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Behavioural Equivalence for Infinite Systems -
Partially Decidable!∗†

Kim Sunesen and Mogens Nielsen

BRICS‡, Department of Computer Science, University of Aarhus
Ny Munkegade, DK-8000 Aarhus C.,{ksunesen,mnielsen}@daimi.aau.dk

Abstract

For finite-state systems non-interleaving equivalences are computation-
ally at least as hard as interleaving equivalences. In this paper we show
that when moving to infinite-state systems, this situation may change
dramatically.

We compare standard language equivalence for process description lan-
guages with two generalizations based on traditional approaches captur-
ing non-interleaving behaviour, pomsets representing global causal depen-
dency, and locality representing spatial distribution of events.

We first study equivalences on Basic Parallel Processes, BPP, a process
calculus equivalent to communication free Petri nets. For this simple
process language our two notions of non-interleaving equivalences agree.
More interestingly, we show that they are decidable, contrasting a result of
Hirshfeld that standard interleaving language equivalence is undecidable.
Our result is inspired by a recent result of Esparza and Kiehn, showing
the same phenomenon in the setting of model checking.

We follow up investigating to which extent the result extends to larger
subsets of CCS and TCSP. We discover a significant difference between
our non-interleaving equivalences. We show that for a certain non-trivial
subclass of processes between BPP and TCSP, not only are the two equiva-
lences different, but one (locality) is decidable whereas the other (pomsets)
is not. The decidability result for locality is proved by a reduction to the
reachability problem for Petri nets.

Keywords: Process Calculi, Petri Nets, Behavioural Equivalence, Partial Or-
der Methods, Decidability.
∗Previously announced under the title: Trace Equivalence - Partially Decidable!
†A version of the paper with most proofs omitted is to appear in Proceedings of the 17th
International Conference on Application and Theory of Petri Nets, 1996.
‡Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
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1 Introduction

This paper is concerned with decidability issues for behavioural equivalences of
concurrent systems, notably linear-time equivalences focusing on global/local
causal dependency between events. Our results may be seen as a contribution
to the search for useful verification problems which will be decidable/tractable
when moving from the standard view of interleaving to more intentional non-
interleaving views of behaviour.

All known behavioural equivalences are decidable for finite-state systems,
but undecidable for most general formalisms generating infinite-state systems,
including process calculi, like CCS and TCSP, and labelled Petri nets. To
study systems in between various infinite-state process algebras have been sug-
gested, see [5] for a survey. One of the most interesting suggestions is Basic
Parallel Processes, BPP, introduced by Christensen [4]. BPPs are recursive
expressions constructed from inaction, action, variables, and the standard op-
erators prefixing, choice and parallel compositions. By removing the parallel
operator one obtains a calculus with exactly the same expressive power as fi-
nite automata. BPPs can hence be seen as arising from a minimal concurrent
extension of finite automata and therefore a natural starting point of exploring
infinite-state systems. Another reason for studying BPP is its close connection
to communication-free nets, a natural subclass of labelled Petri nets [4, 10]. It
was hence shown in [4] that any BPP process can be effectively transformed into
an equivalent BPP process in full standard form while preserving bisimilarity.
Moreover, there is an obvious isomorphism between the transition system of
a BPP process in full standard form and the labelled reachability graph of a
communication-free net, for details see [8]. Hence, BPP is formally equivalent
to the class of communication-free Petri nets with respect to any interleaving
equivalence coarser than or equal to bisimilarity. BPPs were first suggested in
[4, 6] and accompanied by a positive result stating that (strong) bisimulation
is decidable on BPP. Later Hirshfeld showed that in contrast language (trace)
equivalence is undecidable [10] for BPP. The picture has since been completed
by a result showing that in the branching-time/linear-time spectrum of [30]
only bisimulation is decidable, see [12]. For a survey on results for infinite-state
systems see [5].

Also, various generalizations of behavioural equivalences to deal with non-
interleaving behaviour have been studied, see for instance [31]. The basic idea
is to include in your notion of equivalence some information of causal depen-
dency between events, following the ideas from the theory of Petri nets and
Mazurkiewicz traces [26, 19]. For finite-state systems non-interleaving equiv-
alences are computationally at least as hard as interleaving equivalences, see
[14, 18]. In this paper we show that when moving to infinite-state systems,
this situation may change dramatically. For infinite-state systems a number of
non-interleaving bisimulation equivalences have been proven decidable on BPP,
e.g. causal bisimulation, location equivalence, ST-bisimulation and distributed
bisimulation [15, 4]. In this paper we concentrate on non-interleaving general-
izations of language equivalence.
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More precisely, we compare standard language equivalence for process de-
scription languages with two generalizations based on traditional approaches to
deal with non-interleaving behaviour. The first is based on pomsets represent-
ing global causal dependency, [24], and the second on locality [3] representing
spatial distribution of events.

We first study the equivalences on Basic Parallel Processes, BPP. For this
simple process language our two notions of non-interleaving equivalences agree,
and furthermore they are decidable, contrasting the result of Hirshfeld [10] that
language equivalence is undecidable. This result is inspired by a recent result
of Esparza and Kiehn [9] showing the same phenomenon in the setting of model
checking.

We follow up investigating to which extent the result extends to larger sub-
sets of CCS and TCSP. We discover here a significant difference between our two
non-interleaving equivalences. We show that for a certain non-trivial subclass
of processes between BPP and TCSP, BPPS , not only are the two equivalences
different, but one (locality) is decidable whereas the other (pomset) is not. The
decidability result for locality is proved by a reduction to the reachability result
for Petri nets.

Finally, we show that there is also a difference between the power of the
parallel operators of CCS and TCSP. Adding the parallel operator of Milner’s
CCS to BPP, BPPM , we keep the decidability of locality and causal dependency
equivalences, whereas by adding the parallel operator of Hoare’s TCSP, BPPH ,
both become undecidable.

Our results are summarized in the following table where yes indicates de-
cidability and no undecidability. The results of the first column are all direct
consequences of Hirshfeld’s result on BPP [10]. The second and third show the
results of this paper.

Language equiv. Pomset equiv. Location equiv.
BPP no yes yes
BPPS no no yes
BPPH no no no
BPPM no yes yes
TCSP& CCS no no no

The operational semantics from which our pomsets are derived is based on an
enrichment of the standard semantics of CCS [20] and TCSP [28] decorating
each transition with some extra information allowing an observer to observe the
location of the action involved. The location information we use to decorate
transitions is derived directly from the concrete syntax tree of the process in-
volved. We have chosen here to follow the technical static setup from [22], but
could equally easy have presented an operational semantics in the dynamic style
of [3]. The decidability results are based on the theory of finite tree automata
and a new kind of synchronous automata working on tuples of finite trees. For
this latter model we show decidability of the emptiness problem using a reduc-
tion to the zero reachability problem for Petri nets.
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In Sections 2 and 3 we present the syntax and operational semantics of the
CCS/TCSP-style language used throughout the paper, and define formally the
equivalences to be studied. The next three sections are used to establish our
results for BPP, TCSP and CCS respectively. First, in Section 4 we show that
both non-interleaving equivalences are decidable for BPP processes. TCSP-style
subsets are considered in Section 5, where we show that all our equivalences
are undecidable on BPPH and that for BPPS locality equivalence is decidable,
whereas pomset equivalence is not. In Section 6 we deal with the CCS-style
subsets We show that the result of Section 4 extend to BPPM , and no further.

2 A TCSP-style language

We start by defining the abstract syntax and semantics of a language, BPPH ,
including a large subset of TCSP [11, 23]. The definition is fairly standard.
As usual, we fix a countably infinite set of actions Act = {α, β, . . .}. Also, fix
a countably infinite set of variables Var = {X, Y, Z, . . .}. The set of process
expressions Proc of BPPH is defined by the abstract syntax

E ::= 0 | X | σ.E | E + E | E ‖A E

where X is in Var, σ inAct and A a subset ofAct. All constructs are standard. 0
denotes inaction, X a process variable, σ. prefixing, + non-deterministic choice,
and ‖A TCSP parallel composition of processes executing independently with
forced synchronization on actions in the synchronization set, A. For convenience,
we shall write ‖ for ‖∅.

A process family is a family of recursive equations ∆ = {Xi
def= Ei | i =

1, 2 . . . , n}, where Xi ∈ Var are distinct variables and Ei ∈ Proc are process
expressions containing at most variables in Var(∆) = {X1, . . . , Xn}.

A process E is a process expression of Proc with a process family ∆ such
that all variables occurring in E, Var(E), are contained in Var(∆). We shall
often assume the family of a process to be defined implicitly. Dually, a process
family denotes the process defined by its leading variable, X1, if not mentioned
explicitly. Let Act(E) denote the set of actions occurring in process E and its
associated family. A process expression E is guarded if each variable in E occurs
within some subexpression σ.F of E. A process family is guarded if for each
equation the right side is guarded. A process E with family ∆ is guarded if
E and ∆ are guarded. Throughout the paper we shall only consider guarded
processes and process families.

We enrich the standard operational semantics of TCSP [28] by adding in-
formation to the transitions allowing us to observe an action together with its
location. More precisely, the location of an action in a process P is the path from
the root to the action in the concrete syntax tree represented by a string over
{0, 1} labelling left and right branches of ‖A-nodes with 0 and 1, respectively,
and all other branches with the empty string ε.

Let L = P({0, 1}∗), i.e. finite subsets of strings over {0, 1}∗, and let l range
over elements of L. We interpret prefixing a symbol to L as prefixing elemen-

4



twise, i.e. 0l = {0s | s ∈ l}. With this convention, any process determines a
(Act × L)-labelled transition system with states the set of process expressions
reachable from the leading variable and transitions given by the transitions rules
of table 1. The set of computations of a process, E, is defined now as usual as
sequences of transitions, decorated by action and locality information:

c : E = E0

σ1
−→
l1
E1 . . .

σn
−→
ln
En

We let loc(c) denote the set of locations occurring in c, i.e. loc(c) =
⋃

1≤i≤n li.

Example 1 Consider the process

p1 = a.b.c.0 ‖{b} b.0.

The following is an example of an associated computation (representing the
unique maximal run)

p1

a
−→
{0}

b.c.0 ‖{b} b.0
b
−→
{0,1}

c.0 ‖{b} 0
c
−→
{0}

0 ‖{b} 0

Consider alternatively the process

p2 = a.b.0 ‖{b} b.c.0

with computation

p2

a
−→
{0}

b.0 ‖{b} b.c.0
b
−→
{0,1}

0 ‖{b} c.0
c
−→
{1}

0 ‖{b} 0

�

3 Language, pomset, and location equivalence

Let v be the prefix ordering on {0, 1}∗, extended to sets, i.e. for l, l′ ∈ L

l v l′ ⇐⇒ ∃s ∈ l, s′ ∈ l′. s v s′.

For a given computation

c : E0

σ1
−→
l1
E1 . . .

σn
−→
ln
En,

we define the location dependency ordering over {1, 2, . . ., n} as follows:

i ≤c j ⇐⇒ livlj ∧ i ≤ j.

Finally, we let ≤∗c denote the transitive closure of ≤c.
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σ.E
σ
−→
{ε}E (prefix)

E
σ
−→
l
E′

X
σ
−→
l
E′
, (X def= E) ∈ ∆ (unfold)

E
σ
−→
l
E′

E + F
σ
−→
l
E′

(suml)
F

σ
−→
l
F ′

E + F
σ
−→
l
F ′

(sumr)

E
σ
−→
l
E′

E‖AF
σ
−→
0l E

′‖AF
, σ 6∈ A (parl)

F
σ
−→
l
F ′

E‖AF
σ
−→
1l E‖AF

′
,σ 6∈ A (parr)

E
σ
−→
l0
E′ F

σ
−→
l1
F ′

E‖AF
σ
−→

0l0∪1l1
E′‖AF ′

, σ ∈ A (com)

Table 1: Transition rules for BPPH .

Definition 1 Behavioural Equivalences.
Processes E and E′ are said to be language equivalent, E ∼lan E′, iff for every
computation of E

c : E
σ1
−→
l1
E1 . . .

σn
−→
ln
En

there exists a computation of E′

c′ : E′
σ1
−→
l′1
E′1 . . .

σn
−→
l′n
E′n

and vice versa.
E and E′ are said to be pomset equivalent, E ∼pom E′, iff the above condi-
tion for language equivalence is satisfied, and c′ is further required to satisfy
i ≤∗c j ⇐⇒ i ≤∗c′ j.
E and E′ are said to be location equivalent, E ∼loc E′, iff the above condition
for language equivalence is satisfied, and c′ is further required to satisfy that
there exists a relation R ⊆ loc(c) × loc(c′) satisfying that for each 1 ≤ i ≤ n,
R restricts to a bijection on li × l′i, and for each i ≤ j, s0(R ∩ li × l′i)s′0 and
s1(R ∩ lj × l′j)s′1, s0 v s1 ⇐⇒ s′0 v s′1. �

Notice that the condition in the definition of pomset equivalence requires iden-
tical global causal relationship between the events of c and c′, whereas the
condition in the definition of location equivalence requires the same set of local
causal relationships (up to renaming of locations). Also, notice that our notion
of pomset equivalence is consistent with formal definitions from e.g. [14], and
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that location equivalence is a natural application of the concepts from [3] to the
setting of language equivalence.

Example 2 It follows immediate from the definition that for our process lan-
guage considered so far, location equivalence is included in pomset equivalence,
which in turn is included in language equivalence. The standard example of
processes a.0 ‖ b.0 and a.b.0 + b.a.0 shows that the inclusion in language
equivalence is strict. The different intuitions behind our two non-interleaving
equivalences may be illustrated by the two processes from Example 1. For-
mally, the reader may verify that p1 and p2 are pomset equivalent but not
location equivalent. Intuitively, both processes may perform actions a,b, and c
in sequence, i.e. same set pomsets, but in p1 one location is responsible for both
a and c, whereas in p2 two different locations are responsible for these actions. �

4 BPP

In this section we investigate the calculus known as Basic Parallel Processes [4],
BPP – a syntactic subset of CCS and TCSP which can be seen as the largest
common subset of these. The abstract syntax of BPP expressions is

E ::= 0 | X | σ.E | E +E | E ‖ E

and the semantics is just as presented in the previous section. A BPP process
is a process only involving BPP expressions. Note that BPP is nothing but our
previous language restricted to parallel compositions without communication.

Theorem 2 For BPP, ∼loc = ∼pom ⊂ ∼lan.

Proof: From the fact that all observed locations are singletons it easily follows
∼loc and ∼pom coincide on BPP. The strict inclusion follows from Example 2. �

Definition 3 A Σ-labelled net is a four-tuple (S, T, F, l) where S (the places)
and T (the transitions) are non-empty finite disjoint sets, F (the flow relations)
is a subset of (S×T )∪(T×S) and l is a labelling function from T to Σ. A mark-
ing of a net is a multiset of places. Finally, a Petri net is a pair (N,M0) where
N is a labelled net and M0 is an (initial) marking. The preset and postset of a
transition t ∈ T is the set •t = {s | (s, t) ∈ F} and the set t• = {s | (t, s) ∈ F},
respectively. A Petri net is communication-free iff for every t ∈ T, | •t | = 1. �

As mentioned in the introduction BPP is formally equivalent to the class of
communication-free Petri nets with respect to any interleaving equivalence coarser
than or equal to bisimilarity. With the normal form result below it is straight-
forward to obtain a similar result for location and pomset equivalence.

An important property of BPP is the fact that due to the lack of communi-
cation the location/pomset ordering of computations have a particularly simple
form.
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Proposition 4 For any BPP process E, and any computation

c : E = E0

σ1
−→
l1
E1 . . .

σn
−→
ln
En

the ordering ≤∗c is a tree ordering.

Proof: Every observed location is a singleton and hence every location has at
most one predecessor. �

We use the rest of this section to prove that ∼loc and ∼pom are decidable on
BPP processes. The proof relies on the proposition above, and a reduction to
the equivalence problem for recognizable tree languages which is well-known to
be decidable, see e.g. [7] or for a brief treatment [29].

4.1 Normal form

We present a definition of normal form for BPP processes and a normal form
result. The normal form we use is based on the following structural congruence.

Definition 5 Let ≡ be the least congruence on BPP expressions with respect
to all operators such that the following laws hold.

Abelian monoid laws for +:

E + F ≡ F +E

E + (F +G) ≡ (E + F ) +G

E + 0 ≡ E

Abelian monoid laws for ‖:

E ‖ F ≡ F ‖ E
E ‖ (F ‖ G) ≡ (E ‖ F ) ‖ G

E ‖ 0 ≡ E

Idempotence law for +:

E + E ≡ E

Linear-time laws:

(E + F ) ‖ G ≡ (E ‖ G) + (F ‖ G)
σ.(E + F ) ≡ σ.E + σ.F

�

8



Proposition 6 ≡ is sound in the sense that if E ≡ F then E ∼pom F .

Proof: Induction in the structure of the proof of E ≡ F . �

As parallel composition is commutative and associative, it is convenient to rep-
resent a parallel composition X0 ‖ . . . ‖ Xk by the multiset {|X0, . . . , Xk|} or if
the variables are distinct by the set {X0, . . . , Xk}. Inaction 0 is represented by
the empty multiset (set). We denote by Var⊗ the set of all finite multisets over
Var and by P(M) the set of all subsets of M .

Definition 7 A BPP family ∆ = {Xi
def= Ei | i = 1, 2 . . . , n} is in quasi normal

form if and only if every expression Ei is of the form

Ei ≡
ni∑
j=1

σijαij

where σij ∈ Act and αij ∈ V ar(∆)⊗. �

From the soundness of ≡ it is fairly straightforward to prove the following quasi
normal form result.

Proposition 8 Let ∆ be a BPP family with leading variable X1. Then a
BPP family in quasi normal form ∆′ can be effectively constructed such that
∆′′ ∼pom ∆′, where ∆′′ is ∆ extended with a new leading variable X′1 = s.X1,
for some s 6∈ Act(∆) and X′1 6∈ Var(∆).

Proof: For convenience, we introduce the notation

α[X/
∑
i

βi] =
{ ∑

i((α − {|X|}) ∪ βi)[X/
∑
i βi] if X ∈ α

α otherwise

where α, βi ∈ Var⊗ and X ∈ Var such that X 6∈ βi. That is, α[X/
∑
i βi]

denotes the BPP expression obtained from α by taking the sum over all possible
replacements of each X by one of the multisets βi.

It is not hard to see that by introducing new variables we may effectively
construct a new BPP family, ∆′′′ from ∆′′ = {Yi def= Ei | i = 1, 2 . . . , n} with
leading equation Y1

def= s.Y2 such that ∆′′ ∼pom ∆′′′ and such that every expres-
sion Ei is of the form

Ei ≡
mi∑
j=1

σijαij +
ni∑
j=1

βij

where σij ∈ Act and αij, βij ∈ V ar(∆)⊗.
We bring ∆′′′ into quasi normal form by propagating any unguarded choice

to the nearst earlier guard (prefixing). Note that such a guard always exists due
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to guardedness and the fact that the leading equation is of the form Y1
def= s.Y2.

Let
∆0 := {(Z def= E) ∈ ∆′′′ | Z is reachable from Y1}

and let n be the cardinality of ∆0.
For k = 1, . . . , n, we define ∆k by induction. Let

∆k−1 = {Yi
def= Ei | i = 1, 2 . . . , n}

then
∆k = {Yi def= E′i | i = 1, 2 . . . , n},

where for i 6= k

E′i ≡ Ei +
mi∑
j=1

σijαij[Yk/
nk∑
l=1

βkl] +
ni∑
j=1

βij [Yk/
nk∑
l=1

βkl]

and

E′k ≡
mk∑
j=1

σkjαkj + (
mk∑
j=1

σkjαkj[Yk/
nk∑
l=1

βkl])

Note that due to the guardedness, βij as well as βij [Yk/βkl] do not contain Yi.
It is an easy task to prove that for k = 0, . . . , n−1, ∆k ∼pom ∆k+1 using the

fact that the right-hand side of the leading equation has no unguarded choice
and that ∆0 through ∆n are guarded. Since ∆n is in quasi normal form the
result follows. �

Definition 9 A BPP family ∆ = {Xi
def= Ei | i = 1, 2 . . . , n} is in normal form

if and only if every expression Ei is of the form

Ei ≡
ni∑
j=1

σijαij

where σij ∈ Act and αij ∈ P(Var(∆)). �

BPP processes in normal form and communication-free nets are closely related.
Hence, mapping variables to places and actions to action labelled transitions,
induces an obvious isomorphism between the computations of a BPP process in
normal form and the firing sequences of a communication-free net.

Proposition 10 Let ∆ be a BPP family with leading variableX1. Then a BPP
family in normal form ∆′ can be effectively constructed such that ∆′′ ∼pom ∆′,
where ∆′′ is ∆ extended with a new leading variable X′1 = s.X1, for some
s 6∈ Act(∆) and X′1 6∈ Var(∆).

Proof: Follows from Proposition 8 and a straightforward introduction of new
variables and appropriate renaming. �
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Note that for example the process (a ‖ b) + c can not be brought on normal
form while preserving pomset equivalence whereas the process s.((a ‖ b)+c) can.
Hence, the point of the slightly technical normal form result is that prefixing the
leading equation of two BPP processes by the same action respects and reflects
pomset equivalence.

4.2 Finite tree automata

In this section we show how to effectively construct a finite tree automaton A∆
from a BPP family ∆ in normal form in such a way that pomset equivalence
reduces to equivalence of recognizable tree languages.

Let Σ = Σ0∪ . . .∪Σn be a ranked finite alphabet. The set of all trees over Σ,
TΣ is the free term algebra over Σ, that is, TΣ, is the least set such that Σ0 ⊆ TΣ
and such that if a ∈ Σk and for i = 1, . . . , k, ti∈ TΣ, then a[t1, . . . , tk]∈ TΣ. For
convenience, we use a and a[] interchangeably to denote members of Σ0.

Definition 11 A non-deterministic top-down finite tree automaton, NTA, is a
four-tuple A = (Σ, Q, S, δ), where Σ is a ranked finite alphabet, Q a finite set of
states, S ⊆ Q is a set of initial states, and δ is a ranked finite family of labelled
transition relations associating with each k ≥ 0, a relation δk ⊆ Q×Σk×Qk.�

Definition 12 Let A = (Σ, Q, S, δ) be a NTA and let t ∈ TΣ. A configuration
of A, is a multiset of pairs from Q × TΣ. Denote by confA the set of all con-
figurations of A. For σ ∈ Σ, let σ→⊆ confA× confA be the labelled transition
relation between configurations defined by

{|(q, t)|} ∪ c σ→ {|(q1, t1), . . . , (qk, tk)|} ∪ c,

if and only if σ ∈ Σk, t = σ[t1, . . . , tk], (q, σ, q1, . . . , qk) ∈ δk and c ∈ confA. We
write→ for the union over all σ ∈ Σ of σ→, and→∗ for the reflexive and transitive
closure of →. A (successful) run of A on input t is a derivation {|(q0, t)|}→∗∅,
where q0 ∈ S. The tree language, L(A), recognized by A consists of all trees t,
for which there is a successful run of A on t.

A transition relation δ is permutation closed if for all q, q1, . . . , qk ∈ Q, k ≥ 0,
and permutations π on {1, . . . , k}

(q, σ, q1, . . . , qk) ∈ δk ⇐⇒ (q, σ, qπ(1), . . . , qπ(k)) ∈ δk

A NTA is permutation closed if its transition relation is permutation closed. �

Construction 13 Given a BPP family ∆ in normal form with leading variable
X1, define a permutation closed NTA A∆ = (Act(∆), V ar(∆), {X1}, δ) such
that for every (X def=

∑n
i=1 σiαi) ∈ ∆, every index 1 ≤ j ≤ n and for every

{|Y1, . . . , Yk|} ⊆ αj,
(X, σj, Y1, . . . , Yk) ∈ δk

The ranking of the alphabet Act(∆) is induced by the definition of δ. �
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Proposition 14 Given BPP families ∆ and ∆′ in normal form and with leading
variables X and X′, respectively. Then

X ∼pom X′ ⇐⇒ L(A∆) = L(A∆′)

Proof: See Appendix A. �

Theorem 15 For BPP, ∼pom and ∼loc are decidable, whereas ∼lan is undecid-
able.

Proof: The undecidability result was proved in [10]. The decidability results
follow from Theorem 2, Proposition 10, Proposition 14 and the fact that the
equivalence problem for NTA recognizable tree languages is decidable, see e.g.
[7]. �

5 Extending towards full TCSP

We now return to the TCSP subset, BPPH , defined in Section 2. In contrast to
BPP, BPPH allows communication. In this section we show that this extension
right away leads to undecidability of both ∼pom and ∼loc . In proving the un-
decidability, an interesting difference in the complexity of the reductions used
appears. To show that ∼pom is undecidable we only need one static occurrence
of the parallel operator with a non-empty synchronization set, whereas to show
that ∼loc is undecidable we seem to need much more sophisticated techniques.
We end the section with a study of a non-trivial subset of BPPH , called static
BPPH or just BPPS , that makes the difference between ∼pom and ∼loc explicit:
for BPPS , ∼loc is decidable whereas ∼pom remains undecidable.

5.1 BPPH and TCSP

When allowing non-empty synchronization sets ∼pom and ∼loc become different.

Theorem 16 For BPPH , ∼loc ⊂ ∼pom ⊂ ∼lan

Proof: Follows from Definition 1 and Examples 1 and 2. �

Theorem 17 For BPPH , ∼pom and ∼loc are undecidable.

Proof: It is well-known that BPPH is Turing powerful, see e.g. [4] where it
is shown how to simulate Minsky counter machines [21] in BPPH . Given the
encoding of Minsky counter machines there is a standard way of reducing the
halting problem for Minsky counter machines to an equivalence problem. Given
a Minsky counter machine N first construct a BPPH process EN that simulates
N and then another process FN that is an exact copy of EN except for FN
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having a distinguished action, say h, not in EN such that h is enabled if and
only if N halts. Hence, EN is equivalent to FN if and only if N does not halt,
and the undecidability of the equivalence follows. Hence, in particular pomset
and location equivalence are undecidable. See, Appendix B for more details. �

For ∼pom the following stronger result shows that even for a very restricted
subset of BPPH pomset equivalence remains undecidable.

Proposition 18 Let E and F be BPP processes with identical alphabets Σ
and let S be the BPP process S def=

∑
a∈Σ a.S.

E ∼lan F ⇐⇒ E ‖Σ S ∼pom F ‖Σ S

Proof: The intuition is that the process S works as a sequentializer. The
proof essentially consists of transforming computations of E into computations
of E ‖Σ S and vice versa.

Assume that E ∼lan F . By a simple inductive argument in the length of the
computations E ‖Σ S, it is easily seen that any computation of E ‖Σ S has the
form

cE : E ‖Σ S
σ1
−→
l1
E1 ‖Σ S . . .

σn
−→
ln
En ‖Σ S,

where E1, . . . , En are BPP expressions and each location has the form li =
{0si, 1}. Since 1 ∈ li for each i = 1, . . . , n, it follows that for every i, j ∈
{1, . . . , n}, i ≤∗cE j if and only if i≤j. Clearly,

c′E : E
σ1
−→
{s1}

E1 . . .
σn
−→
{sn}

En.

By the assumption E ∼lan F , it follows that there exist BPP expressions
F1, . . . , Fn and locations l′1, . . . , l′n such that

c′F : F
σ1
−→
l′1
F1 . . .

σn
−→
l′n
Fn

and thus such that

cF : F ‖Σ S
σ1
−→
l′′1
F1 ‖Σ S . . .

σn
−→
l′′n
Fn ‖Σ S,

where l′′i = 0l′i∪1{ε}. Since for each i = 1, . . . , n, 1 ∈ l′′i , it follows that i ≤∗cF j if
and only if i≤j and hence that i ≤∗cF j ⇐⇒ i ≤∗cE j, for every i, j ∈ {1, . . . , n}.
By a symmetric argument we conclude that E ‖Σ S ∼pom F ‖Σ S.
Conversely, assume that E ‖Σ S ∼pom F ‖Σ S. Consider any computation of
E,

cE : E
σ1
−→
l1
E1 . . .

σn
−→
ln
En.

Then
c′E : E ‖Σ S

σ1
−→
l′1
E1 ‖Σ S . . .

σn
−→
l′n
En ‖Σ S

13



is a computation of E ‖Σ S with l′i = 0li ∪ 1{ε} for every i = 1, . . . , n. By
assumption, there exist locations l′′1 , . . . , l

′′
n and BPP expressions F1, . . . , Fn such

that
c′F : F ‖Σ S

σ1
−→
l′′1
F1 ‖Σ S . . .

σn
−→
l′′n
Fn ‖Σ S

is a computation of F ‖Σ S where each location has the form l′′i = {0si, 1}.
Hence

cF : F
σ1
−→
{s1}

F1 . . .
σn
−→
{sn}

Fn

is a computation of F . By a symmetric argument we conclude that E ∼lan F . �

We do not know of any way to prove the undecidability for∼loc without referring
to the full Turing power of BPPH .

5.2 BPPS

A natural restriction when dealing with non-interleaving behaviours is to allow
only parallel composition in a fixed static setup, see e.g. [2, 1]. This of course
leads to finite-state systems. We generalize the idea to possibly infinite-state
systems.

Let BPPS be the syntactic subset of BPPH obtained by allowing only syn-
chronization, i.e. the ‖A operator with A 6= ∅, at top level and restricting the
synchronization sets to be the set of all actions possible in either of the com-
ponents. A BPPS process can hence be seen as a fixed set of BPP processes
synchronizing on every action. Formally, a BPPS expression is given by the
abstract syntax

E ::= E1 ‖Σ . . . ‖Σ El,

where each Ei is a BPP expression and Σ =
⋃
i=1,...,lAct(Ei). A BPPS process

E is a BPPS expression with a BPP family ∆ such that all variables occurring in
E are contained in Var(∆). A BPPS family is a process family with the property
that the leading variable defines a BPPS expression, all other variables define
BPP expressions and that the leading variable does not occur on any right-side.
A BPPS family ∆ = {X def= X1 ‖Σ . . . ‖Σ Xl}∪∆′ is in normal form if the BPP
family ∆′ is in normal form. We call l the arity of ∆.

We leave it to the reader to check that also for BPPS we have the following
relationships.

Theorem 19 For BPPS , ∼loc ⊂ ∼pom ⊂ ∼lan.

Proof: Follows from Definition 1 and Examples 1 and 2. �

Theorem 20 For BPPS , ∼loc is decidable whereas ∼pom is not.

Proof: From Proposition 18 it follows that ∼pom is undecidable for BPPS
processes. We use the rest of this section to prove that ∼loc is decidable. �
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5.3 Synchronous automata on tuples of finite trees

The synchronous automata on tuples of finite trees (SATT s) we define below
consists of a tuple of non-deterministic top-down finite tree-automata and work
on tuples of finite trees such that each NTA works on its component of a tuple
while synchronizing with the others. SATT s are closely related to communi-
cating finite automata, see e.g. [32], and may be seen as communicating finite
tree-automata. Let T̂Σ = TΣ × . . .× TΣ denote the set of l-tuples of finite trees
over the alphabet Σ.

Definition 21 For i = 1, . . . , l let Ai = (Σ, Qi, Si, δi) be permutation closed
NTAs. A synchronous automaton on tuples of finite trees, SATT , is a pair
A⊗ = ((A1, . . . ,Al), SA), where SA ⊆ S1 × . . .× Sl. �

Definition 22 Let A⊗ = ((A1, . . . ,Al), SA) be a SATT . A configuration of
A⊗ is a tuple in confA1

× . . .× confAl. The set of configurations of A⊗ is de-
noted by confA⊗. Let⇒A⊆ confA⊗×confA⊗ be the transition relation between
configurations defined by

(c1, . . . , cl)⇒A(c′1, . . . , c
′
l)

if and only if for some σ ∈ Σ, ci
σ→ ci

′ for all i = 1, . . . , l. We denote by ⇒∗A
the reflexive and transitive closure of ⇒A. A (successful) run of A⊗ on input
(t1, . . . , tl) ∈ T̂Σ is a derivation ({|(q1, t1)|}, . . . , {|(ql, tl)|})⇒∗A (∅, . . . , ∅), where
(q1, . . . , ql) ∈ SA. The tree-tuple language, L(A⊗), recognized by A⊗ consists
of all tree-tuples t̂, for which there is a run of A⊗ on t̂. �

A tree-tuple is said to be well-synchronized if it belongs to the language of some
SATT . Let T̂⊗Σ denote the set of well-synchronized tree-tuples. Next, we show
that the class of tree-tuple languages over T̂⊗Σ recognized by SATT s is closed
under Boolean operations. But first, a property which is convenient for defining
complement.

Definition 23 A SATT A⊗ = ((A1, . . . ,Al), SA) is in standard form if for ev-
ery t̂ = (t1, . . . , tl) ∈ L(A⊗) there is exactly one tuple (q1, . . . , ql) ∈ S1× . . .×Sl
such that ({|(q1, t1)|}, . . . , {|(ql, tl)|})⇒∗A (∅, . . . , ∅). �

Let AΣ be the NTA that recognizes TΣ. Given NTAs A and B let A∪B and Ā
denote the effectively constructible NTAs recognizing the union of the languages
recognized by A and B and the complement of the language recognized by A,
respectively, see [7] for the detailed constructions. In the following we also use
the fact that due to the non-determinism any NTA can be effectively transformed
into a NTA with only one initial state recognizing the same language. Let
A = (Σ, Q, S, δ) be a NTA, for any q ∈ S denote by Aq the NTA (Σ, Q, {q}, δ).
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Proposition 24 Any SATT can effectively be transformed into a SATT in
standard form recognizing the same language.

Proof: It is not hard to see that in general the set of initial state tuples of a
SATT can not be reduced to a singleton. Hence, the transformation consists of
first rebuilding each NTA Ai using the effective Boolean closure such that for
each t ∈ L(Ai) there is exactly one successful run on t and then redefining SA
appropriately replacing each tuple by possibly more than one tuple.
Given a NTA A = (Σ, Qi, S, δ) with S = {q1, . . . , qk} inductively define the
following family of NTAs. Define inductively, For i ∈ {1, . . . , k},

C{i} = Aqi −
⋃
i 6=j
Aqj

and for ∅ ⊂ I ⊆ {1, . . . , k} and I not a singleton,

CI =
⋂
i∈I
Aqi −

⋃
{CJ | J ⊆ {1, . . . , k}, |I| < |J |}

According to the remark above we may assume that for each ∅ ⊂ I ⊆ {1, . . . , k},
the NTA CI has the form (Σ, QI , {sI}, δI), also it is not hard to see that we can
assume that the Qis are disjoint. Finally, let fA be the function from S to the
powerset of

⋃
∅⊂I⊆{1,...,k}QI given by

fA(qi) = {sI | i ∈ I}

and
DA = (Σ,

⋃
∅⊂I⊆{1,...,k}

QI ,
⋃

∅⊂I⊆{1,...,k}
{sI},

⋃
∅⊂I⊆{1,...,k}

δI).

Clearly, DA is a NTA and its construction is effective. Moreover, it is easy to
check that L(A) = L(DA) =

⊎
∅⊂I⊆{1,...,k} L(DsIA ), where

⊎
denotes disjoint

union.
With this construction on NTAs it is straightforward to effectively transform

any SATT into a SATT in standard form. Given a SATT A⊗ = ((A1, . . . ,Al), SA)
define the SATT D⊗ = ((DA1 , . . . ,DAl), SD), where

SD = {(p1, . . . , pl) | ∃(q1, . . . , ql) ∈ SA ∧ pi ∈ fAi(qi), i = 1, . . . , l}.

Clearly, D⊗ is a SATT in standard form and L(D⊗) = L(A⊗). �
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Definition 25 Let A⊗ = ((A1, . . . ,Al), SA) and B⊗ = ((B1, . . . ,Bl), SB) be
SATT s. Define

1. A⊗ ∪B⊗ = ((A1 ∪ B1, . . . ,Al ∪ Bl), SA ∪ SB)

2. Let furthermore A⊗ be in standard form. Define

Ā⊗ = (
⋃

i∈{1,...,l}
((Ci1, . . . , Cil ), Si)) ∪ ((A1, . . . ,Al), S)

where Cij = (Σ, Qij, {pij}, δij) such that Cii = Āi and for j 6= i, Cij = AΣ,
Si = {(pi1, . . . , pil)} and S = S1 × . . .× Sl \ SA. �

Clearly, A⊗∪B⊗ and Ā⊗ are SATT s. The following proposition states that
they have in fact the expected properties.

Proposition 26

1.) L(A⊗ ∪ B⊗) = L(A⊗) ∪ L(B⊗)

2.) L(Ā⊗) =T̂⊗Σ −L(A⊗)

Proof: See Appendix C. �

An important property is the decidability of the emptiness problem for SATT .
We establish this by a reduction to the zero reachability problem for Petri
nets, as defined in Section 4, which is decidable [17, 16]. The representation
of finite tree automatas as Petri nets was studied in [25]. Here, we translate
NTAs into communication-free nets and SATT s into synchronized products of
communication-free nets. As our Petri nets are not weighted we use the easily
shown fact that any NTA can be effectively transformed into another NTA
recognizing the same language but with the property that its transition relation
δ satisfies that for all (q, σ, q1, . . . , qk) ∈ δk, qi = qj ⇒ i = j. The construction
below translates at one swoop a SATT into a Petri net.

Before we give the general construction of Petri nets from SATT s we consider
an example.

Example 3 Given the SATT A⊗ = ((A1,A2), {(p1, q1)}) where
A1 = ({a, b, c}, {p1, p2, p3}, {p1}, δ1), A2 = ({a, b, c}, {q1, q2, q3}, {q1}, δ2),

δ1 = {(p1, a, p2, p3), (p1, a, p3, p2), (p2, c), (p3, b)} and
δ2 = {(q1, a, q2), (q2, b, q3), (q3, c)}

we contruct the Petri net in figure 1. �

For notational ease let δσ =
⋃

0≤k{(q, σ, q1, . . . , qk) ∈ δk}.
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Figure 1: The Petri net associated with the SATT of Example 3.

Construction 27 Given a SATT A⊗ = ((A1, . . . ,Al), SA) such that the Qis
are disjoint and an action start 6∈ Σ. Let i range over 1, . . . , l, let δ =

⋃
i δi.

Define the labelled Petri net PA = ((S, T, F, l),M0) with places S =
⋃
Qi ∪

{init}, transitions

T = {(σ, η1, . . . , ηl) | ηi ∈ δσi for σ ∈ Σ} ∪ SA,

flow relation F = F1 ∪ F2 ∪ F3 ∪ F4, where

F1 = {(q, t) | t = (σ, η1, . . . , ηl) ∈ T ∧ ηi = (q, σ, q1, . . . , qk)},
F2 = {(t, qj) | t = (σ, η1, . . . , ηl) ∈ T ∧ ηi = (q, σ, q1, . . . , qk) ∧ 1 ≤ j ≤ k},
F3 = {(t, qi) | t = (q1, . . . , ql) ∈ SA}, and
F4 = {(init, t) | t ∈ SA},

labelling function l : T → (Σ ∪ {start}) given by l(t) = σ, if t = (σ, η1, . . . , ηl)
and start otherwise, and initial marking M0 = {|init|}. �

Note that for each transition not in SA the cardinality of the preset is exactly
l. Also, since we are interested mainly in the following reduction the labelling
of PA is irrelevant.
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Proposition 28 L(A⊗) 6= ∅ ⇐⇒ the zero-marking is reachable in PA

Proof: See, Appendix D. �

From the proposition above and the Boolean closure we get

Proposition 29 The emptiness and the equivalence problem for SATT is de-
cidable.

Proof: The decidability of the emptiness problem follows immediately from
Proposition 28 and the decidability of the zero reachability problem [17, 16].
The decidability of the equivalvence problem follows by the following standard
reduction exploiting the closure under Boolean operations

L(A⊗) ⊆ L(B⊗) ⇔ L(Ā⊗ ∪ B⊗) = ∅

�

Let Perml denote the set of all permutations on {1, . . . , l}.

Construction 30 Given a BPPS family ∆ in normal form with leading equa-
tion X = X1 ‖Σ . . . ‖Σ Xl and corresponding BPP families ∆1, . . . ,∆l with
leading variables X1, . . . , Xl, respectively. Define

A⊗∆ =
⋃

π∈Perml

((A∆π(1) , . . . ,A∆π(l)), SAπ),

where SAπ = Sπ(1) × . . .× Sπ(l) and Si the set of initial states of A∆i �

The essential property of the construction is expressed by the following propo-
sition.

Proposition 31 Let ∆ and ∆′ be BPPS families in normal form of the same
arity, and with leading variables X and Y, respectively. Then

X∼locY ⇐⇒ L(A⊗∆) = L(A⊗∆′)

Proof: See, Appendix E. �

Theorem 32 For BPPS , ∼loc is decidable.

Proof: Its is not hard to see from Proposition 10 that we can assume that
the families ∆ and ∆′ are in normal forms. Moreover, since arity checking is
syntactically easy to check, the result follows from Construction 30 and Propo-
sition 31 and 29. �
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E
σ
−→
l0
E′ F

σ̄
−→
l1
F ′

E ‖ F
τ
−→

0l0∪1l1
E′ ‖ F ′

(τ − com)

E
σ
−→
l
F

E\L
σ
−→
l
F\L

, σ, σ̄ 6∈ L (res)

Table 2: Transition rules for CCS communication and restriction.

6 Extending towards full CCS

In this section we study the extensions of BPP obtained by addding first CCS-
synchronization and then CCS-restriction. To avoid confusion we begin by
explaining the syntax and semantics of both. Let Act and Var be as in section
2 and let Act = {ᾱ, β̄, . . .} such that ¯ is a bijection between Act and Act,
mapping ¯̄α to α. Let Actτ = Act ∪ Act ∪ {τ} be the set of actions, where τ
is a distinguished action not in Act or Act. τ is known as the invisible action.
Any other action is visible. The set of CCS process expressions is defined by
the abstract syntax

E ::= 0 | X | σ.E | E + E | E ‖ E | E\L

where X is in Var, σ in Actτ and L a subset of Act. 0, X, σ., and + are as
for BPP. ‖ is CCS parallel composition of processes executing independently
with the possibility of pairwise CCS-synchronization and \L is CCS-restriction.
The semantics is given by the transition rules of BPP together with the rules of
Table 2. Following [20] we restrict ourselves to guarded processes, in the sense
that every variable occurs within a prefix σ.F , where σ 6= τ .

6.1 BPPM

BPPM , is the subset of CCS obtained by adding the transition rule τ -com of
table 2 to BPP and hence introducing CCS-synchronization. Since there is no
restriction operator in BPPM communication cannot be forced. Whenever a
communication occurs in a computation, also the computation with the com-
municating actions occuring seperately is possible. Conversely, if there is a
computation in which two complementing actions occur independently then the
same computation except from the two actions now communicating exists. The
proof of the following proposition relies on this observation.

Proposition 33 The BPPM processes E and F are pomset (location) equiva-
lent if and only if the BPP processes E and F are pomset (location) equivalent.

Proof: See Appendix F. �
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From this proposition we immediately get the following results.

Theorem 34 For BPPM , ∼loc = ∼pom ⊂ ∼lan.

Proof: From Proposition 33 and Theorem 2. �

Theorem 35 For BPPM , ∼pom and ∼loc are decidable whereas ∼lan is unde-
cidable.

Proof: From Proposition 33 and Theorem 15. �

Comparing this result with the earlier results on BPPH shows a clear difference
between adding CCS- and TCSP-communication to BPP. In the former case
∼pom and ∼loc still coincide and remain decidable whereas in the latter ∼loc is
strictly finer than ∼pom and they both become undecidable.

6.2 CCS

CCS is BPPM extended with the CCS-restriction operator. For CCS, ∼pom and
∼loc no longer coincide.

Theorem 36 For CCS, ∼loc ⊂ ∼pom ⊂ ∼lan.

Proof: The inclusions follow from Definition 2. The strictness of the inclusions
follow from Example 2 and the following examples.

q1 = (a.b.c.0 ‖ b̄.0)\{b}, q2 = (a.b.0 ‖ b̄.c.0)\{b}

Clearly, q1 ∼pom q2 but q1 6∼loc q2. �

Theorem 37 For CCS ∼pom and ∼loc are undecidable.

Proof: Due to the well-known Turing power of CCS, see e.g. [28], both ∼pom
and ∼loc are undecidable for CCS processes. The reduction is similar to the one
used in Section 5.1, see Appendix G for details. �

7 Conclusion

We have presented results illuminating the delicate bounds between the decid-
able and the undecidable in the setting of behavioural equivalences for infinite-
state concurrent systems. We would like to see our results as a contribution
to the search for useful verification problems which will be decidable/tractable
when moving from the standard view of interleaving to more intentional non-
interleaving views of behaviour.
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Our results raise many open questions to be addressed. We have concen-
trated on the question of decidability of certain equivalences for process calculi.
However, there are immediate links to other questions, like regularity of pro-
cesses, see [13] for a recent result showing that language equivalence between
a general and a bounded Petri net is decidable. Secondly, we have focussed
on various process calculi extensions of BPP, and although these, of course,
imply results for the corresponding Petri net extensions of communication-free
nets, it would be interesting to look for independent extensions in terms of net
subclasses with decidable non-interleaving equivalences. Also, many other non-
interleaving equivalences exist besides our chosen pomset and location equiva-
lences, and which deserve to be explored. In particular, we do not claim that our
notion of location equivalence is the only natural formalization of local causality,
other possibilities exist.
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A Proof of Proposition 14

Proof: The only if direction follows from Lemmas 39, 40, 41 and the fact that
A∆ and A∆′ are permutation closed and hence that L(A∆) and L(A∆′) are
closed under isomorphism.
The if direction follows from Lemmas 40, 43, 39, and 42. �

A tree isomorphism h from TΣ to TΣ is a label preserving and up to permu-
tation order preserving bijection, that is,

i) for σ ∈ Σ0, h(σ) = σ.

ii) for σ[t1, . . . , tk] ∈ Σk, h(σ[t1, . . . , tk]) = σ[h(tπ(1)), . . . , h(tπ(k))], where π
is some permutation on {1, . . . , k}.

Trees t, t′ ∈ TΣ are isomorphic, t ∼= t′, if and only if there exists a tree isomor-
phism h such that h(t) = t′.

As a simple consequence of the permutation closure any language L ⊆ TΣ
accepted by a permutation closed NTA is closed under isomorphism, that is, L
satisfies that for all t, t′ ∈ TΣ if t ∼= t′ then t ∈ L⇔ t′ ∈ L.

In Proposition 4 we showed that the ordering ≤∗c associated with a com-
putation c of a BPP family is a tree ordering. Below we associate with each
computation of a BPP family in normal form a canonical tree, Tc, representing
algebraicly the tree induced by ≤∗c on {l1, . . . , ln}. Let <∗c denote the strict
version of ≤∗c , that is, i <∗c j if and only if i ≤∗c j and i 6= j. Let l∗c denote the
covering relation of ≤∗c on {l1, . . . , ln}, that is, il∗cj if and only if i ≤∗c j and for
all k, ¬(i <∗c k <∗c j). Let � be the lexicographic ordering on {0, 1}∗ extended
to singleton sets over {0, 1}∗ in the obvious way.

Definition 38 Let ∆ be a BPP family in normal form with leading variable
X, let

c : X = E0

σ1
−→
l1
E1 . . .

σn
−→
ln
En

be a computation of X and let for each i ∈ {1, . . . , n}, succc(i) denote the set
of successors of i with respect to ≤∗c , {j ∈ {1, . . . , n} | il∗cj}. Associate with
each action σi the recursively define tree

Tc(i) = σi[Tc(j1), . . . , Tc(jk)],

where succc(i) = {j1, . . . , jk} and lj1 � . . . � ljk . Finally, the canonical tree of
c Tc is the tree Tc(1). �
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Lemma 39 Let ∆ be a BPP family in normal form with leading variable X.
For every run of A∆ there is a computation of ∆ with locations forming an
isomorphic tree, that is, if

{|(X, t)|} σ1→ c1
σ2→ c2 . . .

σn→ cn = ∅

is a run ofA∆ then there exist BPP expressions E1, . . . , En ∈ Proc and locations
l1, . . . , ln such that

c : X = E0

σ1
−→
l1
E1 . . .

σn
−→
ln
En

is a computation of ∆ and such that t ∼= Tc.

Proof: Induction in the length of runs. �

Lemma 40 Let ∆ be a BPP family in normal form with leading variable X.
For every computation of ∆ there is a run of A∆ on some tree isomorphic to
the tree induced by the set of locations, that is, if

c : X = E0

σ1
−→
l1
E1 . . .

σn
−→
ln
En

is a computation of ∆ then there exist a tree t ∈ TΣ and configurations c1, . . . , cn ∈
confA such that

{|(X, t)|} σ1→ c1
σ2→ c2 . . .

σn→ cn = ∅

is a run of A∆ and such that t ∼= Tc.

Proof: Induction in the length of computations. �

Lemma 41 Let ∆ and ∆′ be a BPP families in normal form with leading
variables X and Y, respectively. Let

c : X = E0

σ1
−→
l1
E1 . . .

σn
−→
ln
En

c′ : Y = F0

σ1
−→
l′1
F1 . . .

σn
−→
l′n
Fn

be computations. If for every i and j in {1, . . . , n}, i ≤∗c j ⇐⇒ i ≤∗c′ j then
Tc ∼= Tc′

Proof: Follows easily from the definitions. �
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Lemma 42 Let ∆ and ∆′ be a BPP families in normal form with leading
variables X and Y, respectively. Let

c : X = E0

σ1
−→
l1
E1 . . .

σn
−→
ln
En

c′ : Y = F0

σ′1
−→
l′1
F1 . . .

σ′n
−→
l′n
Fn

be computations. If Tc ∼= Tc′ then there exists a computation

c′′ : Y = G0

σ1
−→
l′′1
G1 . . .

σn
−→
l′′n
Gn

such that for every i and j in {1, . . . , n}, i ≤∗c j ⇐⇒ i ≤∗c′′ j.

Proof: Induction in the length of computations. �

Lemma 43 Let A and B be NTAs and let t ∈ L(A) and t ∈ L(B). If

{|(p, t)|} σ1→ c1
σ2→ c2 . . .

σn→ cn = ∅

is a run of A then there exists a run

{|(q, t)|} σ1→ c′1
σ2→ c′2 . . .

σn→ c′n = ∅

of B.

Proof: Induction in the length of runs. �

B Proof of Theorem 17

Proof: The result is a simple consequence of Lemma 45 and Theorem 44
below.

A (Minsky) two-counter machine [21] consists of a finite program

l1 : com1
...

ln−1 : comn−1
ln : HALT

and two unbounded counters c0 and c1. The lis and the comis are called labels
and commands, respectively. Commands are of one of two different types: com-
mands of type I are of the form cj := cj+1;goto l (unconditional increment) and
commands of type II are of the form if cj = 0 then goto l else cj := cj − 1;goto
l′ (conditional decrement), where j is either 0 or 1, and l and l′ are labels.

A two-counter machineM executes on a given input (contents of the counters
(c0, c1)) (m0, m1) by first executing com1, and so forth. Stopping if and only if
the HALT command is reached. M halts on input (m0, m1) if it reaches label ln
and hence the HALT command in finitely many steps. Otherwise, M diverges.
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Theorem 44 [21]
It is undecidable whether a two-counter machine M halts on input (0, 0).

Following Christensen [4] we encode counters in BPPH as shown in Example 4
and obtain a fairly standard reduction from the halting problem for two-counter
machines to the pomset and location equivalence problem for BPPH processes.

Example 4 Consider the BPPH family

∆ = {U def= z.U + i.(V ‖{z} U), V def= d.W,W
def= z.W}.

It is not hard to show that for any n ∈ IN the process V n ‖{z} U represents a
counter with value n in the obvious way; allowing communication on z if and
only if the counter is zero; incrementing and decrementing the counter by com-
municating on i and d, respectively. Again, allowing communication on d if and
only if the counter is greater than zero. �

Given a two-counter machine M the idea is to encode M by a BPPH process of
the form

EM
def= (C0 ‖A0 X1) ‖A1 C1

where for j = 0, 1, Aj = {zj, ij , dj}, the process Cj encodes the counter cj in
the obvious way following Example 4 and the process variable X1 is the leading
variable of the finite-state process ∆M = {X1

def= E1, . . . , Xn−1
def= En−1, Xn

def=
0} where for each k = 1, . . . , n− 1

Ek = ij.Xu, if comk is cj := cj + 1;goto lu
Ek = zj.Xu + dj.Xv, if comk is if cj = 0 then goto lu else cj := cj − 1;goto lv

that encodes the finite program of M . Now let

FM
def= (C0 ‖A0 X1) ‖A1 C1

be a BPPH process identical to EM except from letting Fn be h.0 where action
h is different from any action of EM .

It is now an easy exercise to show the following lemma.

Lemma 45 Given a two-counter machine M . Then

M does not halt on input (0, 0) ⇐⇒ EM ∼pom FM ⇐⇒ EM ∼loc FM .

C Proof of Proposition 26

Proof: The proof of 1.) is straightforward. The proof of 2.) relies on the fact
that A⊗ is in standard form. Assume that t̂ = (t1, . . . , tl) ∈ L(Ā⊗). Clearly,
t̂ ∈T̂⊗Σ and by Definition 25, either there is some i ∈ {1, . . . , l} such that t̂ ∈
L(((Ci1, . . . , Cil ), Si)), or t̂ ∈ L(((A1, . . . ,Al), S)). In the first case ti ∈ L(Āi)
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and hence t̂ 6∈ L(A⊗). In the second case there is some tuple (q1, . . . , ql) ∈
S1 × . . .× Sl \ SA such that ({|(q1, t1)|}, . . . , {|(ql, tl)|}) ⇒∗A (∅, . . . , ∅). Since
A⊗ is in standard form, t̂ 6∈ L(A⊗).

Conversely, assume that t̂ = (t1, . . . , tl) ∈ T̂⊗Σ and t̂ 6∈ L(A⊗). Either there
is some i ∈ {1, . . . , l} such that ti 6∈ L(Ai) and hence t̂ ∈ L(((Ci1, . . . , Cil), Si)),
or for all i ∈ {1, . . . , l}, ti ∈ L(Ai) and hence there is some tuple (q1, . . . , ql) ∈
S1 × . . .×Sl such that for all i = 1, . . . , l, ti ∈ L(Aqii ). According to Lemma 47
(q1, . . . , ql) 6∈ SA and hence again by Lemma 47, t̂ ∈ L(((A1, . . . ,Al), S)). �

Lemma 46 Let A⊗ = ((A1, . . . ,Al), SA) be a SATT .

(c01, . . . , c
0
l )

σ1⇒A (c11, . . . , c
1
l )

σ2⇒A . . .
σn⇒A (cn1 , . . . , c

n
l ) = (∅, . . . , ∅)

m
c0i

σ1→Ai c1i
σ2→Ai c2i . . .

σn→Ai cni = ∅, i = 1, . . . , l.

Proof: Induction in the length of runs of SATT s and NTAs, respectively. �

Lemma 47 Assume t̂ = (t1, . . . , tl) ∈ T̂⊗Σ .

t̂ ∈ L(A⊗) iff ∃(q1, . . . , ql) ∈ SA : ∀i : ti ∈ L(Aqii )

Proof: The only if direction follows as a simple consequence of Lemma 46.
The if direction is slightly more tedious and relies on the assumption that t̂ is
well-synchronized. Since t̂ ∈ T̂⊗Σ , there is some SATT B⊗ = ((B1, . . . ,Bl), SB)
and (p1, . . . , pl) ∈ SB such that

({|(p1, t1)|}, . . . , {|(pl, tl)|})
σ1⇒B (c11, . . . , c

1
l )

σ2⇒B . . .
σn⇒B (cn1 , . . . , c

n
l ) = (∅, . . . , ∅).

By Lemma 46, there are runs

{|(pi, ti)|}
σ1→Bi c1i

σ2→Bi c2i . . .
σn→Bi cni = ∅, i = 1, . . . , l.

Thus if there exists (q1, . . . , ql) ∈ SA such that for all i, ti ∈ L(Aqii ) then by
Lemma 43, there are runs

{|(qi, ti)|}
σ1→Ai d1

i
σ2→Ai d2

i . . .
σn→Ai dni = ∅, i = 1, . . . , l

and hence by Lemma 46,

({|(q1, t1)|}, . . . , {|(ql, tl)|})
σ1⇒A (d1

1, . . . , d
1
l )

σ2⇒A . . .
σn⇒A (dn1 , . . . , d

n
l ) = (∅, . . . , ∅)

Hence, t̂ ∈ L(A⊗). �
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D Proof of Proposition 28

Proof: Follows from Lemmas 48 and 51 below. �

Let c = (c1, . . . , c2) ∈ confA⊗. In the following we write q ∈ c if there exists
an i ∈ {1, . . . , l} and a t ∈ TΣ such that (q, t) ∈ ci and Mc for {|q | q ∈ c|}.

Lemma 48

L(A⊗) 6= ∅ if the zero-marking is reachable in PA

Proof: Assume that the zero-marking is reachable in PA. Then there exists a
firing sequence of PA

M0[start〉M1[u1〉 . . .Mn[un〉Mn+1 = ∅

leading from the inital to the zero marking. Given such a firing sequence the
algorithm below gradually builds a tree tuple belonging to L(A⊗). The con-
struction uses l-tuples of trees over T̂Σ∪S The idea is to label the nodes of the
ith component tree with letters from Σ and the leaves with letters from Σ or
states/places from Qi the latter indicating that the leaf is to be replaced by
some tree. Below we shall not explicitly distinguish between the SATT A⊗
with alphabet Σ from the exact same SATT except from the alphabet being
extended to Σ ∪ S as they recognize the same language.

Let t̂ ∈ T̂Σ∪S and let for j = 1, . . . , l, tj denote the jth component of t̂. We
denote by t �x t′ the non-standard tree concatenation consisting of replacing
non-deterministically exactly one leaf in t labelled x by the tree t′. Let for each
i, σi = l(ui).

Algorithm 49
t̂ := (q1, . . . , ql), where start• = M1 = {|q1, . . . , ql|}

for i := 1 to n do
for j := 1 to l do

t′j := tj �q σi[q1, . . . , qk], where •ui ∩Qj = {q} and u•i ∩Qj = {q1, . . . , qk}
t̂ := (t′1, . . . , t

′
l)

�

Let idQ = {|(q, q) | q ∈ Q|} and FA = {(c1, . . . , cl) | ci finite subset of idQi}.
To see the correctness of the algorithm consider the following loop invariant

I(m) : ∃c1, . . . , cm+1 ∈ conf⊗A :

c1 = ({|(q1, t1)|}, . . . , {|(ql, tl)|}) ∧ cm+1 ∈ FA ∧
Mj = Mcj for j = 1, . . . , m+ 1∧

c1
σ1⇒A c2

σ2⇒A . . . cm−1
σm−1⇒A cm

σm⇒A cm+1
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Clearly, I(0) holds before entering the loop. Moreover, for i = 0, . . . , n − 1,
I(i) ⇒ I(i+ 1) and I(n)⇒ t̂ ∈ L(A⊗). Hence, given a firing sequence of PA we
get by running the algorithm a tree tuple in L(A⊗). �

Lemma 50

c
σ⇒A c′ only if ∃u ∈ T : Mc[u〉Mc′ ∧ l(u) = σ

Proof: Let c = (c1, . . . , cl), c′ = (c′1, . . . , c′l) and let i range over {1, . . . , l}
Assume that c σ⇒A c′. By Definition 22, ci

σ→ ci
′ for all i. Hence, for all i there

exists (qi, σ[ti1, . . . , tiki]) ∈ ci and ηi = (qi, σ, qi1, . . . , qiki) ∈ δi such that ci −
{|(qi, σ[ti1, . . . , t

i
ki

])|} = c′i−{|(qi1, ti1), . . . , (qiki, t
i
ki

)|}. By Construction 27, there
exists a transition u = (σ, η1, . . . , ηl) with preconditions •u = {qi1, . . . , qil} ∈ T
and postconditions u• =

⋃
i{qi1, . . . , qiki}. Hence Mc[u〉Mc′. �

Lemma 51

L(A⊗) 6= ∅ only if the zero-marking is reachable in PA

Proof: Assume that t̂ = (t1, . . . , tl) ∈ L(A⊗). Then by Definition 22, there
exist configurations c1, . . . , cn ∈ confA⊗ such that

({|(q1, t1)|}, . . . , {|(ql, tl)|})
σ1⇒A c2

σ2⇒A . . . cn−1
σn−1⇒A cn = (∅, . . . , ∅),

where (q1, . . . , ql) ∈ SA. Hence, by induction in n its straightforward using Con-
struction 27 and Lemma 50 to show that there exist transitions u1, . . . , un−1 ∈ T
such that

M0[start〉Mc1 [u1〉 . . .Mcn−1 [un−1〉Mcn = ∅.
�

E Proof of Proposition 31

Proof: Follows from Lemmas 53 and 52 below. �

For convenience, we assume that ‖Σ is left associative. For example, E1 ‖Σ
E2 ‖Σ E3 should be read as ((E1 ‖Σ E2) ‖Σ E3).

Lemma 52 X∼locY =⇒ L(A⊗∆) = L(A⊗∆′).

Proof: Let X def= X1 ‖Σ . . . ‖Σ Xl and Y
def= Y1 ‖Σ . . . ‖Σ Yl and let i range

over 1, . . . , l.
Assume that X∼locY . Consider some t̂ = (t1, . . . , tl) ∈ L(A⊗∆). Then there
exists a run

({|(X1, t1)|}, . . . , {|(Xl, tl)|})
σ1⇒A∆ (c11, . . . , c

1
l )

σ2⇒A∆ . . .
σn⇒A∆ (cn1 , . . . , c

n
l ) = (∅, . . . , ∅)
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of A⊗∆. By Lemma 46,

{|(Xi, ti)|}
σ1→ c1i

σ2→ c2i . . .
σn→ cni = ∅,

and by Lemma 39, there exist computations

ci : Xi = Ei0

σ1
−→
ui1

Ei1 . . .
σn
−→
uin

Ein.

such that ti ∼= Tci . Hence, clearly there is a computation

c : X1 ‖Σ . . . ‖Σ Xl
σ1
−→
l1
E1

1 ‖Σ . . . ‖Σ El1 . . .
σn
−→
ln
E1
n ‖Σ . . . ‖Σ Eln

and by the assumption there exists a computation

c′ : Y1 ‖Σ . . . ‖Σ Yl
σ1
−→
l′1
F 1

1 ‖Σ . . . ‖Σ F l1 . . .
σn
−→
l′n
F 1
n ‖Σ . . . ‖Σ F ln

and a relation R ⊆ loc(c) × loc(c′) satisfying that for each 1 ≤ i ≤ n, R
restricts to a bijection on li × l′i, and for each i ≤ j, s0(R ∩ li × l′i)s

′
0 and

s1(R ∩ lj × l′j)s′1, s0 v s1 ⇐⇒ s′0 v s′1. Now by Lemma 55, there exists a
permutation π and a computation

di : Yi = F i0

σ1
−→
ui1

F i1 . . .
σn
−→
uin

F in.

such that Tci ∼= Tdπ(i) . By Lemma 40, there are runs

{|(Yi, t′i)|}
σ1→ d1

σ2→ d2 . . .
σn→ dn = ∅

and such that t′i ∼= Tdi . Thus ti ∼= t′π(i) and by Lemma 46, t̂′ = (t′1, . . . , t′l) ∈
L(A⊗∆′). It follows from Lemma 54 that t̂ = (t1, . . . , tl) ∈ L(A⊗∆′). The result
follows by a symmetric argument. �

Lemma 53 L(A⊗∆) = L(A⊗∆′) =⇒X∼locY .

Proof: Let X def= X1 ‖Σ . . . ‖Σ Xl and Y
def= Y1 ‖Σ . . . ‖Σ Yl and let i range

over 1, . . . , l.
Assume that L(A⊗∆) = L(A⊗∆′) and consider some computation of X

X1 ‖Σ . . . ‖Σ Xl
σ1
−→
l1
E1

1 ‖Σ . . . ‖Σ El1 . . .
σn
−→
ln
E1
n ‖Σ . . . ‖Σ Eln.

Then clearly there exist computations

ci : Xi = Ei0

σ1
−→
ui1

Ei1 . . .
σn
−→
uin

Ein.
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By Lemma 40, there exist runs

{|(Xi, ti)|}
σ1→ c1i

σ2→ c2i . . .
σn→ cni = ∅

such that ti ∼= Tci . Hence by Lemma 46, there exists a run

({|(X1, t1)|}, . . . , {|(Xl, tl)|})
σ1⇒A∆ (c11, . . . , c

1
l )

σ2⇒A∆ . . .
σn⇒A∆ (cn1 , . . . , c

n
l ) = (∅, . . . , ∅)

of A⊗∆. Thus t̂ = (t1, . . . , tl) ∈ L(A⊗∆) = L(A⊗∆′) and hence by Lemma 56, there
exists a run

({|(Y1, t1)|}, . . . , {|(Yl, tl)|})
σ1⇒A∆′ (d1

1, . . . , d
1
l )

σ2⇒A∆′ . . .
σn⇒A∆′ (dn1 , . . . , d

n
l ) = (∅, . . . , ∅).

By Lemma 46, there exist runs

{|(Yi, ti)|}
σ1→ di1

σ2→ di2 . . .
σn→ din = ∅.

By Lemmas 39 and 42, there are computations

di : Yi = F i0

σ1
−→
vi1

F i1 . . .
σn
−→
vin

F in

such that ti ∼= Tdi and such that for all i, for each 1 ≤ h, k ≤ n, h ≤∗ci k ⇐⇒
h ≤∗di k. Hence, there exists a computation

Y1 ‖Σ . . . ‖Σ Yl

σ1
−→
l′1
F 1

1 ‖Σ . . . ‖Σ F l1 . . .
σn
−→
l′n
F 1
n ‖Σ . . . ‖Σ F ln.

By Lemma 57 and a symmetric argument, we conclude that X∼locY . �

Lemma 54 Let ∆ be a BPPS family in normal form, let t̂ = (t1, . . . , tl), t̂′ =
(t′1, . . . , t′l) ∈ T̂Σ and let i range over 1, . . . , l. If there exists a permutation
π ∈ Perml such that for all i, ti ∼= t′π(i) then t̂ ∈ L(A⊗∆) if and only if t̂′ ∈ L(A⊗∆).

Proof: Clear from Construction 30 and the fact that the NTAs of A⊗∆ are
permutation closed. �
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Lemma 55 Let ∆ and ∆′ be BPPS families in normal form of the same arity,
and with leading variables X def= X1 ‖Σ . . . ‖Σ Xl, and Y

def= Y1 ‖Σ a . . . ‖Σ Yl,
respectively. Let i range over 1, . . . , l and let

c : X1 ‖Σ . . . ‖Σ Xl
σ1
−→
l1
E1

1 ‖Σ . . . ‖Σ El1 . . .
σn
−→
ln
E1
n ‖Σ . . . ‖Σ Eln

be a computation of ∆ and let for all i,

ci : Xi = Ei0

σ1
−→
ui1

Ei1 . . .
σn
−→
uin

Ein.

If there exists a computation of ∆′

d : Y1 ‖Σ . . . ‖Σ Yl
σ1
−→
l′1
F 1

1 ‖Σ . . . ‖Σ F l1 . . .
σn
−→
l′n
F 1
n ‖Σ . . . ‖Σ F ln

such that there exists a relation R ⊆ loc(c) × loc(d) satisfying that for each
1 ≤ i ≤ n, R restricts to a bijection on li×l′i, and for each i ≤ j, s0(R∩ li×l′i)s′0
and s1(R ∩ lj × l′j)s′1, s0 v s1 ⇐⇒ s′0 v s′1. Then there exist a permutation
π ∈ Perml and computations

di : Yi = F i0

σ1
−→
vi1

F i1 . . .
σn
−→
vin

F in

such that for all i, for each 1 ≤ h ≤ k ≤ n, uih v uik ⇐⇒ v
π(i)
h v v

π(i)
k .

Moreover, Tci ∼= Tdπ(i) .

Proof: Induction in the length of computations. �

Lemma 56 LetA⊗ and B⊗ be SATT s and let t̂ = (t1, . . . , tl) ∈ L(A⊗)∩L(B⊗).
If

({|(p1, t1)|}, . . . , {|(pl, tl)|})
σ1⇒A (c11, . . . , c

1
l )

σ2⇒A . . .
σn⇒A (cn1 , . . . , c

n
l ) = (∅, . . . , ∅)

is a run of A⊗ then there exists a run

({|(q1, t1)|}, . . . , {|(ql, tl)|})
σ1⇒B (d1

1, . . . , d
1
l )

σ2⇒B . . .
σn⇒B (dn1 , . . . , d

n
l ) = (∅, . . . , ∅)

of B⊗.

Proof: By Lemma 46 and Lemma 43. �
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Lemma 57 Let ∆ and ∆′ be BPPS families in normal form of the same arity,
and with leading variables X def= X1 ‖Σ . . . ‖Σ Xl and Y

def= Y1 ‖Σ . . . ‖Σ Yl,
respectively. Let i range over 1, . . . , l. If

ci : Xi = Ei0

σ1
−→
ui1

Ei1 . . .
σn
−→
uin

Ein,

di : Yi = F i0

σ1
−→
vi1

F i1 . . .
σn
−→
vin

F in,

c : X1 ‖Σ . . . ‖Σ Xl

σ1
−→
l1
E1

1 ‖Σ . . . ‖Σ El1 . . .
σn
−→
ln
E1
n ‖Σ . . . ‖Σ Eln,

d : Y1 ‖Σ . . . ‖Σ Yl

σ1
−→
l′1
F 1

1 ‖Σ . . . ‖Σ F l1 . . .
σn
−→
l′n
F 1
n ‖Σ . . . ‖Σ F ln

and for all i, for each 1 ≤ h, k ≤ n, h ≤∗ci k ⇐⇒ h ≤∗di k. Then there exists
a relation R ⊆ loc(c) × loc(d) satisfying that for each h ≤ k, s0(R ∩ lh × l′h)s′0
and s1(R ∩ lk × l′k)s′1, s0 v s1 ⇐⇒ s′0 v s′1.

Proof: Let R be the relation induced by relating uij to vij . �

F Proof of Proposition 33

Proof: We give the proof for pomset equivalence. The proof for location
equivalence is similar. The only if direction is obvious as τ only occurs in
connection with communication. For the if direction, assume that E ∼pom F
when E and F are considered as BPP processes. We show by induction in the
number of communications that for every computation

c : E = E0

σ1
−→
l1
E1 . . .

σn
−→
ln
En

of E there exists a computation

d : F = F0

σ1
−→
l1
F1 . . .

σn
−→
ln
Fn

of F such that i ≤∗c j ⇐⇒ i ≤∗d j.
In the base case no communications (τ -actions) occur in c and hence the

existence of d follows from the assumption.
In the induction step assume that σm (1 ≤ m ≤ n) in c is τ . By Lemma 58,

c′ : E = E0

σ1
−→
l1
E1 . . .

σm−1
−→
lm−1

Em−1

µ
−→
u1

E′m

µ̄
−→
u2

Em
σm+1
−→
lm+1

Em+1 . . .
σn
−→
ln
En

is a computation of E such that u1 6v u2 and µ 6= τ . Then by induction, there
exists a computation

d′ : F = F0

σ1
−→
l′1
F1 . . .

σm−1
−→
l′m−1

Fm−1

µ
−→
v1

F ′m

µ̄
−→
v2

Fm

σm+1
−→
l′m+1

Fm+1 . . .
σn
−→
l′n
Fn
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such that i ≤∗c′ j ⇐⇒ i ≤∗d′ j. Since

u1 6v u2 =⇒ m 6≤∗c′ m+ 1 =⇒ m 6≤∗d′ m+ 1 =⇒ v1 6v v2,

it follows from Lemma 59, that

d : F = F0

σ1
−→
l′1
F1 . . .

σn
−→
l′n
Fn

is a computation of F, where l′m = v1 ∪ v2. Moreover, since for i ≤m,

i ≤∗c m ⇐⇒ li v∗ lm = u1 ∪ u2 ⇐⇒
li v∗ u1 ∨ li v∗ u2 ⇐⇒ l′i v∗ v1 ∨ l′i v∗ v2 ⇐⇒
l′i v∗ l′m = v1 ∪ v2 ⇐⇒ i ≤∗d m,

and similarly for i ≥ m + 1, it follows that i ≤∗c j ⇐⇒ i ≤∗d j. By induction
and a symmetric argument, we conclude that E ∼pom F when E and F are
considered as BPPM processes. �

It is an easy exercise to show the following lemmas.

Lemma 58 If E
τ
−→
l
G then there exist an expression F ∈ Proc, an action

σ ∈ Act and locations l1 and l2 such that l = l1∪ l2, l1 6v l2 and E
σ
−→
l1
F

σ̄
−→
l2
G. �

Lemma 59 If E
σ
−→
l1
F

σ̄
−→
l2
G and l1 6v∗ l2 then E

τ
−→
l1∪l2G . �

G Proof of Theorem 37

Proof: The result is a simple consequence of Lemma 60 below and Theorem
44.

Following Taubner [28] we encode counters:

∆ =


U

def= z.U + i.((V ‖ s.U)/{s}),
V

def= d.s̄.0 + i.((W ‖ t.V )/{t}),
W

def= d.t̄.0 + i.((V ‖ s.W )/{s})


It is not hard to show that the process U represents a counter in the obvious
way; allowing communication on z if only if the counter is zero; incrementing
and decrementing the counter by communicating on i and d, respectively.

Given a two-counter machine M the idea is to encode M by a CCS process
of the form

E′M
def= (C0 ‖ X1 ‖ C1)/L
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where L = {z0, z1, i0, i1, d0, d1}, for each j = 0, 1, the process Cj encodes the
counter cj in the obvious way as above and the process variableX1 is the leading
variable of the finite-state process ∆M defined as in Section B. Now let

F ′M
def= (C0 ‖ X1 ‖ C1)/L

be a CCS process identical to E′M except from letting En be h.0 where action
h is different from any action of EM as in Section B.

It is now an easy exercise to show the following lemma.

Lemma 60 Given a two-counter machine M . Then

M does not halt on input (0, 0) ⇐⇒ E′M ∼pom F ′M ⇐⇒ E′M ∼loc F ′M .

�
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