
B
R

IC
S

R
S

-98-6
K

.S
unesen:

F
urther

R
esults

on
P

artialO
rder

E
quivalences

on
Infinite

S
ystem

s

BRICS
Basic Research in Computer Science

Further Results on
Partial Order Equivalences on
Infinite Systems

Kim Sunesen

BRICS Report Series RS-98-6

ISSN 0909-0878 March 1998

Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/98/6/

Further Results on Partial Order Equivalences
on Infinite Systems

Kim Sunesen
BRICS∗

Department of Computer Science
University of Aarhus

Ny Munkegade
DK-8000 Aarhus C.

ksunesen@daimi.aau.dk

Abstract

In [26], we investigated decidability issues for standard language equivalence
for process description languages with two generalisations based on traditional ap-
proaches for capturing non-interleaving behaviour: pomset equivalence reflecting global
causal dependency, and location equivalence reflecting spatial distribution of events.

In this paper, we continue by investigating the role played by TCSP-style re-
naming and hiding combinators with respect to decidability. One result of [26] was
that in contrast to pomset equivalence, location equvialence remained decidable for
a class of processes consisting of finite sets of BPP processes communicating in a
TCSP manner. Here, we show that location equivalence becomes undecidable when
either renaming or hiding is added to this class of processes.

Furthermore, we investigate the weak versions of location and pomset equiva-
lences. We show that for BPP with τ prefixing, both weak pomset and weak location
equivalence are decidable. Moreover, we show that weak location equivalence is un-
decidable for BPP semantically extended with CCS communication.

∗Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

1

1 Introduction

In this paper, we investigate the decidability of non-interleaving linear-time behavioural
equivalences on infinite-state systems described by process algebraic languages such as
CCS [19] and TCSP [5].

Our results contribute to the ongoing and systematic investigation of decidability of
problems about infinite-state systems. But, our results may also be seen as a contribution
to the search for elucidating the sometimes delicate computational trade-offs involved in
moving from the standard view of interleaving to more intentional non-interleaving views
of behaviour.

Process algebraic languages, notably CCS [19], TCSP [5] and ACP [3], have proved a
rich source of infinite-state systems, and moreover, an appropriate framework for a sys-
tematic study based on the choice of combinators. One of the most interesting suggestions
is Basic Parallel Processes, BPP, introduced in [7]. BPPs are recursive expressions con-
structed from inaction, action, variables, and the standard operators prefixing, choice and
parallel compositions. By removing the parallel operator one obtains a calculus with ex-
actly the same expressive power as finite automata. BPPs can hence be seen as arising
from a minimal concurrent extension of finite automata and therefore a natural starting
point when exploring concurrent infinite-state systems.

The notion of behavioural equivalences is a cornerstone in the theory of process al-
gebraic languages. It is common to classify behavioural equivalences into branching-time
and linear-time equivalences depending on whether or not the branching structure of the
behaviour is taken into account or not. Another central distinction is made between strong
and weak equivalences. The distinction arises when actions are divided into visible and
invisible actions. Often, there is just one invisible or silent action denoted τ . In the strong
case, the invisible τ action is an action no different from the other actions whereas in the
weak case equivalence is based on abstracting away from the invisible actions only requiring
equivalent behaviour with respect to visible actions.

Many results about decidability are known for interleaving equivalences such as bisim-
ulation and language equivalences on infinite-state systems, see [8, 11] for surveys. Also,
for non-interleaving bisimulation equivalences results are known, see [6, 17].

In [26], we compared standard language equivalence with two generalisations based on
traditional approaches capturing non-interleaving behaviour. The first known as pomset
equivalence was based on pomsets representing global causal dependency [22], and the sec-
ond known as location equivalence on locality [4] representing spatial distribution of events.
The two notions of non-interleaving equivalences were shown to be decidable on BPP con-
trasting the result of Hirshfeld [10] that language equivalence is undecidable. Moreover,
larger subclasses of CCS and TCSP obtained by adding different means for communication
were studied. It was hence shown that when adding the parallel combinator of Milner’s
CCS to BPP, BPPM , we keep the decidability of both location and pomset equivalence
whereas when adding the parallel combinator of Hoare’s TCSP both become undecidable.
Also, for a non-trivial subclass of processes between BPP and TCSP, BPPS , consisting
of finite sets of communicating BPP processes, it was shown that location equivalence is

2

decidable whereas pomset equivalence is not.
The work presented in this paper continues by investigating the role of the renaming

and hiding combinators with respect to decidability, and by investigating the weak versions
of pomset and location equivalence.

First, we look at BPP extended with renaming and hiding combinators, and show by a
reduction to the same problem for BPP that both pomset and location equivalence remain
decidable. Second, we turn to BPPS. It follows from the undecidability for BPPS that
pomset equivalence for BPPS extended with renaming or hiding combinators is undecid-
able. Here, we show that adding any of the combinators makes a significant difference for
location equivalence which becomes undecidable. The result is shown by a reduction to
the halting problem for two-counter machines base on weak encodings of counter machines.
Our results are summarised in the table below where yes indicates decidability and no un-
decidability. The results of the first column are all direct consequences of Hirshfeld’s result
on BPP [10]. The second and third show our results:

Language equiv. Pomset equiv. Location equiv.

BPP no yes yes

BPP + renaming and/or hiding no yes yes

BPPS no no yes

BPPS + renaming and/or hiding no no no

Furthermore, we turn to the weak case. We consider three extensions: BPP with τ pre-
fixing BPPτ , BPP with CCS-communication BPPM , and BPP with both τ prefixing and
CCS-communication BPPτ

M . We show that for BPPτ , both weak pomset and weak location
equivalence are decidable. This points out a current contrast to the results in the inter-
leaving world where there are currently no positive results on deciding weak equivalences
for the full class of BPPτ . In fact, one major open problem is the decidability of weak
bisimulation on BPPτ , see [9, 13]. In [17], a number of non-interleaving weak bisimulations
were shown to be decidable for the class of so–called h-convergent BPPτ

M processes which
are processes that cannot evolve into a divergent process. Also, positive results are known
for the asymmetric problem of deciding weak equivalences between a finite-state system
and an infinite-state system such as BPPτ , see [18, 14]. As a natural next step, we look at
the class of processes BPPτ

M obtained by semantically extending BPPτ with the communi-
cation rule of Milner [19]. We show that for BPPτ

M , (strong) location equivalence remains
decidable whereas weak location equivalence becomes undecidable. The positive result is
shown by a reduction to the same problem for BPPτ and the negative result is shown by
a reduction to the halting problem for two-counter machines. For the problem of deciding
pomset equivalence on BPPτ

M , we give and effective characterisation for the strong case in
terms of a containment problem between finite tree automata and a family of finite tree
automata. Our results are summarised in the table below where yes indicates decidability,
no indicates undecidability, and ? means that the question is still open. The results of the
first column are all direct consequences of Hirshfeld’s result on BPP [10]. The second and
third show our results:

3

Weak

Language equiv. Pomset equiv. Location equiv.

BPP no yes yes

BPPτ no yes yes

BPPM no ? no

BPPτM no ? no

CCS no no no

The rest of the paper is organised as follows. In Section 2, we define fairly standard
TCSP and CCS-style languages, and along the lines of [26] we augment the standard
transitional semantics so that not only actions but also information of their locality is
observed. Moreover, we define the subclasses studied in the following sections. Language,
pomset and location equivalence as presented in [26] are defined in Section 3. Section 4 is
devoted to the study of the renaming and hiding combinator. Weak versions of language,
pomset and location equivalence are defined in Section 5. In Section 6, 7 and 8, we
investigate BPPτ , BPPM , and BPPτ

M , respectively. We conclude with discussions on some
loose ends and suggestions for future work.

2 TCSP/CCS-style languages

We start by defining the abstract syntax and semantics of TCSP [12, 21] and CCS [19] –
style a languages. The definitions are fairly standard. As usual, we fix a countably infinite
set of actions Λ = {α, β, . . .}. Then, Λ = {ᾱ, β̄, . . . } is the set of complement actions
such that ¯ is a bijection between Λ and Λ, mapping ¯̄α to α. Let Act = Λ ∪ Λ and let
Actτ = Act ∪ {τ} be the set of actions, where τ is a distinguished action not in Act. τ is
known as the invisible action. Any other action is visible. Also, fix a countably infinite set
of variables Var = {X, Y, Z, . . .}. A renaming f is an endofunction on Actτ such that τ is
preserved and reflected, that is, f−1({τ}) = {τ}.

The set of process expressions of TCSP is defined by the abstract syntax

E ::= 0 | X | σ.E | E + E | E ‖A E | E[f] | E\\L

where X is in Var, σ inActτ , A and L are subsets ofAct and f is a renaming. All constructs
are standard. 0 denotes inaction, X a process variable, σ. prefixing, + non-deterministic
choice, ‖A TCSP parallel composition of processes executing independently with forced
synchronisation on actions in the synchronisation set, A, [f] renaming of actions according
to the renaming f , \\L hiding of the actions in L. For convenience, we shall write ‖ for ‖∅.

The set of CCS process expressions is defined by the abstract syntax

E ::= 0 | X | σ.E | E + E | E ‖ E | E\L | E[f]

where X is in Var, σ in Actτ , L a subset of Λ and f is renaming. 0, X, σ., +, and [f] are
as for TCSP. ‖ is CCS parallel composition of processes executing independently with the
possibility of pairwise CCS-synchronisation and \L is CCS-restriction. Note that we do not

4

put the usual requirement of preservation of complement [19] on the renaming (relabelling)
function because our results go through with or without.

A process family is a family of recursive equations ∆ = {Xi
def
= Ei | i = 1, 2 . . . , n},

where Xi ∈ Var are distinct variables and Ei are process expressions containing at most
variables in Var(∆) = {X1, . . . , Xn}. A process E is a process expression of with a process
family ∆ such that all variables occurring in E, Var(E), are contained in Var(∆). We
shall often assume the family of a process to be defined implicitly. Dually, a process
family denotes the process defined by its leading variable X1, if not mentioned explicitly.
Let Act(E) denote the set of actions occurring in process E and its associated family. A
process expression E is guarded if each variable in E occurs within some subexpression
σ.F of E. Following [19], we also consider the more restricted kind of guarding where
furthermore the “guard” cannot be a τ action, that is, σ 6= τ , in this case we say that the
process is Milner guarded. A process family is (Milner) guarded if for each equation the
right side is (Milner) guarded. A process E with family ∆ is (Milner) guarded if E and ∆
are (Milner) guarded. Throughout the paper we shall only consider guarded processes and
process families.

We enrich the standard operational semantics of TCSP [27] and CCS [19] by adding
information to the transitions allowing us to observe an action together with its location.
More precisely, the location of an action in a process P is the path from the root to the
action in the concrete syntax tree represented by a string over {0, 1} labelling left and right
branches of ‖A-nodes with 0 and 1, respectively, and all other branches with the empty
string ε.

Let L = P({0, 1}∗), i.e. finite subsets of strings over {0, 1}∗, and let l range over elements
of L. We interpret prefixing a symbol to L as prefixing elementwise, i.e. 0l = {0s | s ∈ l}.
With this convention, any process determines a (Actτ ×L)-labelled transition system with
states the set of process expressions reachable from the leading variable and transitions
given by the transitions rules of Table 1, 2, 3, and 4 for TCSP, and Table 1, 5, 6, and
3 for CCS. The set of computations of a process, E, is as usual defined as sequences of
transitions, decorated by action and locality information:

c : E = E0

σ1

−→
l1
E1 . . .

σn
−→
ln
En

We let loc(c) denote the set of locations occurring in c, i.e. loc(c) =
⋃

1≤i≤n li.

5

σ.E
σ
−→
{ε}E (prefix)

E
σ
−→
l
E ′

X
σ
−→
l
E ′
, (X

def
= E) ∈ ∆ (unfold)

E
σ
−→
l
E ′

E + F
σ
−→
l
E ′

(suml)
F

σ
−→
l
F ′

E + F
σ
−→
l
F ′

(sumr)

E
σ
−→
l
E ′

E‖AF
σ
−→
0l
E ′‖AF

, σ 6∈ A (parl)
F

σ
−→
l
F ′

E‖AF
σ
−→
1l
E‖AF ′

,σ 6∈ A (parr)

Table 1: Transition rules for TCSP/CCS.

E
σ
−→
l0
E ′ F

σ
−→
l1
F ′

E‖AF
σ
−→

0l0∪1l1
E ′‖AF ′

, σ ∈ A (com)

Table 2: Transition rule for TCSP communication.

Example 1 Consider the process

p1 = a.b.c.0 ‖{b} b.0.

The following is an example of an associated computation (representing the unique maximal
run)

p1

a
−→
{0}

b.c.0 ‖{b} b.0
b
−→
{0,1}

c.0 ‖{b} 0
c
−→
{0}

0 ‖{b} 0.

Consider alternatively the process

p2 = a.b.0 ‖{b} b.c.0

with computation

p2

a
−→
{0}

b.0 ‖{b} b.c.0
b
−→
{0,1}

0 ‖{b} c.0
c
−→
{1}

0 ‖{b} 0.

�

6

E
σ
−→
l
F

E[f]
f(σ)
−→
l
F [f]

, (ren)

Table 3: Transition rule for TCSP/CCS renaming.

E
σ
−→
l
F

E\\L
σ
−→
l
F\\L

, σ 6∈ L (hid1)
E

σ
−→
l
F

E\\L
τ
−→
l
F\\L

, σ ∈ L (hid2)

Table 4: Transition rules for TCSP hiding.

E
σ
−→
l0
E ′ F

σ̄
−→
l1
F ′

E ‖ F
τ
−→

0l0∪1l1
E ′ ‖ F ′

(τ − com)

Table 5: Transition rule for CCS communication.

E
σ
−→
l
F

E\L
σ
−→
l
F\L

, σ, σ̄ 6∈ L (res)

Table 6: Transition rule for CCS restriction.

7

2.1 BPP, BPPτ , BPPM , and BPPτ
M

We shall investigate a number of syntactic as well as semantic subsets of TCSP and CCS.
The calculus known as Basic Parallel Processes [7] BPP is a syntactic subset of CCS and
TCSP which can be seen as the largest common subset of these (except for the renaming
combinator). The abstract syntax of BPP expressions is

E ::= 0 | X | σ.E | E + E | E ‖ E

where σ ∈ Act (note that τ prefixing is not allowed), and the semantics is given by the
rules in Table 1, in particular there is no rule for communication.

BPPτ , is the subset of CCS obtained by adding τ prefixing, that is, syntactically the
prefixing combinator σ. is extended to all σ ∈ Actτ the semantics is the same as for BPP

BPPM , is the subset of CCS obtained by adding the transition rule τ -com of Table 5
to BPP and hence introducing CCS-synchronisation. Since there is no restriction opera-
tor in BPPM communication cannot be forced. Whenever a communication occurs in a
computation, also the computation with the communicating actions occurring separately is
possible. Conversely, if there is a computation in which two complementing actions occur
independently then the same computation except from the two actions now communicating
exists.

BPPτ
M , is the subset of CCS obtained by adding both τ prefixing and the transition

rule τ -com of Table 5 to BPP.
In the following, we shall also consider the subsets of TCSP and CCS obtained by

adding the renaming and the hiding combinator to the syntax, and the rules of Table 3
and 4 to the semantics of BPP, BPPτ , BPPMand BPPτ

M , we called these classes BPP,
BPPτ , BPPMand BPPτ

M with renaming and hiding, respectively.
We shall make convenient use of the following structural congruence.

Definition 2 Let ≡ be the least congruence on BPPτ
M expressions with respect to all

operators such that the following laws hold.

Abelian monoid laws for +:

E + F ≡ F + E

E + (F +G) ≡ (E + F) +G

E + 0 ≡ E

Abelian monoid laws for ‖:

E ‖ F ≡ F ‖ E
E ‖ (F ‖ G) ≡ (E ‖ F) ‖ G

E ‖ 0 ≡ E

Idempotence law for +:

E + E ≡ E

8

Linear-time laws:

(E + F) ‖ G ≡ (E ‖ G) + (F ‖ G)

σ.(E + F) ≡ σ.E + σ.F

�

As parallel composition is commutative and associative, it is convenient to represent a
parallel compositionX0 ‖ . . . ‖ Xk by the multiset {|X0, . . . , Xk|}. Inaction 0 is represented
by the empty multiset. For a set Var, we denote by Var⊗ the set of all finite multisets over
Var.

Definition 3 A BPPτ
M family ∆ = {Xi

def
= Ei | i = 1, 2 . . . , n} is in (quasi) normal form

if and only if each expression Ei is of the form

Ei ≡
ni∑
j=1

σijαij

where σij ∈ Actτ and αij ∈ Var(∆)⊗. �

For a BPPτ
M family ∆ = {Xi

def
= Ei | i = 1, 2 . . . , n} in normal form the branching bound

is the maximal cardinality of the multisets appearing in the sums, that is, max{|αij| | i ∈
[n], j ∈ [ni]}. We sometimes write σα ∈ Ei to denote that there is a j ∈ [ni] such that
σ = σij and α = αij .

2.2 BPPS

A natural restriction when dealing with non-interleaving behaviours is to allow only parallel
composition in a fixed static setup, see e.g. [2, 1]. This of course leads to finite-state
systems. We generalise the idea to possibly infinite-state systems. Let BPPS be the
syntactic subset of TCSP obtained by allowing only synchronisation, i.e. the ‖A operator
with A 6= ∅, at the top level and restricting the synchronisation sets to be the set of all
actions possible in either of the components.

A BPPS process can hence be seen as a fixed set of BPP processes synchronising on
every action. Formally, a BPPS expression is given by the abstract syntax

E ::= X1 ‖Σ . . . ‖Σ Xl,

where Σ ⊇ Act. A BPPS family is a process family ∆ = {X def
= X1 ‖Σ . . . ‖Σ Xl}∪∆′ with

leading variable X such that the leading variable X does not occur on any right-side, the
variables X1, . . . , Xl are contained in Var(∆′), the synchronisation set Σ is a superset of
the actions Act(∆′) in ∆′, and ∆′ is a BPP family in normal form. A BPPS process E is

9

a BPPS expression with a process family ∆′ such that {X0
def
= E} ∪∆′ is a BPPS family

with leading variable X0. We call l the arity of ∆.

BPPS with renaming is all TCSP processes of the form ∆ = {X def
= (X1 ‖Σ . . . ‖Σ

Xl)[f]}∪∆′ such that {X def
= X1 ‖Σ . . . ‖Σ Xl}∪∆′ is a BPPS process and f is a renaming.

BPPS with hiding is all TCSP processes of the form ∆ = {X def
= (X1 ‖Σ . . . ‖Σ Xl)\\L}∪

∆′ such that {X def
= X1 ‖Σ . . . ‖Σ Xl} ∪∆′ is a BPPS process.

3 Language, pomset, and location equivalence

Let v be the prefix ordering on {0, 1}∗, extended to sets, i.e. for l, l′ ∈ L

l v l′ ⇐⇒ ∃s ∈ l, s′ ∈ l′. s v s′.

As usual, we use [n] to denote the set {1, 2, . . . , n}. For a given computation

c : E0

σ1

−→
l1
E1 . . .

σn
−→
ln
En,

we define the location dependency ordering over [n] as follows:

i ≤c j ⇐⇒ livlj ∧ i ≤ j.

As usual, let ≤∗c denote the transitive closure of ≤c, let <∗c denote the strict version of ≤∗c ,
that is, i <∗c j iff i ≤∗c j and i 6= j, and let l∗c denote the covering relation i <∗c j, that is,
il∗cj iff i <∗c j and ∀k ∈ [n]. k <∗c j ⇒ k ≤∗c i.

Definition 4 Behavioural Equivalences.
Processes E and E ′ are said to be language equivalent, E ∼lan E ′, iff for every computation
of E

c : E
σ1

−→
l1
E1 . . .

σn
−→
ln
En

there exists a computation of E ′

c′ : E ′
σ1

−→
l′1
E ′1 . . .

σn
−→
l′n
E ′n

and vice versa.
E and E ′ are said to be pomset equivalent, E ∼pom E ′, iff the above condition for language
equivalence is satisfied, and c′ is further required to satisfy i ≤∗c j ⇐⇒ i ≤∗c′ j.
E and E ′ are said to be location equivalent, E ∼loc E ′, iff the above condition for language
equivalence is satisfied, and c′ is further required to satisfy that there exists a relation
R ⊆ loc(c)× loc(c′) satisfying that for each 1 ≤ i ≤ n, R restricts to a bijection on li× l′i,
and for each i ≤ j, s0(R∩ li × l′i)s′0 and s1(R∩ lj × l′j)s′1, s0 v s1 ⇐⇒ s′0 v s′1.

10

In each case, we say that c′ is a match of c with respect to ∼lan, ∼pom and ∼loc, respec-
tively. 2

Notice that the condition in the definition of pomset equivalence requires identical global
causal relationship between the events of c and c′, whereas the condition in the definition
of location equivalence requires the same set of local causal relationships (up to renaming
of locations). Also, notice that our notion of pomset equivalence is consistent with formal
definitions from e.g. [15], and that location equivalence is a natural application of the
concepts from [4] to the setting of language equivalence.

Example 5 It follows immediate from the definition that for our process language con-
sidered so far, location equivalence is included in pomset equivalence, which in turn is
included in language equivalence. The standard example of processes a.0 ‖ b.0 and a.b.0
+ b.a.0 shows that the inclusion in language equivalence is strict. The different intuitions
behind our two non-interleaving equivalences may be illustrated by the two processes from
Example 1. Formally, the reader may verify that p1 and p2 are pomset equivalent but not
location equivalent. Intuitively, both processes may perform actions a,b, and c in sequence,
i.e. same set pomsets, but in p1 one location is responsible for both a and c, whereas in p2

two different locations are responsible for these actions. 2

4 Renaming and hiding

In this section, we investigate the role of renaming and hiding with respect to the decidabil-
ity. First we show that for BPP, the decidability of both pomset and location equivalence
is preserved when adding renaming and hiding. Second, we show that adding renaming or
hiding to BPPS makes location equivalence undecidable.

Theorem 6 For BPP with renaming and hiding, ∼loc = ∼pom ⊂∼lan.

Proof: That ∼pom and ∼lan coincide follows from the proof of Theorem 7 below. The
inclusion into ∼lan follows from the definition and the strictness follows from Example 5. 2

Theorem 7 For BPP with renaming and hiding, ∼loc and ∼pom are decidable.

Proof: It is not hard to check the following equalities:

(σ.E)[f] ∼pom f(σ).E[f],

(σ.E)\\L ∼pom σ.(E\\L), if σ 6∈ L,

11

(σ.E)\\L ∼pom τ.(E\\L), if σ ∈ L,

E[f]\\L ∼pom (E\\f−1(L))[f], and

(E\\L)[f] ∼pom (E[f ′])\\{µnewE }, f ′(σ) =

{
µnewE if σ ∈ L,
f(σ) otherwise

where µnewE is a new action not present in the process E.
Because no communication is possible, it is straightforward using such equalities to

check that renaming and hiding combinators can be eliminated by pushing them inwards
while renaming and hiding actions in the prefixing combinator explicitly such that the
obtained process is an ordinary BPP process which is pomset and location equivalent to
the orignal process. 2

Theorem 8 For BPPS with renaming and hiding, ∼loc ⊂ ∼pom ⊂∼lan.

Proof: The inclusions follow by the definition, and the strictness from simple modifica-
tions of Example 1 and 5. 2

We spend the rest of the section showing that location equivalence is undecidable for
BPPS with renaming or hiding. The proof is by a reduction from the halting problem for
two-counter machines. A (Minsky) two-counter machine [20] consists of a finite program

l1 : com1
...

ln−1 : comn−1

ln : HALT

and unbounded counters c0 and c1. The lis and the comis are called labels and commands,
respectively. Commands are of one of two different types: commands of type I are of the
form cj := cj +1;goto l (unconditional increment) and commands of type II are of the form
if cj = 0 then goto l else cj := cj − 1;goto l′ (conditional decrement), where j is either 0 or
1, and l and l′ are labels.

A two-counter machine M executes on a given input (contents of the counters (c0, c1))
(m0, m1) by first executing com1, then com2, and so forth. Stopping if and only if the
HALT command is reached. M halts on input (m0, m1) if it reaches label ln and hence
the HALT command in finitely many steps. It is well-known that the halting problem for
two-counter machines is undecidable.

Theorem 9 [20] It is undecidable whether a two-counter machineM halts on input (0, 0).
2

Given a two-counter machine M the idea is to encode the state of M by a BPPS process
of the form

X ‖Σ (C0 ‖ dm0
0 ‖ C1 ‖ dm1

1)

12

where the variable X encodes the state of the finite-state program of M, m0 and m1 are
the values of the counters, and C0 and C1 controls in interaction with X the incrementing,
decrementing and zero-testing of the counters. We exhibit two different encodings which
are both weak in the sense that they allow computations which do not correspond to any
execution of the encoded machine. For convenience, we work with TCSP processes and
not BPPS with renaming for starters. Later, we transform the setting appropriately.

Definition 10 First weak encoding
Given a two-counter machine M let ∆M be the TCSP family with leading variable X0

given by the following definitions where k ranges over 1, . . . , n− 1 and j ranges over 0, 1:

X0
def
= X1 ‖A ((GC0 ‖ GC1) ‖B S),

where A = {ij , zj, dj | j = 0, 1} and B = {zj , dj | j = 0, 1}. If comk is cj := cj + 1;goto lp
then

Xk
def
= ij .Xp,

and if comk is if cj = 0 then goto lp else cj := cj − 1; goto lq then

Xk
def
= zj.Xp + dj .Xq,

Xn
def
= h.0,

GCj
def
= ij .(GCj ‖ Cj) + zj .GCj,

Cj
def
= dj .0,

S
def
=

∑
j zj.S + dj.S.

�

LetM be a two-counter machine M and let ∆M be the TCSP family given by Definition
10. It is clear from the definition that for any computation

c : X1

σ1

−→
l1
E1 . . .

σn
−→
ln
En

of ∆M and for each i ∈ [n] there is ki, ji, m
i
0 and mi

1 such that either

Ei ≡ Xki ‖A (GC0 ‖ Cm0
0 ‖ GC1 ‖ Cm1

1) ‖B S

13

or

Ei ≡ 0 ‖A (GC0 ‖ Cm0
0 ‖ GC1 ‖ Cm1

1) ‖B S

in the latter case Ei is called a halting state. The computation c is a halting computation
if it reaches a halting state. For each i ∈ [n] and j = 0, 1, let countj(Ei) = mj . The
computations of the encoding above always increment and decrement counters properly
but they may take the zero branch eventhough the corresponding counter is not zero.

Definition 11 Proper transitions and computations
Let

c : X1 = E0

σ1

−→
l1
E1 . . .

σn
−→
ln
En

be a computation of ∆M. For each i ∈ [n] and j = 0, 1, the ith transition of c is a proper
transition if and only if the zero-branch is only chosen on a zero-counter, that is, if σi = zj
then countj(Ei−1) = 0. The computation c is a proper computation if and only if for each
i ∈ [n] the ith transition is a proper transition. Dually, an improper transition (computa-
tion) is a transition (computation) that is not proper. If c is an improper computation, the
ith transition is the first improper transition in c and σi = zj , c is said to cheat on counter
j at the ith transition, and furthermore, k is said to be the witness iff the kth transition
in c is the first transition to enable a dj still enabled in Ei. �

The following lemma shows that the encoding is correct in the sense that the execution of
M can be uniquely simulated by ∆M. It is however only weakly correct in the sense that
there may be computations of ∆M which do not correspond to executions of M.

Lemma 12 “Weak” correctness of simulation

• If M halts on input (0, 0) then ∆M has a unique maximal proper computation
reaching a halting state.

• If M does not halt on input (0, 0) then all proper computations of ∆M are prefixes
of a single infinite proper computation which never reaches a halting state

Proof: Both properties are not hard to verify: each execution step of M is matched by
a unique transitions of ∆M. Matching for each j = 0, 1, a test for zero, an increment and
a decrement of the jth counter by zj , ij and dj, respectively. 2

Definition 13 Second weak encoding
Given a two-counter machine M let ∆′M be the TCSP family with leading variable Y0

given by the following definitions where k ranges over 1, . . . , n− 1 and j ranges over 0, 1:

Y0
def
= Y1 ‖A (GD0 ‖ GD1) ‖B T,

14

where A = {ij, zj , dj | j = 0, 1} and B = {zj , z′j , dj, d′j | j = 0, 1}. If comk is cj := cj+1;goto
lp then

Yk
def
= ij .Yp,

and if comk is if cj = 0 then goto lp else cj := cj − 1;goto lq then

Yk
def
= zj .Yp + dj .Yq + z′j .Y

H,

Yn
def
= 0

and

GDj
def
= ij .(GDj ‖ Dj) + ij .(GD

′
j ‖ D′j) + zj .GDj ,

GD′j
def
= ij .(GD

′
j ‖ Dj) + zj .GD

′
j + z′j .GD

′
j.

Dj
def
= dj.0,

D′j
def
= d′j.0,

T
def
=

∑
j zj .T + dj.T + z′j .T

H

TH
def
=

∑
j zj .T

H + dj.T
H + d′j.T

H.

Furthermore, for each k over 1, . . . , n− 1 and each j over 0, 1. If comk is cj := cj + 1;goto
lp then

Y Hk
def
= ij .Y

H
p

and if comk is if cj = 0 then goto lp else cj := cj − 1;goto lq then

Y Hk
def
= zj .Y

H
p + dj .Y

H
q + d′j .Y

H
q ,

and

Y Hn
def
= h.0.

�

Let f be the renaming function given by

f(σ) =

zj if σ = z′j
dj if σ = d′j
σ otherwise

15

We call a state of a computation of ∆′M containing a variable labeled by superscript H
an H-labeled state. The idea is that any proper computation of ∆M can and can only be
matched by a computation of ∆′M using only states which are not H-labeled. Whereas an
improper computation of ∆M can and can only be matched by a computation of ∆′M using
only states which are not H-labeled up to the first improper transition and from then on
using only states which are H-labeled.

Lemma 14 M does not halt on input (0, 0) ⇐⇒ X0 ∼loc Y0[f]

Proof: To see the only if direction, assume thatM does not halt. We show that X0 .loc

Y0[f] and that Y0[f] .loc X0. The second case is easy. Let h be the variable-relabeling
homomorphism on syntactic trees of Proc induced by letting h(Yk) = Xk, h(GDj) =
h(GD′j) = GCj, h(Dj) = h(D′j) = Cj and h(T) = h(TH) = S. Then, it is routine to check
that for each computation

d : F0

f(σ1)
−→
l1

F1 . . .
f(σn)
−→
ln

Fn

of Y0[f],

c : h(F0)
σ1

−→
l1
h(F1) . . .

σn
−→
ln
h(Fn)

is a computation of X0.
To show the first case, it suffices by Lemma 12 to consider only every non-halting proper

computation and every improper computation of X0. We split the proof into two. Let

c : X1 = E0

σ1

−→
l1
E1 . . .

σn
−→
ln
En

be a proper and non-halting computation of X0, and let g be the variable-relabeling ho-
momorphism on syntactic trees of Proc induced by letting g(Xk) = Yk, g(GCj) = GDj ,
g(Cj) = Dj and g(S) = T . Again, it is routine to check that

d : g(F0)
σ1

−→
l1
g(F1) . . .

σn
−→
ln
g(Fn)

is a computation of Y0[f]. Next, let

c : X1 = E0

σ1

−→
l1
E1 . . .

σn
−→
ln
En

be an improper computation of X0. Observe that it is straightforward to show by induction
in the length of the computation that for any computation

d : F0

σ1

−→
l′1
F1 . . .

σn
−→
l′n
Fn

16

of Y0[f] with matching transition labelling, also the counters match, that is, for each i ∈ [n]
and j = 0, 1, countj(Ei) = countj(Fi). Now, assume that c is improper because it cheats on
J at I with witness K. By the above the (proper) computation up to the Ith transition can
be matched by Y [f]. Clearly, this match may be assumed to generate CD′J ‖ D′J by the
K transition, and hence the improper Ith transition of c may be match by a z′J transition.
Since a z′J transition leads to an H-labelled state it is easy to see that any continuation
can be matched.

Conversely to see the if direction, assume thatM does halt. We show thatX0 6.loc Y0[f].
By Lemma 12, X0 has a unique maximal proper computation reaching a halting state. We
show that this computation cannot be matched by Y0[f]. Assume that there were a match.
It is easy to check that Y0[f] can only perform h in a H-labelled state and that the only
way to enter such a state is by jperforming a z′j which again can only be performed after a
D′j has been generated. Moreover, since also a d′j can only be performed in an H-labelled
state, we get that D′j must be present in the state performing the first z′j . Now, this is a
contradiction by the fact that f(z′j) = zj and the above observation on counters in match-
ing computations. 2

Let

UL
def
=
∑
σ∈L

σ.UL.

The follwing lemma makes it straightforward to make the reduction to BPPS processes
with renaming.

Lemma 15 Let L1 and L2 be the sets {h} and {i0, i1, h}, respectively, s an action in Act,

X ′0
def
= s.X1 ‖Σ (s.(GC0 ‖ GC1 ‖ UL1) ‖Σ s.(S ‖ UL2)), and

Y ′0
def
= s.Y1 ‖Σ (s.(GD0 ‖ GD1 ‖ UL1) ‖Σ s.(T ‖ UL2)).

Then,

X0 ∼loc Y0[f] ⇐⇒ X ′0 ∼loc Y
′

0 [f].

Proof: Straightforward because the computations are the same except from the involve-
ment of every component in every transition and because the new locations observed are
exactly the same in both processes. 2

Theorem 16 For BPPS with renaming, ∼loc and ∼pom are undecidable.

Proof: Immediate consequence of Lemma 15 and 14. 2

17

Lemma 17 Let L be the set of actions {dj, d′j, zj, z′j | j = 0, 1}.

M does not halt on input (0, 0) ⇐⇒ X0\\L ∼loc Y0\\L

Proof: The proof is a routine adaption of the Lemma 14. 2

Lemma 18 Let L, L1 and L2 be the sets {dj, d′j, zj, z′j | j = 0, 1}, {h} and {i0, i1, h},
respectively, and let

X ′0
def
= s.X1 ‖Σ (s.(GC0 ‖ GC1 ‖ UL1) ‖Σ s.(S ‖ UL2)), and

Y ′0
def
= s.Y1 ‖Σ (s.(GD0 ‖ GD1 ‖ UL1) ‖Σ s.(T ‖ UL2)).

Then,

X0\\L ∼loc Y0\\L ⇐⇒ X ′0\\L ∼loc Y
′

0\\L

Proof: Straightforward. 2

Theorem 19 For BPPS with hiding, ∼loc and ∼pom are undecidable.

Proof: Immediate consequence of Lemma 17 and 18. 2

5 Weak language, pomset, and location equivalence

All the undecidability results for the strong case extend immediately to the weak case.
In the following we show that for BPPτ the decidability results for pomset and location
equivalence extent to the weak case.

With each computation c we associate a partial function vc : N ↪→ N yielding on i the
index of the ith visible action in c if it exists and undefined otherwise, and the function
‖ c ‖ yielding the number of occurrences of visible actions in c.

18

Definition 20 Processes E and E ′ are said to be weak language preordered, E /lan E
′, iff

for every computation of E

c : E
σ1

−→
l1
E1 . . .

σn
−→
ln
En

there exists a computation of E ′

c′ : E ′
σ′1
−→
l′1
E ′1 . . .

σ′m
−→
l′m
E ′m

such that there ‖ c ‖ = ‖ c′ ‖, for each i ∈ [‖ c ‖], σvc(i) = σ′
vc
′ (i)

.

E and E ′ are said to be weak pomset preordered, E /pom E ′, iff c′ is further required to
satisfy that for each i, j ∈ [‖ c ‖], vc(i) ≤∗c vc(j) ⇐⇒ vc

′
(i) ≤∗c′ vc

′
(j).

E and E ′ are said to be weak location preordered, E /loc E
′, iff c′ is further required to

satisfy that there exists a relation R ⊆ loc(c)× loc(c′) satisfying that for each 1 ≤ i ≤‖ c ‖,
R restricts to a bijection on li×l′i, and for each i, j ∈ [‖ c ‖] such that i ≤ j, s0(R∩li×l′i)s′0
and s1(R∩ lj × l′j)s′1, s0 v s1 ⇐⇒ s′0 v s′1. In each case, we say that c′ is a match of c
with respect to ≈lan, ≈pom and ≈loc, respectively.

Moreover, E and E ′ are said to be weak language equivalent, E ≈lan E ′, iff E /lan E
′

and E ′ /lan E. E and E ′ are said to be weak pomset equivalent, E ≈pom E ′, if and only if
E /pom E ′ and E ′ /pom E. E and E ′ are said to be weak location equivalent, E ≈loc E ′, if
and only if E /loc E

′ and E ′ /loc E. �

We write E
ε

=⇒ E ′, if E = E′, or if there exists a computation

E
τ
−→
l1
E1 . . .

τ
−→
ln
En = E ′,

from E to E ′ with only τ transition, E
σ

=⇒
l
E ′, if there exists processes E1 and E2 such that

E
ε

=⇒ E1

σ
−→
l
E2

ε
=⇒ E ′,

and E
σ−→ ε

=⇒ E ′, if there exists a process E ′′ such that

E
σ−→ E ′′

ε
=⇒ E ′.

19

Example 21 Consider the process

p3 = (a.b.0 ‖ b̄.c.0)\{b}

The following is an example of an associated computation (representing the unique maximal
run)

c : p3

a
−→
{0}

(b.0 ‖ b̄.c.0)\{b}
τ
−→
{0,1}

(0 ‖ c.0)\{b}
c
−→
{1}

(0 ‖ 0)\{b}.

Consider alternatively the process

p4 = τ.a.τ.c.0

with computation

d : p4

τ
−→
{ε}

a.τ.c.0
a
−→
{ε}

τ.c.0
τ
−→
{ε}

c.0
c
−→
{ε}

0.

The computation d is a match of c with respect to ≈lan and ≈pom but not with respect to
≈loc. �

6 BPPτ

In the strong case, τ is just another action no different than the others. Hence, all results
of decidablility on BPP transfers to BPPτ .

Theorem 22 For BPPτ , ≈loc = ≈pom ⊂≈lan.

Proof: That ≈pom and ≈lan coincide is an easy consequence of the definition because no
communication is possible. The inclusion into ≈lan follows immediate from the definition
and the strictness follows from Example 5. 2

It is easy to see that a Milner guarded BPPτ family ∆ can effectively be transformed into a
guarded BPP family ∆′ by systematically getting rid of τ.E subexpressions by appropriate
substitutions of E in such a way that ∆ ≈pom ∆′ (∆ ≈loc ∆′).

For the general case, this elimination procedure cannot be applied due to the possibility
of τ cycles. Instead, we introduce a closure operation performing combined elimination
and bounded saturation of τs as explained below.

To appriciate the difference in the underlying “τ -structure” of computations which
correspond to matching computations with respect to ≈pom, consider the pomsets in Figure
1, as pomsets they clearly do not match but as weak pomset they match. The pomset to
the left (right) is a pomset of ∆1 (∆2) in Example 23 below. In fact, ∆1 ≈pom ∆2 but
clearly ∆1 6∼pom ∆2. Moreover, ∆1 and ∆2 can match any BPPτ computation over a and
b with respect to ≈pom.

20

τ

						
τ

kkkkkkkkkkkkkkkkkk

RRRRRRRRRRRRRRRR

a τ

τ

xxxxxxxxx

GGGGGGGGGG τ

{{{{{{{{

CCCCCCCC

b τ

�������
τ

�������

3333333 τ

�������

3333333 a b

a τ

�������
a b a b

b τ

a τ

b

Figure 1: Distinct strong pomsets whose weak versions match.

Example 23

∆1 = { X1
def
= τ.{X2, X3},

X2
def
= a.{X1},

X3
def
= τ.{X1, X4},

X4
def
= b.{X1} }

∆2 = { Y1
def
= τ.{Y1, Y1}+ τ.{Y2, Y3},

Y2
def
= a.{Y1},

Y3
def
= b.{Y1}}

�

In the following, we show how to reduce the decidability of /pom to the decidability of
.pom. The main observation used is that whereas a BPPτ family may allow computations
of arbitrary large branching degrees when restricting to visible transitions, the underlying
dependency ordering is a tree of a branching degree uniformly bounded over all computa-
tions of the family. Hence, if ∆ and ∆′ are BPPτ families then based on the branching
bound B of ∆, we seek to effectively compute a family SB(∆′) such that ∆ /pom ∆′ iff
∆ .pom SB(∆′). Intuitively, SB(∆′) will do all computations whose underlying dependency
ordering is a tree with branching bounded by B and which can be match by a computa-
tion of ∆′ with respect to ≈pom. The first step is to compute for each variable X a finite
representation of the set of all states reachable from X by doing any number of τ actions,
that is, the set

{β | X ε
=⇒ β}

21

and for each action σ ∈ Act(∆)∪{τ} a finite representation of the set of all states reachable
from X by doing a σ action and then doing any number of τ actions, that is,

{β | X σ−→ ε
=⇒ β}.

For this purpose, it is convenient to assume that the families are of the following form.

Definition 24 A BPPτ family ∆ = {Xi
def
= Ei | i = 1, 2 . . . , n} is in subset closed normal

form if and only if it is in normal form and furthermore for each expression

Ei ≡
ni∑
j=1

σijαij

the set Γij = {αij | j ∈ [ni]} is subset closed, that is, for every α1, α2 ∈ Var(∆)⊗ such that
α1 ⊆ α2, if α2 ∈ Γij then α1 ∈ Γij. �

As shown next, we can safely restrict ourselves to families in subset closed normal form in
the following.

Proposition 25 Let ∆ be a BPPτ family with leading variable X1. Then a BPPτ family
in subset closed normal form ∆′ can be effectively constructed such that ∆′′ ∼pom ∆′,
where ∆′′ is ∆ extended with a new leading variable X ′1 = s.X1, for some s ∈ Act and
X ′1 6∈ Var(∆).

Proof: Straightforward extension of the normal form result in [26]. 2

Note that for example the process (a.0 ‖ b.0) + c.0 can not be brought on normal form
while preserving pomset equivalence whereas the process s.((a.0 ‖ b.0) + c.0) can. Hence,
the point of the slightly technical normal form result is that prefixing the leading equation
of two BPP processes by the same action respects and reflects pomset equivalence.

We base the computation of the set reachable states discussed above on a “weak”
version of the standard Karp-Miller tree, see e.g. [23, 24]. For this purpose, we need a
bunch of fairly standard definitions.

22

Definition 26 The set IN∪{ω} of the natural numbers IN extended with a special (limit)
symbol ω is denoted by INω. As usual, the operations + and −, and the relation ≤ over
IN are extended to INω by stipulating that for all n ∈ IN , ω + ω = ω + n = n + ω = ω
and n ≤ ω. The set of all n-tuples over IN (INω) is denoted INn (INn

ω), elements of IN
(INn

ω) are denoted m̄, and the components are for each i ∈ [n] denoted by m̄i. For each
i ∈ [n], we denote by ēi the ith unit n-tuple, that is, the n-tuple with 1 in the ith entry
and 0 in all other entries. For any k ∈ IN , the n-tuple with k in all entries is denoted by k̄.
Operations and relations on INω extend componentwise to INn

ω. The downwards closure of

a subset M ⊆ INn
ω is the set M̂ = {m̄ ∈ INn | ∃m̄′ ∈ M. m̄ ≤ m̄′}. Let α a finite multiset

over a finite set of variables {X1, . . . , Xn}, then we denote by m̄(α) the n-tuple over IN
defined by taking the ith entry to be the number of copies of the variable Xi in α. For
any BPPτ family ∆, let |〉∆ ⊆ INn

ω × (Act(∆) ∪ {τ})× INn
ω be the relation defined by for

each m̄, m̄′ ∈ INn
ω and σ ∈ Act(∆) ∪ {τ}, (m̄, σ, m̄′) ∈ |〉∆ iff there exists Xi ∈ Var(∆) and

α ∈ Var(∆)⊗ such that m̄ ≥ ēi, X
σ−→ α and (m̄ − ēi) + m̄(α) = m̄′. Often, we use the

more convenient infix notionation m̄|σ〉∆m̄′ instead of (m̄, σ, m̄′) ∈ |〉∆ and whenever ∆ is
clear from the context we drop the ∆ subscript. �

Keeping in mind that BPPτ processes in normal form may be viewed as communication-
free nets, the weak Karp-Miller tree defined next are essentially the Karp-Miller trees on
nets but restricted to τ actions.

Definition 27 Let ∆ be a BPPτ family in normal form. The weak Karp-Miller tree
associated with the process α ⊆ Var(∆)⊗ is a node labelled tree Tα in which each node is
labelled with an n-tuple over INω. The tree Tα is inductively defined as follows

(i) the root of Tα is labelled by m̄(α), and

whenever v is a node in Tα labelled m̄, then

(ii) if m̄ is also the label of an ancestor of v then v has no sons, and

(iii) otherwise, for each m̄′ ∈ INn
ω such that t = m̄|τ〉m̄′, v has a son vt with label m̄t

where

(a) if there is an ancestor v′′ of v with label m̄′′ such that m̄′′ ≤ m̄′ then for each
i ∈ [n],

m̄t
i =

{
ω, if m̄′′i < m̄′i,
m̄′i, else

(b) otherwise, m̄t = m̄′.

For each σ ∈ Act(∆) ∪ {τ}, the σ-weak Karp-Miller tree associated with the process
α ⊆ Var(∆)⊗ is a node labelled tree T σα in which each node is labelled with an n-tuple over
INω such that

23

(i) the root of T σα is labelled by m̄(α), and

(ii) for each β ⊆ Var(∆)⊗ such that α
σ→ βt, the root has the weak Karp-Miller tree Tβt

as a subtree.

The set of all labels in Tα and T σα is denoted by E(α) and Eσ(α), respectively. Moreover,

E(∆) =
⋃

X∈Var(∆)

E(X) ∪
⋃

σ∈Act(∆)∪{τ}

Eσ(X)

�

Lemma 28 Let ∆ be a BPPτ family in normal form. Then for any process α ⊆ Var(∆)⊗,
the weak Karp-Miller tree Tα is finite and effectively constructible, and moreover, for any
σ ∈ Act(∆) ∪ {τ}, the σ-weak Karp-Miller tree T σα is finite and effectively constructible.
In particular, the set E(α) of all labels in Tα, the set Eσ(α), of all labels in T σα , and the set
E(∆) are finite and effectively computable.

Proof: Standard Karp-Miller trees for vector addition systems and Petri nets are well-
known to be finite and effectively constructible, see e.g. [23, 24], and it is routine to transfer
the proof to (σ-) weak Karp-Miller trees. The rest follows easily. 2

Lemma 29 Let ∆ be a BPPτ family in subset closed normal form. Then,

Ê(X) = {m̄(β) | X ε
=⇒ β}, and

Êσ(X) = {m̄(β) | X σ−→ ε
=⇒ β}.

Proof: Straightforward from the construction of the (σ-) weak Karp-Miller tree and
downwards closure ensure by the subset closedness. 2

24

Definition 30 Let BPPτ be a family ∆ = {Xi
def
= Ei | i = 1, 2 . . . , n} in subset closed

normal form such that for each i ∈ [n], Ei ≡
∑ni

j=1 σijαij and let B ∈ N. Define the
τ -saturation of ∆ up-to branching bound B,

SB(∆) = {Yi def
= Fi | i ∈ [n]} ∪ {Zσ

m̄
def
= Gσ

m̄ | m̄ ∈ E(∆) ∧ σ ∈ Act(∆) ∪ {τ}},

where for each m̄ ∈ E(∆), the set Cm̄ consists of all submultisets γ for which there exist
subsets m̄1, . . . , m̄k ∈ E(∆), α ⊆ Var(∆)⊗, such that

γ = {|Zτ
m̄1
, . . . , Zτ

m̄k
|} ∪ α ∧ |γ| ≤ B ∧

∑
1≤i≤k

m̄i + m̄(α) ≤ m̄,

and

Gσ
m̄ ≡

∑
β∈Cm̄

σ.β,

and for each i ∈ [n],

F ′i ≡
ni∑
j=1

∑
m̄∈Eσij (Xi)

Z
σij
m̄ +

∑
m̄∈E(Xi)

Zτ
m̄, and (1)

Fi ≡ F ′i +
∑

k∈[n], k 6=i, ēk∈E(Xi)

F ′k. (2)

�

Lemma 31 For any BPPτ family ∆ in subset closed normal form and any natural number
B

∆ ≈pom SB(∆), in fact, ∆ .pom SB(∆) and SB(∆) /pom ∆.

Proof: Straightforward from Definition 30. 2

Lemma 32 Let ∆1 and ∆2 be BPPτ families in subset closed normal form such that B is
the branching bound of ∆1. Then,

∆1 /pom ∆2 ⇐⇒ ∆1 .pom SB(∆2).

Proof: The if direction follows from Lemma 31, because

∆1 .pom SB(∆2) ≈pom ∆2.

25

To see the only if direction assume that ∆1 /pom ∆2. We show a slightly stronger result.
For any X ∈ Var(∆) and any computation

c : X
σ1

−→
l1
E1 . . .

σn
−→
ln
En

of ∆1, if there is a computation

d′ : Y
σ′1
−→
l′1
F1 . . .

σ′m
−→
l′m
Fm

such that d′ is a match of c with respect to ≈pom then there is a computation

d′′ : Y
σ1

−→
l′′1
F ′′1 . . .

σ′′n
−→
l′′n
F ′′n

such that d′′ is a match of c with respect to ∼pom. We proceed by induction in the length n
of the computation c, The base case (n = 1) is obvious. In the step (n > 1) there are three
cases σ1 = σ′1, σ1 = τ ∧ σ′1 6= τ , and σ1 6= τ ∧ σ′1 = τ each of which follows by induction
and use of, respectively, the first and second clause in the sum (1) and the second clause
in the sum (2) of Definition 30. 2

Theorem 33 For BPPτ , ≈pom and ≈loc are decidable.

Proof: The decidability of weak pomset equivalence follows from Lemma 32 and the
decidability of BPPτ in the strong case. The decidability of weak location equivalence
follows since by Theorem 22 ≈pom and ≈loc coincide on BPPτ . 2

7 BPPM

We settled the strong case in [26] by showing that pomset and location equivalence conicide
and remain decidable for BPPM . In the weak setting, ≈pom and ≈loc still conicide for BPPτ

but when moving to BPPM this changes. In fact, they become incomparable which contrast
the strong case where location equivalence is always finer then pomset. We have borrowed
the following example from Kiehn [16] to show this.

Example 34 For the BPPM processes

r1 = a.b.0 ‖ b̄.c.0 + a.c.0 and r2 = a.b.0 ‖ b̄.c.0,

we have that r1≈pomr2 and r1 6≈locr2, and for BPPM processes

s1 = a.b.0 ‖ b̄.c.0 + c.b.0 ‖ b̄.a.0 + a.0‖c.0 and s2 = a.b.0 ‖ b̄.c.0 + c.b.0 ‖ b̄.a.0,

we have that s1≈locs2 and s1 6≈poms2. �

26

Theorem 35 For BPPM , ≈loc and ≈pom incomparable and both strictly finer than ≈lan.

Proof: Immediate from the definition and Example 34. 2

7.1 Weak location equivalence

In this section, we settle the weak case by showing that /loc and ≈loc are undecidable
for BPPM . Again, the proof is by a reduction from the halting problem for two-counter
machines. The encodings used are considerably weaker than those used for BPPS with
renaming in the sense that those encodings could only cheat on zero testing whereas these
can additionally cheat on decrement leaving only increment behaving properly.

Clearly, the decidability of /loc would imply decidability of ≈loc. The following lemma
observes that in fact /loc and ≈loc are equivalent with respect to decidability.

Lemma 36 Let E and F be BPPM processes.

E /loc F ⇔ E + F ≈loc F

Proof: Immediate from the definition. 2

We spend the rest of this section showing that /loc and hence ≈loc are undecidable for
BPPM . The proof is by a reduction from the Halting problem for Minsky two-counter
machines to the /loc problem using weak encodings of two-counter machines into BPPM

processes.
Given a two-counter machineM the idea is to encode the state ofM by a BPP process

of the form

X ‖ Cm0
0 ‖ Cm1

1

where the variable X encodes the state of the finite-state program of M and m0 and m1

are the values of the counters.

Definition 37 First weak encoding
Given a two-counter machine M let ∆M be the BPPM family with leading variable X1

given by the following definitions where k ranges over 1, . . . , n− 1 and j ranges over 0, 1.
If comk is cj := cj + 1;goto lp then

Xk
def
= ij.(Xp ‖ Cj),

and if comk is if cj = 0 then goto lp else cj := cj − 1;goto lq then

Xk
def
= zj .Xp + gj .Pkj

and

Pkj
def
= g′j.Xq,

27

Xn
def
= h.0

and

Cj
def
= dj .0

�

LetM be a two-counter machineM and let ∆M be the BPPτ
M family given by Definition

37. It is clear from the definition that for any computation

c : X1

σ1

−→
l1
E1 . . .

σn
−→
ln
En

of ∆M, for each i ∈ [n] there is k ∈ [n], j ∈ {0, 1}, and m0, m1 ∈ IN such that either

Ei ≡ Xk ‖ Cm0
0 ‖ Cm1

1 , Ei ≡ Pkj ‖ Cm0
0 ‖ Cm1

1 , or Ei ≡ Cm0
0 ‖ Cm1

1

in the latter case Ei is called a halting state. The computation c is a halting computation
if it reaches a halting state. For each i ∈ [n] and j = 0, 1, let countj(Ei) = mj . The
computations of the encoding above always increment counters properly but they may
take the zero branch eventhough the corresponding counter is not zero and they may
decrement a non-zero counter at any point.

Definition 38 Proper transitions and computations
Let

c : X1 = E0

σ1

−→
l1
E1 . . .

σn
−→
ln
En

be a computation of ∆M. For each i ∈ [n] and j = 0, 1, the ith transition of c is a proper
transition if and only if

1. (The zero-branch is only chosen on a zero-counter)
If σi = zj then countj(Ei−1) = 0.

2. (A decrement is performed: gjdjg
′
j)

(a) If σi = dj then i > 1 and σi−1 = gj, and

(b) if σi = g′j then i > 1 and σi−1 = dj.

The computation c is a proper computation if and only if for each i ∈ [n] the ith transition
is a proper transition. �

28

Lemma 39 “Weak” correctness of simulation

• If M halts on input (0, 0) then ∆M has a unique maximal proper computation
reaching for some m0, m1 ∈ N a halting state.

• If M does not halt on input (0, 0) then all proper computations of ∆M are prefixes
of a single infinite proper computation which never reaches a halting state

Proof: Both properties are not hard to verify: each execution step of M is matched by
a unique sequence of one or more transitions of ∆M. Matching for each j = 0, 1, a test for
zero, an increment and a decrement of the jth counter by zj , ij and gjdjg

′
j, respectively. 2

The second encoding is more complicated than the first. Its task is to match any compu-
tation of ∆M except for a possible proper halting computation.

Definition 40 Second weak encoding
Given a two-counter machine M let ∆′M be the BPPM family with leading variable Y1

given by the following definitions where k ranges over 1, . . . , n− 1 and j over 0, 1. If comk

is cj := cj + 1;goto lp then

Yk
def
= ij.(Yp ‖ Dj)+

tj.t
′
j .Y

H
k + tj⊕1.t

′
j⊕1.Y

H
k (wrong decrement of a counter)

and if comk is if cj = 0 then goto lp else cj := cj − 1;goto lq then

Yk
def
= zj .Yp + gj .Qkj+

sj.zj .Y
H
p + (choosing zero-branch on non-zero counter)

tj .t
′
j .Y

H
k + tj⊕1.t

′
j⊕1.Y

H
k , (wrong decrement of a counter)

Qkj
def
= tj .t

′
j .Rkj+

g′j.Y
H
q + (leaving out decrement)

tj⊕1.t
′
j⊕1.Q

H
kj, (decrement of the wrong counter)

Rkj
def
= g′j.Yq+

tj .t
′
j .R
H
kj + tj⊕1.t

′
j⊕1.Q

H
kj, (wrong decrement of a counter)

Yn
def
= 0

and

Dj
def
= t̄j .dj.t̄

′
j .0 + s̄j.Dj .

Furthermore, If comk is cj := cj + 1;goto lp then

Y Hk
def
= ij .(Y

H
p ‖ Dj) + tj .t

′
j .Y

H
k + tj⊕1.t

′
j⊕1.Y

H
k

29

and if comk is if cj = 0 then goto lp else cj := cj − 1;goto lq then

Y Hk
def
= zj.Y

H
p + gj.Q

H
kj + sj.zj .Y

H
p + tj .t

′
j .Y

H
k + tj⊕1.t

′
j⊕1.Y

H
k ,

QHkj
def
= tj.t

′
j .R
H
kj + g′j.Y

H
q + tj⊕1.t

′
j⊕1.Q

H
kj,

RHkj
def
= g′j.Y

H
q + tj.t

′
j .R
H
kj + tj⊕1.t

′
j⊕1.Q

H
kj,

Y Hn
def
= h.0

�

We call a state of a computation of ∆′M containing a variable labelled by superscript H
an H-labelled state. The idea is that any proper computation of ∆M can and can only be
matched by a computation of ∆′M using only states which are not H-labelled. Whereas
an improper computation of ∆M can and can only be matched by a computation of ∆′M
using only states which are not H-labelled up to the first improper transition and from
then on using only states which are H-labelled.

Also for the second encoding, it is clear from the definition that for any computation

d : Y1

σ1

−→
l1
F1 . . .

σn
−→
ln
Fn

of ∆′M, for each i ∈ [n] there is k ∈ [n], j ∈ {0, 1}, and m0, m1 ∈ IN such that Fi is of the
form

Fi ≡ Z ‖ Dm0
0 ‖ Dm1

1 , or Fi ≡ Dm0
0 ‖ Dm1

1

where Z is either Yk, Qkj , Rkj, Y
H
k , QHkj, or RHkj. For each i ∈ [n] and j = 0, 1, let

countj(Fi) = mj and in the first case, let control(Fi) = Z. In fact, there is a close
relationship between the states of the encodings. The following definition gives a way of
mapping states of ∆M to states of ∆′M which will be useful in the next lemma.

Definition 41 For each computation

c : X1 = E0

σ1

−→
l1
E1 . . .

σn
−→
ln
En

of ∆M for each i ∈ [n], let f ci be the variable-relabelling homomorphism on syntactic trees
of Proc induced by letting f ci (Cj) = Dj, and whenever the computation from E0 to Ei is a
proper computation, f ci (Xk) = Yk and

f ci (Pkj) =

{
Rkj if i > 0 and σi = dj
Qkj otherwise

and whenever the computation from E0 to Ei is not a proper computation, f ci (X
H
k) = Y Hk

and

f ci (PHkj) =

{
RHkj if i > 0 and σi = dj
QHkj otherwise

�

30

Lemma 42 Any proper non-halting computation and any improper computation of ∆M
can be matched with respect to /loc by a computation of ∆′M, i.e. for each proper and
non-halting or improper (possibly halting) computation

c : X1

σ1

−→
l1
E1 . . .

σn
−→
ln
En

of ∆M there exists a computation

d : Y1

σ1

=⇒
l1
F1 . . .

σn
=⇒
ln
Fn

of ∆′M such that for each i ∈ [n], Fi = f ci (Ei). Moreover, the case where c proper non-
halting computation the match d is unique.

Proof: Let f c0(E0) = f c0(X1) = Y1 = F0. Given a computation

c : X1 = E0

σ1

−→
l1
E1 . . .

σn
−→
ln
En

of ∆M, we construct a unique computation

d : Y1 = F0

σ1

=⇒
l1
F1 . . .

σn
=⇒
ln
Fn

of ∆′M such that for each i ∈ {0, . . . , n}, Fi = f ci (Ei). We show that for each i ∈ [n − 1]
and j = 0, 1,

Ei
σi+1
−→
li+1

Ei+1 implies Fi
σi+1
=⇒
li+1

Fi+1

from which the result follows by induction in the length n of c. Let j range over 0, 1. Given
i = 0, . . . , n− 1, we divide the proof into three cases:

1. The computation E0 to Ei a proper non-halting computation and the (i+ 1)th tran-
sition is proper.

(a) for σi+1 = ij, zj , gj, g
′
j,

Ei
σi+1
−→
li+1

Ei+1 is matched by Fi
σi+1
−→
li+1

Fi+1, and

(b) for σi+1 = dj,

Ei
dj
−→
li+1

Ei+1 is matched by Fi
τ
−→
l′i+1

F ′i
dj
−→
li+1

F ′′i
τ
−→
l′i+1

Fi+1

where for some m0, m1 ∈ IN (mj > 0),

F ′i ≡ t′j .Rkij ‖ dj.t̄′j .0 ‖ D
mj−1
0 ‖ Dmj⊕1

1 ,

F ′′i ≡ t′j .Rkij ‖ t̄′j .0 ‖ D
mj−1
0 ‖ Dmj⊕1

1 ,

and l′i+1 = li+1∪{l} where l is the location of control(Fi) in Fi (and in particular,
of Rkij in F ′i and F ′′i .)

31

2. The computation E0 to Ei a proper non-halting computation and the (i+ 1)th tran-
sition is improper.

(a) (leaving out decrement)

Ei
g′j
−→
li+1

Ei+1 is matched by Fi
g′j
−→
li+1

Fi+1

(b) (choosing zero-branch on non-zero counter)

Ei
zj
−→
li+1

Ei+1 is matched by Fi
τ
−→
l′i+1

F ′i
zj
−→
li+1

Fi+1,

where for some label p and m0, m1 ∈ IN ,

F ′i ≡ zj .Y
H
p ‖ Dm0

0 ‖ Dm1
1 ,

and l′i+1 = li+1 ∪ {l} where l is the location of some Cj in Ei (and in particular,
of some Dj in Fi.)

(c) (decrement of the wrong counter or wrong decrement of a counter)
For some label k and m0, m1 ∈ IN , let Ei ≡ Pkj ‖ Cm0

0 ‖ Cm1
1 , then note that

necessarily i > 0 and that the state of Fi dependent on whether or not σi = dj
in any case though

Ei
dj⊕1
−→
li+1

Ei+1 is matched by Fi
τ
−→
l′i+1

F ′i
dj⊕1
−→
li+1

F ′′i
τ
−→
l′i+1

Fi+1

where for some label k and m0, m1 ∈ IN ,

F ′i ≡ t′j⊕1.Qkj⊕1 ‖ dj⊕1.t̄
′
j⊕1.0 ‖ D

mj⊕1−1
0 ‖ Dmj

1 ,

F ′′i ≡ t′j⊕1.Qkj⊕1 ‖ t̄′j⊕1.0 ‖ D
mj⊕1−1
0 ‖ Dmj

1 ,

and l′i+1 = li+1 ∪ {l} where l is the location of Pkj in Ei (and in particular, of
Qkj in Fi.)

(d) (wrong decrement of a counter)
For some label k and m0, m1 ∈ IN , let Ei ≡ Pkj ‖ Cm0

0 ‖ Cm1
1 , and let σi = dj

(note that necessarily i > 0)

Ei
dj
−→
li+1

Ei+1 is matched by Fi
τ
−→
l′i+1

F ′i
dj
−→
li+1

F ′′i
τ
−→
l′i+1

Fi+1

where for some label k and m0, m1 ∈ IN ,

F ′i ≡ t′j⊕1.Rkj⊕1 ‖ dj⊕1.t̄
′
j⊕1.0 ‖ D

mj⊕1−1
0 ‖ Dmj

1 ,

F ′′i ≡ t′j⊕1.Rkj⊕1 ‖ t̄′j⊕1.0 ‖ D
mj⊕1−1
0 ‖ Dmj

1 ,

and l′i+1 = li+1 ∪ {l} where l is the location of Pkj in Ei (and in particular, of
Rkj in Fi.)

32

(e) (wrong decrement of a counter)
For some label k and m0, m1 ∈ IN , Ei ≡ Xk ‖ Cm0

0 ‖ Cm1
1 ,

Ei
dj
−→
li+1

Ei+1 is matched by Fi
τ
−→
l′i+1

F ′i
dj
−→
li+1

F ′′i
τ
−→
l′i+1

Fi+1

where

F ′i ≡ t′j .Y
H
k ‖ dj.t̄′j .0 ‖ D

mj−1
0 ‖ Dmj

1 ,

F ′′i ≡ t′j .Y
H
k ‖ t̄′j .0 ‖ D

mj−1
0 ‖ Dmj

1 ,

and l′i+1 = li+1 ∪ {l} where l is the location of Xk in Ei (and in particular, of Yk
in Fi.)

3. The computation from E0 to Ei an improper computation. In this case, it easy to
see that once in an H-labelled state the matching is straightforward.

2

Lemma 43 ∆M /loc ∆′M if and only if M does not halt

Proof: Assume that M does not halt (0, 0). Then by Lemma 39, ∆M has no proper
halting computation. Hence, ∆M /loc ∆′M by Lemma 42.

Conversely, assume that M does halt on input (0, 0). Then by Lemma 39, there is a
unique proper halting computation of ∆M

c : X1

σ1

−→
l1
E1 . . .

σn
−→
ln
En

h
−→
ln+1

En+1.

The by Lemma 42, unique matching computation of

c′ : X1

σ1

−→
l1
E1 . . .

σn
−→
ln
En

of ∆′M is

d : Y1

σ1

=⇒
l1
F1 . . .

σn
=⇒
ln
Fn.

Since c is proper the final state of d is fn(En) = Fn ≡ Ym ‖ Dm0
0 ‖ Dm1

1 which does not
enable h. Hence by the uniqueness of the match, we conclude that

∆M 6/loc ∆′M.

2

Theorem 44 For BPPM , /loc and ≈loc are undecidable.

Proof: Immediate consequence of Lemma 43, Theorem 9 and Lemma 36. 2

The result is in fact slightly stronger since the first encoding is only a BPP process.

33

7.2 Weak pomset equivalence

Next, we turn to weak pomset equivalence for BPPM . We leave the decidability of unset-
tled. Instead, we give two characterisations which might be helpful in settling the question.

Definition 45 Processes E and E′ are said to be weak tree-pomset preordered, E /tree
pom E ′,

iff for every computation of E

c : E
σ1

−→
l1
E1 . . .

σn
−→
ln
En

without communication there exists a computation of E ′

c′ : E ′
σ′1
−→
l′1
E ′1 . . .

σ′m
−→
l′m
E ′m

(possibly with communication) such that ‖ c ‖ = ‖ c′ ‖, for each i ∈ [‖ c ‖], σvc(i) = σ′
vc
′ (i)

and furthermore for each i, j ∈ [‖ c ‖], vc(i) ≤∗c vc(j) ⇐⇒ vc
′
(i) ≤∗c′ vc

′
(j). �

Proposition 46 Let E and F be BPPM processes.

E /pom F if and only if E + F ≈pom F .

Proof: Straightforward. 2

Proposition 47 Let E and F be BPPM processes.

E /pom F if and only if E /tree
pom F .

Proof: The only if direction is obvious. To see the other direction, observe that a
computation with communication can be split into one without communication - a tree
- which can be matched by assumption, and clearly the match composes to a match for
the original computation with communication. Following this argument it is easy to do an
induction proof in the number of communications occuring in a computation.

Assume that E /tree
pom F . We show by induction in the number of communications that

for every computation

c : E = E0

σ1

−→
l1
E1 . . .

σn
−→
ln
En

of E there exists a computation

d : F = F0

σ1

−→
l′1
F1 . . .

σn
−→
l′n
Fn

34

of F such that d is a match of c with respect to ≈pom.
In the base case, no communications occur in c and hence the existence of d follows

from the assumption.
In the induction step, assume that σk = τ (1 ≤ k ≤ n). By Lemma 59,

c′ : E = E0

σ′1
−→
l1
E1 . . .

σ′k−1
−→
lk−1

Ek−1

µ
−→
u1

E ′k

µ̄
−→
u2

Ek

σ′k+1
−→
lk+1

Ek+1 . . .
σ′m
−→
lm
Em

is a computation of E such that u1 6v u2 and µ 6= τ . Then by induction, there exists a
computation

d′ : F = F0

σ′1
−→
l′1
F1 . . .

σ′k−1
−→
l′k−1

Fk−1

µ
−→
v1

F ′k

µ̄
−→
v2

Fk

σ′k+1
−→
l′k+1

Fk+1 . . .
σ′m
−→
l′m
Fm

such that ‖ c′ ‖ = ‖ d′ ‖ and σvc′ (i) = σ′
vd
′ (i)

for i ∈ [‖ c′ ‖], and c′ furthermore satisfies

that vc
′
(i) ≤∗c′ vc

′
(j) ⇐⇒ vd

′
(i) ≤∗d′ vd

′
(j). Since u1 6v u2 and

u1 6v u2 =⇒ k 6≤∗c′ k + 1 =⇒ k 6≤∗d′ k + 1 =⇒ v1 6v v2,

it is not hard using Lemma 60 to verify that

d : F = F0

σ1

−→
l′1
F1 . . .

σn
−→
l′n
Fn

is a computation of F with l′m = v1 ∪ v2 and such that d is a match of c with respect to
≈pom.

By induction and a symmetric argument, we conclude that E /pom F . 2

Let ∆1 and ∆2 be BPPM processes, we can summarise the results of Proposition 46 and
47 as follows. The following problems are equivalent with respect to decidability:

(i) ∆1 ≈pom ∆2,

(ii) ∆1 /pom ∆2, and

(iii) ∆1 /tree
pom ∆2.

8 BPPτ
M

In this section, we are able to complete the picture for location equivalence.
The following example shows that with τ prefixing the characterization no longer holds

for pomset equivalence.

35

Example 48 Let

s1 = a.b.0 ‖ b̄.c.0 + a.τ.c.0 and s2 = a.b.0 ‖ b̄.c.0.

Then, s1 and s2 are pomset equivalent when communication is allowed, that is, as BPPτ
M

processes, and not when it is disallowed, that is, as BPPτ processes. Moreover as BPPτ
M

processes, s1 ∼pom s2 but s1 6∼loc s2. �

Theorem 49 For BPPτ
M , ∼loc⊂∼pom⊂∼lan.

Proof: The inclusions follow by definition and the properness from Example 48 and 5.
2

8.1 Location equivalence

For location equivalence, the decidability proof of BPPM straightforwardly extends to the
case with τ prefixing, since τ -actions stemming from prefixing and those stemming from
communications cannot be confused.

Lemma 50 The BPPτ
M processes E and F are location equivalent if and only if the BPPτ

processes E and F are location equivalent.

Proof: For the only if direction, assume that E and F are location equivalent as BPPτ
M

processes. Let

c : E = E0

σ1

−→
l1
E1 . . .

σn
−→
ln
En

be a BPPτ computation of E, since any BPPτ computation is also a BPPτ
M computation

there exists a BPPτ computation

d : F = F0

σ1

−→
l′1
F1 . . .

σn
−→
l′n
Fn

of F such that there exists a relation R ⊆ loc(c) × loc(d) satisfying that for each 1 ≤
i ≤ n, R restricts to a bijection on li × l′i, and for each i ≤ j, s0(R ∩ li × l′i)s

′
0 and

s1(R∩ lj × l′j)s′1, s0 v s1 ⇐⇒ s′0 v s′1
Since R restricts to a bijection on li× l′i, li and l′i have the same cardinality. But, c is a

BPPτ computation and thus each li is a singleton and thus there cannot be communications
in d. Therefore, d is a BPPτ computation which matches c with respect to ∼loc.

For the if direction, assume that E ∼loc F when E and F are considered as BPPτ

processes. We show by induction in the number of communications that for every compu-
tation

c : E = E0

σ1

−→
l1
E1 . . .

σn
−→
ln
En

36

of E there exists a computation

d : F = F0

σ1

−→
l′1
F1 . . .

σn
−→
l′n
Fn

of F such that there exists a relation R ⊆ loc(c) × loc(d) satisfying that for each 1 ≤
i ≤ n, R restricts to a bijection on li × l′i, and for each i ≤ j, s0(R ∩ li × l′i)s

′
0 and

s1(R∩ lj × l′j)s′1, s0 v s1 ⇐⇒ s′0 v s′1.
In the base case, no communications occur in c and hence the existence of d follows

from the assumption.
In the induction step, assume that σm = τ (m ∈ [n]) such that σn stems from a

communication By Lemma 59,

c′ : E = E0

σ1

−→
l11

E1 . . .
σm−1

−→
l1m−1

Em−1

µ
−→
l1m

E ′m

µ̄
−→
l1m+1

Em

σm+1

−→
l1m+2

Em+1 . . .
σn
−→
l1n+1

En

is a computation of E such that u1 6v u2, µ 6= τ and for each i ∈ [n+ 1],

l1i =

li if i < m
{u1} if i = m
{u2} if i = m + 1
li−1 if i > m + 1.

Then by induction, there exists a computation

d′ : F = F0

σ1

−→
l21

F1 . . .
σm−1

−→
l2m−1

Fm−1

µ
−→
l2m

F ′m

µ̄
−→
lm+1

Fm

σm+1

−→
l2m+2

Fm+1 . . .
σn
−→
l2n+1

Fn

of F such that there exists a relationR ⊆ loc(c′)×loc(d′) satisfying that for each i ∈ [n+1],
R restricts to a bijection on l1i ×l2i , and for each i ≤ j, s0(R∩l1i ×l2i)s′0 and s1(R∩l1j×l2j)s′1,
s0 v s1 ⇐⇒ s′0 v s′1.

By a cardinality argument, there exist v1 and v2 such that l2m = {v1} and l2m+1 = {v2}.
Since u1 6v u2, we hence get that v1 6v v2. By Lemma 60, it follows that

d : F = F0

σ1

−→
l′1
F1 . . .

σn
−→
l′n
Fn

is a computation of F , where for each i ∈ [n],

l′i =

l2i if i < m
{v1, v2} if i = m

l2i+1 if i ≥ m + 1

Moreover, loc(c) = loc(c′), loc(d) = loc(d′) and for each i ∈ [n], R restricts to a bijection
on li× l′i, and for each i ≤ j, s0(R∩ li× l′i)s′0 and s1(R∩ lj × l′j)s′1, s0 v s1 ⇐⇒ s′0 v s′1.

By induction and a symmetric argument, we conclude that E ∼loc F . 2

37

Theorem 51 For BPPτ
M , ∼loc is decidable whereas ≈loc is undecidable.

Proof: In the strong case, the results follows from Lemma 50 and the decidability of lo-
cation equivalence on BPP [26]. The weak case is a straightforward consequence of Lemma
44. 2

8.2 Pomset equivalence

The positive decidability results in [26] rely on reductions to problems about automata on
trees. In this section, we follow the same strategy in investigate the decidability of pomset
equivalence of BPPτ

M and give a characterisation in terms a containment problem between
finite tree automata and a family of finite tree automata. The characterisation does not
settle the question of decidability but we hope that the rephrasing might be a step towards
establishing decidability.

8.2.1 Finite Tree Automata

In [26], we showed how to effectively construct a finite tree automaton A∆ from a BPP
family ∆ in normal form. Building on this result, we exhibit a similar construction for
BPPτ

M families. The construction is however more complex and involves tree languages
which are not recognisable.

Let Σ = Σ0 ∪ . . .∪Σn be a ranked finite alphabet. The set of all trees over Σ, TΣ is the
free term algebra over Σ, that is, TΣ, is the least set such that Σ0 ⊆ TΣ and such that if
a ∈ Σk and for i = 1, . . . , k, ti∈ TΣ, then a[t1, . . . , tk]∈ TΣ. For convenience, we use a and
a[] interchangeably to denote members of Σ0.

Definition 52 A non-deterministic top-down finite tree automaton, NTA, is a four-tuple
A = (Σ, Q, S, δ), where Σ is a ranked finite alphabet, Q a finite set of states, S ⊆ Q is a set
of initial states, and δ is a ranked family of labelled transition relations associating with
each k ≥ 0, a relation δk ⊆ Q×Σk×Qk such that δk is non-empty for only finitely many k. �

Definition 53 Let A = (Σ, Q, S, δ) be a NTA and let t ∈ TΣ. A configuration of A, is
a multiset of pairs from Q × TΣ. Denote by confA the set of all configurations of A. For
σ ∈ Σ, let

σ→⊆ confA× confA be the labelled transition relation between configurations
defined by

{|(q, t)|} ∪ c σ→ {|(q1, t1), . . . , (qk, tk)|} ∪ c,

if and only if σ ∈ Σk, t = σ[t1, . . . , tk], (q, σ, q1, . . . , qk) ∈ δk and c ∈ confA. We write→ for
the union over all σ ∈ Σ of

σ→, and→∗ for the reflexive and transitive closure of→. A (suc-
cessful) run of A on input t is a derivation {|(q0, t)|}→∗∅, where q0 ∈ S. The tree language,
L(A), recognised by A consists of all trees t, for which there is a successful run ofA on t. �

38

Definition 54 Given a BPP family ∆ in normal form with leading variable X1, define the

NTA A∆ = (Act(∆),Var(∆), {X1}, δ) such that for every (X
def
=
∑n

i=1 σiαi) ∈ ∆, every
index 1 ≤ j ≤ n and for every {|Y1, . . . , Yk|} ⊆ αj ,

(X, σj , Y1, . . . , Yk) ∈ δk.
The ranking of the alphabet Act(∆) is induced by the definition of δ. �

In [26], the following characterisation was shown.

Proposition 55 [26] Given BPP families ∆1 and ∆2 in normal form. Then

∆1 ∼pom ∆2 ⇐⇒ L(A∆1) = L(A∆2)

2

The proposition above does not hold for BPPM families as shown by Example 48.
Here, the first characterisation is given in terms of the obvious pomset preorder.

Definition 56 Let E and E ′ be BPPτ
M processes. E .pom E ′ iff for every computation of

E

c : E
σ1

−→
l1
E1 . . .

σn
−→
ln
En

there exists a computation of E ′

c′ : E ′
σ1

−→
l′1
E ′1 . . .

σn
−→
l′n
E ′n

such that i ≤∗c j ⇐⇒ i ≤∗c′ j. �

Proposition 57 Let E and F be BPPτ
M processes.

E .pom F if and only if E + F ∼pom F .

Proof: Straightforward. 2

Definition 58 Let E and E ′ be BPPτ
M processes. E .tree

pom E ′ iff for every computation of
E

c : E
σ1

−→
l1
E1 . . .

σn
−→
ln
En

without communication there exists a computation of E ′

c′ : E ′
σ1

−→
l′1
E ′1 . . .

σn
−→
l′n
E ′n

(possibly with communication) such that i ≤∗c j ⇐⇒ i ≤∗c′ j. We say that E and E ′ are
pomset tree equivalent, E ∼tree

pom E ′, iff E .tree
pom E ′ and E ′ .tree

pom E. �

It is an easy exercise to show the following lemmas.

39

Lemma 59 If E
τ
−→
l
G and τ stems from a communication then there exist an expression

F ∈ Proc, an action σ ∈ Act and locations l1 and l2 such that l = l1 ∪ l2, ¬(l1 v l2) and

E
σ
−→
l1
F

σ̄
−→
l2
G. 2

Lemma 60 If E
σ
−→
l1
F

σ̄
−→
l2
G and ¬(l1 v l2) then E

τ
−→
l1∪l2G . 2

Proposition 61 Let E and F be BPPτ
M processes.

E .pom F if and only if E .tree
pom F .

Proof: The only if direction is obvious. To see the other direction, observe that a
computation with communication can be split into one without communication - a tree
- which can be matched by assumption, and clearly the match composes to a match for
the original computation with communication. Following this argument it is easy to do an
induction proof in the number of communications occurring in a computation.

Assume that E .tree
pom F . We show by induction in the number of communications that

for every computation

c : E = E0

σ1

−→
l1
E1 . . .

σn
−→
ln
En

of E there exists a computation

d : F = F0

σ1

−→
l′1
F1 . . .

σn
−→
l′n
Fn

of F such that i ≤∗c j ⇐⇒ i ≤∗d j.
In the base case, no communications occur in c and hence the existence of d follows

from the assumption.
In the induction step, assume that σm = τ (m ∈ [n]) and σm stems from a communica-

tion. By Lemma 59,

c′ : E = E0

σ1

−→
l1
E1 . . .

σm−1

−→
lm−1

Em−1

µ
−→
u1

E ′m

µ̄
−→
u2

Em

σm+1

−→
lm+1

Em+1 . . .
σn
−→
ln
En

is a computation of E such that u1 6v u2 and µ 6= τ . Then by induction, there exists a
computation

d′ : F = F0

σ1

−→
l′1
F1 . . .

σm−1

−→
l′m−1

Fm−1

µ
−→
v1

F ′m

µ̄
−→
v2

Fm

σm+1

−→
l′m+1

Fm+1 . . .
σn
−→
l′n
Fn

such that i ≤∗c′ j ⇐⇒ i ≤∗d′ j. Since u1 6v u2 and

u1 6v u2 =⇒ m 6≤∗c′ m + 1 =⇒ m 6≤∗d′ m+ 1 =⇒ v1 6v v2,

40

it follows from Lemma 60, that

d : F = F0

σ1

−→
l′1
F1 . . .

σn
−→
l′n
Fn

is a computation of F, where l′m = v1 ∪ v2. Moreover, it is not hard to check that
i ≤∗c j ⇐⇒ i ≤∗d j. By induction and a symmetric argument, we conclude that E .pom F .
2

By Proposition 61, it suffices to match tree-ordered pomsets. Because tree-ordered
pomsets are obviously only matched by tree-ordered pomsets, we next move to explicitly
compute the tree-ordered pomsets arising through communication and then to forget about
communication. The idea is to approximate a BPPτ

M family ∆ by a family of BPPτ families
{∆τK | K ∈ IN} in such a way that any tree-ordered pomset of ∆ is also a pomset of ∆τK

for some K ∈ IN . The construction is based on augmenting variables with a memory
used to remember processes available for communication. The memory is decreased when
communicating and increased by non-deterministically picking up “brothers”. The main
observation is that when only tree-ordered pomsets are considered, the “brothers” are in
fact the only possible candidates for communications “later on”.

Example 62 Consider the BPPτ
M family

∆ = { X1
def
= a.{X1, X2}+ a.{X2, X3},

X2
def
= c̄.∅,

X3
def
= c.{X4},

X4
def
= b.{X3} }.

For each natural number K, define the BPPτ family

∆τK = { X1(m̄)
def
= a.∅+

a.
∑
{{X1(m̄′)} | 0̄ ≤ m̄′ − m̄ ≤ ē2}+

a.
∑
{{X2(m̄′)} | 0̄ ≤ m̄′ − m̄ ≤ ē1}+

a.
∑
{{X2(m̄′)} | 0̄ ≤ m̄′ − m̄ ≤ ē3}+

a.
∑
{{X3(m̄′)} | 0̄ ≤ m̄′ − m̄ ≤ ē2}+

a.
∑
{{X1(m̄1), X2(m̄2)} | m̄1 + m̄2 ≤ m̄}+

a.
∑
{{X2(m̄1), X3(m̄2)} | m̄1 + m̄2 ≤ m̄},

X2(m̄)
def
= c̄.∅+ τ.∅, if 0 ≤ m̄− ē3,

X2(m̄)
def
= c̄.∅, if not 0 ≤ m̄− ē3,

X3(m̄)
def
= c.∅+ c.{X4(m̄)}+

τ.∅+ τ.{X4(m̄− ē2)}, if 0 ≤ m̄− ē2,

X3(m̄)
def
= c.∅+ c.{X4(m̄)}, if not 0 ≤ m̄− ē2,

X4(m̄)
def
= b.∅+ b.{X3(m̄)} | 0̄ ≤ m̄ ≤ K̄}.

�

41

Note that the constructed families approximate ∆ from below in the sense that for each
K ∈ IN , ∆τK .pom ∆.

Next, we formally define the approximations but first a convenient technical definition.

Definition 63 Let ∆ = {Xi
def
= Ei | i ∈ [n]} be a BPPτ

M family, Let m̄i range over Nn
For convenience, we denote by {|Xi1, . . . , Xik |}〈m̄1, . . . , m̄k〉 (i1 ≤ i2 ≤ . . . ≤ ik) the set
{|Xi1(m̄1), . . . , Xik(m̄k)|}. For each m̄ ∈ Nn, and subset α of Var(∆), let

α〈〈m̄〉〉 =
∑
{β〈m̄1, . . . , m̄|β|〉 | β ⊆ α, 0̄ ≤

∑
i

m̄i − m̄ ≤ m̄(α− β)}.

�

Definition 64 Let ∆ = {Xi
def
= Ei | i ∈ [n]} be a BPPτ

M family in normal form with
Ei ≡

∑ni
j=1 σijαij Define for each K ∈ N the K –approximations BPPτ family,

∆τK = {Xi(m̄)
def
= Fi(m̄) | i ∈ [n] ∧ 0̄ ≤ m̄ ≤ K̄},

with leading variable X1(0̄) where for each i ∈ [n] and m̄ ≤ K̄,

Fi(m̄) ≡
ni∑
j=1

σijαij〈〈m̄〉〉+

ni∑
j=1

∑
{τ(αij ∪ β)〈〈m̄− ēk〉〉 | ēk ≤ m̄ ∧ σ̄ijγ ∈ Ek ∧ β ⊆ γ}.

�

The next lemma captures the use of approximation families in making communication
dispensable when checking for .tree

pom-containment.

Lemma 65 Let ∆ a BPPτ
M family in normal form with leading variable X1. Then

(i) for every computation

c : X1 = E0

σ1

−→
l1
E1 . . .

σn
−→
ln
En

of ∆ such that ≤∗c is a tree ordering there exists a K ∈ N and a computation

c′ : X1(0̄) = E ′0

σ1

−→
l′1
E ′1 . . .

σn
−→
l′n
E ′n

without communication of ∆τK such that i ≤∗c j ⇐⇒ i ≤∗c′ j.

(ii) for every K ∈ N and every computation

c : X1(0̄) = E0

σ1

−→
l1
E1 . . .

σn
−→
ln
En

of ∆τK without communication there exists a computation

c′ : X1 = E ′0

σ1

−→
l′1
E ′1 . . .

σn
−→
l′n
E ′n

(possibly with communication) of ∆ such that i ≤∗c j ⇐⇒ i ≤∗c′ j.
Proof:

42

(i) Given a computation

c : X1 = E0

σ1

−→
l1
E1 . . .

σn
−→
ln
En

of ∆ such that ≤∗c is a tree ordering. We proceed by induction in the number of
communications K occuring in c.

In the base case, no communications occur in c and it is easy to check that

c′ : X1(0̄) = E ′0

σ1

−→
l′1
E ′1 . . .

σn
−→
l′n
E ′n

is a computation of ∆τK such that i ≤∗c j ⇐⇒ i ≤∗c′ j, and E ′i = η(Ei) where η is the
relabeling homomorphism induced by taking for each X ∈ Var(∆), η(X) = X(0̄).

In the induction step, K > 0, assume that σm = τ (m ∈ [n]) and that σm stems from
a communication. By Lemma 59, there is a computation

d : X1 = E0

σ1

−→
l1
E1 . . .

σm−1

−→
lm−1

Em−1

µ
−→
u1

E ′m

µ̄
−→
u2

Em

σm+1

−→
lm+1

Em+1 . . .
σn
−→
ln
En

of ∆ such that u1 6v u2 and µ 6= τ . Then by induction, since ≤∗d is a tree ordering,
there exists a computation

d′ : X1(0̄) = F0

σ1

−→
l′1
F1 . . .

σm−1

−→
l′m−1

Fm−1

µ
−→
v1

F ′m

µ̄
−→
v2

Fm

σm+1

−→
l′m+1

Fm+1 . . .
σn
−→
l′n
Fn

of ∆τK such that i ≤∗d j ⇐⇒ i ≤∗d′ j.
Let k be the greatest common predecessor of m and m+ 1 with respect to ≤∗d. Such
a k exists since ∆ is in normal form and ≤∗d is a tree ordering.

The important observation is now that either m or m + 1 is a son (immediate suc-
cessor) of k since otherwise there exist k1 and k2 such that k1 6≤∗d k2, k2 6≤∗d k1,
k <∗d k1 <

∗
d m and k <∗d k2 <

∗
d m + 1 which contradicts the assumption that ≤∗c is a

tree ordering.

Assume without loss of generality that m is a son of k. From this it is not hard to
verify that d′ can be modified so that the kth transition picks up the appropriate
son into memory sends it along the appriate path while performing the transitions
as in d′, and when reaching the mth transition performs the communication between
µ and µ̄ reaching Fm modulo ≡. Also, it is clear that the obtained computation is a
match of c with respect to ∼pom.

(ii) Let ι be the homomorphism on induced by letting ι(Xi((m1, . . . , mn))) = Xi ‖ Xm1
1 ‖

. . . ‖ Xmn
n . Given a K ∈ N and a computation

c : X1(0̄) = E0

σ1

−→
l1
E1 . . .

σn
−→
ln
En

43

of ∆τK without communication it is not hard to verify that there exists a computation

c′ : X1 = E ′0

σ1

−→
l′1
E ′1 . . .

σn
−→
l′n
E ′n

(possibly with communication) of ∆ such that for each i ∈ [n], E ′i ≡ ι(Ei) and for
each i, j ∈ [n], i ≤∗c j ⇐⇒ i ≤∗c′ j.

2

Lemma 66 Given BPPτ
M families ∆1 and ∆2 in normal form with leading variables X1

and Y1, respectively. Then ∆1 .tree
pom ∆2 if and only if for every computation

c : X1 = E0

σ1

−→
l1
E1 . . .

σn
−→
ln
En

of ∆1 without communication there exists a K ∈ N and a computation

c′ : Y1(0̄) = E ′0

σ1

−→
l′1
E ′1 . . .

σn
−→
l′n
E ′n

without communication of ∆τK
2 such that i ≤∗c j ⇐⇒ i ≤∗c′ j.

Proof: Straightforward from Lemma 65. 2

Definition 67 For each BPPτ
M family ∆ define

Lτ∆ =
⋃
K∈N
L(A∆τK)

�

As expected and illustrated by the following example the language accepted by a family of
approximation automata is not necessarily a recognisable set of trees.

Example 68 Consider the BPPτ
M family ∆ of Example 62. The language Lτ∆ contains for

each M ∈ N the tree

a− a− · · · − a︸ ︷︷ ︸
M

− τ − b− τ − · · · − τ − b︸ ︷︷ ︸
2M

,

whereas for each M,N ∈ N such that M < N the tree

a− a− · · · − a︸ ︷︷ ︸
M

− τ − b− τ − · · · − τ − b︸ ︷︷ ︸
2N

is not contained in Lτ∆. It follows from a standard pumping argument that the tree lan-
guage Lτ∆ cannot be recognisable. �

44

Lemma 69 Given BPPτ
M families ∆1 and ∆2 in normal form. Then

∆1 .tree
pom ∆2 ⇐⇒ L(A∆1) ⊆ Lτ∆2

Proof: Follows from Lemma 66 and the lemmas of Appendix A of [25]. 2

Let ∆1 and ∆2 be BPPτ
M processes, we can then summarise the consequences of Proposition

57 and 61, and Lemma 69 as follows. The following problems are equivalent with respect
to decidability:

(i) ∆1 ∼pom ∆2,

(ii) ∆1 .pom ∆2,

(iii) ∆1 .tree
pom ∆2, and

(iv) L(A∆1) ⊆ Lτ∆2
.

9 Conclusion

Continuing the systematic study initiated in [26], we have presented results illuminating
the sometimes delicate bounds between the decidable and the undecidable in the setting
of behavioural equivalences for infinite-state concurrent systems. In particular, we have
shown that renaming and hiding may make a difference with respect to decidability and
given the – to our best knowledge – first positive decidability result for a natural weak
behavioural equivalence on the full class of BPPτ processes.

Many other non-interleaving equivalences exist besides our chosen pomset and location
equivalences, and which deserve to be explored. For instance, the augmentation closure of
Pratt [22] is an obvious candidate. Also we would like to emphasise that we do not claim
that our notion of location equivalence is the only natural capture of spatial distribution,
other possibilities exist.

We showed that pomset and location equivalence are decidable on BPP (BPPτ) with
renaming and hiding. The natual next step is to look at BPPM with renaming and hiding.
We know that both equivalences are decidable on BPPM . But, renaming seems to be
considerably more intricate in the presence of communication. In particular, pushing the
renaming combinator inwards does not work. For instance, consider the BPPM processes

p = (a.0 ‖ b̄.0)[f] and p′ = (a.0)[f] ‖ (b̄.0)[f]

with f(a) = b and the identity elsewhere, clearly p and p′ are not even language equivalent
because p′ can do a τ -action whereas p cannot. Similarly for the hiding combinator:
consider the BPPM processes

q = (a.b.0 ‖ ā.c.0)\\{a, ā} and q′ = (a.b.0)\\{a, ā} ‖ (ā.c.0)\\{a, ā}

45

clearly q and q′ are not even language equivalent because q can do a single τ -action and
then a b-action followed by a c-action whereas q′ need to do two τ -actions in order to do a
b-action followed by a c-transition.

The automata characterisation, we gave in Section 8.2 was phrased in terms of a family
of finite tree automata. The family which we are interested in of course has much more
structure, and we could equally well have phrased the characterisation in terms of finite
tree automata with weak counters, that is, counters that can only be partially tested for
zero. Such counter machines have been intensively studied over words in terms of Petri
nets and vector addition systems but we do not know of any generalisation to trees.

46

References

[1] S. Abramsky. Eliminating local non-determinism: Semantics for ccs. Technical Report
Report no. 290, Computer Systems Laboratory, Queen Mary College, 1981.

[2] L. Aceto. A static view of localities. Formal Aspects of Computing, 6(2):202–222,
1994.

[3] J.A. Bergstra and J.W. Klop. Process Algebra for Synchronous Communication.
Information and Control, 60:109–137, 1984.

[4] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. Observing localities. Theoretical
Computer Science, 114, 31–61, 114:31–61, 1993.

[5] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating
sequential processes. Journal of the ACM, 31(3):560–599, July 1984.

[6] S. Christensen. Distributed bisimilarity is decidable for a class of infinite-state sys-
tems. In W.R. Cleaveland, editor, CONCUR 92, pages 148–161. Springer-Verlag,
1992. Lecture Notes in Computer Science, Vol. 630.

[7] S. Christensen. Decidability and Decomposition in Process Algebras. PhD thesis,
University of Edinburgh, 1993.

[8] S. Christensen and H. Hüttel. Decidability issues for infinite-state processes - a
survey. EATCS Bulletin, 51:156–166, 1993.

[9] J. Esparza. Petri nets, commutative context-free grammars and basic parallel pro-
cesses. In Proceedings of Fundamentals of Computation Theory, (FCT’95). Springer-
Verlag, Lecture notes vol. 965, 1995.

[10] Y Hirshfeld. Petri nets and the equivalence problem. In E. Börger, Y. Gurevich, and
K. Meinke, editors, Computer Science Logic: 7th Workshop, CSL ’93 Selected Papers,
pages 165–174. Springer-Verlag, 1994. Lecture Notes in Computer Science, Vol. 832.

[11] Y. Hirshfeld and F. Moller. Decidability results in automata and process theory. In
G. Birtwistle and F. Moller, editors, Proceedings of Logics for Concurrency: Automata
vs Structure. The VIII Banff Higher Order Workshop, Lecture Notes in Computer
Science. Springer-Verlag, 1994. To appear.

[12] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[13] P. Jancar. High undecidability of weak bisimilarity for Petri nets. Lecture Notes in
Computer Science, 915:349–363, 1995.

[14] P. Jancar, A. Kucera, and R. Mayr. Deciding bisimulation-like equivalences with
finite-state processes. Technical report, Institut für Informatik, Technische Universitt
München, 1998.

47

[15] L. Jategaonkar and A. Meyer. Deciding true concurrency equivalences on finite safe
nets. In ICALP ’93, pages 519–531. Springer-Verlag, 1993. Lecture Notes in Computer
Science, Vol. 700.

[16] A. Kiehn. Comparing locality and causality based equivalences. Acta Informatica,
31:697–718, 1994.

[17] A. Kiehn and M. Hennessy. On the decidability of non-interleaving process equiva-
lences. In B. Jonsson and J. Parrow, editors, Concur ’94: Concurrency Theory 5th
International conference Proceedings. Springer-Verlag, 1994. Lecture Notes in Com-
puter Science, Vol.836.

[18] R. Mayr. Weak bisimulation and model checking for basic parallel processes. In Pro-
ceedings of FSTTCS: Foundations of Software Technology and Theoretical Computer
Science, volume 1180. Lecture Notes in Computer Science, Springer–Verlag, 1996.

[19] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[20] M.L. Minsky. Computation - Finite and Infinite Machines. Prentice Hall, 1967.

[21] E.R. Olderog and C.A.R. Hoare. Specification- oriented semantics for communicating
processes. Acta Informatica, 23:9–66, 1986.

[22] V.R. Pratt. Modelling concurrency with partial orders. International Journal of
Parallel Programming, 15(1):33–71, 1986.

[23] W Reisig. Petri Nets - an Introduction. EATCS Monograph in Computer Science,
Springer, 1985.

[24] C. Reutenauer. Mathematics of Petri Nets. Masson and Prentice-Hall, 1990.

[25] K. Sunesen and M. Nielsen. Behavioural equivalence for infinite systems – partially
decidable! BRICS Report Series RS-95-55, Aarhus University, 1995.

[26] K. Sunesen and M. Nielsen. Behavioural equivalence for infinite systems — partially
decidable! Lecture Notes in Computer Science, 1091:460–479, 1996.

[27] D. Taubner. Finite Representations of CCS and CSP programs by Automata and Petri
Nets. Springer-Verlag, 1989. Lecture Notes in Computer Science, Vol. 369.

48

Recent BRICS Report Series Publications

RS-98-6 Kim Sunesen.Further Results on Partial Order Equivalences
on Infinite Systems. March 1998. 48 pp.

RS-98-5 Olivier Danvy. Formatting Strings in ML. March 1998. 3 pp.
This report is superseded by the later report BRICS RS-98-12.

RS-98-4 Mogens Nielsen and Thomas S. Hune.Deciding Timed Bisimu-
lation through Open Maps. February 1998.

RS-98-3 Christian N. S. Pedersen, Rune B. Lyngsø, and Jotun Hein.
Comparison of Coding DNA. January 1998. 20 pp. To ap-
pear in Combinatorial Pattern Matching: 9th Annual Sympo-
sium, CPM ’98 Proceedings, LNCS, 1998.

RS-98-2 Olivier Danvy. An Extensional Characterization of Lambda-
Lifting and Lambda-Dropping. January 1998.

RS-98-1 Olivier Danvy. A Simple Solution to Type Specialization (Ex-
tended Abstract). January 1998. 7 pp.

RS-97-53 Olivier Danvy. Online Type-Directed Partial Evaluation. De-
cember 1997. 31 pp. Extended version of an article to appear
in Third Fuji International Symposium on Functional and Logic
Programming, FLOPS ’98 Proceedings (Kyoto, Japan, April 2–
4, 1998), pages 271–295, World Scientific, 1998.

RS-97-52 Paola Quaglia. On the Finitary Characterization of π-
Congruences. December 1997. 59 pp.

RS-97-51 James McKinna and Robert Pollack.Some Lambda Calculus
and Type Theory Formalized. December 1997. 43 pp.

RS-97-50 Ivan B. Damg̊ard and Birgit Pfitzmann. Sequential Iteration of
Interactive Arguments and an Efficient Zero-Knowledge Argu-
ment for NP. December 1997. 19 pp. To appear in25th Interna-
tional Colloquium on Automata, Languages, and Programming,
ICALP ’98 Proceedings, LNCS, 1998.

RS-97-49 Peter D. Mosses.CASL for ASF+SDF Users. December 1997.
22 pp. Appears in Sellink, Editor, 2nd International Workshop
on the Theory and Practice of Algebraic Specifications, Elec-
tronic Workshops in Computing, ASF+SDF ’97 Proceedings,
Springer-Verlag, 1997.

