shown in [5], which

was used for parameter estimation. The cost functions obtained from the negative

log-likelihood of these distributions are modified versions of the squared loss function,

which are optimized to get to the correct solution. Some of these functions are non-

convex and suffer from the local minima problem (e.g., re-descending M-estimators).

To tackle this, Yang et al. [125] use the concepts of graduated non-convexity, along

with the Black-Rangarajan duality [17], to devise an iterative algorithm for robust

perception. Another common area of application for robust estimation is loop clo-

sures. To mitigate the effect of false loop closures, several researchers have considered

approaches for adding robustness to the back-end of SLAM applications. Sunderhauf

et al. [103] added binary scalars, or switch constraints, to measurements to turn

them on/off in the optimization. Dynamic Covariance Scaling [6] was then devel-

oped to give the same theoretical benefit in a more efficient manner. These methods

do the same job of de-weighting outliers as the M-estimators. The importance of

M-estimators in point cloud registration and visual navigation has been discussed

in [11, 70]. These methods were used for robust GNSS positioning in a factor graph

framework in [115, 117, 118]. Recently Ramezani et al. [90] modeled all loop closures

using robust cost functions with a single adaptive parameter and improved back-

end SLAM optimization. Generalized robust cost functions are analyzed further in

chapter 5.
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2.3.3 Maximum Consensus

The other group of robust estimation methods focuses on finding the maximum num-

ber of measurements that satisfy a specific inlier condition, which is also called the

Maximum Consensus (MC) problem [25]. One of the most well-known methods to

solve these kinds of problems is called Random Sample Consensus (RANSAC) [40].

RANSAC is an iterative algorithm that samples a random minimal set of data points

every iteration and solves for the parameter values until it reaches a specific inlier

count threshold. It can be shown easily that for a dataset with a specific outlier frac-

tion, the probability of sampling a minimal set of inliers for solving the parameters

increases exponentially with the number of iterations. However, this method can also

get very expensive if the dataset has a large proportion of outliers.

Algorithm 1: Random Sample Consensus (RANSAC)
Input: numInliers, data

Output: inliers, bestEstimate

n← 0;

while n < numInliers do

Sample a minimal set from data;

Solve to get bestEstimate;

Find the number of inliers n using some residual threshold;

end

Antonante et al. [10] provide an in-depth discussion of various robust estimation

methods across different disciplines along with their computational limits. They
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develop minimally tuned algorithms that can tolerate a large number of outliers. Shi

et al. [99] use invariance relations between measurements to create consistency graphs.

The nodes in the graph represent measurements and two nodes will be connected by an

edge if they are consistent under some invariance relation. Then the MC problem can

be solved by searching for the maximal clique (largest set of fully connected nodes) in

the consistency graph and estimating the state using those. The advantage of these

methods is that they are independent of the estimate of x, unlike residual-based

methods like M-estimators. However, invariance relations do not always exist for

all measurement models. Loop closures for multi-robot systems have been similarly

modeled as a maximal clique problem analyzed in [73].
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3
Robust Kalman Filtering

The Kalman filter [56] is the most well-known Bayesian filtering algorithm. It is a

recursive algorithm that estimates the current state xk given the current measurement

zk and the state estimate at the previous time step x̂k−1 following the Bayesian

framework. The most common version is the Extended Kalman filter (EKF) which

uses the linear Gaussian assumption to give exact posterior estimates of the current
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xt1 xt2

zt1 zt2

Figure 3.0.1: The Hidden Markov Model (HMM) is a very common representation of
many estimation problems. The direction signifies conditional dependence i.e xt2 is only
dependent on xt1 (this is the Markov assumption) and the measurement zt1 is dependent
on xt1 (hence the term ”hidden” since the state x is not directly observed). The Kalman

filter does inference on this model.

state recursively using the current measurements and estimated state for the last state

in time. The filter equations are presented here.

Algorithm 2: Extended Kalman filter (EKF)
Input: x̂k−1, P̂k−1, Fk, Hk Qk, Rk

Output: x̂k, P̂k

% Prediction / Propagation

x̂k/k−1 = Fkx̂k−1;

P̂k/k−1 = FkP̂k−1F
T
k +Qk;

% Correction / Update

v̂k = zk −Hkx̂k/k−1;

Kk = P̂k/k−1H
T
k

[
HkP̂k/k−1H

T
k +Rk]−1;

x̂k = x̂k/k−1 +Kkv̂k;

P̂k = [I −KkHk]P̂k/k−1;

x̂k is the current estimate of the state using the measurement zk. Fk and Hk are the
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state transition and measurement matrices respectively. Matrix P̂k represents the

state uncertainty, Qk is the process noise covariance matrix and Rk is the measure-

ment noise covariance matrix. The filter gain at time k is denoted by Kk which con-

trols the weight imposed by the prior versus the measurement in the estimation. This

recursive method is optimal in the Bayesian perspective since it maximizes (MAP)

or infers (Bayesian inference) the posterior P (xk|z0..zk) for the linear Gaussian case

i.e assuming xk|xk−1 ∼ N (Fxk−1, Qk) and zk|xk ∼ N (Hxk, Rk). A detailed deriva-

tion of Kalman filtering for both MAP and Bayesian Inference contexts is provided

in [12]. Other interesting directions of deriving Kalman filters come from gain opti-

mization [12] and weighted, regularized right pseudo-inverse of z = Hx. Variations of

the standard EKF exist to handle non-linear motion and measurement functions, like

the Unscented Kalman filter (UKF) [112] and particle filters [91]. Recent works on

Kalman filters include adaptive and robust variations where the measurement model

is assumed to be heavy-tailed and posterior inference is achieved by approximation

methods like the variational inference [3, 4, 47, 96]. Adaptive and robust Kalman

filters are discussed in detail in the next section. The Invariant Extended Kalman

filter (IEKF) [13] extends the EKF framework to Lie groups. Lie theory [102] helps

in dealing with state variables like pose and attitude which do not lie on a vector

space, unlike position and velocity. This is due to constraints on the variables (like

rotation matrices are orthogonal). They lie on manifolds called SE3 and SO3 result-

ing in error calculations not following standard addition and subtraction operations

but special mapping functions. Thus optimization involving these variables is not

straightforward. A detailed description of how lie theory is applied to robotics esti-
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mation problems has been discussed in [102]. Contrary to EKF, the gain matrix K

in IEKF is not a function of the H and F resulting in better convergence properties.

It also solves the inconsistent covariance estimation problems faced in EKF-based

SLAM formulations [13].

3.1 Robust and Adaptive Filters

There is a rich body of literature that has considered modifying the standard Kalman

filter to accommodate outliers. A covariance scaling method is introduced in [22] us-

ing the ratio between the Mahalanobis distance between the observed data and the

predicted data and the critical value of χ2 distribution to reduce the effect of obser-

vation outliers or heavy-tailed measurement noise distribution. An adaptive factor

is defined in [127] that helps the filter to balance the contribution of discrepancies

due to dynamic modeling errors and new measurements as well as measurement out-

liers. Fang et al. [38] use an adaptive innovation-saturation mechanism to estimate

the changing measurement error bound. An adaptive version of the Kalman filter is

derived in [8] using a fading factor and the current innovation and residual values

to recursively calculate process and measurement noise matrices. The Huber cost

function has been incorporated into the update step of the Kalman filter using M-

estimation principles in [36, 57]. A similar method has been used with tightly and

loosely coupled GNSS/INS EKF with simulated faults in [27], where the robust ver-

sion has comparable performance to that of fault detection and exclusion techniques.

Wang et al. [114] derive a robust filter using the Double-Gaussian Mixture Corren-
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tropy loss between the data and the predicted measurements. Variational inference

has also been used to approximate state posteriors with heavy-tailed distribution for

the measurement models in [3, 4, 47, 86, 96]. Faulty measurements are excluded

using indicator variables with beta-Bernoulli prior and approximated with the state

using mean-field variational inference in [113] in a simulated target tracking scenario.

Bayesian weights are assigned to each measurement and estimated along with the

filter parameters using the Expectation-Maximization (EM) framework in [108].

In this chapter, five robust Kalman filtering methods have been chosen from the

literature and implemented on wheel-inertial odometry in high-slip terrain to offer

insights into their advantages and disadvantages. The following subsections give a

brief description of these robust Kalman filters.

3.1.1 Huber Kalman Filter (HKF)

Since EKF essentially is derived from a least square perspective, it is natural to extend

it to a robust cost version instead of the squared error version. An iterative version of

M-estimation has been discussed in [36, 57] which uses the Huber cost function [49] at

every time step instead of the squared error function. This causes the error between

the predicted measurement and the actual measurement to grow like the squared

function when below a parameter ∆ and linearly when above it.

The following derivation follows [58]. A single filter prediction and update cycle

can be written as x̂k/k−1

zk

 =

 I
Hk

xk + Ek, (3.1)
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where

Ek =

δk

vk


and

E[EkE
T
k ] =

P̂k/k−1 0

0 Rk

 = SkS
T
k .

Now the new linear equation can be written as

Yk = Bkxk + ξk, (3.2)

where Bk = S−1
k

 I
Hk

, ξk = S−1
k Ek, Yk = S−1

k

x̂k/k−1

zk

, E[ξkξ
T
k ] = I. The least

squares solution of the modified linear equation is

x̂k = (BT
k Bk)−1BT

k Yk (3.3)

P̂k = (BT
k Bk)−1. (3.4)

Sk can be calculated by Cholesky decomposition of the covariance matrix of Ek.

However, least squares estimation is highly affected by outliers due to the unbounded

nature of the squared error function. So, a different cost function can be used. The

new problem can be stated as

x̂k = arg min
x

J(x) = arg min
x

∑
i

ρ (yik − bikx), (3.5)

where the sum is over the dimension of Yk, yik is the ith element of Yk and bik is the
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ith row of Bk. If ρ is quadratic, then it reduces to the standard Kalman filter solution.

But this function can be set such that the effect of large residuals is reduced. The

function ρ can be squared for smaller residuals but should increase slowly for larger

values. Another important requirement is that the influence function ψ = ρ′ be

continuous and bounded. It should be bounded so that no single measurement can

affect the total cost largely and continuity helps in reducing rounding errors. One

such function is the Huber cost function [49] given by

ρ(z) =


z2/2 |z| ≤ ∆

∆|z| −∆2/2 |z| > ∆
. (3.6)

The derivative ρ′ or ψ is given by

ψ(z) = ρ′(z) =


z |z| ≤ ∆

∆ sgn(z) |z| > ∆
. (3.7)

Other robust functions are discussed in [18]. To minimize the cost function in (3.5),

we have to differentiate J(x) with respect to x and set it to zero. This leads to the

equation ∑
i

bT
ikψ (yik − bikxk) = 0. (3.8)

This equation can be re-written in the form

BT
k Ψ(Bkxk −Yk) = 0, (3.9)
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where

Ψ = diag
(
ψ (yik − bikxk)
yik − bikxk

)
.

Ψ is a diagonal matrix, where each diagonal element is the weight of each residual

component. Note, that the weight formula is the same as in equation (2.19). This

equation cannot be solved explicitly since Ψ depends on the unknown state xk. How-

ever xk can be solved in an iterative manner using IRLS. The solution for iteration

j + 1 uses the solution from iteration j and is given by

x̂j+1
k = (BT

k Ψ(j)Bk)−1BT
k Ψ(j)Yk. (3.10)

This solution converges if ψ is non-decreasing. The IRLS algorithm can be started

with the least-square solution x̂0
k = (BT

k Bk)−1BT
k Yk. After the state has converged,

the covariance can be estimated by the expression

P̂k = (BT
k ΨBk)−1. (3.11)

Choosing the tuning parameter ∆ is important, and depends on the perturbing pa-

rameter ϵ, which represents the proportion of contamination in the assumed residual

distribution [58]. If the perturbing parameter is known, then the optimal choice ∆∗ is

given in [50]. One way to calculate this parameter is by maximizing the efficiency with

respect to a reference estimator like least squares. When the perturbing parameter

is unknown, ∆ is usually chosen between 1.0 and 2.0.
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3.1.2 Covariance Scaling Kalman Filter (CSKF)

The Mahalanobis distance ratio, defined as

γk = M2
k

χmα

, (3.12)

can be used for assessing if the measurement is inlier or outlier. Mk is the Mahalanobis

distance of the actual measurement from the predicted measurement which has the

expression

M2
k = v̂T

k [HkP̂k/k−1H
T
k +Rk]−1v̂k. (3.13)

χmα is the critical value of the χ2 distribution corresponding to significance level α

with the degree of freedom m equal to the measurement dimension. Following [22],

the measurement noise covariance matrix (Rk) and the measurement prediction co-

variance (HkP̂k/k−1H
T
k ) are scaled for every outlier detected using the χ2 criterion.

This is also used as the Independent Innovation Test in [109]. If γk is less than 1 then

measurement zk is an inlier and Rk remains the same. But if the scaling factor is

greater than 1, denoting an outlier, the inflated Rk is given by

R̂k = (γk − 1)HkP̂k/k−1H
T
k + γkRk. (3.14)

The scaling of Rk results in the de-weighting of suspected outlier measurements. The

rest of the steps remain the same as the standard filter equations, i.e. replace R̂k in

place of Rk in algorithm (2).
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3.1.3 Variational Filters

Variational Bayes filters [97] use a prior for auxiliary variable in the measurement

model such that the marginalized measurement distribution has heavier tails. Due

to the non-Gaussian nature of this model, state posteriors have to be approximated

using variational inference [79]. The state and the auxiliary variables are estimated

iteratively until convergence. The most common method in variational inference uses

the mean-field assumption to factor the joint distribution of the state and the auxiliary

variable as a product of each of the variable distributions. Then, the posteriors of

both state and auxiliary variable are approximated by minimizing the Kullback–

Leibler divergence [69] between the true posterior and the approximate posterior.

The variational inference filters presented in [4, 47, 96] are implemented here.

All three methods share the same inference method, they only differ in the auxiliary

random variable that is considered in the measurement model. An inverse-Wishart

prior is assumed for Rk in [4]. The prior can be written as

Rk ∼ W−1(sR, s), (3.15)

where R is the nominal measurement noise, s > d− 1 is the degree of freedom with d

as the dimension of the measurements. The conditional distribution of measurement

zk given the state xk and the covariance Rk is

zk|xk, Rk ∼ N (Hxk, Rk). (3.16)
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Variational inference approximates the posterior of the state q(xk) with the standard

filter correction step i.e Gaussian and q(Rk) as

Rk|zk ∼ W−1((s+ 1)Λk, s+ 1), (3.17)

where

Λk = sR + Sk

s+ 1
,

and

Sk = (zk −Hkx̂k/k−1)(zk −Hkx̂k/k−1)T +HkP̂k/k−1H
T
k .

This posterior from [4] has an elegant interpretation. The posterior noise matrix is a

convex combination of the nominal noise matrix and the expected sufficient statistics,

s denoting the relative importance between the two.

Sarkka et al. [96] assume that Rk is fixed but is scaled by a scalar random variable

λk which follows a Gamma distribution [111]

λk ∼ Γ(ν
2
,
ν

2
), (3.18)

and the measurement distribution is

zk|xk, λk ∼ N (Hxk,
1
λk

Rk). (3.19)

Similar to the previous method, variational inference approximates q(xk) with the
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standard filter correction step and q(λk) as

λk|zk ∼ Γ(ν + d

2
,
ν + γ̄k

2
), (3.20)

where
γ̃k = Ex[(zk − h(xk))TR−1

k (zk − h(xk))]

= tr(Ex[(zk − h(xk))T (zk − h(xk))]R−1
k ).

(3.21)

The expectation inside the trace operator (tr) can be approximated using sigma-point

operations [110]. The intuition behind the posterior of λk can be understood when

examining the mean which is

E(λk|zk) = ν + d

ν + γ̄k

. (3.22)

For the case of inliers, the measurements will be closer to their corresponding pre-

dictions resulting in smaller γ̃k, thus larger λk and thus smaller uncertainty (larger

weights). The opposite would happen for outliers resulting in larger γ̃k, thus smaller

λk and thus larger uncertainty (smaller weights).

The common aspect of both these methods is that after marginalizing out the

auxiliary variable, the resulting measurement distribution has heavier tails (in this

case, it is the Student’s t distribution [79]). Both s in [4] and ν in [96] represent the

extent of heavy-tailedness of the marginalized distribution, with s, ν = 1 being the

Cauchy distribution [111] and s, ν → ∞ denoting the Gaussian distribution. Huang

et al. [47] assume inverse-Wishart priors for the state uncertainty and measurement

noise covariance matrices and utilize the same inference method as above. Readers
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are referred to [47] for further details. In the results sections, [4] is represented as

ORKF1, [96] as ORKF2 and [47] as ORKF3 (ORKF stands for Outlier Robust

Kalman filter). Filtering (non-smoothed) versions of these algorithms are tested since

this work analyses only real-time solutions.

3.2 Robust Wheel-Inertial Odometry for High-slip

Terrain

Performances of the above-mentioned robust and adaptive Kalman filters are tested

for wheel-inertial odometry in high-slip terrain. Wheel-inertial odometry can be use-

ful in maintaining positioning performance in scenarios where cameras and lidars fail

(places lacking visual or geometric features). IMU sensors suffer from error accumula-

tion problems which can be reduced by non-holonomic constraints, and zero-velocity

constraints [60]. However, the wheel velocity data obtained from wheel encoders is

susceptible to wheel slippage resulting in erroneous wheel velocity measurements. In

this chapter, the usefulness of robust Kalman filters for improving odometry per-

formance is tested in such degraded scenarios. The base algorithm used here is

CoreNav [60, 62] which is an error-state EKF with the state vector represented

in the local navigation frame by

xn
err =

(
δΦn

nb δvn
eb δpb ba bg

)T

, (3.23)
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where δΦn
nb is the error in the attitude of the rover from the body frame (b) to the

local navigation frame (n) expressed in the local navigation frame, δvn
eb is the velocity

error in the navigation frame, and δpb is the position error. ba and bg are the IMU

acceleration and gyro biases respectively. The position error vector is

δpb =
(
δlatb δlonb δhb

)T

, (3.24)

which is expressed in latitude, longitude, and height frame. The states are prop-

agated forward with measurements from IMU and corrected with wheel odometry

measurements. The measurement zk is also an error vector represented as

δzO =



ṽlon,O − ṽlon,i

−ṽlat,i

−ṽver,i

˜̇ψnb,o − ˜̇ψnb,icosθ̂nb


, (3.25)

where ˜̇ψnb and cosθ̂nb are heading rate and pitch angle of the rover body frame with

respect to the navigation frame respectively. ṽlon, ṽlat, and ṽver are predicted longi-

tudinal, lateral and vertical rear wheel speed, respectively. The subscript i is used

for values derived from the Inertial Navigation System (INS) solution, and O is used

for values derived from the wheel odometry measurements. Motion constraints, such

as zero velocity of the vehicle along the rotation axis of the wheels, and zero velocity

perpendicular to the traversal surface are used as pseudo measurements to constrain

the state vector [34]. It also utilizes zero-velocity-constraints [101], i.e. detects it
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has stopped using wheel velocity data and uses that information to maintain INS

alignment and reduce the rate of error growth.

3.2.1 Test Setup

The field tests are done with a testbed rover Pathfinder (figure 3.2.1). The IMU,

wheel encoder, and Global Positioning System (GPS) receiver used in the rover, as

similar to the work in [60, 62], are provided in table (3.2.1). To determine the ref-

erence truth solution, differential GPS (DGPS) is used. This solution is obtained by

using two dual-frequency GPS receivers and Pinwheel (L1/L2) [81] mounted both on

a GPS Base Station and on the testbed rover. A loosely coupled GPS/IMU fusion

algorithm in [60] is used for the state initialization process. The GPS measurements

(carrier phase and pseudorange) are recorded on both rover and base station receivers.

The reference truth solution is generated by post-processing on RTKLIB 2.4.2 soft-

ware [106]. Note that, DGPS accuracy is expected as cm/dm level [76].

Table 3.2.1: Pathfinder’s Sensor Specifications

Sensor Model Data Rate
IMU ADIS-16495 [9] 50 Hz
Wheel Encoder Custom 10 Hz
GPS Receiver Novatel [80] 10 Hz
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Figure 3.2.1: Pathfinder testbed platform

3.2.2 Implementation

To compare the robust Kalman filtering methods, the implementation here builds

upon the work in [60] which uses the Robot Operating System (ROS) [89] for collecting

data from sensors. The error-state EKF uses IMU measurements (50 Hz) for state

propagation and wheel odometry measurements (coming in at 10 Hz) as corrections.

The state propagation step remains the same as CoreNav, whereas the correction

step is modified to implement the robust methods. The HKF method depends on

the parameter ∆. This parameter is determined by the degree of contamination in

the assumed Gaussian error distribution, and empirically tuned, in that it is difficult

to estimate for the application of four-wheel odometry. In this section ∆ is set to

1.5, which provides a good balance of robustness and efficiency. The CSKF method

does not require any tuning parameters, and the critical value of χ2 distribution of

degree of freedom 4 (size of measurement vector) with a significance level of 0.05,

which is 9.488 is used for outlier detection. In ORKF1, s is 250. ν is set to 300
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in ORKF2. Following [110], the sigma-point calculations in equation (3.21) sets α

to 1, β to 2, and κ to 0. Following notations in [47], u is initialised to 2000, τ also

2000 with ρ set to 0.9999. All variational methods were run for 5 iterations. This low

number is partly due to the fact that the increasing number of iterations resulted in

skipping IMU measurements which is received at a very high rate within the real-time

ROS implementation. Skipped IMU measurements resulted in unreliable results when

repeated with the same data. For all implemented methods, parameters have been

tuned for one of the data sets and re-used in the other ones, due to the similarity in the

terrain and their trajectory shapes. The prior measurement and process noise remain

the same for all methods. They are expected to vary from the ones mentioned above

with different kinds of terrain requiring tuning from scratch. These parameters specify

certain properties about the underlying process and measurement noise distribution

which is discussed in the next section.

3.2.3 Results and Discussion

The algorithms CoreNav,HKF , CSKF , ORKF1, ORKF2, andORKF3 are tested

on the Pathfinder platform in three separate runs around a field of coal-ash residu-

als in Point Marion, PA. The three data sets from [46] are referred in this work as

test1 (ashpile_mars_analog1.zip), test2 (ashpile_mars_analog2.zip), and test3 (ash-

pile_mars_analog3.zip). This terrain was chosen to be reasonably representative of

planetary terrains. The solutions of the algorithms and truth (DGPS) are shown in

ENU (East − North − Up) frame, which is the local navigation frame with origin

at the start location for each of the data sets. Figure (3.2.2) shows the trajectories
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in the East-North plane. For ease of differentiating the trajectories, the figure shows

only the methods that perform better compared to CoreNav for each of the data

sets. The 3D norm error and Up error statistics are shown as box plots in figures

(3.2.3) and (3.2.4) respectively. Tables (3.2.2) and (3.2.3) show the 3D RMS errors

and 3D maximum norm errors respectively. In data sets test1 and test3, CSKF

and HKF have comparable performance to CoreNav while ORKF1 and ORKF2

outperform all other methods. In test2, however, the variational methods perform

much worse with ORKF1 and ORKF2 being the worst affected. CSKF and HKF

produce good results, better than CoreNav in this case. A general improvement in

the Up (vertical) axis solution can be seen with the variational filters ORKF1 and

ORKF2.

Table 3.2.2: RMS Errors (m) of all
solutions for data sets test1, test2, test3

Method test1 test2 test3
CoreNav 26.65 16.09 25.82
HKF 21.78 14.67 26.30
CSKF 34.76 13.82 27.18
ORKF1 13.78 33.32 14.08
ORKF2 14.13 43.86 11.67
ORKF3 13.34 18.18 26.13
* Best performance in bold and second-
best underlined.

It is important to understand what the parameters in each of these methods

mean and their assumptions. In HKF, as discussed before, the ∆ parameter depends
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(a) Ground track of test1 (b) Ground track of test2

(c) Ground track of test3

Figure 3.2.2: Ground Track (East-North planar trajectory) solutions of algorithms for
data sets test1, test2, test3 from [46]. For ease of display, only trajectories that perform

better than CoreNav are shown for each data set.

on a perturbing parameter ϵ which represents the amount of contamination in the

Gaussian error distribution. For ∆ = 0, the error distribution is assumed to follow

the Laplace distribution [111] and ∆ → ∞ follows the Gaussian distribution. Thus

the distribution of the innovations (yik − bikxk) will determine the best value of ∆ at

every time step. But with the smaller number of these innovations in each time step

(15 states + 4 measurements = 19), it is hard to do so in this problem. However,
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(a) Norm Error (m)
statistics of test1

(b) Norm error (m)
statistics of test2

(c) Norm error (m)
statistics for test3

Figure 3.2.3: L2 norm error statistics of all solutions for data sets test1, test2, test3

(a) Up error (m) statistics
of test1

(b) Up error (m) statistics
of test2

(c) Up error (m) statistics
of test3

Figure 3.2.4: Up error statistics of all solutions for data sets test1, test2, test3

it is shown experimentally that increasing ∆ results in convergence with CoreNav

solution which assumes Gaussian error distribution (figure 3.2.5). This also points

to the fact that the residuals do not follow a very heavy-tailed distribution for these

data sets.

CSKF assumes the large residual is due to outliers in the measurements but could

also be caused by wrong estimate of the predicted state. In that case, scaling the

covariance matrix does not solve the problem. As discussed in [22], another disad-

vantage is that an outlier in one dimension of a measurement vector results in the
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Table 3.2.3: Max. 3D Norm Errors (m)
of all solutions for data sets test1, test2,

test3

Method test1 test2 test3
CoreNav 48.40 22.17 52.20
HKF 39.34 21.62 53.57
CSKF 63.79 22.13 55.40
ORKF1 27.67 56.05 24.15
ORKF2 28.43 72.85 18.33
ORKF3 23.31 29.04 56.35

* Best performance in bold and second-
best underlined.

de-weighting of the whole vector.

Variational filters also de-weight the measurements assuming a heavy-tailed model

which appear to be more effective in this case. A large value of s (250) in ORKF1

points to more importance given to the nominal measurement noise covariance. This

is confirmed by the parameter value of ν (300) in ORKF2 which is close to the value

of s in ORKF1 since they essentially represent the same measurement model. Also,

the value of the λ when running the algorithm remains within the range (0.9, 1),

which confirms our high belief in the nominal R value. Similarly in ORKF3, ρ value

close to 1.0 results in lesser effect of new residuals on the measurement noise estimate.

The advantage of ORKF3 is the ability to set the degree of belief in the prior state

uncertainty for every epoch. The large value of τ represents a higher influence of

the state uncertainty of the previous epoch on that of the current epoch. This can

be favorable if the state uncertainty of the previous epoch was estimated correctly,

but can get worse if it is not the case. Overall, ORKF3 performs more consistently
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(a) A magnified section of
CoreNav, HKF , and truth
(GPS) trajectory for test1

dataset

(b) Norm Error (m) statistics
of CoreNav and HKF

solutions for test1 dataset

Figure 3.2.5: Convergence of HKF solutions to CoreNav solutions with increasing ∆
values from 1.0 to 3.0 for data set test1

than the other two variational filters over the three datasets. The anomaly in the

results is test2, which in spite of being very similar to test1 and test3, causes ORKF1

and ORKF2 to perform poorly. One of the probable reasons could be the lack of

convergence in the variational update step. One of the main problems with applying

the methods discussed above is the lesser number of measurements in this scenario

unlike GPS or visual odometry which results in less information about the underlying

measurement noise distribution.

As mentioned before, the parameter s in ORKF1 denotes the relative importance

between the prior noise and sufficient statistics. There is another way of interpreting

the effect of s. The harmonic mean of the posterior distribution of the covariance

matrix is

Λk = sR + Sk

s+ 1
,
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which can be rewritten as

Λk = sR

s+ 1
+ Sk

s+ 1
.

The first part of the left-hand side expression is the prior noise which is not affected by

the measurements and also relatively unaffected by s due to its ratio form. Sk in the

second part is large for outliers and smaller for inliers. Now considering only the case

of outliers, larger values of s will produce a smaller Λk than smaller values of s, thus

de-weighting outliers less. A similar conclusion can be drawn for inliers as well. Thus

lesser value of s leads to more de-weighting of both inliers and outliers and vice versa.

Also since s is the degrees of freedom of the Student-t-distributed measurement model

in [4], decreasing value of s makes the distribution more heavy-tailed and thus greater

weighting. Table (3.2.4) shows better localization performance for larger values of s,

which suggests the true residual distribution is close to a Gaussian.

Table 3.2.4: RMS Errors (m) and Max. Norm
Errors (m) of ORKF1 for data set test1 with

varying values of s

Method - s Max.Norm(m) RMS(m)
ORKF1− 10 66.11 46.35
ORKF1− 50 28.15 16.94
ORKF1− 250 29.20 14.45

* Best performance in bold.

Table (3.2.5) shows better localization performance for larger values of ν which

agrees with results of ORKF1. This can explain why the Huber cost function is
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Table 3.2.5: RMS Errors (m) and Max. Norm
Errors (m) of ORKF2 for data set test1 with

varying values of ν

Method - ν Max.Norm(m) RMS(m)
ORKF2− 10 83.54 50.28
ORKF2− 100 57.51 33.28
ORKF2− 300 20.50 14.78

* Best performance in bold.

not able to improve performance in this scenario. Since the residual distribution has

been found to be close to Gaussian, the contamination parameter ϵ will be close to

zero. Variation of the optimal parameter in Huber cost function with respect to ϵ

has been shown in [58], confirming ∆ values greater than 2 for ϵ close to zero. Thus

greater values of ∆ produced better results for HKF since it agrees more with the

true measurement noise distribution.

The main disadvantage with this Kalman filter setup in the case of wheel iner-

tial odometry is the small number of measurement residuals (4 from the 4 wheels)

at hand at a time to actually learn the real-time residual distribution. One obvi-

ous solution could be to implement these filters in a sliding window setup, so that

it has enough residuals from current and past epochs to correctly learn the residual

distrbution. Recently, neural networks have been successfully used to learn noise

characteristics of Kalman filters. Brossard et al. [19] implement an IEKF that learns

pseudo-measurement noise for the update step from Convolutional Neural Network

(CNN) using raw IMU data by minimizing the translational error with respect to

GNSS solutions. Chen et al. [24] learn pedestrian translational and rotational dis-
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placements for a window of IMU data using recurrent neural networks (RNN). Resid-

ual neural nets have been used in [68] to learn the displacements and uncertainties

from a set of IMU measurements. However, all deep learning based methods used

some form of high accuracy truth estimate for training their models which might not

be always available. Variational methods on the other hand do not require train-

ing data. Thus, variational filter can still help in learning the measurement noise

characteristics.
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4
Factor Graphs

Factor graphs combine probabilistic graphical modeling [65] with least squares to

solve estimation problems. The primary motivation of a factor graph is to represent

a global function of many variables as a product of local functions with smaller subsets

of variables. The factor graph is not a method but a framework for modeling any

system using its locality structure, that is each variable is only dependent on a few
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𝑿1

𝑳1

𝑿2 𝑿3
𝝍2 𝝍6

𝝍5

𝝍3 𝝍7𝝍1

𝝍4

Figure 4.0.1: Similar to HMM, a factor graph also models estimation problems.
However, unlike HMM, they are undirected. Factor nodes (ψ) represent probabilistic

constraints between state nodes (X, L). Note: The factor ψ is not to be confused with the
derivative of robust cost functions (ψ = ρ′).

other local variables and is independent of the others. For example, an odometry

measurement only depends on two states in the trajectory, pixel measurements of a

landmark are a function of only the state that observed it and the landmark itself. As

explained in [31], it is this locality property that makes it useful in modeling a variety

of problems including mapping, visual-inertial odometry, motion planning, trajectory

estimation, and deep learning. The factor graph is defined as a Bipartite graph that

has two types of vertices, one is the variable vertex (e.g. unknown state) which is

to be estimated and another one is the factor vertex which encodes the constraints

(e.g., a set of GNSS observations) applied to the variable vertices. An edge can only

exist between a factor vertex and a variable vertex. The factor vertices represent the

local functions that depend on the variable vertices with which it shares edges. A
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common estimation problem in robotics uses the factor graph framework to estimate

the unknown robot pose along with other map points in a combined format. This is

achieved by solving the MAP problem which maximizes the product of factors ψ that

are probabilistic constraints between states and measurements. The factors ψ for

robotic estimation are usually unary (prior factors) or binary (IMU pre-integration,

odometry, loop closure factors, projection factors). For example, in figure (4.0.1),

ψ1, ψ3, and ψ7 are examples of prior factors. ψ2 and ψ6 are examples of odometry

constraints. ψ4 and ψ5 are measurement constraints created by two poses observing

the same landmark. A rigorous mathematical description of how this maximization

problem is solved in the field of robotic perception is presented in [32]. The factor

graph optimization problem can be written as

xMAP = arg max
x0..xk

P (x0..xk|z0..zk) = arg max
x

∏
ψk(x), (4.1)

where

ψk(x) ∝ exp
{
−1

2
∥hk(xk)− zk∥2

Σi

}
. (4.2)

Taking the negative logarithm of the MAP expression results in a batch non-linear

least squares problem. This framework has attracted widespread use due to the flexi-

bility of the approach and the ease of implementation granted through the availability

of open-source graph optimization libraries like GTSAM [30], g2o [45] and Ceres [7].

Factor graphs can be compared to other estimation tools like the Kalman filter and its

variants. To begin this comparison, it is to be noted that the factor graph ultimately

encodes an objective function, which is solved through repeated relinearization via a
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non-linear optimization routine (e.g., Gauss-Newton, Levenberg–Marquardt). Previ-

ous work has demonstrated that iterating on the measurement update of the Extended

Kalman Filter and re-linearizing the system models between iterations is equivalent

to a Gauss-Newton optimization [16]. Under a certain set of constraints, the factor

graph operating in batch mode is equivalent to a backward-smoothing EKF [87] that

re-linearizes system and observation models and iterates.

4.1 Advantages of Factor Graphs over EKF

Factor graph optimization has some advantages over the standard non-iterated Kalman

filter which may be valuable for certain applications. Firstly, factor graphs are essen-

tially batch optimization problems where iterative solvers can be used which helps

in non-linear non-Gaussian cases. It linearizes the non-linear measurement model

every iteration step for every state unlike the single linearization performed by the

standard Kalman filter. They have also been shown to better exploit the time cor-

relation between past and current epochs, which has been attributed to the batch

nature of the estimation method. In particular, when operating in a batch mode,

a factor graph would be equivalent to a forward filter and backward smoother after

each measurement update. Factor graphs have been successfully applied to the field

of visual-inertial SLAM [78, 88, 93], lidar SLAM [98]. It also helps easy implementa-

tion of loop closures which not only corrects the current states but also improves past

states, resulting in accurate map generation. For GNSS/INS applications, these ben-

efits have been supported by experimental results in [120] where factor graphs have
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been shown to perform better than an EKF in urban environments. It might appear

that with accumulation of new measurements over a longer time, the batch estima-

tion might lose real-time performance. A sliding window approach can also be used

similar to [123] to relieve computational cost. The window size is crucial for good opti-

mization results and can depend upon environmental conditions [120]. Factor graphs

achieve efficient computation by utilizing the sparse nature of the Jacobian and in-

formation matrices. This helps in fast matrix factorization and back-substitutions.

Directly removing earlier poses from the graph can lead to information loss. This can

be avoided using marginalization in the square-root information form which removes

variables from the Bayes net derived from the factor graph using the elimination al-

gorithm. Due to the sparseness in the graph, incremental QR factorization can be

also achieved efficiently [30]. Beyond fixed-lag smoothing, the isam2 formulation [55]

achieves real-time performance by converting the factor graph to the Bayes tree [54]

when a new constraint is added. This is a more accurate incremental and smooth-

ing method for highly non-linear measurement models. The vertices of the Bayes

tree represent cliques in the Bayes net obtained from the factor graph. Only states

contained within the same cliques as the states in the new constraint and their pre-

decessors in the Bayes tree need to be updated. Watson and Gross [116] used isam2

in a GNSS factor graph to show improved positioning performance than a traditional

EKF-Precise Point Positioning (PPP) method. Wen et al. [119] applied factor graph

optimization to the problem of both GNSS and GNSS-Real-time Kinematic (RTK)

positioning and showed better performance than an EKF. The optimization in factor

graphs can be extended to include Lie groups without the need for any core changes

50



in the formulations. Robust estimation methods have been added to factor graphs to

make the solutions more resilient to outliers like wrong feature matches, and visual

aliasing for loop closures.

4.2 Robust Factor Graphs

Robustness has been added to factor graphs in different ways originating from the

need to have robust loop closures in SLAM. Sunderhauf et al. [103] defined Switch

Constraints (SC), which is a lifted optimization [128] methodology, that defines an

observation weighting function φ() that is a function of switch variables s, which is

estimated in conjunction with the state parameters of interest. The SC method was

initially developed for robust loop closure detection in SLAM and then extended to

GNSS for multipath mitigation [105]. When utilizing switch constraints, the error

associated with a factor is expressed as a scaled version of the Mahalanobis cost

between the predicted and actual measurement. This is written as

∥∥∥eswitch
k

∥∥∥2

Σk

= ∥φ (sk) · (yk − hk(xk))∥2
Σk
, (4.3)

where the function φ is a linear function of the switch variable. Prior factors are added

for each switch variable to stop the optimization from setting all sk to zero. A transi-

tion factor can also be added to model the change between sk−1 and sk depending on

the estimation problem. These switch functions help in automatically de-weighting

erroneous measurements (e.g., multipath-affected GNSS measurements) and are seen

to perform better than computationally expensive ray tracing methods [105]. An ex-
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tension of SC was derived in [6] called Dynamic Covariance Scaling (DCS) where the

switch variables are taken out of the optimization method and calculated separately

using the residual, current measurement uncertainty, and a prior switch uncertainty.

After calculating sk, the information matrix associated with the factor is scaled by

φ(sk)2. Max-mixtures (MM) [82] was also developed to tackle false loop closures

using a Gaussian Mixture Model (GMM) but instead of the sum operator which is

unsuitable for maximum likelihood when multi-modal uncertainty model is utilized,

the objective function is converted to use the max operator, as shown in equation

(4.4).

p (y|x) = max
k

wkN
(
µk,Λ−1

k

)
(4.4)

The benefits of SC, DSC, and MM have been evaluated in [85, 115] for GNSS factor

graph applications with real-world data. Both of these studies showed the substantial

positioning improvement that can be granted via the utilization of robust estimation

techniques when conducting optimization with degraded GNSS observations. To ex-

tend upon the max-mixtures work, Watson et al. [117] proposed to learn the GMM

during run-time based upon clustering of the observation residuals. Initially, this work

was implemented in a batch framework; however, it was later extended to work incre-

mentally [118], through an efficient methodology for incrementally merging GMMs.

M-estimators have also been recently tested within the GNSS framework in batch

form [28] and found to perform better than non-robust estimators. The Huber cost
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function [49], as provided in equation (4.5) is one such function.

ρ(x) =


x2

2 |x| ≤ ∆

∆|x| − ∆2

2 |x| > ∆
(4.5)

Increasing the ∆ parameter makes this function closer to the squared loss function.

As discussed in Chapter 2, M-estimators can be solved iteratively with weighted

least squares method [18, 28]. Selecting a suitable ∆ parameter is not straightfor-

ward, since it depends on the measurement noise statistics. Agamennoni et al. [5]

uses the fact that some M-estimators like Huber, Cauchy, and Laplace have a corre-

sponding elliptical distribution to estimate the ∆ and the states in an Expectation

Maximization (EM) framework. Barron [14] jointly optimizes for the states and the

parameters for computer vision applications. A factor graph gives greater flexibility

in the M-estimator application since it can help in de-weighting not only the cur-

rent measurements but also changing the weights of the past measurements. It also

can help in totally removing some past measurements if it is found to be an outlier

later whereas in the Kalman filter, the contribution of past measurements cannot be

changed in a real-time manner. Most graph optimization libraries also have built-in

functionality to use robust cost functions which is also helpful.
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4.2.1 Square-root Factors in Factor Graphs

As discussed before, factor graphs solve a batch non-linear least squares problem,

x̂ = arg max
x

∏
k

ψk(x) = arg min
x

∑
k

∥rk(x)∥2 .

This squared form comes from the Gaussian distribution formula. However, this

squared form is lost when the Gaussian assumption is replaced by a different dis-

tribution like the Cauchy or Exponential distributions. Can residuals coming from

non-Gaussian distribution be still integrated into a factor graph framework and solved

by solvers like GTSAM?

Rosen et al. [92] show that a residual function can be added into a factor graph

solver by representing them in square root form. Let ψk be the non-Gaussian distri-

bution function and ck be a real number such that ck ≥ ||ψk||∞. Then residual can

be defined as

rk(x) =
√
ck − ln(ψk(x). (4.6)

The expression inside the square root is non-negative by design. Thus MLE prob-

lems for non-Gaussian distributions can still be converted to non-linear least squares

problems. This idea essentially presents a way to replace the squared cost in factor

graphs with robust cost functions from M-estimators. The distribution associated

with M-estimators is a generalized version of Elliptical distribution [5]. Convert-

ing the MLE problem to least squares problem for M-estimators results in the error
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function
√
ρ(rk(x)). The Jacobian can be expressed as

H =
∂
√
ρ(rk(x))
∂x = 1

2
ρ

′(rk(x))√
ρ(rk(x))

∂rk(x)
∂x . (4.7)

Note here 1
2

ρ
′ (rk(x))√
ρ(rk(x))

acts as the weight to the standard jacobian ∂rk(x)
∂x .

4.2.2 Black-Rangarajan Duality

Previously in Chapter 2, the connection between M-estimators and weighted least

squares has been discussed. Black et al. [17] derived an equivalence between the M-

estimator formulation and weighted least squares from the perspective of regularized

least squares. The equivalence can be described as,

x̂ = arg min
x

n∑
k=1

ρ(rk(x))

⇕

x̂, ŵ = arg min
x,w

n∑
i=k

wkrk(x)2 + Ψ(wk).

Ψ is used as a regularizer or penalty function which decreases with increasing weights.

As discussed before, the standard way of solving M-estimators is IRLS. This is an

iterative process, where the algorithm starts with an initial estimate of x0 and iterates

over solving w and x until convergence.
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Algorithm 3: Iterative Re-weighted Least Squares (IRLS)
Input: x̂0

Output: x̂, ŵ

while !converged do

% Step 1: solve for w

ŵj = arg min
w

∑n
k=1 wkrk(x̂j−1)2 + Ψ(wk);

% Step 2: solve for x

x̂j = arg min
x

∑n
k=1 ŵkjrk(x)2;

end

Step 1 in algorithm (3) can be calculated in two ways. As shown in chapter 2, one

way to get w is to equate the derivatives with respect to x, which gives the expression

wk = ρ′(rk(x))
rk(x) . This expression uses the ρ expression. The other way is to use the Ψ

function and solve the equation,

∂

∂w
wr(x)2 + Ψ(w) = 0 (4.8)

This method can still suffer from local minima issues in the case of re-descending

M-estimators. To solve this problem, authors of [125, 133] use a technique called

Graduated Non-Convexity(GNC). The idea is to replace the function ρ (or Ψ) with a

surrogate function ρµ (or Ψµ) whose convexity is controlled by the parameter µ. The

optimization starts with a convex form of ρµ after which µ is changed iteratively such

that the non-convexity increases. The intuition behind GNC is that by gradually

moving from the convex to concave functions the initialization point for each step
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remains close to the global minima which reduces the chance of getting stuck at local

minima. Wen et al. [121] show the importance of applying this robust estimation

technique in GNSS factor graphs for mitigating multipath effects in urban canyons.

The switchable constraints method for robust loop closures [104] discussed before

presents the same idea, where the switch function φ is the weight and the switch

prior is the Ψ penalty function.

4.3 GNSS Factor Graphs

As discussed in Chapter 3, one disadvantage of the wheel-inertial odometry prob-

lem was that there weren’t enough measurements coming in at a specific time to

confidently learn the error distribution. This motivates the application of robust

estimators on the GNSS positioning and the point cloud registration problems.

The use of GNSS positioning is ubiquitous in the modern world. From the simple

task of navigating a city in Google Maps to complex tasks like precise commercial

and military aircraft landings, satellite positioning systems are integral to the safe

operation of many modern infrastructures. Before going into the details of robust

GNSS algorithms it is important the know the variables usually estimated in GNSS

positioning problems. This problem can be described as solving for the position

of the receiver given the distance measurements from the satellites and given the

satellite locations in the Earth-Centered-Earth-Fixed (ECEF) frame. The unknown

states include the Pxr, Pyr, Pzr values of the receiver 3D position, the tropospheric

propagation delay Td and the receiver clock bias δtr. The measurement model can be
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written as

do = d+ cδtr + TdM(el) + ϵ. (4.9)

do is referred to as pseudorange observable. This is the measured distance between the

satellite and the receiver which includes the geometric distance between the satellite

and receiver (d), the added distance due to clock synchronization errors between

the satellite and the receiver (cδtr), and errors caused by atmospheric effects from

troposphere (TdM(el)). M is a mapping function which takes the elevation (el) of

the satellite as an input. If the noise ϵ is assumed to be Gaussian, then the positioning

problem becomes a non-linear least squares problem. The non-linearity comes from

the term d which can be expressed as

d =
√

(Pxr − Pxs)2 + (Pyr − Pys)2 + (Pzr − Pzs)2, (4.10)

where {Pxs, Pys, Pzs} is the position of the satellite. If a receiver receives N satellite

signals at a specific time, the position of the receiver can be estimated by solving the

equation

X̂r = arg min
Xr

N∑
i=1

(di − d− cδtr − TdM(eli))2 (4.11)

A visual representation of the GNSS factor graph is provided in figure (4.3.1), where

ψ represents any probabilistic constraint that might exist between the states and the

measurements. In this specific implementation, ψp encodes the prior belief on each

state, which depends on the specific data set and environmental characteristics. ψb is

a motion constraint between two consecutive states along the trajectory which could,

for example, incorporate motion data from an IMU or wheel odometry. Using GT-
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SAM nomenclature, ψb is referred to here as a between factor. A common example

of ψb used in GNSS/IMU navigation is the factor that uses IMU-preintegration [41]

to calculate transformation between two locations with multiple IMU measurements

integrated between them. Finally, ψm are measurement constraints between a state

and the measurements that were perceived from that state, for example, GNSS pseu-

dorange or carrier-phase measurements. The MAP estimate for the GNSS factor

graph is the set of states that maximize the product of factors. However, in prac-

tice, this optimization problem can be greatly simplified by employing the Gaussian

noise assumption, which enables the conversion of the problem from maximizing the

product of the factors to a non-linear least squares problem where each component

of the sum is a Mahalanobis cost, which represents sum of squares of the normalized

residuals, as provided in equation (4.12),

X̂ = argmin
x

 I∑
i=1
∥ψp

i ∥
2
Σ +

J∑
j=1

∥∥∥ψb
j

∥∥∥2

Λ
+

K∑
k=1
∥ψm

k ∥
2
Ξ


= argmin

x

 I∑
i=1
∥xo − xi∥2

Σ +
J∑

j=1
∥xj − fj(xj−1)∥2

Λ +
K∑

k=1
∥yk − hk (xk)∥2

Ξ

 (4.12)

where f(∗) is a mapping between states at different epochs and h(∗) is a mapping

from the state space to the observation space. A detailed description of creating

factors with GNSS observations is presented in [116].
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Figure 4.3.1: A GNSS factor graph example. Each blue node represents GNSS
measurement from a satellite. Grey nodes represent odometry constraints, and red nodes

represent prior constraints.

4.4 ZUPT aided GNSS Factor Graph

The work described in this section does not fall within the typical definition of robust

estimation algorithm, since other sensor sources are used to reduce the effect of the

noisy sensor. This is a fusion algorithm where a GNSS factor graph uses information

from the error state EKF discussed in the previous chapter in the form of added

motion constraints.

4.4.1 Zero-velocity Update (ZUPT)

Zero velocity information is often used in wheeled motion where the lateral and verti-

cal motion in the body frame is assumed to be zero. Another velocity information that

is useful for constraining the state of a body is when it is stationary. For instance,

ZUPT is commonly used as an aiding process for pedestrian navigation [66, 130].

ZUPT can put a bound on the velocity error and help to calibrate IMU sensor
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noises [101]. This process helps to reduce the INS positioning error growth from cubic

to linear since the error state model justifies the correlation between the position and

velocity errors of the error covariance matrix. Using ZUPT in state estimation does

not need any dedicated sensor to provide zero velocity information, and this infor-

mation can be obtained by the sensors already on board (e.g., IMU, wheel encoders).

ZUPT requires stationary conditions, and it can be used as an opportunistic navi-

gational update if a wheeled robot stops for other reasons (e.g., obstacle avoidance,

re-planning, waiting for pedestrians, stopping at traffic lights). Also, ZUPT can be

used to improve WO/INS proprioceptive localization with periodic stops in GNSS-

denied (or degraded), poor lighting/feature areas [60] and with autonomous stops by

deciding when to stop [61]. The small-wheeled robots have more freedom of stop-

ping than autonomous cars, which makes utilizing ZUPT a well-suited application

for them.

4.4.2 GNSS/WO/INS Integration with ZUPT

This section presents two factor graph strategies: 1) utilizing only the zero velocity

information in a factor graph method, and 2) leveraging the CoreNav position esti-

mates (which are improved with ZUPT and non-holonomic constraints) in a factor

graph method. The GTSAM library is used for graph optimization with the standard

squared loss function (L2).

The first method does not use INS state estimates in the factor graph directly.

It only uses zero velocity signals when INS detects the rover has stopped. To do

this, a high certainty zero displacement between-factor ψb,j, referred to in the figure
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(4.4.1) as ψz, is added between the two adjacent state vertices, which are known to be

stationary. A low certainty zero-displacement between factor is also added between

non-ZUPT vertices, where the rover moves, to represent process noise and let the

ZUPT information propagate throughout the graph and improve the overall solution.

The ψz factors are also referred to as the ZUPT factors in the results section. An

illustration of this first method is given in figure (4.4.1) and called L2-ZUPT.

Figure 4.4.1: L2-ZUPT factor graph has high uncertainty zero displacement factors
(grey) for dynamic epochs and low uncertainty zero displacement factors (green) for static

epochs.

The second method has a more direct coupling between the GNSS and the INS/WO

part. Here instead of utilizing the zero velocity information directly in the factor

graph, the positioning solution from the CoreNav error state EKF sensor fusion

method following [60] is used. Note that, in the CoreNav method, the zero veloc-

ity information is used as a ZUPT and also includes the non-holonomic constraints

to improve the localization solution further. To couple the EKF estimates with the

GNSS factor graph, the obtained positioning estimates from the CoreNav method are

added as between-factors ψCN among all state vertices. The ψCN factors are referred

to as the CoreNav factors. A depiction of the second method called L2-CN is given
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in figure (4.4.2). It needs to be clarified that the implementation of L2 factor graph

in this work has no explicit between factor between nodes but instead, state nodes

are connected through shared phase bias of the same satellite.

Figure 4.4.2: L2-CN factor graph uses odometry constraints (yellow) from a parallel
running wheel-inertial EKF.

4.5 Experimental Results

To test this fusion algorithm, the rover Pathfinder (same as in Chapter 3) is used. The

localization sensor suite setup includes a Novatel pinwheel L1/L2 GNSS antenna [81],

and receiver [80], an Analog Devices ADIS-16495 IMU [9], and quadrature wheel

encoders. The robot is also equipped with an Intel RealSense T265 camera [52];

however, this sensor is not used in the localization solution. The computer is an

Intel NUC Board NUC7i7DN [51] which hosts an i7-8650U processor. To evaluate

the methods, three datasets from [46] are used and referred to in this chapter as

Test 1 (ashpile_mars_analog1.zip), Test 2 (ashpile_mars_analog2.zip) and Test 3

(ashpile_mars_analog3.zip). Noisy versions of these datasets are generated by adding

simulated multipath noise based on the elevation of the satellites following the early-
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minus-late discriminator formulation in [67]. The noise is randomly added to 2 %

of the data in each dataset to create the noisy versions. Histogram plots of the

simulated range and phase noises are shown in figure (4.5.1). The original data is

referred to as clean data in the results. The rover stopped 9 times for test 1, 19

times for test 2, and 20 times for Test 3 to obtain the zero velocity information.

The distances covered in tests 1, 2, and 3 are 671m, 652m, and 663m, respectively.

The reference position solutions are obtained by integer-ambiguity-fixed carrier-phase

differential GPS (DGPS) processed with RTKLIB [106]. The GNSS factor graph is

run in an offline manner where it reads the solutions of the EKF from a file and

adds the motion constraints by matching time stamps. The three methods compared

Figure 4.5.1: Histogram of simulated multipath phase and range errors [67]

here are the standard GNSS factor graph (L2), the GNSS factor graph with ZUPT

factors (L2-ZUPT), and the GNSS factor graph with CoreNav factors (L2-CN). A

comparison of the methods for the clean version of the datasets is given in table

(4.5.1). The comparison for the noisy datasets is shown in table (4.5.2). Figures
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(4.5.2) and (4.5.3) show the time variation of the errors in the East-North-Up frame.

The larger peaks in figure (4.5.3) in the standard factor graph results are due to the

large simulated multipath noise.

Table 4.5.1: Comparison of the methods for the clean datasets.

Clean Dataset RMSE (m) Max Norm Error (m)
E N U 3D 3D

L2 0.62 0.87 3.82 3.97 5.65
Test 1 L2-ZUPT 0.62 0.34 2.09 2.20 3.06

L2-CN 0.62 0.78 3.34 3.49 4.97
L2 0.49 0.31 1.30 1.43 4.31

Test 2 L2-ZUPT 0.46 0.93 1.24 1.62 2.62
L2-CN 0.51 0.24 0.90 1.06 3.08
L2 0.16 0.92 3.86 3.97 6.14

Test 3 L2-ZUPT 0.16 0.96 3.55 3.69 4.47
L2-CN 0.16 0.92 3.58 3.70 5.65

* The best results marked up with green boxes

Figure 4.5.2: Time variation of the errors (m) in the East-North-Up frame for clean
datasets.
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Table 4.5.2: Comparison of the methods for noisy datasets.

Noisy Dataset RMSE (m) Max Norm Error (m)
E N U 3D 3D

L2 0.88 0.87 2.85 3.10 67.81
Test 1 L2-ZUPT 0.88 0.78 2.27 2.55 22.39

L2-CN 0.67 0.77 2.72 2.90 7.29
L2 0.53 0.40 1.77 1.90 16.12

Test 2 L2-ZUPT 0.59 0.33 1.36 1.52 4.85
L2-CN 0.53 0.24 1.01 1.16 3.41
L2 0.23 0.90 3.59 3.71 7.52

Test 3 L2-ZUPT 0.17 0.93 3.65 3.77 5.08
L2-CN 0.23 0.88 3.55 3.66 6.33

Figure 4.5.3: Time variation of the errors (m) in the East-North-Up frame for noisy
datasets.

L2-ZUPT and L2-CN have better performance than the GNSS-only factor graph,

L2, for clean and noisy datasets 1 and 2. Comparable performances can be seen

from all three methods for dataset 3. L2-ZUPT is found to perform best for clean

data, and L2-CN performs best for noisy data. The effect of leveraging zero velocity

information can be seen in the noisy data results, where the larger errors in the

standard factor graph are dampened by constraining the states during the ZUPTs to
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be the same since the rover is stationary at that time. The better performance of

L2-CN for clean and noisy data can be explained by the fact that the factor graph

utilizes more information since it uses the IMU-WO solution from CoreNav. CoreNav

also uses additional non-holonomic constraints which are not used in the L2 and L2-

ZUPT methods. The performance gap between L2-ZUPT and L2-CN is affected by

the number of stops in the datasets. For example, a more significant performance

gap can be seen between L2-ZUPT and L2-CN in Test 1, which has fewer stops. This

performance gap is smaller in Test 2, and 3 where the number of stops is more than in

Test 1, which indicates that using only ZUPT factors in the GNSS factor graph can

provide similar localization performance as using a GNSS/WO/INS coupled solution.

Future works will involve testing with more extended datasets with real multipath

noise and investigating the connection with robust filtering algorithms. The incre-

mental covariance estimation method discussed in [118] was also tested. The ZUPT

factors are expected to help learn the measurement noise covariance model better.

However, the parameter tuning of incremental covariance estimation and ZUPT be-

came a challenge, and due to this, consistent results could not be found with these

datasets, which could be attributed to the shorter length of the trajectories.
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5
Generalised Robust Cost Functions

M-estimators come in various functional forms, some convex and some concave. So

the natural question to ask is: are there some functions more favorable in terms of

robustness and efficiency than others? Maronna et al. [74] show that the Bi-square

estimator has a better efficiency trade-off than the Huber estimator for Gaussian and

Cauchy distributions when estimating the location of a scalar parameter. Huber and
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Pseudo-Huber estimators have been recommended in [2] for rotation averaging, trian-

gulation, and point cloud registration problems. However, Geman McClure estimator

has been suggested in [70] for the initialization of IRLS and the truncated least squares

for the ending. From the literature, there does not seem to be a clear consensus on

which estimator to use. One option would be to use adaptive estimators based on

the learned noise characteristics. It is advantageous to have an adaptive M-estimator

that can adapt its functional shape depending on the current set of residuals.

5.1 One Function for All

The approach proposed here builds on Barron’s work on unifying different robust cost

functions [14].

ρ(x, α, c) =



1
2(x/c)2 if α = 2

log
(

1
2(x/c)2 + 1

)
if α = 0

1− exp
(
−1

2(x/c)2
)

if α = −∞

|α−2|
α

((
(x/c)2

|α−2| + 1
)α/2
− 1

)
otherwise

. (5.1)

This form of cost function is convenient because different variations of M-estimators

can be expressed by changing the parameter α. x is the residual value depending on

the estimation problem at hand. c is sometimes referred to as the scale parameter. For

readability reasons, r(x) is replaced by x. This section aims to understand the effects

of changing α and c values in different robust estimation scenarios. As described
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earlier, M-estimators de-weight suspected outlier residuals instead of removing them

completely. This is helpful in cases where removing data can affect the solution

accuracy such as GNSS estimation with a low number of available observations, or

visual odometry in environments with limited features. The weight depends on the

derivative ρ′ and the residual x. The partial derivative of this cost function with

respect to x is given by

∂ρ

∂x
(x, α, c) =



x
c2 if α = 2

2x
x2+2c2 if α = 0

x
c2 exp

(
−1

2(x/c)2
)

if α = −∞

x
c2

(
(x/c)2

|α−2| + 1
)(α/2−1)

otherwise.

(5.2)

The unknown state can be solved by optimizing the cost function given by

X̂ = arg min
θ,α,c

∑
k

ρ (xk(θ), α, c) . (5.3)

To clarify the mathematical notation again here, θ and x are equivalent to the state

x and r(x) from previous chapters respectively. Robustness metrics along with bias

and variance of this generalized M-estimator for a simplified model are presented in

the Appendix A section. A better understanding of the optimization problem can

be obtained by looking at the partial derivatives of ρ with respect to α. Taking the

partial derivative it can be seen that

∂ρ

∂α
(x, α, c) ≥ 0. (5.4)
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Since ρ in equation (5.1) is even with respect to c, only positive values for c are used.

Equation (5.4) shows the cost decreases with decreasing α when c is constant. The

problem of optimizing equation (5.3) for (x, α) is that the solution will trivially move

towards lower values of α, thus not representing the true distribution of the residuals

and, in turn, affecting the estimates of the unknown parameters. Barron [14] removes

this issue by assuming a distribution given by

P⋆(x, α, c) = 1
cZ(α)

e−ρ(x,α,c), (5.5)

where

Z(α) =
∫ ∞

−∞
e−ρ(x,α,1)dx. (5.6)

This creates a regularized version of the cost function. Using negative log-likelihood

on equation (5.5),

ρ⋆(x, α, c) = ρ(x, α, c) + log(cZ(α)). (5.7)

With this, whenever ρ⋆ is optimized for (x, α), the solution cannot trivially go to

the least value of α due to the newly added penalty term. The optimization process

attempts to balance the lower cost of larger residuals and the higher cost of the inliers.

However, another problem arises with this shifted expression, which is that Z(α) is

unbounded for negative values of α. Thus the optimization cannot be done in the

negative domain of α, which is not ideal because negative α values can be useful for

large residuals. To circumvent this issue Chebrolu et al. [23] used a truncated version
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of Z(α),

Ẑ(α) =
∫ τ

−τ
e−ρ(x,α,1)dx. (5.8)

Ẑ(α) can be calculated for both positive and negative values of α. The only assump-

tion with this formulation is that any residual with a magnitude greater than τ has

zero probability. Thus Z(α) in equation (5.5) can be replaced with Ẑ(α).

Instead of jointly optimizing over (x, α), Chebrolu et al. [23] first find the α that

has the lowest negative log-likelihood with the current residuals and then solve equa-

tion (5.3) with iterative re-weighted least squares with this last optimal value of α.

These two steps are repeated until convergence is achieved. c is kept constant in this

method and depends on the inlier measurement noise. The algorithm is described in

algorithm (4). This algorithm is referred to in this dissertation as RKO.

Algorithm 4: Robust Kernel Optimization (RKO) [23]
Input: θ0, α0, c

Output: θ̂, α̂

while !converged do

% Minimize for α

αt = arg min
α

−∑k logP⋆ (xk (θt−1) , α, c) ;

% Minimize for θ using IRLS

θt = arg min
θ

∑
k ρ (xk(θ), αt, c) ;

end
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5.2 Scale-variant Robust Kernel Optimization

Algorithm (4) has been shown to work well for Lidar SLAM in the presence of dy-

namic objects as well as bundle adjustment [23]. However, manually setting the scale

parameter c is difficult and is often done by trial and error. This section focuses

on finding a way to learn c along with x and α to yield further improvements in

such situations and reduce parameter tuning efforts. To that end, a slightly different

variation of the probability distribution P̂ is proposed.

P̂ (x, α, c) = 1
Ẑ(α, c)

e−ρ(x,α,c), (5.9)

where

Ẑ(α, c) =
∫ τ

−τ
e−ρ(x,α,c)dx. (5.10)

Following the assumption that residuals fall within the range [−τ, τ ], P̂ (x, α, c) is

valid distribution since
∫ τ

−τ P̂ (x, α, c)dx = 1. Similar to the regularized cost discussed

in the previous section, the cost corresponding to this distribution is obtained by

taking the negative log-likelihood

ρ̂(x, α, c) = ρ(x, α, c) + log(Ẑ(α, c)). (5.11)

The behavior of this probability distribution can be understood by examining figure

(5.2.1). In the figure (5.2.1 left), P̂ shows behavior similar to the P⋆. In the presence
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Figure 5.2.1: Left:Probability density function for constant c and changing α,
Right:Probability density function for constant α and changing c

Figure 5.2.2: Left: weights ρ′(x,α,c)
x for constant c changing α, Right: weights ρ′(x,α,c)

x for
constant α changing c

of large noise or outliers, α decreases and thus creates a heavier-tailed distribution,

with probability mass moving from the smaller residuals towards the larger residu-

als. Changing α moves the probability mass mostly between large and low residuals

with less change in the mid-range residuals. This is where the increased adaptivity

of P̂ over P⋆ can be understood. Figure (5.2.1 right) shows varying c with a con-

stant α moves probability mass between smaller residuals and mid-range residuals
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and minimal change in probability for larger magnitudes. Essentially, optimizing

P̂ gives an additional “degree of freedom” of better fitting the existing residuals by

adapting c along with α. From a weight perspective, increasing and decreasing c re-

sults in a smoother and sharper drop in the weights respectively as residuals increase

(Fig. 5.2.2). Thus, with the addition of changing c, the optimization explores more

values in the weight space which helps the IRLS step. Note for α = 2, changing c

does not change the weights, they all remain 1. This is because the parameter c only

affects the variance for the Gaussian distribution. Lower values of c help fit tighter

residuals which is something RKO cannot do when c is fixed.

Now, given algorithm (4), another step can easily be added in this method, where,

after minimizing the negative log-likelihood for α, the negative log-likelihood for c is

minimized. This version can be called the Scale-variant Robust Kernel Optimization

(SRKO) method. The steps of this algorithm are shown in the proposed Algorithm

5. It is very similar to the original RKO algorithm. It starts with initial guesses

θ0, α0 and c0. Then, for any time step t, the following steps are conducted: first,

with the current value of ct−1, and the residuals x(θt−1), find αt that minimizes

the negative log-likelihood of the residuals. This can be done easily with a grid

search. Next, ct is obtained similarly by minimizing the negative log-likelihood that

is calculated with x(θt−1) and αt. Note, ideally this search needs to be done over a

2D grid but is approximated here with learning best α and c separately for reducing

the computational cost. Lastly, with αt and ct, the loss function in Eq. (5.3) can be

optimized iteratively using Gauss-Newton method. In steps 1 and 2 of this algorithm,

to search for optimum values of α and c they are discretized over their possible ranges.
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A pre-computed table of values of Ẑ(α, c) is used for each of the grid searches.

Algorithm 5: Scale-variant Robust Kernel Optimization (SRKO)
Input: θ0, α0, c0

Output: θ̂, α̂, ĉ

while !converged do

% Minimize for α

αt = arg min
α

−∑k log P̂ (xk (θt−1) , α, ct−1) ;

% Minimize for c

ct = arg min
c
−∑k log P̂ (xk (θt−1) , αt, c);

% Minimize for θ using IRLS

θt = arg min
θ

∑
k ρ (xk(θ), αt, ct) ;

end

5.3 Decoupling Scale from Shape

In the presented SRKO algorithm, the approach is to estimate the scale(c) and

shape(α) in a coupled manner. That is, SRKO is designed such that c gives a better

estimate of the shape of the residual distribution but as the residuals are un-scaled,

c also estimates the scale of the residual along with the shape. This is expected since

c is the scale (i.e., inlier noise threshold) in equation (5.1). However, while it can

offer increased performance, sometimes the coupling of scale and shape can result in

incorrect estimates of either of these parameters as discussed in [23]. To combat this,

it is possible to de-couple scale and shape by pre-computing scale. One method of
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pre-computing scale is offered in [126], which uses the critical value of χ2 distribution

to set this value. Another method for pre-computing an estimate of the scale is using

the formula offered in [74] as shown:

ĉ = 1
0.675

Median(xk|xk ̸= 0). (5.12)

In this formula, the residuals x are calculated with the L1 estimate. Even though L1

regression estimation is not straightforward to compute, one way to find an approxi-

mate solution is by optimizing equation (5.3) with α = 1. Since L1 estimate does not

need scale, c = 1. Putting α = 1 and c = 1 in equation (5.1) results in

ρ(x) = ((x2 + 1)1/2 − 1). (5.13)

Therefore, one can first solve equation (5.3) for α = 1 and c = 1 with IRLS and then

estimate ĉ with equation (5.12). Now, it is possible to obtain the scaled residuals

x̂ = x
ĉ
. SRKO can then be used on the scaled residuals to learn α and c, which help

best fit the shape of the residual distribution. To differentiate between this version

with the previous version of SRKO, SRKO with the pre-computed ĉ is referred to as

SRKO* in the analysis below.

5.4 Experimental Evaluation

The proposed algorithms are tested on point cloud registration with synthetic data

and lidar odometry with real-world data sets and compared with other robust methods
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from literature.

5.4.1 Point Cloud Registration

Given two sets of points P and Q, the objective is to solve for the transformation

T such that the distance between matching correspondences of the two data sets

(collected in set K) is minimized. The optimization problem can be written as

E(T) =
∑

(p,q)∈K
ρ(∥p−Tq∥). (5.14)

The de-weighting direction is chosen here because of the effectiveness of robust cost

functions for point cloud registration problems shown in several studies [11, 14, 23,

125, 133]. They are also easy to implement inside a non-linear least squares framework

whereas the MC approaches are usually implemented as a pre-processing step before

the non-linear least squares. Lastly, robust cost functions have been implemented in

many state-of-the-art lidar SLAM packages like [15, 33, 83].

5.4.2 Synthetic Data

The proposed algorithms, SRKO and SRKO*, are tested for the problem of pairwise

point cloud registration problem with the open source implementation and synthetic

range data sets provided in [133]. The registration algorithm of [133], referred to in

this chapter as FastReg, rewrites the scaled Geman-McClure estimator as an outlier

process using Black-Rangarajan duality [17] and solves it iteratively. Since this cost

function is non-convex, to avoid local minima, the method starts with a convex version
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of this function and changes the scale parameter after every few iterations to increase

the non-convexity. The readers are referred to [133] for details about these data

sets which come from AIM@SHAPE repository, the Berkeley Angel dataset, and the

Stanford 3D Scanning repository. For these data sets, performances of fixed Huber,

RKO, SRKO, SRKO*, and FastReg are compared. Results that are obtained with

a pre-computed estimate of ĉ are labeled as SRKO*-const and the results with L1

scale estimate are labeled as SRKO*-L1. Similar to [133], two versions of point clouds

are used. One is a clean version with no noise and the other is a noisy version with

added Gaussian noise of σ = 0.005. Target point clouds are generated with truth

transformation for proper evaluation. Both source and target point clouds have been

normalized to the diameter of their surface. Correspondences between the source and

target point clouds are obtained by matching Fast Point Feature Histogram (FPFH)

features [95]. The registration is done by minimizing the point-to-point distance

between correspondences using the Gauss-Newton method. Note the only difference

between the methods that are being compared is the way the residuals are weighted in

IRLS. For completeness, the Huber and Geman McClure weight formulas are shown

here :

whuber(x, c) =


1 |x| ≤ c

c
|x| |x| > c

(5.15)

wgeman(x, µ) = µ2

(µ+ x2)2 (5.16)
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5.4.3 Real World Data

Huber, RKO, SRKO, SRKO*, and FastReg are also tested with the lidar-inertial

SLAM package LIO-SAM [98]. Due to the lack of GPS data, for evaluation, per-

formances of the above four methods without loop-closures are compared to loop-

closure-assisted standard LIO-SAM as a reference. The open-source implementation

provided by the authors of [98] uses a weight function of the form 1 − 0.9|x| where

x is the distance between an edge feature and its corresponding edge in the map

or the distance between a planar feature to its corresponding plane along the plane

normal in the map. In [98], the authors also remove residuals that are larger than a

certain residual threshold. In our implementations of the four methods, all residuals

are allowed and it is left to the robust methods to de-weight suspected outliers. These

methods are evaluated on the park, garden, rotation and campus data sets provided

in [98].

Note, unlike the synthetic data tests, SRKO* is tested with pre-set ĉ = 0.1 and

not estimated with equation (5.12). There are multiple reasons behind this decision.

First, due to the real-time performance needs of LIO-SAM, it is desirable to avoid

any extra online computation. Secondly, the estimates from equation (5.12) were

found to be sensitive to gross outliers leading to larger estimates of ĉ, thus affecting

performance. Lastly, ĉ being the inlier noise threshold should be expected to be a

constant value irrespective of the presence of noise or gross outliers. Thus estimating

ĉ comes with the possibility of violating this constraint.

80



5.4.4 Results and Discussion

Figure 5.4.1: Effect of residual scaling in RKO

In this part of the analysis, results for the synthetic data sets are discussed.

For algorithm implementations of RKO, SRKO, and SRKO*, Ẑ(α, c) is calculated

with τ values set to 10. This parameter signifies the range of residual values that

are used to learn the parameters. For Huber kernel, the scale parameter value is

set to 1.3 which is a common choice [50]. For RKO, c is fixed to 1 and α has a

discretized range of [−4 : 0.25 : 2]. The residual used here is the point-to-point

distance between correspondences. The initialization points for RKO,SRKO, and

SRKO* are (α, c) = (2, 1), which is the standard Gaussian distribution.

When tested with 25 clean and noisy data sets, the performances of Huber and

RKO are worse than FastReg. Next, the residuals are scaled by s before learning.

That is, instead of x, the distribution of x
s
is learned. The scale values tested are 0.1

and 0.05. Lowering the scales resulted in ≈ 2x improvement in performance for both
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clean and noisy data (Tables 5.4.1, 5.4.2).

The motivation for residual scaling can be understood from figure (5.4.1). The top

plot shows the learned α and the bottom one shows the registration performances for

scales 1 and 0.05. Scale 0.05 case improves performance in data sets for which learned

α lower than 2. This points to the fact that scale 1 is under-fitting the residuals with

α = 2 resulting in equal weights for all residuals. For scale 0.05, RKO learns a more

robust α which de-weights the larger residuals. This happens because the un-scaled

residual values for these data sets lie close to 0 (figure (5.4.2)). This results in RKO

weighing them equally. However, just being close to zero does not guarantee that the

residual is an inlier since the true scale is unknown. Scaling with 0.05 increases the

residual by a factor of 20 which helps RKO find a better fit with a more robust α

and de-weights the larger residuals. The same thing happens for the Huber kernel

where all un-scaled residuals being less than 1.3 results in equal weighting. Scaling

increases the residual magnitude causing the de-weighting of larger residuals.

Figure 5.4.2: Learning best fitting α and c for SRKO with un-scaled residuals
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Instead of manually tuning the residual scale, one way to learn this scale directly

is to let SRKO look for the c values. Notice that changing the scale s is the same

as changing the scale c in equation (5.1). In the implementation, SRKO can search

through c values within the range [0.05 : 0.05 : 2]. The initialization point is kept the

same at (α, c) = (2, 1). Figure (5.4.2) shows SRKO choosing the best α and c with

starting c = 1 and a real set of residuals extracted during registration. As illustrated,

in this scenario, the negative log-likelihood decreases as a good fit for the residuals

is found. This step is followed by optimization with the best α and c. This learning-

optimization cycle carries on until convergence. Figure (5.4.2) also shows how SRKO

ends up learning the scale of un-scaled residuals even though it is designed to better

fit the shape.

Figure 5.4.3: Clean data results. Top: Learned α values, Middle: Learned c values,
Bottom: RMS errors normalized
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Figure 5.4.4: Noisy data results. Top: Learned α values, Middle: Learned c values,
Bottom: RMS errors normalized

Figures (5.4.3) and (5.4.4) further show the parameters learned and the registra-

tion performance of RKO vs SRKO for clean and noisy data. These figures show that

SRKO can find low scale values close to 0.05 and give similar performance to scaled

RKO thus removing the need for manual tuning. Figure (5.4.4) shows the effects of

noise on SRKO where it is not able to learn correct c and robust α values leading to

larger errors for some data sets. This effect motivates the need for SRKO*.

Next, the performances of SRKO and SRKO* are compared. Figure (5.4.5) shows

the learned parameters and performances of SRKO*-L1 and SRKO*-const for clean

data. The bottom graph shows the ĉ estimated by SRKO*-L1 which on average is

close to the ĉ = 0.05 assumed by SRKO*-const. It can be seen that SRKO*-L1 and

SRKO*-const learns a more robust α than SRKO. Another difference between SRKO
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and SRKO* is the learned c parameter. Since SRKO* used scaled residuals, it can

use c as a shape parameter. Whereas, SRKO is mainly learning the scale and not

able to utilize it for learning shape. Figure (5.4.6) shows the performance of SRKO*

for noisy data. SRKO*-const and SRKO*-L1 again are able to learn more robust α

values than SRKO resulting in better performance. One disadvantage of using the

scale formula in equation (5.12) can be seen in this figure. The estimates of ĉ increases

for the noisy data which results in large errors for SRKO*-L1 for some data sets. For

this reason, SRKO*-const is preferable to SRKO*-L1.

Figure 5.4.5: Clean data results. From Top 1: Learned α values, From Top 2: Learned c
values, From Top 3: RMS errors normalized, Bottom: ĉ learned by SRKO*-L1
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Figure 5.4.6: Noisy data results. From Top 1: Learned α values, From Top 2: Learned c
values, From Top 3: RMS errors normalized, Bottom: ĉ learned by SRKO*-L1

Robustness of SRKO* is tested with increasing number of correspondence mis-

matches (10% to 50% of the total correspondences). In Figure (5.4.9), RKO and

SRKO* can be seen to be generally more robust than FastReg, but affected by con-

vergence issues with an increase in outlier proportion. This problem is solved by

increasing τ , that is the parameters are learned for a larger range of residuals (Fig-

ure (5.4.10)) and demonstrate superior robustness properties compared to FastReg.

Tables (5.4.1) and (5.4.2) show the average RMSE performances for Huber, RKO,

FastReg, SRKO, SRKO*-const and SRKO*-L1. SRKO*-L1 performs best for clean

86



(a) Input scans (b) Truth registration

Figure 5.4.7: (a): Noisy versions of target (red) and source (green) point clouds of
Stanford Bunny; (b): Truth transformation of source point cloud to target point cloud

data and FastReg performs best for noisy data. Barron [14] solves equation (5.3)

in a similar way to FastReg but anneals the shape instead of scale (shape-annealed

gFGR and gFGR*). SRKO*-L1 performs better than these methods for clean data

but is worse for noisy data. Even though the RMS error of SRKO*-const is more

than SRKO*-L1 in table (5.4.2), the larger error is mainly due to one bad estimate

out of 25. Figure (5.4.6) shows that SRKO*-const has a better performance than

SRKO*-L1 for the majority of the datasets for the noisy case.

Table 5.4.1: Average RMS errors over 25 clean data

methods Huber RKO FastReg SRKO SRKO*-const SRKO*-L1
scale− 1 0.0123 0.0129
scale− 0.1 0.0080 0.0094 0.0074 0.0073 0.0075 0.0071
scale− 0.05 0.0074 0.0074
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(a) RKO (b) SRKO*-const

(c) SRKO*-L1

Figure 5.4.8: Registered noisy point clouds with (a) RKO (RMS error: 0.12); (b)
SRKO*-const (RMS error: 0.015); (c) SRKO*-L1 (RMS error: 0.019)

For LIO-SAM implementations of RKO, the searchable α range is [−4 : 0.5 :

2]. c is fixed to 1.0. For SRKO and SRKO*, α range is same and c range is

[0.05, 0.1, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0]. ĉ is set to 0.1. Initialization points for

both are set to (α, c) = (2, 1). Here smaller ranges of α and c are chosen due to the

real-time running of LIO-SAM. FastReg is initialized with µ = 20 and the Huber pa-
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Figure 5.4.9: Top: Registration performance of RKO (R), SRKO*-const (S) and FastReg
(F) over 25 data sets with increasing outlier ratios (10% to 50%). Bottom: Magnified

version of Top

Table 5.4.2: Average RMS errors over 25 noisy data

methods Huber RKO FastReg SRKO SRKO*-const SRKO*-L1
scale− 1 0.0532 0.0520
scale− 0.1 0.0287 0.0241 0.0203 0.0320 0.0352 0.0291
scale− 0.05 0.0240 0.0312

rameter is the same as the synthetic version. Table (5.4.3) shows the horizontal RMS

errors of all methods with respect to standard LIO-SAM with loop closures. SRKO*

performs best for park, garden, and campus(large) data sets and also performs well

for the other tests. Figure (5.4.12) shows the learned parameters of RKO, SRKO,

and SRKO* for park data. The trend is similar to figure (5.4.5). SRKO* learns

more robust α values than SRKO and is able to use c as a shape parameter due to

residuals being scaled. Whereas, SRKO mainly learns the scale due to the residuals

being un-scaled.
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Figure 5.4.10: SRKO* robustness with respect to τ

Table 5.4.3: Horizontal RMS errors (m) w.r.t LIO-SAM+LC

methods Huber FastReg RKO SRKO SRKO*
park 0.58 0.70 0.93 0.68 0.52
garden 0.19 0.14 0.18 0.22 0.04
rotation 0.05 0.04 0.06 0.06 0.06
campus(small) 0.17 0.12 0.24 0.23 0.16
campus(large) 2.09 2.95 2.02 1.29 0.83

The scale-variant algorithm has been shown to work well in both synthetic and

real-world scenarios and has good robustness properties. The analysis here also shows

that learning-based methods can perform as well and in some cases better than grad-

uated non-convexity-based methods. The main disadvantage of this method is the

computational cost of learning c and α for a large set of residuals which can affect real-

time performance. In such scenarios, a GNC-based method is more helpful. GNC-

based methods also help avoid local minima, which is an advantage. The generalized

cost function analyzed here also satisfies the convergence requirements discussed in

section 1.6.2. The weights are well defined everywhere and ρ(
√

(x)) is concave for
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(a) park (b) garden

(c) campus(large)

Figure 5.4.11: 2D norm errors(m) for 3 data sets provided by [98]

Figure 5.4.12: Learned α and c values for park data

x > 0 and α < 2. Singularities that exist at α = 0 and α = 2 can be avoided by

using numerical stable versions of the functions ([14] supplementary). Another way

91



of avoiding computational cost is to add c and α in the estimated state of the non-

linear least squares by computing the augmented Jacobian matrix. Another natural

extension of this work is robust loop closure detection. Ramezani et al. [90] uses α to

define non-Gaussian loop closure factors in a factor graph and estimates lidar poses

and α. This method can be extended to include c as a variable in the factor graph.

5.5 Estimating Shape with Square-root Factors

Ramezani et al. [90] describe using square root factors for robust loop closures using

the Black-Rangarajan duality and learn the shape parameter at the same time. Recall

from Chapter 4, that this duality shows equivalence between an M-estimator and

regularized weighted least squares,

θ̂, ŵ = arg min
θ,w

∑
k

wkx(θ)2 + Ψ(wk).

The robust cost function used here has the general form described in equation (5.1).

Following the previous discussion, the weights of the general cost function can be

found easily by using the expression ρ′(x)
x

. Following the derivation method in [17],

the Ψ penalty function can also be derived as

Ψ(w, α) =



− log(w) + w − 1 if α = 0

w log(w)− w + 1 if α = −∞

|α−2|
α

((
1− α

2

)
w

α
(α−2) + αw

2 − 1
)

if α < 2.

(5.17)
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Since the cost ρ is a function of α, both the weights and the Ψ are functions of α

as well. This fact was utilized in [90] to create robust loop closure factors in SLAM.

In their work, the authors assumed a single α parameter node for all loop closure

factors and learned the parameter which controls the robustness in the graph. Ψ can

be added as a factor in the graph as a square root factor as described in Chapter 4.

Figure 5.5.1: weights as a function of residuals (left); Ψ as a function of weights(right)

The figure above shows the weights as a function of residuals, which has been

discussed before. The figure on the right shows the Ψ as a function of weights. The

Ψ function acts as a penalty function which prevents the weights from going to zero.

From a Bayesian perspective, it can also be thought of as a prior to the weights.

Since the weights are functions of the residuals (hence the state), the optimization is

actually solving for θ and α which can be written as

θ̂, α̂ = arg min
θ,α

∑
k

wk(xk(θ), α)xk(θ)2 + Ψ(xk(θ), α). (5.18)
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Figure (5.5.2) (left) shows the variation of Ψ with respect to α for fixed values of x. It

Figure 5.5.2: Ψ as a function of α(left), Z(α) as a function of α (right)

is interesting to see that behavior is different for large and small residuals. For small

residuals, Ψ increases initially for α close to 2, but levels off for lower values of α. For

larger residuals. Ψ also increases for α close to 2 but starts decreasing around 1 and

finally levels off for lower shape values. On the right, the variation of Z(α) (equation

5.11) with α is shown. Z(α) acts as a regularizer or penalty function which prevents

all the weights from going to zero. Comparing these figures, it can be seen that for

larger residuals Ψ will only stop α from going to −∞ between the values of 2 and 1

(approximate), since it is a decreasing function in that range. As α decreases from

1, the penalty function starts decreasing, which means there is nothing stopping the

optimization from taking the α value to −∞, which is the Welsch loss function. For

smaller residuals, Ψ levels off for lower values of α again not satisfying the property of

a penalty function like Z(α). Thus it can be concluded that this method is not really

solving for the shape for highly robust α values since it will always tend towards −∞.
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Figure 5.5.3: GNSS factor graph with a shape parameter (α) node. α controls the
robustness of the factor graph. Each satellite measurement factor (blue) has a weight that

is controlled by a penalty factor (grey).

To demonstrate this in a practical scenario, this algorithm is implemented for

factor graph based GNSS positioning problem. A single shape parameter α is chosen

for all satellite measurements over the whole data trajectory. 3 open-source data

sets obtained from [117] are used which have been collected from both open sky and

urban areas of Morgantown, WV. These data sets have 2 quality levels (low and high)

obtained offline by changing tracking parameters using open-source software [39]. A

detailed analysis of the data collection is described in [117].

Figures (5.5.4) and (5.5.5) show the horizontal RMS errors of the square root

factor graphs for different prior variances of α compared to standard least squares

results for data set 1. The prior and the initial values of the shape parameter are
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Figure 5.5.4: Horizontal RMS errors (top) and estimated α (bottom) for different prior
variances of α.

Figure 5.5.5: Horizontal RMS errors (top) and estimated α (bottom) for different prior
variances of α.
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Figure 5.5.6: Horizontal RMS errors (top) and estimated α (bottom) for different prior
variances of α.

set to 2. For the high-quality case, the performances of all methods initially are

similar but the solution for the square-root factor graph starts getting unstable as α

starts getting close to 1. The dotted lines show that the solutions for prior variances

of 10−1 and 10−3 diverge when the shape parameter drops below 1 which confirms

our prediction from the gradients of Ψ. The same behavior can be seen for the low-

quality version of data set 1 even though the square-root factor graphs have better

performance than the standard factor graph before divergence.

For Figures (5.5.6), (5.5.7), (5.5.8), and (5.5.9), square-root factor graphs outper-

form the L2 version for low-quality data and have similar performance for high-quality

data. Note, that there is also no divergence in the solutions due to α not going under

the value of 1. For low-quality data sets, the shape parameter solution also moves
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Figure 5.5.7: Horizontal RMS errors (top) and estimated α (bottom) for different prior
variances of α.

away from its initial value of 2 when the prior uncertainty is the largest, which is

expected.

The trend of shape parameters in all results seems to be going down as new

measurements are added. This is surprisingly similar to GNC-based approaches where

the parameter that controls the convexity of the loss function is gradually lowered

every few iterations. Here α is the parameter that controls the convexity of the

function ρ. Another way of thinking about the behavior of α is that since there is a

single shape parameter for all factors of a graph, as more measurements are added,

the number of large residuals keeps increasing requiring the need for lower values of

α. From our analysis, this method is not suitable for highly robust cost functions

due to the diverging properties discussed above. But this method still can be helpful
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Figure 5.5.8: Horizontal RMS errors (top) and estimated α (bottom) for different prior
variances of α.

Figure 5.5.9: Horizontal RMS errors (top) and estimated α (bottom) for different prior
variances of α.
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and needs more analysis. Different penalty functions can be investigated in this setup

along with multiple shape nodes instead of one.
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6
Concluding Remarks

6.1 Conclusions

The first part of the work gives a birds-eye view of different estimation tools with

different sensors, robustness in estimation, and new ways of developing robust algo-

rithms. Chapter 2 presents a concise introduction to Bayesian estimation, linear and

101



non-linear least squares, M-estimators, and MC problems. The rest of the disserta-

tion contains work with two different estimation tools, the Kalman filter and factor

graphs. The robust techniques presented here are all residual-based, which helps in

their applications to a wide variety of estimation problems.

Chapter 3 demonstrates the importance of robust Kalman filtering for wheel-

inertial odometry in high slip conditions. Five methods have been chosen from robust

Kalman filtering literature and applied as robust update steps in an error state EKF

to offer insight into their benefits and drawbacks. These five methods include the

Huber Kalman filter, covariance scaling filter, and variational filters. The variational

Kalman filters perform the best in reducing the effect of erroneous wheel encoder

measurements. Tables (3.2.2) and (3.2.3) demonstrate the localization improvement

using these methods. Tables (3.2.5) and (3.2.4) show parameter analysis that helps

in understanding the nature of measurement noise distribution for wheel odometry

data. In the datasets used in this work, the distribution was found to be closer to

Gaussian.

Factor graphs have been discussed as an estimation tool in Chapter 4 along with its

advantages over the Kalman filter. Two different GNSS and inertial odometry fusion

strategies are tested for clean and noisy data. In one version, motion constraints are

added to the GNSS factor graph from a parallel running wheel-inertial Kalman filter.

The other version does not use inertial odometry directly but uses the information

that the rover is static to constrain static nodes. Testing is done with original and

noise-added GNSS data. The positioning errors in tables (4.5.1) and (4.5.2) show

that zero-velocity enabled EKF inertial odometry can make GNSS factor graphs more
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robust to multipath errors and have superior positioning performance compared to

GNSS factor graphs without inertial information.

Chapter 5 discusses a novel way of improving the adaptivity and robustness of

robust cost functions and learning the inlier measurement noise threshold in a com-

bined manner. The proposed algorithm is tested on point cloud registration and

lidar-inertial odometry. The learned shape and scale parameters (figures (5.4.3),

(5.4.4), (5.4.5), (5.4.6), and (5.4.12)) and the estimation performances (tables (5.4.1),

(5.4.2), and (5.4.3)) show that the new algorithm can be used in learning the inlier

noise threshold and increasing the robustness of generalized M-estimators by more

accurately learning the residual distribution. The proposed algorithm also shows im-

proved robustness in the presence of feature mismatches attained by this adaptivity

when compared to a graduated non-convexity-based method from literature (figure

(5.4.9)). Increasing the residual range used to learn the residual distributions in the

algorithm produces more robust registration results for large outlier proportions (fig-

ure (5.4.10)). Lastly, an analysis is presented on the adaptive robust cost function

optimization for GNSS factor graphs in figures (5.5.4), (5.5.5), (5.5.6), (5.5.7), (5.5.8),

and (5.5.9), which show that joint optimization of the shape of the generalized M-

estimators and unknown states in factor graphs can provide increased robustness than

a standard GNSS factor graph but can also result in divergence when the shape value

goes below 1.
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6.2 Future work

Several future directions of robust estimation research look promising. One of them

is data-driven learning algorithms. Deep learning methods [19, 24, 68] have been

shown to work well in learning measurement noise distributions as well as full state

transformations using a series of measurements. However, these learning methods

use GNSS or motion-capture solutions as truth for optimizing their networks which

might not always be available. Variational methods discussed in [3, 4, 96] can be

helpful in such cases. The lack of physical modeling in deep learning methods can

be concerning but from a different perspective, they are more expressive and are not

constrained by specific model assumptions.

The importance of non-Gaussian estimation has been discussed in this disserta-

tion. Even though analysis of heavy-tailed distributions using variational Kalman fil-

ters, square-root factors, and IRLS have been presented here, these algorithms are not

suitable for multimodal distributions. Recently, multimodal frameworks have been

adopted to improve robustness of Kalman filters [48] and factor graphs [35, 84, 118].

M-estimators only assume one mode to be the correct and de-weighting all others by

learning an unimodal distribution. Multimodal M-estimators can be helpful where the

estimator needs to learn a multimodal distribution. There is another aspect of estima-

tion that is overlooked a lot of times, and that is non-convexity. Estimation problems

are inherently optimization problems, which give rise to the problem of non-convexity.

Recent developments in the field of non-convex optimization [53] can immensely help

the estimation field of research. Ideas from this field can provide rigorous convergence
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analysis for SRKO since it is an example of an alternating minimization algorithm.

This family of algorithms is helpful for non-convex problems [53]. Robust statistics

is also another field of study that can provide invaluable insights into applied robust

estimation [21]. Recent research has focused on the certifiable optimality of robust

estimation algorithms. Such algorithms like [124, 126] have been recently developed

and shown to be resilient to high outlier rates and high dimensional problems. The-

oretical foundations for consistent estimation using truncated least squares and MC

for different outlier rates have been discussed from the perspective of robust statistics

and robotics in [21].

However, these algorithms running on a single sensor should not be relied on solely

for reliable localization in all scenarios for long-term trajectories. This is partly be-

cause of the physical limitations of the sensor used and partly due to distributional

assumptions that might not be followed by the actual measurements and environmen-

tal variations. These algorithms running on each sensor should act as building blocks

for cooperative multimodal sensor fusion architecture involving different sensor types

like visual, lidar, inertial, and thermal. GNSS is the most accurate sensor of them all

but cannot be used indoors, in caves, or in densely forested areas. Tightly coupled

systems usually have high accuracy but it can be hard to switch between sensors since

they are connected to a single estimation machinery. In loosely coupled systems, each

sensor has its own estimation branch which makes it easier to switch one for the other

depending on environmental conditions. Zhao et al. [132] discuss the importance of

an IMU-centric lidar-visual-inertial system where IMU is the core estimation source

since it is not affected by environmental conditions, unlike lidars and cameras. IMU
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can provide reliable estimation as long as the biases are correctly tracked. One im-

portant problem is to decide how much each sensor’s estimation should contribute

to the overall estimation. Failure modes are usually easy to detect for sensors like

cameras and lidars. However in working conditions, accurately estimating the mea-

surement noise is not always straightforward. A tunable adaptive multi-sensor fusion

framework can get rid of the individual shortcomings of each sensor.
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A
Robustness Metrics for Adaptive

M-estimators

This chapter presents some quantitative and qualitative robustness metrics for the
generalized M-estimator (equation (5.1)) presented in Chapter 5. The model chosen
is a simple scalar location model

z = x+ u, (A.1)

where z, x, u ∈ R. z is the measured value, x is the true unknown value and u is the
noise or error generated from a contaminated distribution

u ∼ (1− ϵ)F + ϵG. (A.2)

G is the contaminating distribution with a contamination proportion of ϵ. The opti-
mal solution x̂ can be obtained by solving

x̂ = arg min
x

∑
k

ρ(zk − x). (A.3)

The robustness metrics [18, 74] for M-estimators are divided into 2 categories. The
first category measures the sensitivity of the estimator to errors in a single measure-
ment and the second category measures sensitivity to errors in multiple measurements.
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Figure A.1.1: IF curve of generalized M-estimators [14]

A.1 Robustness to Error in Single Measurement
This section discusses robustness metrics that do not require knowledge of the true
distribution of the error u. These metrics are the Influence (IF) curve and the Gross
Error Sensitivity (GES). The IF curve represents the sensitivity of the estimate x̂
to infinitesimal perturbations to a single measurement. Essentially it represents the
asymptotic bias caused by a single outlier as a function of normalised residuals. The
IF curve is proportional to the ρ′ or ψ function.

GES is the maximum value of the IF curve. From figure (A.1.1) it can be seen
the GES of least squares (α = 2) is ∞. Also, GES goes down with the decrease in
the shape parameter α.

A.2 Robustness to Errors in Multiple Measure-
ments

The Maximum Bias (MB) curve measures the maximum possible bias or error of an
M-estimator given a certain proportion (ϵ) of outliers. The Breaking Point (BP) is
the value of ϵ for which MP value goes to ∞. The equation for calculating MB value
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Figure A.2.1: Sampled measurements z from 0.9N (0, 1) + 0.1N (0, 100)

for a known ϵ ([18]) is given by
MB = |x|, (A.4)

such that
(1− ϵ)Ez[ψ(z − x)] + ϵ = 0. (A.5)

The solution to equation (A.5) can be found for the simple model (A.1). Let us
assume the errors in the measurements come from

u ∼ (1− ϵ)N (0, 1) + ϵN (0, 100), (A.6)

and the true value of x is 0. Now 1000 measurements of x are sampled from this
distribution with ϵ = 0.1, as shown in figure (A.2.1). The MB value can be found by
plotting the value of Ez[ψ(z−x)] for different values of x and checking where it has a
value of − ϵ

1−ϵ
. The expectation can be approximated with the mean of the function

ψ for all the sampled measurements.

Ez[ψ(z − x)] ≈ 1
N

∑
k

ψ(zk − x), (A.7)
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Figure A.2.2: MB values for each α is the value of x where expectation has the value
− ϵ

1−ϵ (black line). Here ϵ = 0.1

Figure A.2.3: MB values for different α for ϵ = 0.2

where N is 1000 here.
Figures (A.2.2) and (A.2.3) show MB values for contamination proportions of 0.1

and 0.2 respectively. Interestingly, an opposite trend to that of IF curve can be seen
here. A decrease in α values causes an increase in the MB values. In these figures,
c = 1 which is the correct scale value. The MB values increase for all shape values
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with the increase in the contamination proportion which is expected but does not
increase by a large amount which demonstrates their robustness properties.

Figure A.2.4: MB values with ϵ = 0.1 and c = 0.5.

Figure A.2.5: MB values with ϵ = 0.1 and c = 1.5.

If the scale parameter c is lowered to 0.5, the MB values decrease compared to
c = 1 (figure (A.2.4)). This is because c sets a lower inlier threshold and helps reduce
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the effect of outliers further. Increasing c to 1.5 increases the MB values which is
caused due to increase in the inlier threshold as can be seen in figure (A.2.5).

A.3 Asymptotic Variance
Recall from Chapter 2, that M-estimators are asymptotically normal. That is, the
estimate x̂ in equation (A.3) will follow a Gaussian distribution given by

x̂ ∼ N (x∗, v
n

), (A.8)

where
v = EH(ψ(z − x∗))2

(EHψ′(z − x∗))2 . (A.9)

n is the number of measurements. x∗ is the solution of EHψ(z − x) = 0 where
H is the error distribution. v is called the asymptotic variance of the M-estimator.
Asymptotic variances for model (A.1), with H given by (A.6), are shown in table
(A.3.1). It can be seen that the least squares estimator has the highest variance for

Table A.3.1: Asymptotic variance v for different values of α for two
different contamination proportions.

α 2 1 0 -1 -2 -3 −∞
ϵ = 0.1 8.0576 1.4092 1.2667 1.2990 1.3331 1.3605 1.5457
ϵ = 0.4 37.6115 3.9036 2.3766 2.2964 2.3162 2.3450 2.6113

contamination ratios. Its variance is also much larger than all other M-estimators.
For contamination of 0.1, as α decreases, the variance goes down and reaches its
lowest value at α = 0 after which it starts increasing again. The same behavior can
be seen for contamination of 0.4, where α = −1 has the lowest variance.

A.4 Bias of Estimate
Biases of the M-estimators for the simple model (A.1) can be compared by calculating
the estimate x̂ using IRLS. Due to the linear scalar model here, the IRLS algorithm
is easy to implement. The scale parameter c is set to 1. The algorithm is initialized
with the mean of the measurements. Then for every iteration, the weight of each
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measurement is calculated with the standard M-estimator weight formula followed by
solving for x as the weighted mean of the measurements. It is important to note here
that Maronna et al. [74] suggest initialization with robust estimates of x and c. Even
though this is easy for a scalar location model, where the initialization can be done
with the median value of {zk}, it is not straightforward for a more complex regression
model.

Algorithm 6: Simplified IRLS
Input: {zk}, α, c
Output: x̂
% Initialize with mean
x̂0 =

∑
k

zk

N
;

while !converged do
% Step 1: calculate weight of every measurement
wk = ρ′(zk−x̂j−1,α,c)

zk−x̂j−1
;

% Step 2: solve for x
x̂j =

∑
k

wkzk∑
k

wk
;

end

Table A.4.1: Bias of estimate for (1− ϵ)N (0, 1) + ϵN (0, 100)

α 2 1 0 -1 -2 -3 −∞
ϵ = 0.1 0.0669 0.0347 0.0264 0.0240 0.0232 0.0228 0.0222
ϵ = 0.4 0.0014 0.0496 0.0415 0.0335 0.0290 0.0265 0.0190

Table (A.4.1) shows the bias values for different α values. Note, that the least
squares estimator (α = 2) only calculates the mean of the data. For ϵ = 0.1, α = −∞
gives the best estimate of x (remember the true value of x is 0). This makes sense from
the IF curve point of view since the influence of outliers in the estimation decreases
as α goes to −∞. Interestingly least square estimator has the least bias when ϵ = 0.4.
This is because of the true value centering at 0. This causes larger outliers on both
sides of the mean to create a canceling effect in the mean formula.

To circumvent this issue, a different error distribution is selected, where u ∼
(1 − ϵ)N (10, 1) + ϵN (15, 1). Table (A.4.2) shows the bias values for measurements
sampled from this distribution. The least squares estimator again performs the worst
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and α = −∞ performs the best for both contamination ratios. Generally, the bias
goes down with a decrease in α.

Table A.4.2: Bias of estimate for (1− ϵ)N (10, 1) + ϵN (15, 1)

α 2 1 0 -1 -2 -3 −∞
ϵ = 0.1 10.4771 10.1892 10.0941 10.0571 10.0401 10.0314 10.0149
ϵ = 0.4 11.9871 11.3131 10.6249 10.3396 10.2138 10.1503 10.0300

Table A.4.3: Bias of estimate for 0.6N (10, 1) + 0.4N (15, 1)

α 2 1 0 -1 -2 -3 −∞
c = 3 11.9871 11.7658 11.6648 11.6057 11.5670 11.5395 11.3794
c = 5 11.9871 11.8875 11.8686 11.8604 11.8557 11.8527 11.8390

Table (A.4.3) shows the importance of correctly estimating the scale parameter
c. The incorrect scale parameter estimate causes the M-estimators to lose their
robustness properties. This is because a larger inlier threshold would mark the
outliers as inliers resulting in them getting a larger influence in the estimation. The
bias-variance trade-off is also clearly visible in the tables (A.3.1, A.4.1, A.4.2). It
can be seen that the estimators with more robust estimates have higher asymptotic
variance.
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