754 research outputs found

    Behavioural Equivalence for Infinite Systems—Partially Decidable!

    Get PDF
    For finite-state systems non-interleaving equivalences are computationallyat least as hard as interleaving equivalences. In this paper we showthat when moving to infinite-state systems, this situation may changedramatically.We compare standard language equivalence for process description languages with two generalizations based on traditional approaches capturing non-interleaving behaviour, pomsets representing global causal dependency, and locality representing spatial distribution of events.We first study equivalences on Basic Parallel Processes, BPP, a processcalculus equivalent to communication free Petri nets. For this simpleprocess language our two notions of non-interleaving equivalences agree.More interestingly, we show that they are decidable, contrasting a result ofHirshfeld that standard interleaving language equivalence is undecidable.Our result is inspired by a recent result of Esparza and Kiehn, showingthe same phenomenon in the setting of model checking.We follow up investigating to which extent the result extends to largersubsets of CCS and TCSP. We discover a significant difference betweenour non-interleaving equivalences. We show that for a certain non-trivialsubclass of processes between BPP and TCSP, not only are the two equivalences different, but one (locality) is decidable whereas the other (pomsets) is not. The decidability result for locality is proved by a reduction to the reachability problem for Petri nets

    Model Checking Dynamic-Epistemic Spatial Logic

    Get PDF
    In this paper we focus on Dynamic Spatial Logic, the extension of Hennessy-Milner logic with the parallel operator. We develop a sound complete Hilbert-style axiomatic system for it comprehending the behavior of spatial operators in relation with dynamic/temporal ones. Underpining on a new congruence we define over the class of processes - the structural bisimulation - we prove the finite model property for this logic that provides the decidability for satisfiability, validity and model checking against process semantics. Eventualy we propose algorithms for validity, satisfiability and model checking

    Strong Turing Degrees for Additive BSS RAM's

    Full text link
    For the additive real BSS machines using only constants 0 and 1 and order tests we consider the corresponding Turing reducibility and characterize some semi-decidable decision problems over the reals. In order to refine, step-by-step, a linear hierarchy of Turing degrees with respect to this model, we define several halting problems for classes of additive machines with different abilities and construct further suitable decision problems. In the construction we use methods of the classical recursion theory as well as techniques for proving bounds resulting from algebraic properties. In this way we extend a known hierarchy of problems below the halting problem for the additive machines using only equality tests and we present a further subhierarchy of semi-decidable problems between the halting problems for the additive machines using only equality tests and using order tests, respectively

    Process Algebra, CCS, and Bisimulation Decidability

    Get PDF
    Over the past fifteen years, there has been intensive study of formal systems that can model concurrency and communication. Two such systems are the Calculus of Communicating Systems, and the Algebra of Communicating Processes. The objective of this paper has two aspects; (1) to study the characteristics and features of these two systems, and (2) to investigate two interesting formal proofs concerning issues of decidability of bisimulation equivalence in these systems. An examination of the processes that generate context-free languages as a trace set shows that their bisimulation equivalence is decidable, in contrast to the undecidability of their trace set equivalence. Recent results have also shown that the bisimulation equivalence problem for processes with a limited amount of concurrency is decidable

    Further Results on Partial Order Equivalences on Infinite Systems

    Get PDF
    In [26], we investigated decidability issues for standard language equivalence for process description languages with two generalisations based on traditional approachesfor capturing non-interleaving behaviour: pomset equivalence reflecting global causal dependency, and location equivalence reflecting spatial distribution of events. In this paper, we continue by investigating the role played by TCSP-style renaming and hiding combinators with respect to decidability. One result of [26] was that in contrast to pomset equivalence, location equivalence remained decidable for a class of processes consisting of finite sets of BPP processes communicating in a TCSP manner. Here, we show that location equivalence becomes undecidable when either renaming or hiding is added to this class of processes. Furthermore, we investigate the weak versions of location and pomset equivalences.We show that for BPP with prefixing, both weak pomset and weak location equivalence are decidable. Moreover, we show that weak location equivalence is undecidable for BPP semantically extended with CCS communication

    Expansions of MSO by cardinality relations

    Full text link
    We study expansions of the Weak Monadic Second Order theory of (N,<) by cardinality relations, which are predicates R(X1,...,Xn) whose truth value depends only on the cardinality of the sets X1, ...,Xn. We first provide a (definable) criterion for definability of a cardinality relation in (N,<), and use it to prove that for every cardinality relation R which is not definable in (N,<), there exists a unary cardinality relation which is definable in (N,<,R) and not in (N,<). These results resemble Muchnik and Michaux-Villemaire theorems for Presburger Arithmetic. We prove then that + and x are definable in (N,<,R) for every cardinality relation R which is not definable in (N,<). This implies undecidability of the WMSO theory of (N,<,R). We also consider the related satisfiability problem for the class of finite orderings, namely the question whether an MSO sentence in the language {<,R} admits a finite model M where < is interpreted as a linear ordering, and R as the restriction of some (fixed) cardinality relation to the domain of M. We prove that this problem is undecidable for every cardinality relation R which is not definable in (N,<).Comment: to appear in LMC

    A Decidable Characterization of a Graphical Pi-calculus with Iterators

    Full text link
    This paper presents the Pi-graphs, a visual paradigm for the modelling and verification of mobile systems. The language is a graphical variant of the Pi-calculus with iterators to express non-terminating behaviors. The operational semantics of Pi-graphs use ground notions of labelled transition and bisimulation, which means standard verification techniques can be applied. We show that bisimilarity is decidable for the proposed semantics, a result obtained thanks to an original notion of causal clock as well as the automatic garbage collection of unused names.Comment: In Proceedings INFINITY 2010, arXiv:1010.611

    Computational Problems in Metric Fixed Point Theory and their Weihrauch Degrees

    Full text link
    We study the computational difficulty of the problem of finding fixed points of nonexpansive mappings in uniformly convex Banach spaces. We show that the fixed point sets of computable nonexpansive self-maps of a nonempty, computably weakly closed, convex and bounded subset of a computable real Hilbert space are precisely the nonempty, co-r.e. weakly closed, convex subsets of the domain. A uniform version of this result allows us to determine the Weihrauch degree of the Browder-Goehde-Kirk theorem in computable real Hilbert space: it is equivalent to a closed choice principle, which receives as input a closed, convex and bounded set via negative information in the weak topology and outputs a point in the set, represented in the strong topology. While in finite dimensional uniformly convex Banach spaces, computable nonexpansive mappings always have computable fixed points, on the unit ball in infinite-dimensional separable Hilbert space the Browder-Goehde-Kirk theorem becomes Weihrauch-equivalent to the limit operator, and on the Hilbert cube it is equivalent to Weak Koenig's Lemma. In particular, computable nonexpansive mappings may not have any computable fixed points in infinite dimension. We also study the computational difficulty of the problem of finding rates of convergence for a large class of fixed point iterations, which generalise both Halpern- and Mann-iterations, and prove that the problem of finding rates of convergence already on the unit interval is equivalent to the limit operator.Comment: 44 page

    On the Polytope Escape Problem for Continuous Linear Dynamical Systems

    Full text link
    The Polyhedral Escape Problem for continuous linear dynamical systems consists of deciding, given an affine function f:Rd→Rdf: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} and a convex polyhedron P⊆Rd\mathcal{P} \subseteq \mathbb{R}^{d}, whether, for some initial point x0\boldsymbol{x}_{0} in P\mathcal{P}, the trajectory of the unique solution to the differential equation x˙(t)=f(x(t))\dot{\boldsymbol{x}}(t)=f(\boldsymbol{x}(t)), x(0)=x0\boldsymbol{x}(0)=\boldsymbol{x}_{0}, is entirely contained in P\mathcal{P}. We show that this problem is decidable, by reducing it in polynomial time to the decision version of linear programming with real algebraic coefficients, thus placing it in ∃R\exists \mathbb{R}, which lies between NP and PSPACE. Our algorithm makes use of spectral techniques and relies among others on tools from Diophantine approximation.Comment: Accepted to HSCC 201
    • …
    corecore