172 research outputs found

    Real-Time Localization of Epileptogenic Foci EEG Signals: An FPGA-Based Implementation

    Get PDF
    The epileptogenic focus is a brain area that may be surgically removed to control of epileptic seizures. Locating it is an essential and crucial step prior to the surgical treatment. However, given the difficulty of determining the localization of this brain region responsible of the initial seizure discharge, many works have proposed machine learning methods for the automatic classification of focal and non-focal electroencephalographic (EEG) signals. These works use automatic classification as an analysis tool for helping neurosurgeons to identify focal areas off-line, out of surgery, during the processing of the huge amount of information collected during several days of patient monitoring. In turn, this paper proposes an automatic classification procedure capable of assisting neurosurgeons online, during the resective epilepsy surgery, to refine the localization of the epileptogenic area to be resected, if they have doubts. This goal requires a real-time implementation with as low a computational cost as possible. For that reason, this work proposes both a feature set and a classifier model that minimizes the computational load while preserving the classification accuracy at 95.5%, a level similar to previous works. In addition, the classification procedure has been implemented on a FPGA device to determine its resource needs and throughput. Thus, it can be concluded that such a device can embed the whole classification process, from accepting raw signals to the delivery of the classification results in a cost-effective Xilinx Spartan-6 FPGA device. This real-time implementation begins providing results after a 5 s latency, and later, can deliver floating-point classification results at 3.5 Hz rate, using overlapped time-windows

    Detection of Epileptic Seizures on EEG Signals Using ANFIS Classifier, Autoencoders and Fuzzy Entropies

    Get PDF
    Epileptic seizures are one of the most crucial neurological disorders, and their early diagnosis will help the clinicians to provide accurate treatment for the patients. The electroencephalogram (EEG) signals are widely used for epileptic seizures detection, which provides specialists with substantial information about the functioning of the brain. In this paper, a novel diagnostic procedure using fuzzy theory and deep learning techniques is introduced. The proposed method is evaluated on the Bonn University dataset with six classification combinations and also on the Freiburg dataset. The tunable- Q wavelet transform (TQWT) is employed to decompose the EEG signals into different sub-bands. In the feature extraction step, 13 different fuzzy entropies are calculated from different sub-bands of TQWT, and their computational complexities are calculated to help researchers choose the best set for various tasks. In the following, an autoencoder (AE) with six layers is employed for dimensionality reduction. Finally, the standard adaptive neuro-fuzzy inference system (ANFIS), and also its variants with grasshopper optimization algorithm (ANFIS-GOA), particle swarm optimization (ANFIS-PSO), and breeding swarm optimization (ANFIS-BS) methods are used for classification. Using our proposed method, ANFIS-BS method has obtained an accuracy of 99.7

    Effective electroencephalogram based epileptic seizure detection using support vector machine and statistical moment’s features

    Get PDF
    Epilepsy is one of the widespread disorders. It is a noncommunicable disease that affects the human nerve system. Seizures are abnormal patterns of behavior in the electricity of the brain which produce symptoms like losing consciousness, attention or convulsions in the whole body. This paper demonstrates an effective electroencephalogram (EEG) based seizure detection method using discrete wavelet transformation (DWT) for signal decomposition to extract features. An automatic channel selection method was proposed by the researcher to select the best channel from 23 channels based on maximum variance value. The records were segmented into a nonoverlapping segment with long 1-S. The support vector machine (SVM) model was used to automatically detect segments that contain seizures, using both frequency and time domain statistical moment features. The experimental result was obtained from 24 patients in CHB-MIT database. The average accuracy is 94.1, sensitivity is 93.5, specificity is 94.6 and the false positive rate average is 0.054

    Development of electroencephalogram (EEG) signals classification techniques

    Get PDF
    Electroencephalography (EEG) is one of the most important signals recorded from humans. It can assist scientists and experts to understand the most complex part of the human body, the brain. Thus, analysing EEG signals is the most preponderant process to the problem of extracting significant information from brain dynamics. It plays a prominent role in brain studies. The EEG data are very important for diagnosing a variety of brain disorders, such as epilepsy, sleep problems, and also assisting disability patients to interact with their environment through brain computer interface (BCI). However, the EEG signals contain a huge amount of information about the brain’s activities. But the analysis and classification of these kinds of signals is still restricted. In addition, the manual examination of these signals for diagnosing related diseases is time consuming and sometimes does not work accurately. Several studies have attempted to develop different analysis and classification techniques to categorise the EEG recordings. The analysis of EEG recordings can lead to a better understanding of the cognitive process. It is used to extract the important features and reduce the dimensions of EEG data. In the classification process, machine learning algorithms are used to detect the particular class of EEG signal based on its extracted features. The performance of these algorithms, in which the class membership of the input signal is determined, can then be used to infer what event in the real-world process occurred to produce the input signal. The classification procedure has the potential to assist experts to diagnose the related brain disorders. To evaluate and diagnose neurological disorders properly, it is necessary to develop new automatic classification techniques. These techniques will help to classify different EEG signals and determine whether a person is in a good health or not. This project aims to develop new techniques to enhance the analysis and classification of different categories of EEG data. A simple random sampling (SRS) and sequential feature selection (SFS) method was developed and named the SRS_SFS method. In this method, firstly, a SRS technique was used to extract statistical features from the original EEG data in time domain. The extracted features were used as the input to a SFS algorithm for key features selection. A least square support vector machine (LS_SVM) method was then applied for EEG signals classification to evaluate the performance of the proposed approach. Secondly, a novel approach that combines optimum allocation (OA) and spectral density estimation methods was proposed to analyse EEG signals and classify an epileptic seizure. In this study, the OA technique was introduced in two levels to determine representative sample points from the EEG recordings. To reduce the dimensions of sample points and extract representative features from each OA sample segment, two power spectral density estimation methods, periodogram and autoregressive, were used. At the end, three popular machine learning methods (support vector machine (SVM), quadratic discriminant analysis, and k-nearest neighbor (k-NN)) were employed to evaluate the performance of the suggested algorithm. Additionally, a Tunable Q-factor wavelet transform (TQWT) based algorithm was developed for epileptic EEG feature extraction. The extracted features were forwarded to the bagging tree, k-NN, and SVM as classifiers to evaluate the performance of the proposed feature extraction technique. The proposed TQWT method was tested on two different EEG databases. Finally, a new classification system was presented for epileptic seizures detection in EEGs blending frequency domain with information gain (InfoGain) technique. Fast Fourier transform (FFT) or discrete wavelet transform (DWT) were applied individually to analyse EEG recording signals into frequency bands for feature extraction. To select the most important feature, the infoGain technique was employed. A LS_SVM classifier was used to evaluate the performance of this system. The research indicates that the proposed techniques are very practical and effective for classifying epileptic EEG disorders and can assist to present the most important clinical information about patients with brain disorders

    Developing artificial intelligence models for classification of brain disorder diseases based on statistical techniques

    Get PDF
    The Abstract is currently unavailable, due to the thesis being under Embargo

    High-performance detection of epilepsy in seizure-free EEG recordings: A novel machine learning approach using very specific epileptic EEG sub-bands

    Get PDF
    We applied machine learning to diagnose epilepsy based on the fine-graded spectral analysis of seizure-free (resting state) EEG recordings. Despite using unspecific agglomerated EEG spectra, our fine-graded spectral analysis specifically identified the two EEG resting state sub-bands differentiating healthy people from epileptics (1.5-2 Hz and 11-12.5 Hz). The rigorous evaluation of completely unseen data of 100 EEG recordings (50 belonging to epileptics and the other 50 to healthy people) shows that the approach works successfully, achieving an outstanding accuracy of 99 percent, which significantly outperforms the current benchmark of 70% to 95% by a panel of up to three experienced neurologists. Our epilepsy diagnosis classifier can be implemented in modern EEG analysis devices, especially in intensive care units where early diagnosis and appropriate treatment are decisive in life and death scenarios and where physicians’ error rates are particularly high. Our approach is accurate, robust, fast, and cost-efficient and substantially contributes to Information Systems research in healthcare. The approach is also of high practical and theoretical relevance

    Determinant of Covariance Matrix Model Coupled with AdaBoost Classification Algorithm for EEG Seizure Detection

    Get PDF
    Experts usually inspect electroencephalogram (EEG) recordings page-by-page in order to identify epileptic seizures, which leads to heavy workloads and is time consuming. However, the efficient extraction and effective selection of informative EEG features is crucial in assisting clinicians to diagnose epilepsy accurately. In this paper, a determinant of covariance matrix (Cov–Det) model is suggested for reducing EEG dimensionality. First, EEG signals are segmented into intervals using a sliding window technique. Then, Cov–Det is applied to each interval. To construct a features vector, a set of statistical features are extracted from each interval. To eliminate redundant features, the Kolmogorov–Smirnov (KST) and Mann–Whitney U (MWUT) tests are integrated, the extracted features ranked based on KST and MWUT metrics, and arithmetic operators are adopted to construe the most pertinent classified features for each pair in the EEG signal group. The selected features are then fed into the proposed AdaBoost Back-Propagation neural network (AB_BP_NN) to effectively classify EEG signals into seizure and free seizure segments. Finally, the AB_BP_NN is compared with several classical machine learning techniques; the results demonstrate that the proposed mode of AB_BP_NN provides insignificant false positive rates, simpler design, and robustness in classifying epileptic signals. Two datasets, the Bern–Barcelona and Bonn datasets, are used for performance evaluation. The proposed technique achieved an average accuracy of 100% and 98.86%, respectively, for the Bern–Barcelona and Bonn datasets, which is considered a noteworthy improvement compared to the current state-of-the-art methods

    Finding the discriminative frequencies of motor electroencephalography signal using genetic algorithm

    Get PDF
    A crucial part of the brain-computer interface is a classification of electroencephalography (EEG) motor tasks. Artifacts such as eye and muscle movements corrupt EEG signal and reduce the classification performance. Many studies try to extract not redundant and discriminative features from EEG signals. Therefore, this study proposed a signal preprocessing and feature extraction method for EEG classification. It consists of removing the artifacts by using discrete fourier transform (DFT) as an ideal filter for specific frequencies. It also cross-correlates the EEG channels with the effective channels to emphases the EEG motor signals. Then the resultant from cross correlation are statistical calculated to extract feature for classifying a left and right finger movements using support vector machine (SVM). The genetic algorithm was applied to find the discriminative frequencies of DFT for the two EEG classes signal. The performance of the proposed method was determined by finger movement classification of 13 subjects and the experiments show that the average accuracy is above 93 percent

    Neonatal seizure detection based on single-channel EEG: instrumentation and algorithms

    Get PDF
    Seizure activity in the perinatal period, which constitutes the most common neurological emergency in the neonate, can cause brain disorders later in life or even death depending on their severity. This issue remains unsolved to date, despite the several attempts in tackling it using numerous methods. Therefore, a method is still needed that can enable neonatal cerebral activity monitoring to identify those at risk. Currently, electroencephalography (EEG) and amplitude-integrated EEG (aEEG) have been exploited for the identification of seizures in neonates, however both lack automation. EEG and aEEG are mainly visually analysed, requiring a specific skill set and as a result the presence of an expert on a 24/7 basis, which is not feasible. Additionally, EEG devices employed in neonatal intensive care units (NICU) are mainly designed around adults, meaning that their design specifications are not neonate specific, including their size due to multi-channel requirement in adults - adults minimum requirement is ≄ 32 channels, while gold standard in neonatal is equal to 10; they are bulky and occupy significant space in NICU. This thesis addresses the challenge of reliably, efficiently and effectively detecting seizures in the neonatal brain in a fully automated manner. Two novel instruments and two novel neonatal seizure detection algorithms (SDAs) are presented. The first instrument, named PANACEA, is a high-performance, wireless, wearable and portable multi-instrument, able to record neonatal EEG, as well as a plethora of (bio)signals. This device despite its high-performance characteristics and ability to record EEG, is mostly suggested to be used for the concurrent monitoring of other vital biosignals, such as electrocardiogram (ECG) and respiration, which provide vital information about a neonate's medical condition. The two aforementioned biosignals constitute two of the most important artefacts in the EEG and their concurrent acquisition benefit the SDA by providing information to an artefact removal algorithm. The second instrument, called neoEEG Board, is an ultra-low noise, wireless, portable and high precision neonatal EEG recording instrument. It is able to detect and record minute signals (< 10 nVp) enabling cerebral activity monitoring even from lower layers in the cortex. The neoEEG Board accommodates 8 inputs each one equipped with a patent-pending tunable filter topology, which allows passband formation based on the application. Both the PANACEA and the neoEEG Board are able to host low- to middle-complexity SDAs and they can operate continuously for at least 8 hours on 3-AA batteries. Along with PANACEA and the neoEEG Board, two novel neonatal SDAs have been developed. The first one, termed G prime-smoothed (G ́_s), is an on-line, automated, patient-specific, single-feature and single-channel EEG based SDA. The G ́_s SDA, is enabled by the invention of a novel feature, termed G prime (G ́) and can be characterised as an energy operator. The trace that the G ́_s creates, can also be used as a visualisation tool because of its distinct change at a presence of a seizure. Finally, the second SDA is machine learning (ML)-based and uses numerous features and a support vector machine (SVM) classifier. It can be characterised as automated, on-line and patient-independent, and similarly to G ́_s it makes use of a single-channel EEG. The proposed neonatal SDA introduces the use of the Hilbert-Huang transforms (HHT) in the field of neonatal seizure detection. The HHT analyses the non-linear and non-stationary EEG signal providing information for the signal as it evolves. Through the use of HHT novel features, such as the per intrinsic mode function (IMF) (0-3 Hz) sub-band power, were also employed. Detection rates of this novel neonatal SDA is comparable to multi-channel SDAs.Open Acces

    Epileptic Seizure Detection And Prediction From Electroencephalogram Using Neuro-Fuzzy Algorithms

    Get PDF
    This dissertation presents innovative approaches based on fuzzy logic in epileptic seizure detection and prediction from Electroencephalogram (EEG). The fuzzy rule-based algorithms were developed with the aim to improve quality of life of epilepsy patients by utilizing intelligent methods. An adaptive fuzzy logic system was developed to detect seizure onset in a patient specific way. Fuzzy if-then rules were developed to mimic the human reasoning and taking advantage of the combination in spatial-temporal domain. Fuzzy c-means clustering technique was utilized for optimizing the membership functions for varying patterns in the feature domain. In addition, application of the adaptive neuro-fuzzy inference system (ANFIS) is presented for efficient classification of several commonly arising artifacts from EEG. Finally, we present a neuro-fuzzy approach of seizure prediction by applying the ANFIS. Patient specific ANFIS classifier was constructed to forecast a seizure followed by postprocessing methods. Three nonlinear seizure predictive features were used to characterize changes prior to seizure. The nonlinear features used in this study were similarity index, phase synchronization, and nonlinear interdependence. The ANFIS classifier was constructed based on these features as inputs. Fuzzy if-then rules were generated by the ANFIS classifier using the complex relationship of feature space provided during training. In this dissertation, the application of the neuro-fuzzy algorithms in epilepsy diagnosis and treatment was demonstrated by applying the methods on different datasets. Several performance measures such as detection delay, sensitivity and specificity were calculated and compared with results reported in literature. The proposed algorithms have potentials to be used in diagnostics and therapeutic applications as they can be implemented in an implantable medical device to detect a seizure, forecast a seizure, and initiate neurostimulation therapy for the purpose of seizure prevention or abortion
    • 

    corecore