
University of Pennsylvania
ScholarlyCommons

IRCS Technical Reports Series Institute for Research in Cognitive Science

April 1994

Process Algebra, CCS, and Bisimulation
Decidability
Seth Kulick
University of Pennsylvania, skulick@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/ircs_reports

University of Pennsylvania Institute for Research in Cognitive Science Technical Report No. IRCS-94-06.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/ircs_reports/152
For more information, please contact libraryrepository@pobox.upenn.edu.

Kulick, Seth, "Process Algebra, CCS, and Bisimulation Decidability" (1994). IRCS Technical Reports Series. 152.
http://repository.upenn.edu/ircs_reports/152

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76363028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fircs_reports%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ircs_reports?utm_source=repository.upenn.edu%2Fircs_reports%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ircs?utm_source=repository.upenn.edu%2Fircs_reports%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ircs_reports?utm_source=repository.upenn.edu%2Fircs_reports%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ircs_reports/152?utm_source=repository.upenn.edu%2Fircs_reports%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ircs_reports/152
mailto:libraryrepository@pobox.upenn.edu

Process Algebra, CCS, and Bisimulation Decidability

Abstract
Over the past fifteen years, there has been intensive study of formal systems that can model concurrency and
communication. Two such systems are the Calculus of Communicating Systems, and the Algebra of
Communicating Processes. The objective of this paper has two aspects; (1) to study the characteristics and
features of these two systems, and (2) to investigate two interesting formal proofs concerning issues of
decidability of bisimulation equivalence in these systems. An examination of the processes that generate
context-free languages as a trace set shows that their bisimulation equivalence is decidable, in contrast to the
undecidability of their trace set equivalence. Recent results have also shown that the bisimulation equivalence
problem for processes with a limited amount of concurrency is decidable.

Comments
University of Pennsylvania Institute for Research in Cognitive Science Technical Report No. IRCS-94-06.

This technical report is available at ScholarlyCommons: http://repository.upenn.edu/ircs_reports/152

http://repository.upenn.edu/ircs_reports/152?utm_source=repository.upenn.edu%2Fircs_reports%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages

P

E

N

N

University of Pennsylvania
Founded by Benjamin Franklin in 1740

The Institute For
Research In Cognitive

Science

Process Algebra, CCS, and
Bisimulation Decidability

by

Seth Kulick

IRCS Report 94-06

University of Pennsylvania
3401 Walnut Street, Suite 400C
Philadelphia, PA 19104-6228

April 1994

Site of the NSF Science and Technology Center for

Research in Cognitive Science

Process Algebra� CCS� and Bisimulation Decidability �

Seth Kulick

Computer and Information Science

University of Pennsylvania

Philadelphia� PA �����

April ��� ����

Abstract

Over the past �fteen years� there has been intensive study of formal systems that can model
concurrency and communication� Two such systems are the Calculus of Communicating Sys�
tems� and the Algebra of CommunicatingProcesses� The objective of this paper has two aspects�
��� to study the characteristics and features of these two systems� and ��� to investigate two
interesting formal proofs concerning issues of decidability of bisimulation equivalence in these
systems� An examination of the processes that generate context�free languages as a trace set
shows that their bisimulation equivalence is decidable� in contrast to the undecidability of their
trace set equivalence� Recent results have also shown that the bisimulation equivalence problem
for processes with a limited amount of concurrency is decidable�

� Introduction

Over the past �fteen years� there has been intensive study of formal systems that can model
concurrency and communication� These formalisms allow both rigorous speci�cation of desired
systems and the means to verify the correctness of such speci�cations� The objective of this paper
has two aspects� ��� to study the characteristics and features of two such systems� and ��� to
investigate some interesting formal proofs that have arisen in the context of these systems�

One such formalism is the Calculus of Communicating Systems �CCS�� developed by Robin Milner�
and the Algebra of Communicating Processes �ACP �� developed by a group led by Bergstra and
Klop at Amsterdam� Although strongly related� they start from di�erent viewpoints and have
di�erent strengths and weaknesses� Collectively they will be referred to in this paper as 	process
calculi
� Section � develops CCS but will also be used to explicate the general principles that
underly both CCS and ACP � Section � describes ACP by comparing and contrasting it with
CCS�

One crucial aspect of both these systems is the concept of bisimulation equivalence� Bisimulation
decidability for the full CCS and ACP systems is undecidable� but for smaller subsets of the system
some surprising results have been found� In particular� in a subset of ACP it has been shown that the
decidability of bisimulation equivalence for processes generating context�free languages is decidable�
in contrast to the well�known undecidability of context�free languages in automata theory� Another

�This work is submitted as partial ful�llment of the requirements of the WPEII �Doctoral Written Preliminary
Examination��

�

� CCS �

A Ba b
_

c c
_

Figure �� The composite agent A j B

decidability result� within the context of CCS� allows for a limited amount of concurrency� I will
give an overview of these decidability results and sketch the methods of proof�

� CCS

��� De�nition and Features

The goal of the Calculus of Communicating Systems
Milner ����� is to formalize a theory of
concurrent processing in terms of a few primitive notions� in which communication is the central
primitive� Each process in the system is called an agent� and the agents communicate with each
other in a limited way via their input�output ports� Arbitrary agents are referred to by an element
from the set of agents P � fP�Q� � � �g� and agents that are explicitly de�ned are denoted by an
element from the set of agent constants K � fA�B� � � �g � An agent�s input ports are speci�ed
by the set of names A � fa� b� c� � � �g and the output ports are speci�ed by the set of co�names
A � fa� b� � � �g� Any output port xmay only communicate with its corresponding input port x� This
enforces the underlying idea of CCS that handshaking is the essential communication primitive�
However� it need not be a one�to�one relationship� e�g�� there can be many input ports on di�erent
agents all connected to the the same output port� An action is �almost� therefore the same as
specifying the name of a port� The one exception is the silent action � � to be explained shortly�
The set of labels L � A � A and the set of actions Act � L � f�g�

A simple example of an agent de�nition is that for a one�element bu�er � �with input port a and
output port b �

C
def
� a�C�

C�
def
� b�C

Now consider a bu�er of length two created by hooking two copies of the agent C together �call
them C� and C���

� A problem is that the output b of C� will be hooked to the input a of C��
which violates the condition on port interaction� Therefore� an unused port name� e�g� c � � is
used to relabel C��s output port to be c and B�s input port to c� The composition of C� and C��
written C� j C�� can now take place� For simplicity� let A and B now refer to C� to C�� and so
the composition appears as in Figure �� However� this is still not quite right� because we need to
enforce the handshaking communication � that is� when C� sends out on �c� that it is received and
acted upon by B� Also� this is purely internal and so should be 	hidden
 from agents outside of
A j B� Both these aims are achieved by imposing the restriction nc upon A j B� which signi�es
that the restricted composite agent �A j B� n c may not perform c or c actions� although it may�
crucially� perform a silent step� written � � which results from the communication �c� c� between C�

�These name restrictions will be relaxed in examples for clarity�
�For simplicity� the actual values passed through the bu�er will be ignored for now
�There is no connection between the names of the agents and the names of the ports
�Really� anything except a or b�

� CCS �

D

D D21

a b
_

b
a_(A | B) \ c

(A’ | B) \ c

(A’ | B’) \ c

(A | B’) \ c
b a

a b

τ

Figure �� Derivation trees in CCS

and B� In terms of transition rules� we can have �A j B�
a
� �A� j B� but not �A� j B�

c
� �A j B��

What is allowed instead is �A� j B�
�
� �A j B���

A formal summary of the discussion above is provided the de�nition of the set E of agent expressions�
which de�nes the possible ways in which agents can be joined together via communication� E is
the smallest set which includes K and the following expressions� where E and Ei are already in E �

��E pre�x �� � Act�P
i�I summation �I an indexing set�

E� j E� composition
E nL restriction�L � L
E
f � relabelling �f a relabelling function�

����� Recursive Equations

Processes may sometimes be de�ned as the solution of a �nite system of recursive equations fXi
def
�

Eig� In order to guarantee a unique solution to such a system� it is usually required that the Ei

be guarded� meaning that each variable Xi in Ei is preceded by an atomic action� For an extreme
example of where this is not true� consider the equation X � X � which is not guarded� and for
which every process is a solution� The recursive equations in this paper will all be guarded� �

����� derivation trees and bisimulation

Any agent will have a certain set of possible transitions� which can be collected into a derivation
tree� For example� the left side of Figure � shows the derivation tree for �A j B�nc� The comparison
of derivation trees for di�erent processes is a crucial aspect of CCS �and process calculi general��
and CCS has three di�erent concepts for this purposes� which equate trees based on varying notions
of 	similiarity
� This is the crucial departing point between CCS and classical automata theory�
Whereas in the latter the resulting language is the object of concern� here we are concerned with
the branching activity of the process� as represented in the derivation tree or process de�nition�

The �rst notion of 	similarity
 is that of strong bisimulation� in which every � action of one agent
must be matched by an � action of the other� even for � actions� A pair of examples before the
formal de�nition�

�The theory of guarded equations and unique solutions is actually considerably more complex and subtle than
described here� but the extra complexity will not be a factor in the examples in this paper� The brief discussion
above is just meant to introduce the notion of guarded equations� which will be needed later�

� CCS �

�� A � a�b � c�� B � ab � ac� These two are not strongly bisimilar� Note that this entails a
rejection of the distributive law� In A� �rst a must be executed� and then a choice is made
between b and c� However� in B� �rst a choice is made� and then the chosen term is executed�
The moment of choice is di�erent� and so they are distinguished by strong bisimulation�

�� A� � ab� B� � ab� a�b� b�� These two are strongly bisimilar� Based only on what action is
taking place� A� and B� cannot be distinguished�

Note that the last example shows that it would be too strong to require identical derivation trees�

De�nition � A binary relation S � P � P over agents is a strong bisimulation if �P�Q� � S

implies� for all � � Act�
�i� Whenever P

�
� P � then� for some Q�� Q

�
� Q� and �P �� Q�� � S

�ii� Whenever Q
�
� Q� then� for some P �� P

�
� P � and �P �� Q�� � S�

De�nition � P and Q are strongly bisimilar� written P�Q� if �P �� Q�� � Sfor some strong bisim�
ulation S� Equivalently� � is the largest strong bisimulation or�

� � �fS j S is a strong bisimulationg

Strong bisimulation is the simplest of the three equivalence de�nitions because it treats � just like
any other action� Recall that � is supposed to represent an action that is 	hidden
 from observance�
and thus it should not really be treated just like any other action� The various ways of handling the
silent action leads to a variety of ways for comparing derivation trees� One of the most important
variations is the requirement that each � action be matched by zero or more � actions � this is called
weak bisimulation� For example� in Figure � the two derivation trees are not strongly bisimilar�
but are indeed weakly bisimilar� because S is a bisimulation� where

S � f��A j B�� n c�D�

��A j B� n c�D���

��A� j B�� n c�D���

��A� j B� n c�D�g

Two preliminary de�nitions are needed before the de�nition of weak bisimulation�

�� De�nition � if t � Act
�� then �t � L� is the sequence obtained by deleting all occurrences of

� from t� In particular� c�n � ��

�� De�nition � If t � �� � � ��n � Act
�� then E

t
� E� if

E�
�
����

�����
�
��� � � � �

�
����

�n���
�
���E�

Note also that E
�
� E� i� E

�n
� E� for some n � ��

De�nition � A binary relation S � P � P over agents is a �weak� bisimulation if �P�Q� � S
implies� for all � � Act�

�i� Whenever P
�
� P � then� for some Q�� Q

��
� Q� and �P �� Q�� � S

�ii� Whenever Q
�
� Q� then� for some P �� P

��
� P � and �P �� Q�� � S�

� CCS �

De�nition � P and Q are �weakly� bisimilar� written P	Q� if �P �� Q�� � S for some �weak� bisim�
ulation S� Equivalently� 	 is the largest weak bisimulation or�

� � �fS j S is a weak bisimulationg

A crucial property of bisimulation is that for any agent P� P	� �P �this is not true for ��� This is
exactly what allows � to be ignored to a certain extent when comparing agents� Consider� however�
P � a�� � b�� and Q � a�� � � �b��� P is deterministic in the sense that there is always available
a choice between a and b� while in Q� because of the silent action� the choice for a may no longer
be available even though to the external observer there appears to have been no action� Therefore�
even though b��	� �b��� a�� � b��
 	a�� � � �b��� Thus� 	 is not a congruence relation with respect
to summation�

The �nal notion of equivalence is aimed at capturing the largest congruence relation included in 	�

De�nition � P and Q are equal or observation�congruent� written P � Q� if for all ��
�i� Whenever P

�
� P � then� for some Q�� Q

�
� Q� and P �	Q�

�ii� Whenever Q
�
� Q� then� for some P �� P

�
� P � and P �	Q�

One important law of equality is that ����P � ��P � Note that equality lies between strong and
weak bisimilarity� P�Q implies P � Q implies P	Q�

����� Expansion law

The expression for the two�cell bu�er� �C� j C�� n c� is typical of many system expressions� and
so a restricted composition of relabelled components is called standard concurrent form �scf�� Its
general format is�

�P�
f�� j � � � j Pn
fn�� n L�

One more important law of CCS is the expansion law� which is concerned with the immediate
actions of an agent in standard concurrent form� These actions could result from two possibilities�

�� the action � of a single component Pi� Then the scf will have an action fi���� and result in
the new scf �P�
f�� j � � � j P

�
i
fi� j � � � j Pn
fn�� n L meaning that only the ith component has

changed�

�� a � action� a communication resulting from actions li and lj by Pi and Pj � respectively �for
� � i � j � n�� such that fi�li� � fj�lj�� The result is the new scf
�P�
f�� j � � � j P

�
i
fi� j � � � j P

�
j
fj � j � � � j Pn
fn�� nL meaning that exactly two components have

changed�

Proposition 	 The Expansion Law � Let P � �P� j � � � j Pn� n L with n � �� Then

P �
P
f���P� j � � � j P

�
i j � � � j Pn� n L � Pi

�
� P �i � �
� L � Lg

�
P
f� ��P� j � � � j P �i j � � � j P

�
j j � � � j Pn� n L � Pi

l
� P �i � Pj

l
� P �j � i � jg

Essentially� repeated application of the expansion law will result in the derivation tree for a process�
The expansion law will be a crucial aspect of the decidability proof in section � �����

�This is actually a simpli�ed version �without any renaming functions allowed� used for clarity� With renaming�
it would work along the lines indicated by the immediately previous discussion�

� CCS �

Timer Timer

Send(b)

Ack(s)

Trans(t)

Reply(b)
accept

time
timeout

ack

send

reply

trans
timeout

time

deliver

Figure �� Alternating bit protocol in CCS

��� Verifying the bu�er

The previous section de�ned a bu�er of length two created by linking two single�element bu�ers
together� It is desired to verify that the two bu�ers together work as if they were actually one two�
element bu�er� In order to verify this� we �rst need an independent speci�cation of a two�element
bu�er and then we need to prove that the two speci�cations specify equivalent processes� Once
again� C� and C� will be referred to as A and B� respectively� Now consider a speci�cation for a
bu�er of length �� Buf�����

Buf����
def
� a�Buf����

Buf����
def
� a�Buf���� � �b�Buf����

Buf����
def
� �b�Buf����

Thus the goal is to prove that �A j B� n c 	 Buf����� Note� however� that it was already shown
that �A j B� n c 	D� � where D� � a�D and D � a��b�D � �b�a�D� Thus� D and Buf���� denote
exactly the same process� and the same bisimulation is used to show that �A j B� n c 	 Buf�����

��� Specifying and Verifying the Alternating Bit Protocol

The alternating bit protocol �hereafter ABP�� is a protocol designed to ensure reliable communi�
cation through unreliable transmission mediums �see Figure ��� Here� Send and Reply will be
agents that accept and deliver messages� Send routes messages through a medium represented by
the process Trans� and Reply responds to Send through a medium represented by the agent Ack�
Messages get tagged with bits � and �� alternately� After Sender gets a message� it sends it with
a bit b along the Trans line and sets a timer� There are then three possibilities�

 it may get a �time�out� from a timer� upon which it sends the message again with b�

� CCS �

 it gets an acknowledgment b from Ack� which means that the message made it through� and
thus is now ready to accept another message� which it will send with bit �b � �� b�

 it gets an acknowledgment �b� which it ignores�

After the replier delivers a message� it acknowledges it with a bit b along the Ack line and sets a
timer� There are also three possibilities�

 it gets a �time�out� from the timer� upon which it sends its acknowledgment b again�

 it gets a new message with bit �b from Trans� which it then delivers� and acknowledges with
bit �b�

 it gets a transmission of the previous message with bit b� which is ignored�

If Send�b� and Reply�b� are composed with their timers� under the restriction ftime
timout g�
then the de�nitions of Send�b� and Reply�b� are�

Send�b� � sendb�Sending�b�

Sending�b� � � �Send�b� � ackb�Accept��b� � ack�b�Sending�b�

Accept�b� � accept�Send�b�

Reply�b� � replyb�Replying�b�

Replying�b� � � �Reply�b� � trans�b�Deliver�
�b� � transb�Replying�b�

Deliver�b� � deliver�Reply�b�

Note that the silent action represents the internal communication between a timer and the sender
or receiver� The communication lines Trans and Ack will be de�ned by giving transition equations�
It is assumed that these lines may lose or duplicate� but not corrupt messages� and that bu�ers
have an unbounded message capacity�

Ack�bs�
ackb� Ack�s� Trans�sb�

transb� Trans�s�

Acks�s�
replyb� Ack�sb� Trans�s�

sendb� Trans�bs�

Ack�sbt�
�
� Ack�st� Trans�tbs�

�
� Trans�ts�

Ack�sbt�
�
� Ack�sbbt� Trans�tbs�

�
� Trans�tbbs�

Note that sbt represents the concatenation of s� b� t� where s� t � f�� �g�� b � f�� �g� The last two
lines of Ack and Trans represent loss and duplication� respectively� of any bit in transit�

So to represent the complete system� let

AB
def
� �Accept��b� j Trans��� j Ack��� j Reply�b�� n L

where L is the set of all internal actions �that is� all actions except accept and deliver� AB
represents the state in which a message has just been delivered� a new message is about to be
accepted� and the transmission lines are empty� AB is the de�nition of the protocol� It speci�cation
is that it should act as a simple bu�er� as follows�

Buf
def
� accept�Buf �

Buf �
def
� deliver�Buf

� ALGEBRA OF COMMUNICATING PROCESSES �

and so to prove that ABP meets its speci�cation� it needs to be shown that ABP	Buf � Such a
bisimulation S can be found�

AB States Buf states

Accept��b� j Trans�bn� j Ack�Bp� j �Reply�b� or Replying�b�� Buf

�Send��b� or Sending��b�� j Trans��bmbn� j Ack�bp� j �Reply�b� or Replying�b�� Buf �

�Send��b� or Sending��b�� j Trans��bm� j Ack�bp� j Deliver��b� Buf �

�Send��b� or Sending��b�� j Trans��bm� j Ack�bp�bq� j �Reply�b� or Replying�b�� Buf

Note that b � f�� �g and m�n� p� q � �� to represent the arbitrary bit�sequences in the transmission
lines� By choosing either of two alternatives where possible for the AB states� there are twelve
groups altogether�

Two remarks�

�� A rather tedious case analysis can be used to verify that this is indeed a bisimulation� This
type of analysis could be automated� and indeed the search for a bisimulation is an obvious
candidate for automation�

�� Nothing disallows the possibility that one of the transmission lines could lose data inde�nitely�
It is assumed that the behavior of the agents will be 	fair
 and thus this will not happen�
This issue will reappear in the context of ACP �

� Algebra of Communicating Processes

The other system of process calculus under discussion here is the Algebra of Communicating Pro�
cesses �ACP �� ACP is very closely related to CCS� but with some di�erences in de�nition and
expressibility� and based on a di�erent methodological approach�

CCS can be seen as �xing a model �the derivation trees of various agents�� and deriving various
laws based on that model� In constrast� ACP is an axiomatic approach� in which various axioms are
stated� and its concern is with any model that satis�es those axioms� For example� a model could
be one that contains only 	�nitely branching
 � processes� or one that allows in�nite branching� An
advantage of this approach is that it allows� more so than with CCS� an explicit modularization
of the various problems and features involved in these systems� ACP is actually built up from a
series of smaller systems� and the ideal is that an applications designer could pick just the right
axiom set for the desired system� Nothing really prevents such an approach with CCS � indeed�
the proof in section � ������ does just that� by choosing a subset of CCS� The designers of ACP �
however� has gone much further with such an approach� This paper will follow Baeten � Weijland
in
Baeten and Weijland ����� and refer to all of the various axiomatic systems that lead up to ACP
Process Algebras� 	 The �rst such system that will be examined is called Basic Process Algebra

�A �nitely branching graph has only �nitely many edges leaving from each node
�This is a somewhat unfortunate choice of names� since one of the axiomatic systems is itself called �Process

Algebra�� However� the context should make clear what is being referred to�

� ALGEBRA OF COMMUNICATING PROCESSES �

�BPA�� and will be gone into in some detail because it is the system used for the proof in section
� �����

��� Basic Process Algebra

The signature of BPA
 consists of the set of atomic actions A � fa� b� � � �g� a set of variables
fx� y� � � �g� and the binary operators � and � �� BPA consists of its signature together with the
following axiom set�

x� y � y � x A�
�x� y� � z � x� �y � z� A�
x� x � x A�
�x� y�z � xz � yz A�
�xy�z � x�yz� A�

If some M is a model for BPA� then the elements of its domain are called processes� The variables
in the axiom equations stand for processes for some arbitrary model of BPA� and are assumed to
be universally quanti�ed� Some remarks on the BPA axioms�

�� BPA is a very simple axiom set� as it doesn�t even handle concurrency�

�� The semantic meanings of the axioms are the obvious ones� � is sequential composition� x � y
is the process that �rst executes x and upon completion of x begins executing y� � is the
alternative composition� x � y is the process that either executes x� or executes y� but not
both�

�� The left�distributive law is not included� for the same reason that it was not valid for CCS�

�� One di�erence between BPA and CCS is already apparent� whereas CCS allowed pre�x mul�
tiplication �atomic action a and process p can yield a � p�� BPA allows general multiplication
�processes p and q yield p � q�� Bergstra and Klop
Bergstra � Klop ����� claim that there
exist examples of recursively de�ned processes that have �nite recursive de�nitions in terms
of general� but not pre�x� multiplication�

The introduction of general multiplication requires that BPA make more explicit the possibility of
deadlock� In CCS� the idea of deadlock was always� in a sense� 	lurking in the background
 of the
idea of looking at branching structure instead of just the traces� With general multiplication in
BPA� however� it must be dealt with in a more explicit manner� Consider a process x � y� where
x is a process that might reach a state of deadlock �for example x might consist of several other
processes running in parallel�� �� If x reaches a state of deadlock� then y cannot begin to execute�
To describe this possibility� the special constant � is used to signify deadlock� and the following two
axioms are added to A����

x� � � x A�
�x � � A�

�The set of constant and function symbols that may appear in the speci�cation
�	Usually left out� so that x � y � xy �
��Not strictly expressible in BPA� which can	t express concurrency� but this example is just meant to motivate the

deadlock constant which is used throughout the entire range of process algebras�

� ALGEBRA OF COMMUNICATING PROCESSES ��

BPA together with A� and A� is referred to as BPA� � A� states that as long as there is any
alternative that can proceed� there is no deadlock� and A� states that no other action can follow
a deadlock� BPA� can also get extended with a counterpart to �� the new constant � is used to
represent an empty process� one that does nothing but have immediate successful termination�

x� � x A�
�x � x A�

So BPA�has axioms A��� and A��A�� while BPA�� � with both new constants included� includes
axioms A���� In contrast to CCS� which has one constant to represent termination� BPA has
constants for both successful and unsuccessful termination� However� the inclusion of � signi�cantly
complicates the axiom system when concurrency and communication are introduced� and since the
examples to be presented to do not require �� it will only be included in the BPA system�

����� Some Models for BPA��

A CCS derivation tree corresponds to a process graph in the context of BPA�

De�nition � A process graph is a graph in which every edge has a label from A� and in which the
nodes may carry a label �� which indicates whether or not the state represented by the node has a
termination option� ��

Using process graphs� a hierarchy of some models for BPA� will now be presented� The �rst
model�G�� consists of countably branching process graphs with edge labels from A� Bisimulation
is de�ned in terms of these graphs�

De�nition �� Let g� h � G� and let R be a relation between the nodes of g and the nodes of
h� R is a bisimulation between g and h� written R�g�h� when the same conditions as for strong
bisimulation in CCS are satis�ed� plus the condition that if R�s� t�� then s � i� t ��

G��� will be the set of processes that form a model for BPA�� � However� in order to be a model�
the operators � and � need to be given a meaning in terms of members of G�� Before this can
be done� the preliminary notion of root unwinding needs to be mentioned� for any process graph
g � G�� its unwound version ��g� can be constructed such that ��g� has no edges going back to
its root� and such that g���g�� This is a simple idea borrowed from basic automata theory�

De�nition �� For process graphs g� h � G�� g � h is constructed by identifying the roots of
��g�� ��h�� g � h is constructed by identifying every node in g having label � with the root node of a
distinct copy of ��h�� Every node emerging from such identi�cation has label � i� h �� If g has no
labels �� then the result is just g� �see Figure ��

It can be shown that G�	� j� BPA� � Other models for BPA� can be obtained by taking smaller
subsets of the carrier set with the obvious restrictions on the � and ��

�� G	� � �nitely branching process graphs�

��
Baeten and Weijland ���
� are unclear on the meaning of �� but its purpose appears to be that if a node has
deadlock� then it will be a leaf without ��

� ALGEBRA OF COMMUNICATING PROCESSES ��

a b a b+ = b a b+ =a

a

a

=

a

bb b =a b a

Figure �� Examples of � and � in BPA

�� R	� � �nite process graphs�

�� F	� � �nite acyclic process graphs�

It�s clear the F � R � G � G�� Also� the graphs sets of each of the models can be easily restricted
such that they become models for BPA� In particular� G	� is the model used throughout the
decidability proof in section � �����

��� Process Algebra�PA�

PA is an extension to BPA that can describe processes that are executing in parallel� This is done
by introducing two new operators�

�� k � composition�merge� � this is an interleaving composition� as in CCS�

�� k � left�merge � this was not in CCS� It helps to simplify various calculations and� according to
Baeten �Weijland� it has been proven that the merge operator cannot be �nitely axiomatized
without such an auxiliary operator�

and the following new axioms�

x k y � xk y � yk x M�

ak x � ax M�

axk y � a�x k y� M�

�x� y�k z � xk z � yk z M�

�a is an arbitrary element of A� and axioms M� and M� are in fact axiom schemas� since there
is an axiom for each element of A� which is assumed to be �nite�� The system PA consists of
BPA�M��M�� Axiom M� de�nes the merge in terms of the left�merge� when processes x and y
get merged� then either the �rst step will come from x� or the �rst step will come y� and axioms
M��M� de�ne left�merge� �� Also� � can be easily included in PA� PA� � PA � A�� A� with the
stipulation that in axiom schemas M��M�� the constant a ranges over A � f�g �instead of just A��

��� binds stronger than k or k � so the left�hand side of M�� for example� stands for �a � x�k y�

� ALGEBRA OF COMMUNICATING PROCESSES ��

����� Some models for PA�

The model G��� can be extended to become a model for PA� by de�ning the operators k and
k �

De�nition �� For process graphs g� h � G�� the graph g k h is the cartesian product of the graphs
g and h� More precisely�

	� the nodes of g k h are all pairs of nodes from g and nodes from h�

� a node �s� t� in g k h has label � i� both s and t do�

�� there is an edge �s� t�
a
� �s�t� in g k h precisely if there is an edge s

a
� s� in g�

there is an edge �s� t�
a
� �s� t�� in g k h precisely if there is an edge t

a
� t� in h

�� the root node of g k h is the pair of roots from g and h�

The graph gk h can be constructed as follows�

�� construct g k h and unwind it� getting ��g k h��

�� if �s� t� is the root of ��g k h�� then remove all edges �s� t�
a
� �s� t�� where t

a
� t� is an edge in

h �that is� remove the edges that originate from h��

�� remove all parts of the graph that have become inaccessible from the root node�

It can be shown that bisimulation is a congruence relation with respect to k and k � and that
G�	� j� PA� � As in the last section� G��� can be restricted to form the smaller models�

��� ACP

Although the axioms of PA can now handle concurrent processing� there is no method to describe
communication between processes� The next extension of the theory� the Algebra of Communicating
Processes �ACP �� aims to correct this defect�

There are several components to the implementation of communication�

A communication function
 � which is a partial binary function on A� For example� if
�b� c� �
a� then a is a communication action resulting from b and c� and if
�b� c� is not de�ned� then
b and c do not communicate�

the communication merge operator j � a binary operator on processes� x j y represents a
merge of two processes x and y with the restriction that the �rst step is a communication
between x and y� In case communication is not de�ned between the �rst actions of x and y�
then the communication merge is equal to �� This means that ACP must be extension of PA��
not just PA� because the deadlock constant is essential once communication is introduced�

An encapsulation operator �H � For some set of actions H � A� �H is a function that renames
all members of H to �� and is otherwise the identity function� Its purpose is to encapsulate a
process p w�r�t� H � so that �H�p� cannot communicate with its environment via communica�
tion actions in H � Encapsulation in ACP is very close to CCS�s restriction operator� but is

� ALGEBRA OF COMMUNICATING PROCESSES ��

x� y � y � x A� �H�a� � a if a
� H D�
�x� y� � z � x� �y � z� A� �H�a� � � if a � H D�
x� x � x A� �H�x� y� � �H�x� � �H�y� D�
�x� y�z � xz � yz A� �H�xy� � �H�x� � �H�y� D�
�xy�z � x�yz� A� a j b �
�a� b� if
 de�ned CF�
x� � � x A� a j b � � otherwise CF�
�x � � A� ax j b � �a j b� � x CM�
x k y � xk y � yk x� x j y CM� a j bx � �a j b� � x CM�

ak x � ax CM� ax j by � �a j b� � �x k y� CM�

axk y � a�x k y� CM� �x� y� j z � x j z � y j z CM�

�x� y�k z � xk z � yk z CM� x j �y � z� � x j y � x j z CM�

Figure �� ACP axiom set

not quite the same� Unlike the latter� �H does not hide the internal actions from outside pro�
cesses� That is� it does enforce the restriction that the actions cannot actually a�ect external
actions� but the encapsulated actions can still be seen� When communication is introduced
to ACP in section � ����� the consequence will be that the abstraction act is separated from
the communication� Communication will not immediately result in a silent action� but rather
yield an internal action that is still visible and will then have to be abstracted away by an
abstraction operator�

The axiom set for ACP is show in Figure �� Note that axiom CM� expands axiom M� of PA to
include the possible communication� so that for a merge x k y� it can either start with a �rst step
from x �xk y�� a �rst step from y �yk x�� or a communication step between x and y �x j y�� Axioms
CM�� � are the same as M��M� of PA� Axioms CM�� � de�ne the communication operator�

Note that although the operator j in CCS can be compared with k in ACP � there are several
di�erences�

�� the de�nition of k in CCS uses auxiliary operators �k and j� that are not used in CCS�

�� communication is more �exible in ACP than in CCS� Whereas in CCS communication is
limited to interaction between co�named ports� in ACP communication is de�ned by the

function� and need not even be handshaking communication �i�e��
�a� b� c� � d means that
a� b� c communicate together to result in d�� It�s questionable as to how useful this extra
capability is� though� Enforcing handshaking in CCS would simply mean that �a� b� c �
A�
�a� b� c� is unde�ned�

�� encapsulation is ACP is likewise more �exible than restriction in CCS� due to the more
�exible communication possibilities� For some process x and action a in CCS� then the CCS
expression x n a is equivalent to �H�x� for H � fa� ag in ACP �

����� Some models for ACP

The model G��� from section � ������ can also be extended to become a model for ACP by
de�ning the operators k�k � j� and �H There is little point in going through the entire formal

� ALGEBRA OF COMMUNICATING PROCESSES ��

de�nition� but the basic idea is that for some graphs g� h � G�� the graph g k h gets constructed
basically the same as before except that if for some nodes r� r� � g and s� s� � h� with r

a
� r� in g

and s
b
� s� in h and
�a� b� � c then g k h also has an edge �r� s�

c
� �r�� s��� Also� �H�g� is obtained

from the graph for g by removing all edges with labels from H �

It can be shown that bisimulation is a congruence relation with respect to k�k �j� and �H and that
G�	� j� ACP � As before� G��� can be restricted to form the smaller models�

����� Some example speci�cations in ACP

Now we will give two examples of speci�cation in ACP that correspond to previous examples from
CCS� ��� two one�cell bu�ers connected together� and ��� the alternating bit protocol� ��

A one�cell bu�er� with input port labelled 	�
 and output port labelled 	�
� bu�ering elements of
some �nite data set D� may be speci�ed as�

B�� �
X
d�D

r��d� � s��d� �B
��

�The names of the ports of the process are in superscript�� Likewise� a one�cell bu�er with input
port 	�
 and output port 	�
 would be speci�ed as�

B�� �
X
d�D

r��d� � s��d� �B
��

A bu�er of capacity �� with input port 	�
 and output port 	�
� can be speci�ed with two equations�

B��
� �

X
d�D

r��d� �Bd

Bd � s��d� �B
��
� �

X
e�D

r��e� � s��d� �Be�

The bu�ers B�� and B�� will be joined together and compared to the two�element bu�er� Just as
in CCS� is is desired to encapsulate the two 	halves
 of communication at the internal ports� This
is done in ACP by setting H � fr��d�� s��d� � d � Dg and considering the process �H�B�� k B����
This simple expression can now be manipulated in accordance with the axioms of ACP to derive
a set of recursive equations for this process using process variables X and Xd �for d � D��

X
def
� �H�B

�� k B���

� �H�B
��k B��� � �H�B

��k B��� � �H�B�� j B���

� �H�
X
d�D

r��d� � �s��d�B
�� k B���� � � � �

�
X
d�D

r��d� � �H�s��d�B
��k B�� �B��k s��d�B

�� � s��d�B
�� j B���

�
X
d�D

r��d� � �� � � � c��d� � �H�B�� k s��d�B
����

�
X
d�D

r��d� � c��d� �Xd

��Unlike before� we now include the data to be transmitted in the speci�cation�

� ALGEBRA OF COMMUNICATING PROCESSES ��

1

2

6

3

5

4

S

K

L

R

Figure �� Alternating bit protocol for the ACP speci�cation

and

Xd
def
� �H�B�� k s��d�B

���

� �H�B��k s��d�B
��� � �H�s��d�B

��k B��� � �H�B�� j s��d�B
���

�
X
e�D

r��e� � �H�s��e�B
�� k s��d�B

�� � s��d� � �H�B�� k B��� � �

�
X
e�D

r��e� � �� � s��d� � �H�s��e�B
�� k B��� � �� � s��d� �X

�
X
e�D

r��e� � s��d� � �� � � � c��e� � �H�B
�� k s��e�B

���� � s��d� �X

�
X
e�D

r��e� � s��d� � c��e� �Xe � s��d� �X

Thus the result of all this manipulation is that �H�B�� k B��� is equivalent to the recursive
speci�cation�

X �
X
d�D

r��d� � c��d� �Xd

Xd � s��d� �X �
X
e�D

r��e� � s��d� � c��e� �Xe

A comparison of this speci�cation with the previous one for the two�element bu�er �B��
� � shows

that they are identical except for the internal actions c��d�� This shows the e�ect of the separation
out of encapsulation from abstraction� Although the actions on the internal port have been� in a
sense 	isolated
� they are not invisible to external processes�

The alternating bit protocol speci�cation will use the port labelling as shown in Figure �� The
goal is to de�ne processes S�K� L�R such that the behavior of the entire process� aside from the
communications at the internal ports �������� behaves as a one�element bu�er and so satis�es the
equation�

B�� �
X
d�D

r��d� � s��d� �B
��

Let D be the �nite data set and de�ne the set of frames of data by F � fd�� d� � d � Dg� The

� ALGEBRA OF COMMUNICATING PROCESSES ��

channels K and L are de�ned as follows� ��

K �
X
x�F

r��x��i � s��x� � i � s����� �K

L �
X
n����

r��n��i � s��n� � i � s����� � L

The atom i is used to make the choice non�deterministic so that the decision whether or not the
frame will be corrupted is internal to K or L� Note that unlike the example in CCS� the data is
not duplicated or lost� merely corrupted� The sender S is de�ned as follows �n � �� �� d � D��

S � S� � S� � S

Sn �
X
d�D

r��d� � Snd

Snd � s��dn� � Tnd

Tnd � �r���� n� � r����� � Snd � r��n�

The receiver R is de�ned as follows �n � �� ���

R � R� �R� �R

Rn � �
X
d�D

r��dn� � r����� � s��n� �Rn �
X
d�D

r��d��� n�� � s��d� � s���� n�

Note the slight di�erence in the de�nition of the ABP in this case as contrasted with the CCS
example� Since no timer is being used� retransmission is triggered by receiving a bad acknowledge�
ment� The composition of these four processes is �H�S k K k L k R�� where H � frk�x�� sk�x� �
x � F � f�� ���g� k � �� �� �� �g �the internal actions�� Recursive equations can be derived for this
process using the ACP axioms� The calculations are quite tedious and long �basically using the
expansion law and axioms of encapsulation� and are omitted here� The equations are de�ned in
terms of the following abbreviations �for every d � D��

X � �H�S k K k L k R�

X�d � �H�S�d � S k K k L k R�

X�d � �H�T�d � S k K k L k s���� �R� �R�

Y � �H�S� � S k K k L k R� �R�

Y �d � �H�S�d � S k K k L k R� �R�

Y �d � �H�T�d � S k K k L k s���� �R�

The resulting recursive speci�cation is shown in Figure � In order to make sense of what these
recursive variables refer to� see Figure �� which shows a process graph for one data element for X
and Y � Note that the symmetry of the graph simply re�ects processes that are the same except
for the current bit being used for everi�cation� Before going on with a veri�cation of this protocol�
it�s worth noting that it is clearly a mess� With the previous example of the linked bu�ers� it was
easy to see that it was equivalent to a two�element bu�er if one could 	mentally abstract
 away
from the internal port� That�s obviously more di�cult in this case� What is desired is to formalize
abstraction such that Figure � looks more like Figure �� where only the action on the external
ports � and � are seen� and the four individual segments that cycle only within themselves are
hidden�

��� represents an error message� it is assumed that an incorrect transmission can be recognized�

� ALGEBRA OF COMMUNICATING PROCESSES ��

�H�S k K k L k R� �

X �
X
d�D

r��d� �X��d�

X�d � c��d���i � c���� � c�����i � c���� � i � c����� �X�d � i � c��d�� � s��d� �X�d�

X�d � c�����i � c���� � c��d���i � c���� � i � c��d���X�d� i � c���� � Y �

Y �
X
d�D

r��d� � Y ��d�

Y �d � c��d���i � c���� � c�����i � c���� � i � c����� � Y �d � i � c��d�� � s��d� � Y �d�

Y �d � c�����i � c���� � c��d���i � c���� � i � c��d���Y �d � i � c���� �X�

Figure �� Speci�cation for �H�S k K k L k R�

Y2

X2

Y1

Y

X1

X

r1(d)

c2(d0)

i

c3(d0)

c6(1)
i

i

c6()

c5(1)

c3()

s4(d)

c3(d0)

i i

c2(d0)

i

i c6(0)

r1(e)

c2(e1)

ii

c5(0)

i

i c6(0)

c3(e1)
s4(e)

c3(e1)

i
i

c5(1)

i

i

c2(e1)

c3()

c6()

c6()

c3()

c3()

c6()

i

Figure �� Graph for alternating bit protocol in ACP

� ALGEBRA OF COMMUNICATING PROCESSES ��

s4(e)

r1(e)

s4(d)

r1(d)

X

Y

Figure �� Desired abstraction for alternating bit protocol in ACP

��� ACP with abstraction �ACP ��

The separation of encapsulation and abstraction� while perhaps not as intuitive and simple as in
CCS� appears to allow a greater re�nement of abstraction possibilities� Consider again Figure ��
If the set of internal steps is I � fck�x� � x � F �f�� ���g� k � �� �� �� �g�fig� then only the actions
r��d� and s��d� are external� What is desired is to have an abstraction operator �I � making internal
steps invisible� such that �I�X� � B���

Thus� the silent step � and abstraction operator �I are added to ACP � along with the following
new axioms�

x� � x B�
x���y � z� � y� � x�y � z� B�
�I�a� � a if a
� I TI�
�I�a� � � if a � I TI�
�I�x� y� � �I�x� � �I�y� TI�
�I�xy� � �I�x� � �I�y� TI�

����� models for ACP �

Just as with CCS� the introduction of � �actions leads to the possibilities for various de�nitions of
bisimilarities on process graphs� What Baeten � Weijland call branching simulation� written �b�
can be thought of as corresponding to CCS�s weak bisimulation� Also� just as weak bisimulation
was not a congruence relation with respect to CCS� branching bisimulation is not a congruence
relation with respect to ACP � Thus� rooted branching �rb� bisimulation� written�rb� is introduced
in ACP � just as � was introduced in CCS� The graph model G� is easily altered to handle
abstraction by stipulating that for any graph g� the graph �I�g� is created by replacing all labels
from I by � � It can be shown that G	�rb j� ACP � �

� ALGEBRA OF COMMUNICATING PROCESSES ��

����� Example veri�cation in ACP �

In order to complete the veri�cation of the alternating bit protocol� we need to show that

�I�I���H�S k K k L k R� � B���

From the de�nition of B��� this is equivalent to showing that�

�I�I���H�S k K k L k R� � �
X
d�D

r��d� � s��d� � �I��H�S k K k L k R���

In order to accomplish this� a rule called the Cluster Fair Abstraction Rule �CFARb� is developed
based on the ACP � axioms� assuming branching bisimulation� that allows the grouping together
of internal cycles such as in the ACP graph� For example� the cluster around X�d is de�ned as
follows �refer to Figure ��

X�d � c��d�� � Z�

Z� � i � Z� � i � c��d�� � s��d� �X�d

Z� � c���� � Z�

Z� � c���� �Z�

Z� � i � Z� � i �Z�

Z� � c���� �X�d

Z� � c���� �X�d

Then fX�d� Z�� Z�� Z�� Z�� Z�� Z�� Z�g is a cluster and from CFARb it can be derived that�

�I�X�d� � � � �I�i � c��d�� � s��d� �X�d�

� � � s��d� � �I�X�d�

In other words� this means that X�d may cycle within itself some number of times before �nally
sending data on the s� line and entering state X�� Similarly� the cluster around X�d is reduced to
get�

�I�X�d� � � � �I�i � c���� � Y �

� � � �I�Y ��

After some more equational manipulation� which is omitted here� the results are�

�I�X� �
X
d�D

r��d� � s��d� � �I�Y �

�I�Y � �
X
d�D

r��d� � s��d� � �I�X�

It can be shown that it follows by properties of recursive equations in ACP � that �I�X� � �I�Y �
and so the de�nition of B�� is satis�ed by �I�X��

The de�nition of the rule CFARb is speci�cally de�ned on the assumption that the choices made by
the channels are fair � that is� no channel is completely defective and corrupts a message in�nitely
many times in a row� This was also the assumption in the CCS speci�cation of ABP� The di�erence
is that Baeten � Weijland also describe� in great detail� a di�erent rule and its consequences should

� DECIDABILITY ��

such a fairness condition does not hold� The greater degree of formal rigor in ACP � is typical of
the di�erence in the two approaches�

The di�erence in approaches to bisimulation equivalence is worth noting� In CCS� an extensive
comparison of nodes in derivation trees is required� whereas in ACP � the same results are accom�
plished via equational manipulations� It would be interesting to compare attempts at automation
of bisimulation searching for these two approaches� As mentioned� CCS might be more easily au�
tomated in a 	brute force
 fashion� while ACP � might require more sophisticated proof techniques�
Although not discussed in this paper� there is also an equational theory for CCS� but much more
emphasis is put on such a system in ACP � �

� Decidability

Since bisimulation is a crucial issue in process veri�cation� the question of decidability of whether
two processes are bisimilar is obviously of interest� There is another point of view� however� from
which to view this question� In addition to its use for process speci�cation� process calculi can
be thought of as a successor to automata theory� with the main di�erence of course being to look
at the behavior of the processes� and not just their execution traces� From that perspective� a
reconsideration of automata theory results in this new framework is of interest� and it is from this
perspective that the proof in the next section proceeds�

��� Decidability of Processes Generating Context	Free Languages

It is a well�known result in automata theory that the question of equivalence between context�free
languages is undecidable� In remarkable contrast to this result� it has been shown
Baeten et al� �����
that when CFLs are examined in a process calculi framework� the bisimulation equivalence of those
processes is decidable�

����� Encoding of CFL
s in BPA

The process calculus that will be used for the encoding of context�free languages is BPA �without
��� as described in section � ����� Before describing a translation of a CFG G into a member of the
model G�� consisting of �nitely branching process graphs �see section � �������� two concepts are
needed �rst�

�nite trace set � Each process graph g has a �nite trace set� written ftr�g�� An element of ftr�g�
consists of all the actions from the root to a termination node�

norm The norm of a process graph g� written jgj� is the least number of steps it takes from the
root to reach a termination node� if any such node is reachable� That is� jgj is the minimum
length of a completed �nite trace of g� The norm of a node s in a process graph g� written
jsj� is the norm of the subgraph determined by s� The norm of a process p is the norm of
the representing process graph� and a process is normed if every subprocess has a norm� ��

What this essentially means is that there are no super�uous parts of the graph that do not
contribute to the generation of �nite traces�

��Process q is called a subprocess of process p if p� q have representing process graphs g� h� respectively� such that
h is a subgraph of g�

� DECIDABILITY ��

X

XX

XXXX

a

a b

b

Figure ��� The process graph for X � a� bXX

Proposition �� Every CFL �without �� is the �nite trace set of a normed process p� recursively
de�ned by means of a guarded system of recursion equations in restricted GNF�

Sketch of proof� Consider some CFL L generated by a grammar CFG G� Convert G into G��
where the latter is in restricted GNF form� �� A trivial notational change to G� results in the
recursive speci�cation EG�

in the language of BPA� �	 Although EG�

now de�nes a process in
BPA� that process may not be normed� Baeten et al� give a detailed description of how to translate
EG�

into E�G
�

� where the latter is normed� For example� the system � �� gets converted to system
� ���

E � fX � aY � bXZ � cXX� Y � d� cY Y� Z � aZ � bY Zg ���

E � fX � aY � cXX� Y � d� eY Y g ���

This is� of course� just the usual procedure for eliminating useless variables and productions from a
CFG �see� for example
Hopcraft � Ullman ������� placed in the context of BPA recursion equa�
tions� Since E�G is a guarded system� it will have one solution� namely the process graph p� The
�nite trace set of p will be exactly the CFL generated by G�� This is because every path from the
root of p to a terminating node is a leftmost derivation in G�� For a simple example� consider the
graph for the one�variable recursive speci�cation E � fX � a � bXXg in Figure ��� where each
node is labelled with the process that remains to be done at that node� For example� bbaaa � ftr�p�
because X � bXX � bbXXX � bbaXX � bbaaX � bbaaa� Thus� proposition � ��� states that
the set of irredundant CFG�s corresponds exactly with the set of normed processes in BPA� The
goal of the rest of the proof is to prove that the the bisimulation equivalence of two normed sys�
tems of recursion equations is decidable� This essential idea behind the proof is that the process
graph of any normed process exhibits a certain periodic regularity� The same structural patterns in
the graph get repeated throughout� and crucially there are only a �nite number of such patterns�
Thus� for any two such graphs� there will be a certain 	level
 k �	level
 will be precisely de�ned��
at which all the structural patterns that will ever appear in the graphs have already appeared� It
is shown that if there is no bisimulation up to level k� then there is no bisimulation at all� Since k
is computable� and for any k there are only a �nite number of possible bisimulations �since only a
�nite number of nodes are being compared�� the decidability follows�

��A CFG in which every production is of the form A � a�� where A is a variable� a is a terminal� � is a possibly
empty string of variables� is said to be in Greibach Normal Form GNF� If moreover the length of � does not exceed
�� then the CFG is in restricted GNF form� It	s a known theorem that every CFG that does not generate � can be
rewritten as a CFG in restricted GNF that is weakly equivalent to the original grammar�

��By replacing composition � with j and � with �

� DECIDABILITY ��

X

YX

YXX XYX YYX

XX

XXX

Y

XY YY

XXY YXY XYY YYY

Figure ��� t�E� for X� � fX� Y g

����� Universal Tree � Translation Equivalence

Much of the detail of the proof is devoted to explicitly capturing the periodicity of the graph� Two
of the most important concepts for this purpose are�

Universal Tree � The universal tree t�E� is the tree having as nodes all the words w � X� �
fX�� ���� Xng

�� where X�� ���� Xn are the variables used by E� The top node is the empty word
�called the termination node�� and has as children X�� ��� Xn� Each succeeding level is de�ned
inductively� if w is a node of t�E� then its children are X�w���Xnw� Figure �� shows the
tree t�E� for X� � fX� Y g�

The idea of t�E� is that it will serve as the underlying 	node space
 for the process graph
g�E� determined by E� Any process graph can be thought of as being overlaid on top of
t�E�� and so several concepts that follow are de�ned in terms of t�E� rather than a particular
graph� A process graph may not use up all of t�E��

Translation Equivalence � Let w � X�� The translation Tw is the mapping from X� to X�

de�ned by� Tw�v� � vw� the concatenation of v followed by w� The inverse translation T��w

is the partial mapping from X� to itself that removes the post�x w� A shift is an inverse
translation followed by a translation� TwT��v and so a shift replaces a post�x v by a post�x
w�

Let V�W � X� and suppose that for some U and v� w we have� Tv�U� � V� Tw�U� � W �
Then V�W are equivalent modulo translation� written V �T W � meaning that V�W di�er by
a shift� �T can be shown to be an equivalence relation�

As will be seen� translation equivalence is used to capture the relationship between repeated
occurrences of the same structure in a graph�

Some more de�nitions�

length � For w � X�� the length of w� lth�w�� is the number of symbols in w�

distance � For v� w � X�� the distance d�v�w� between v and w is the minimum number of
steps�edges� necessary to go from v to w in t�E�� where E has variables X� An equiva�
lent de�nition is� Let u be the maximal common post�x of v� w� and v � v�u and w � w�u�
then d�v� w� � lth�v�� � lth�w���

far apart � For v� w � X�� v and w are far apart if d�v� w�� �� If V�W � X�� then the sets V�W
are far apart if all pairs v � V� w �W are far apart�

� DECIDABILITY ��

Figure ��� A slicing of t�E�

sphere d � The sphere with center w and radius r� B�w� r�� is the subset of X�� in t�E�� consisting
of all v whose distance to w does not exceed r� Also� Br is the collection all spheres with a
�xed radius r�

uniformly bounded � IfV � fViji � Ig is a collection of subsets ofX�� and� �r�i�wVi � B�w� r��
then the elements of V are uniformly bounded�

The two most important results obtained using these concepts are�

Proposition �� Let V be a uniformly bounded collection of subsets of X�� Then V is �nitely
partitioned by translation equivalence�

Baeten et al� do not give a rigorous proof� but instead attempt to motivate a feeling for why this is
valid� Consider the set B� of all spheres with radius one in the the example universal tree shown
in Figure ��� Now consider the set Z consisting of the three spheres B��� ��� B�X� ��� and B�Y� ���
Every sphere with radius one is translation equivalent to one of the spheres in Z� For example�
the sphere B�Y X� �� � fX� YX�XYX� Y Y Xg �T B�Y� �� � f�� Y�XY� YY g� So the set B� can be
partitioned into a �nite number of equivalence classes� where each class corresponds to one of the
members of Z� The same idea should work for any uniformly bounded collection of subsets of X��

Proposition �� Let W be a subset of X�� such that�
�i� �c�� c� � N �w � Wc� � lth�w� � c�
�ii� W cannot be partitioned into W��W� which are far apart�

Then W is contained in a sphere B�w� r� where r depends only on c�� c��

Proof �sketch�� The proof of this given by Baeten et al� is ambiguous and quite unsatisfactory�
although I think that the proposition itself is valid� A detailed examination of this proposition will
detract from an overall understanding of the proof� so I will attempt� with a �gure� to illustrate the
motivation for this proposition� Consider Figure ��� which shows t�E� from Figure ��� divided into
slices of thickness one� Each rectangle indicates one W that cannot be partitioned into subparts
W��W� that are far apart� According to prop � ���� this collection of rectangles is uniformly
bounded �by de�nition of the latter�� and so by prop � ��� this collection is �nitely partitioned by
translation equivalence� The same could be done for slices of di�erent 	thickness
�

� DECIDABILITY ��

X � a� bY � fXY

Y � cX � dZ

Z � gX � eXZ

Figure ��� An example recursive speci�cation

Propositions � ��� and � ��� are key results for the entire proof� because in section � ������ an
arbitrary process graph will be sliced up into principal fragments that are far apart and thus shown
to be �nitely partitioned by translation equivalence� The next part of the proof� in section � �������
is dedicated to using the results of these two propositions in the context of an actual process graph
instead of t�E�� and then in section ����� those revised versions of the propositions will be used to
obtain the important regular decomposition result�

Note that since by assumption E is normed� then by de�nition of normed� each w � X� has a norm
j w j� in addition to its lth�w�� It can be shown �proof omitted� that prop � ��� remains valid with
lth�w� replaced by j w j� and this is the form in which the proposition will be used later in the
proof�

����� The Process Graph � Process Graph Fragment

The process graph g�E� for the system E has so far been considered as graph of the possible
transitions� However� it can also be thought of by �rst creating t�E� for the variables X in E�
�lling in labelled edges in t�E�� and then deleting parts of the graph that are inaccessible from the
root node� Note that although a process graph is not a tree� it nevertheless exhibits� from a more
global point�of�view� a certain 	tree�like
 structure� For example� look at Figure ��� which is a
partial process graph for the system shown in Figure ��� Note also that in Figure ��� the the
norms are 	respected graphically
 � that is� a node with norm n will be positioned on level n�

The notion of process graph fragment is aimed at capturing these repeating patterns� Let E be a
system of recursion equations with variables X � fX�� ���� Xng and action alphabet A�E��

Process Graph Fragment � A �process� graph fragment in the space t�E� consists of some subset
N of nodes of X� together with some edges w �a v�w� v � N� labelled by atoms in A�E��
�� �� �� will be used to denote graph fragments�

Two notions previously used are updated for use in the context of graph fragments�

weakly fragmented A graph fragment is weakly connected if it cannot be partitioned into two
graph fragments which are far apart�

translations Translations Tw of graph fragments are de�ned as for node sets� with the extra
requirement that a translation also respects labelled edges�

Proposition �� Let � be a graph fragment of g�E� such that
�i� �c�� c� � N �w � � c� � j w j � c�� and
�ii� � is weakly connected�

Then � is contained in a sphere B�w� r� where r depends only on c�� c�� and E �in a computable
way��

� DECIDABILITY ��

7

6

5

4

3

2

1

0

X

XY

XYY

Z

ZY

XZ

XYZ

XYYY XZYY XYZY XZZY XYYZ XYZZ XZZZ

ZZZZY ZZZYZYY

XZZ

ZZ

YYY YZY YYZ YZZ

XZY
YY YZ

Y

XZYZ

Figure ��� A partial process graph�

Proof� From proposition � ����

Proposition �� Let ��i�i�I be a collection of fragments of g�E�� and let the �i be uniformly
bounded� Then the collection is �nitely partitioned by translation equivalence� Moreover� the number
of elements of the partition can be computed from E�

Proof� Since the collection is uniformly bounded� it follows from prop � ��� the collection is �nitely
partitioned by translation equivalence� The 	computable
 part of the proof is very vague� since it
depends on the proof of prop� ���� which itself is very vague� It most likely is supposed to refer to
a calculation of the number of equivalence sets�

����� The Regular Decomposition of the Process Graph

In this section a decomposition of a process graph into slices and principal fragments will be de�ned�
Propositions � ��� and � ��� allow us to show that for this decomposition there are only a �nite
number of such fragments modulo translation equivalence� This not quite adequate� however�
because it also needs to be shown that these fragments are not in some haphazard layout in the
graph� but instead make up a regular tree�like structure� The concept of a regular decomposition is
used to capture this notion�

regular tree A node�labelled tree is regular if there are �modulo isomorphism of node�labelled
trees� only �nitely many subtrees� The labels in this case will be very complicated � translation
equivalence classes of process graph fragments�

Regular Decomposition A regular decomposition of the process graph g�E� is a tree T where
each node s is labelled with a graph fragment �s� such that

� DECIDABILITY ��

�� each �s is a �nite graph fragment in t�E��

�� the union of all �s is g�E��

�� for nodes s� t in T � �s and �t are disjoint i� s� t are not connected by a single edge in T �

�� the collection of all �s �all nodes s in T � is �nitely partitioned by translation equivalence�

�� if ��� ���� �k denote the �nitely many equivalence classes in which the �sare partitioned�
and each label �sis replaced by the label denoting its equivalence class� the resulting
node�labelled tree T � is regular�

A decomposition for any process graph g�E� is de�ned as follows� and this decomposition will be
shown to be regular�

�� g�E� will be divided into fragments� called slices� numbered ��������� Each slice has thickness
d� and d is called the amplitude of the decomposition�

�� The nth slice contains the nodes s of g�E� with nd � jsj � �n � ��d and also those nodes
reachable by one step in g�E� from a node s with nd � jsj�n� ��d� �

�� The nth slice is now the fragment of g�E� obtained by taking the restriction of g�E� to the
set of nodes of the nth slice�

�� The nodes of the nth slice will be partitioned into equivalence classes as follows� de�ne for
nodes s� t in the nth slice� s � t i� s� t have distance ������ or �� Let � be the transitive
closure of �� This is an equivalence relation on the nodes of the nth slice� partitioning these
nodes into equivalence classes denoted by
s���

�� The restriction of g�E� to the set of nodes
s�� in slice n� is called a principal fragment�

Proposition �	 Let g�E� be divided in slices� Then the corresponding principal fragments of
g�E� are uniformly bounded� and thus �nitely partitioned by translation equivalence� Moreover� the
number of principal fragments of g�E� can be computed from E�

Proof�

�� By the de�nition of a principal fragment� all principal fragments of a slice n are far apart�

�� By prop � ���� the collection of all principal fragments �of all slices� of g�E� is a uniformly
bounded collection�

�� By prop � ���� the collection of principal fragments is �nitely partitioned by translation
equivalence� and the number of elements is computable from E�

The following proposition is needed to prove theorem � ����

Proposition �� Let � and �� be fragments of g�E�� which are translation equivalent� Let s be a
node in � that is not minimal in �� Suppose s�a t is an edge such that � � fs�a tg is again a
fragment of g�E�� Let s� be the point in �� corresponding �after the same shift as from � to ��� to
s�

Then there is a t� and an edge s� �a t� such that �� � fs� �a t�g is also a fragment of g�E��
moreover� the two extended fragments are again translation equivalent by the same shift�

��There is no explanation for this extra clause ��and also������ I am not sure why it is needed

� DECIDABILITY ��

α

β γ

Figure ��� No possible con�uence in the decomposition

Proof� details omitted� It�s a straightforward proof based on the properties of translation equiva�
lent fragments�

Theorem �� Let E be a normed system of recursion equations in restricted GNF� in the signa�
ture of BPA� and let g�E� be the corresponding normed process graph� Then g�E� has a regular
decomposition� moreover� the amplitude d of the decomposition can be chosen arbitrarily such that
d � c�E� for some constant c�E� computable from E�

Proof� This theorem is the culmination of the proof so far� and follows in a mostly direct manner
from the work so far�

�� A tree of graph fragments can be created� and it is guaranteed to be a well�formed tree
because no 	con�uence
 can occur� as in Figure ��� This is because by the very de�nition
of a graph fragment� all the points of � and
 are far apart� and so going downwards from
such points only increases the distance� and so no con�uence of lower principal fragments is
possible�

�� From propositions � ��� and � ���� it follows that there are only �nitely many labels �frag�
ments� modulo translation equivalence�

�� All that remains is to show the regularity of the decomposition� Consider two nodes s� t in
T occupied by �s� �t� with �s �T �t� Let Ts� Tt be the subtrees of T determined by s� t

respectively� Let Gs� Gt be the graph fragments of g�E� obtained by taking the unions of all
the labels in Ts and Tt� respectively� Then it needs to be shown that Gs �T Gt� This follows
from repeated application of prop � ����

The one questionable part of this theorem is in the statement that the 	amplitude d of the decom�
position can be chosen arbitrarily such that d � c�E� for some constant c�E� computable from E�

It is unclear as to what this restriction on d would be�

Remark� It is surprising to note that so far the restriction to normed process graphs has not been
crucial� All the proofs so far will carry over if the length lth is used instead of the norm� So in fact
the following more general version of theorem� ��� holds�

Theorem �� Let E be a system of recursion equations in BPA in restricted GNF � Then the
corresponding graph g�E� has a regular decomposition�

����� The main result

Some de�nitions� Let E�� E� be normed systems of recursion equations in restricted GNF�

� DECIDABILITY ��

n�pre�x If R is a bisimulation between g�E��� g�E��� then the pre�x up to n� or n�pre�x is the
restriction of R to the nodes of g� h whose level does not exceed n�

partial bisimulation up to level n � A partial bisimulation between g�E��� g�E�� up to level
n is a relation R whose domain consists of the nodes of g�E�� with level � n� and whose
codomain consists of the nodes of g�E�� with level � n� such that R is a bisimulation�

d�su�cient � Suppose that g�E�� and g�E�� have regular decompositions with common amplitude
d� and let R be a partial bisimulation up to slice k� R is d�su
cient if the following holds
true�

Suppose that � is a fragment of slice k in g�E��� and � is a fragment of slice k in g�E���
Also� the successor fragments of � are ��� ���� �n and the successor fragments of � are ��� ����m
for some n�m� Suppose also that fragments �� � are related by the partial simulation R and
that at least one slice higher �that is� a slice with level � k�� there are translation equivalent
copies ��� �� of �� � �which then must have children ���� ���� �

�
n and ���� ���� �

�
m� such that the

restriction of R to � � � coincides� modulo translation equivalence �T � with the restriction
of R to �� � ��� If for each pair �� � in the kth slice such a copy ��� �� exists� then the partial
simulation R is called d�su
cient�

In other words� d�su�ciency is a formalization of the idea that if there are only a �nite
number of patterns that need to be related under a bisimulation� then at a certain level
all such patterns will have appeared� It is easy to show that if a partial simulation R is
d�su�cient� then it can be extended to a total bisimulation�

Theorem �� Let g�E��� g�E�� be process graphs� each with regular decompositions of common
amplitude d� and let R be a bisimulation between them� Then R has a d�su
cient M �pre�x for
each M � N�E�� E�� d�� where N�E�� E�� d� is some constant computable from E��E�� and d�

Proof�sketch�� The proof given by Baeten et al� is again very vague� but the idea appears to be
this� since g�E�� and g�E�� both have regular decompositions� then there are only a �nite number
of graph fragments modulo translation equivalence and so there are only �nitely possible relations
������R� Thus� there must be a certain level N �computable in some vague way from E�� E�� d�
such that all such relations have already appeared� and so any level M � N must be d�su�cient�

Theorem �� �i� Let E�� E� be normed systems of recursion equations �over BPA� in restricted
GNF� Then the bisimilarity relation g�E���g�E�� is decidable�
�ii� Equality of recursively de�ned normed processes in the graph model G of BPA is decidable�

Proof� �i� Let g�E��� g�E�� be the process graphs forE�� E�� Then according to theorem � ���� they
each have a regular decomposition� with a common amplitude d �where d � c�E�� and d � c�E��� for
some constants c�E�� and c�E�� computed from E� and E�� respectively�� According to theorem
� ���� there is some computable level N such that if any bisimulation exists between g�E�� and
g�E�� then there would be a d�su�cient partial bisimulation up to level N� The search space of all
such partial bisimulations up to N is the set of all ��nitely many� relations between the nodes of
g�E�� and g�E�� up to level N� There is a bisimulation between g�E�� and g�E�� i� such a partial
bisimulation is found�
�ii� This is just a rephrasing of �i��

� DECIDABILITY ��

����� Remarks

Theorem � ��� is explicitly stated to be true only for normed systems of recursion equations�
However� up until section � ������� the normed condition is irrelevant� An unclear aspect of this
proof is where exactly the normed condition is essential� Although Baeten et al� are not at all
explicit about this� it most likely has to do with the fact that if two process graphs are drawn
with their norms respected graphically �e�g�� as in Figure ���� then all related pairs of nodes in a
bisimulation are horizontal connections between the two graphs�

Note that if g� h are bisimilar graphs� then ftr�g� � ftr�h�� but the converse is always true� In one
special case� however� that of normed� deterministic �� graphs� then the converse is in fact true�
Also� a simple �� CFG corresponds to a normed� deterministic graph� Since the bisimilarity of two
such CFGs is decidable� the equivalence of their �nite trace sets is also decidable� Thus a corollary
of theorem � ��� is another proof of the known theorem that 	The equivalence problem for simple
CFLs is decidable�

All the examples grammars by Baeten et al� have a common feature� none have productions of the
form X � aY �bY � Grammars with such a production could probably be handled within the proof
simply by stipulating that an edge within t�E� is kept if at least one production uses that edge�
Still� mention should at least have been made of this possibility�

Aside from the decidability result� the representation of the CFGs in BPA is notable� Unfortu�
nately� the usage of restricted�GNF form� while resulting in the desired property of guardedness in
the resulting BPA process de�nition� also severely changes the structural relation to the original
grammar� although it of course preserves the language itself� Thus� from the point�of�view of ex�
amining the structural nature of two grammars that are not in GNF form� the proof is of limited
interest� Still� it would be an interesting challenge to attempt to represent other formal language
representations in a process algebraic framework� Also� whereas the encoding in this proof repre�
sents CFGs in BPA from a language generation persective� encoding a language acceptor would be
worthwhile� Baeten et al� have a short� quite mysterious mention of this possibility�

One can associate to push�down automata �PDAs� in a similar manner to a process�
however as pointed out in � � � � there is a PDA� even without � and deterministic� whose
associated graph does not display the periodicity exploited in this paper�

This proof by Baeten et al�� although long and complex� was the �rst to use the new techniques of
process algebra to reexamine CFGs� Two obvious desired extensions to theorem � ��� would be to
remove the condition on normed processes� and to include a bigger subset of process algebra� The
former was accomplished in
Christensen et al� ������ using a completely di�erent proof technique�
Also� a completely di�erent� much simpler� version of the proof of theorem � ��� was given in

H uttel � Stirling ������ Although it didn�t extend the result of this paper� it had the advantage of
being extendable to include some aspects of concurrency� This is the subject of the section � �����

��� Decidability of Basic Parallel Processes

The decidability results in section � ���� are concerned with a subset of ACP� one that does not use
parallel processing or communication between parallel processes� These two concepts are of course
of great importance in process calculi� Recently some positive decidability results have been found

�	A process graph g is deterministic if there is no node s � g having two outgoing edges with the same label�
��A CFG in GNF form is simple if there is no pair of di�erent productions A� a�� A� a��

� DECIDABILITY ��

X X || b X || b
2

X || b
3

a a a a

bb b b

Figure ��� A sample transition graph

for processes that are de�ned using a parallel combinator within recursive equations� The following
is based on the proof given in
Christensen et al� ������

����� Basic Parallel Processes

For the purposes of this proof� the authors de�ne a class of Basic Parallel Processes �BPP� ex�
pressions� It consists of a countably in�nite set of atomic actions ! � fa� b� c� ���g and a countably
in�nite set of process variables V ar � fX� Y� Z� ���g� and a class of recursive equations de�ned by�

E �� � �inaction�
j X �process variable� X � V ar�
j aE �action pre�x� a � !�
j E �E �choice�
j E k E �merge�

The expression En represents the term E k ��� k E consisting of n copies of E combined in parallel�
Also� ��absorption allows trailing �s to be omitted from expressions� and so the term a� can be
written as just a� A BPP process is de�ned by a �nite family of recursive process equations

" � fXi � Eij� � i � ng

where the Xi are distinct and the Ei are BPP equations containing at most the variables V ar�"� �
fX�� ���� Xng� It is also assumed that each variable occurrence in the Eis are guarded� and the
variable X� is singled out as the leading variable and X� � E� is the leading equation� For example�
if " is the family fX � a�X k b�g� then X generates the in�nite�state transition graph in Figure
���

Bisimilarity is de�ned as strong bisimilarity �since silent actions are not an issue here�� and is
written �� The set of �nite multisets over V ar�"� � fX�� ���� Xng is denoted by V ar�"�� and
�� �� ��� are members of V ar�"��� So each such � denotes a BPP process formed by combining
the elements of � in parallel� The empty product is �� and ordering of variables in products is
ignored� so that processes denoted by elements of V ar�"�� are identi�ed up to associativity and
commutativity of merge�

De�nition �� A �nite family " � fXi � Eij� � i � ng of guarded BPP equations is de�ned to
be in standard form i� every expression Ei is of the form

a��� � ���� am�m

where for each j we have �j � V ar�"��� The empty sum is �� and the ordering of expressions in
sums is ignored� thereby de�ning the notion of standard form modulo associativity and commuta�
tivity of choice�

� DECIDABILITY ��

rec � � �

unf��� � unf���

sum
Pn

i�� ai�i �
Pm

j�� bj�j
fai�i � bf�i
�f�i
g

n
i�� fbj�j � af�i
�g�j
g

m
j��

wheref � f�� � � � � ng � f�� � � � � mg
g � f�� � � � � mg � f�� � � � � ng

prefix a� � a�

� � �

subL � k
 � � if the dominated node is labelled

� k
 � � � � � or � � � with � � �

subR � � � k
 if the dominated node is labelled

� � � k
 � � � or � � � with � � �

Figure ��� Rules of the tableau system

The authors also claim� with no proof given in the paper� that the following lemma holds�

Lemma �� Given any �nite family of guarded BPP equations " we can e�ectively construct an�
other �nite family of BPP equations "� in standard form in which " � "��

For the rest of this proof� all BPP will equations under consideration will be assumed to be in
standard form� The following de�nition is crucial to the proof�

De�nition �� The well�founded ordering � on V ar�"�� is given as follows�

Xk�
� k � � � k Xkn

n � X l�
� k � � � k X ln

n

i� there exists j such that kj � li and for all i � j� ki � li�

Two important properties of � are�

�� it is total� meaning that for any �� � � V ar�"�� with �
� �� either � � � or � � ��

�� � � � implies � k
 � � k
 for any
 � V ar�"��

����� the tableau decision method

The authors present a tableau decision method for the purpose of deciding� for any �� � of V ar�"���
whether or not � � �� The rules of the tableau system� presented in Figure ��� are built around
equations E � F � where E and F are BPP expressions� An example tableau is shown in Figure
�� for the family of BPP processes shown in �gure ���

The basic idea of the proof is this� The rules of the tableau respect properties of bisimulation
equivalence� and for some �� �� a tableau can be built up to prove whether or not � � �� In fact�

� DECIDABILITY ��

� � �

rec ##########P
ai�i �

P
bi�i

sum ######################
a��� � bi�� an�n � bn�n

prefix ############ � � � ############ prefix

�� � �� �n � �n

Figure ��� The schema for a basic step�

theorems � ��� and � ��� below show that � � � i� there is a successful tableau with root labelled
� � �� Also� the ordering � de�ned previously� used in conjunction with the subL and subR rules�
will ensure that all tableaus are �nite� and that for any �� � there are only a �nite number of
tableaux� The decidability follows as a consequence�

First� some terminology before an explanation of the rules� A tableau for � � � is a maximal proof
tree whose root is labelled � � � and whose successive nodes are determined by application of the
rules of tableau system� The rules are applied only to nodes that are not terminal� A terminal node
can be either successful or unsuccessful� A successful terminal node is one labelled � � �� while
an unsuccessful node is one labelled either a� � b� with �
� � or a� � � or � � b�� A tableau
is successful i� if all terminal nodes are successful� Tableaux are denoted by T �or T �� � �� to
indicate the label of the root�� Paths are denoted by
 and nodes are denoted by n� If a node n
has a label E � F it may be written n � E � F �

rec This rule is essentially an encoding of the expansion law �� for merge� as discussed in section
� ������� The notation unf��� represents the unfolding of �� as follows�
given Yi �

Pni
j�� aij�ij for � � i � m�

unf�Y� k � � � k Ym� �
Pm

i��

Pni
j�� �ij�Y� k � � � k Yi�� k �ij k Yi�� k � � � k Ym��

sum After 	breaking apart
 an equality with rec� this rule is used to continue the bisimulation
testing on the individual components� The authors do not state this� and it is not stated
explicitly in the rule� but the consequents should only attempt to relate summands of � and
� that begin with the same action� This is because if there was some consequent ai�i � bi�i�
with ai
� bi� then it would be an unsuccessful terminal and the entire tableau would crash�

prefix straightforward

Note� The rec� sum� and prefix rules are used together� in components called basic steps from
which the larger tableaux is built� The schema of a basic step for � � � is shown in Figure
��� and as can be seen consists of an application of rec to � � � followed �possibly� by an
application of sum� and followed by an application of prefixto each of its consequents� A
basic step represents a set of single transition steps in the operational semantics� for each
consequent �i � �i we have �

ai� �i and �
ai� �i�

Nodes of the form n�� � � are called basic nodes� A basic node n� � k
 � � or n� � � � k

dominates any node n��� � � or n��� � � which appears above n in the tableau in which � � �

and to which the rule REC has been applied�

��But without considering silent actions�

� DECIDABILITY ��

X� � a�X� k X��

X� � aX�

X� � �X� k X�� � bX�

X� � b

Figure ��� An example family of BPP processes in standard form

rec X� � X�

prefix a�X� k X�� � aX�

subL �X� k X�� � X�

rec X� k X� � X�

sum a�X� k X�� � bX� � a�X� k X�� � bX�

prefix a�X� k X�� � a�X� k X�� bX� � bX� prefix

X� k X� � X� k X� X� � X�

Figure ��� A successful tableau for X� � X��

subL
 subR Whenever a basic node dominates a previous one� one of the SUB rules is applied to
reduce the terms before applying the REC rule�

Theorem �� Every tableau for � � � is �nite� Furthermore� the number of tableaux for � � � is
�nite�

Proof �by contradiction�� Let T�� � �� be a tableaux with root labelled � � �� and assume that it
is in�nite� It can only be in�nite if there exists an in�nite path� since every node has only a �nite
number of possible branches� so let
 be an in�nite path starting from the root� Note that the only
way in which
 could be in�nite is if it contains in�nitely many applications of the rec rule� This
is because the applications of the subL and subR rules will continually reduce the terms and due
to the well�foundedness of � this process will eventually terminate� Thus
 must contain an in�nite
sequence of basic nodes to which REC is applied� Let S be this sequence� S � fni � �i � �ig�i���
where n� � �� � �� is the root� n� � �� � �� is the second node along
 at which REC is applied�
and so on� The contradiction will arise by considering
�

Since each expression � is � V ar�"��� it can be viewed as a vector v of N n� where the value of
the ith coordinate of v� denoted v�i�� indicates the number of occurrences of variable Xi in �� Thus
the sequence S can be represented by an in�nite sequence of vectors fuig�i�� where ui � N �n for
all i� The �rst n coordinates represent �i and the last coordinates represent �i�

Now the goal is to extract an in�nite subsequence of S such that all coordinate sequences are
nondecreasing� Consider �rst the in�nite sequence fui���g�i�� consisting of all the �rst coordinates
of vectors of the sequence S� If this sequence has an upper bound then extract from S an in�nite
sequence S� of vectors fvig

�
i�� with the property that the �rst coordinate of vi remains constant

throughout S�� If the sequence fui���g�i�� does not have an upper bound then extract from S

an in�nite sequence S� of vectors fvig
�
i�� with the property that the �rst coordinate of vi is

nondecreasing� Continuing in this way for each coordinate of S results in an in�nite sequence S�n
of vectors fwig

�
i�� with the property that all coordinate sequences are nondecreasing� Thus� in this

� DECIDABILITY ��

sequence every node is dominated by every node after it� Recall that a rule rec cannot be applied
to a node if that node dominates a previous one� because either subL or subR must be applied
�rst� This means that in S�n� the rule rec cannot be applied to any node� thus resulting in the
contradiction�

For the second claim of the theorem� the argument given by Christensen et al� is that since there
are only a �nite number of tableaux of a given �nite size� then there can only be an in�nite number
of tableaux if there is some in�nite sequence of partial tableaux �each derived from the previous
one�� which produces an in�nite tableaux in contradiction to the �rst part of the theorem� The
claim that there are only a �nite number of tableaux for a given �nite size seems to me to need
some clari�cation� Although a minor point� 	size
 should be precisely de�ned� the number of rows
is not adequate� since a row may have some ��nite� number of entries on it� as the result of a sum
rule �e�g�� see Figure ���� Perhaps 	size
 could be de�ned as 	the number of E � F expressions
in a tableau
 � e�g�� the tableau in Figure �� would have size �� It would indeed follow that there
can only be a �nite number of tableaux for a given �nite size� since the number of Xi is �nite and
so there cannot be an in�nite number of tableaux for a given size k�

����� Completeness
 Soundness
 and Decidability

Theorem �	 �Completeness� If � � � then there exists a successful tableau with root labelled
� � ��

Proof� Suppose � � �� If a tableau T �� � �� can be constructed with the property that any node
n � E � F of T satis�es E � F � then by theorem � ��� that construction must terminate� and so if
the desired property indeed holds then each terminal will be successful and T will be a tableau for
� � ��

The desired property can be guaranteed if the rules of the tableau system can be shown to be forward
sound� in the sense that if the antecedent as well as all nodes above relate bisimilar processes then
the set of consequents relate bisimilar processes� This is straightforward from the properties of
bisimulation and the de�nitions of the rules� For example� as mentioned above the rule rec is just
an encoding of the expansion law for merge� and the forward soundness for subL� subR follow
from the fact that bisimilarity is a congruence relation with respect to merge�

Remark� Christensen et al� de�ne forward soundness as requiring that 	if the antecedent���relate
bisimilar processes then it is possible to �nd a set of consequents relating bisimilar processes�
 This
seems unnecessarily weak� since the only rule that produces more than one consequent is sum� and
if the antecedent relates two bisimilar processes� then all the consequents must do so as well�

Theorem �� �Soundness� If there is a successful tableau for � � �� then � � ��

Proof�by contradiction�� Suppose T �� � �� is a tableau for � � �� and that �
� �� A path

 � fni � Ei � Fig through T is constructed starting at the root in which Ei
� Fi for each i� Since
the tableau must be �nite� then
 ends in a terminal node� En � Fn for which En
� Fn� By the
very de�nitions of successful nodes and bisimularity� this means that such a terminal node cannot
be successful� and so the tableau cannot in fact be successful�

The construction of
 is very detailed and will not be presented in full here� The basic idea is that
for any node ni that relates processes that are not bisimilar� then it has a consequence ni�� for
which the same holds� It is shown how this is done for each of the rules� with subL and subRbeing
the most di�cult cases�

REFERENCES ��

Theorem �� Bisimulation equivalence is decidable on BPP processes�

Proof� Given some processes �� �� then from the two previous theorems� � � � i� there�s some
successful tableau with root � � �� Since according to theorem � ���� there are only a �nite number
of such tableau for � � �� all that remains is to list systematically all such tableau and if a successful
one is found� then � � �� Note that it is important that the tableaux are listed systematically� since
it can only be determined that �
� � after all possible tableaux have been listed� Unfortunately�
the Christensen et al� do not specify an algorithm for listing the tableaux� and such an algorithm
can potentially be non�trivial�

����� Remarks

The communication operator included in BPP � k� has no communication capabilities� The authors
claim that the results can also be shown to hold if a limited form of communication� handshaking�
is allowed� Thus BPP can be considered to be a subset of CCS in which all equations are guarded�
there is no restriction �thus allowing the huge simpli�cation of disregarding silent actions�� and no
relabelling� Interesting�
Baeten et al� ����� leave it as an open question as to whether or not the
bisimulation equivalence problem is decidable for PA� PA is distinguishable from BPP by the
inclusion of left�merge and general� not just pre�x� multiplication� It would be interesting to try
to extend the methods of this proof to handle the PA system�

References

Milner ����� Calculus of Communicating Systems� Robin Milner�

Baeten et al� ����� Baeten� Bergstra� and Klop� Decidability of Bisimulation Equivalence for Pro�
cesses Generating Context�Free Languages� Journal of the ACM� July �����

Hopcraft � Ullman ����� Hopcraft� J�E�� and Ullman� J�D� Introduction to Automata Theory�
Languages� and Computation� Addison�Wesley� �����

Christensen et al� ����� Bisimulation Equivalence is Decidable for Basic Parallel Processes� CON�
CUR ���� pp� ��������

Baeten and Weijland ����� Process Algebra� J�C�M� Baeten � W�P� Weijland

Bergstra � Klop ����� Algebra of Communicating Processes with Abstraction� Theoretical Com�
puter Science ��� pp� �������

Bergstra � Klop ����� Process Algebra for Synchronous Communication� Information and Con�
trol ��� pp���������

Christensen et al� ����� Bisimulation Equivalence is Decidable for all Context�Free Processes�
CONCUR ��
� pp� ��������

H uttel � Stirling ����� Actions Speak Louder than Words� Proving Bisimilarity for Context�Free
Processes� Proceedings of LICS �	� pp� ��������

	University of Pennsylvania
	ScholarlyCommons
	April 1994

	Process Algebra, CCS, and Bisimulation Decidability
	Seth Kulick
	Process Algebra, CCS, and Bisimulation Decidability
	Abstract
	Comments

	untitled

