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Abstract

We propose a new class of logics for specifying and model-checking properties of distributed
systems - Dynamic Epistemic Spatial Logics. They have been designed as extensions of
Hennessy-Milner logic with spatial operators (inspired by Cardelli-Caires spatial logic) and
epistemic operators (inspired by dynamic-epistemic logics). Our logics focus on observers,
agents placed in different locations of the system having access to some subsystems. Treat-
ing them as epistemic agents, we develop completely axiomatized and decidable logics that
express the information flow between them in a dynamic and distributed environment.
The knowledge of an epistemic agent, is understood as the information, locally available
to our observer, about the overall-global system. By combining the knowledge of different
observers we can specify properties of the whole system.
Dynamic Epistemic Spatial Logics are decidable against a semantics based on a fragment of
CCS for which the classical spatial logics have been proved to be undecidable. Eventually
model-checking and satisfiability/validity-checking algorithms are presented.

1 Introduction

The notions of calculational process or algorithm are not new in mathematics. They were
studied long before the development of computing technology. Still, the invention of modern
computers and latter the development of computer networks came with new challenges and new
paradigms of computation.

The concept of monolithic computational systems (one-agent system) was replaced by the
concurrent distributed computing systems (multi-agent systems), which represent programs or
processors running in parallel and organized in networks of subsystems, each subsystem having
its own identity. They interact, collaborate, communicate and interrupt each other. Underlying
this new paradigm is the assumption that each part of such a system has its own identity, which
persists through time. We shall associate to such a part (subsystem) an agent, that might be
understood as an observer placed in a given point of our system and having access to this
subsystem.

We need the notion of agents in order to discriminate between the events of the systems
behavior. Indeed, if we wish to identify a particular event we have little choice but to identify
the agents involved. Hence the agents might be understood as (associated with) separate
and independently observable units of behavior and computation. They evolve in a given
environment, following some primitive rules, their evolution influencing the structure of the
whole (multi-agent) system. The main feature of the agents is their ability to communicate,
that is to exchange information inside their environment.

These agents might not be topologically bound in the network, but able to change their
relative positions. A laptop, for example, can be connected to the computer network at some
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point, it can start running some programs that interact with the network and, further, it might
be unplugged and plugged back at a different point. Meanwhile, the laptop is running its
programs independently of the whole system.

Such a multi-agent system reflects interactive, concurrent and distributed behaviors and
computations of agents, thus is extremely complex. The success in dealing with this complexity
depends on the mathematical model we choose to abstract the system. Further we focus on
two major paradigms.

The agent is nothing more but its behavior

Process Algebra [3] abstracts the agents of the system on the level of their behavior and using
some algebraic calculi and operational semantics [26] describes the evolution of the whole sys-
tem. Largely used in applications, this paradigm succeeds in modelling complex computational
scenarios. Further, as the behavior of a concurrent system is a succession of affine states in (pos-
sibly branching) time, was considered the possibility of applying modal (especially temporal)
logics for specifying properties of the processes that modelled distributed systems.

In studying security problems, for example, we may want to be able to specify systems
composed by agents that deal with fresh or secret resources. We may want to express properties
such as “the agent has the key”, “eventually the agent crosses the firewall” or “there is always
at most one agent here able to decrypt the message”.

In systems biology [9] we need to handle big complex systems having extreme dimensions
and variable environments. We need to express properties such as “somewhere there is a virus”,
“if the virus will meet the macrophage cell then it will be engulfed and eventually destroyed”,
or “the presence of the protein x will stimulate the reaction X”, etc.

Hennessy-Milner logic [19] is one of the first modal logics that proposes some modal opera-
tors, indexed by actions, to describe the behavior of the systems in CCS. It introduces, in top
of the classical propositional logic, a dynamic operator 〈α〉φ to express the property of a system
that can perform the sequence of computations α and then reach a state described by φ. The
idea was further developed in combination with temporal operators [27] and applied to other
process calculi [25, 14, 16]. Latter, Mads Dam introduced a tensor that can express properties
of modularity in the system [15], i.e. it can identify subsystems of a system. All these logics
are characterized by their extensional nature, meaning that they cannot distinguish between
processes that behave the same, even if these processes are different.

An increased degree of expressiveness is needed for specifying and reasoning about notions
such as locations, resources, independence, distribution, connectivity and freshness. The specific
applications of mobile computing call for properties that hold at particular locations, and it
becomes natural to consider spatial modalities for expressing properties that hold at a certain
location, at some locations or at every location. Thus, Spatial logics [6, 5, 11] propose, in
addition to the modal temporal operators, some modal spatial operators such as the parallel
operator φ|ψ (meaning that the current system can be split into a parallel composition of two
subsystems, one satisfying φ and the other satisfying ψ), and its adjoint - the guarantee operator
φ . ψ (if we compose in parallel any system P that satisfies φ with a system Q that satisfies
φ .ψ, then the composed system P |Q satisfies ψ), or location operators1 such as n[φ] (meaning
that the current system can be described as a box n[P ] containing a subsystem P that satisfies
φ), etc. A formula in a spatial logic describes a property of a particular part of the system
at a particular time. These spatial modalities have an intensional flavor, the properties they
express being invariant only for simple spatial rearrangements of the system.

Still most of the spatial logics face with decidability problems: it was proved that the
basic spatial operators, in combination with temporal operators, generate undecidable logics
[7, 13, 12] even against a finite piece of CCS. The situation is caused by the presence of the

1These operators are characteristic for Ambient Logic [11], a special spatial logic developed for Ambient
Calculus [10].
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guarantee operator, which involves a universal quantifier over the class of processes. In the
light of the results presented in literature we have two alternatives for avoiding undecidability:
either we choose a logic based on a static calculus [8], thus the logic cannot specify properties
of our system in evolution, or we choose a dynamic calculus, but we have to avoid the use of a
guarantee operator [4, 22, 21], hence we can express only local properties of the system.

The second alternative is useful only if our system is an isolated one (there is no upper-
system for it) and we have a full description of it. In this sense the possible applications are
quite limited. In modelling, for example, the scenario of the laptop connected to Internet,
such a solution is not acceptable, as the whole system (Internet) is, theoretically, an infinite
environment. We may consider upper-systems of our subsystem (laptop), but we cannot decide
how far up we should go with modeling in order to obtain the information we are looking for,
such as security issues.

Hence a spatial operator to express global properties within the limits of decidability is
needed. To the best of our knowledge, no such alternative to guarantee operator has been
proposed in the literature.

An agent is defined by its “knowledge”

The other paradigm of modelling multi-agent systems is inspired by logics and philosophy:
reasoning about systems in terms of knowledge of the agents [17]. The knowledge of an agent is
understood as the sum of actions the agent (subsystem) may take as a function of its local state
in a given environment. Thus the agent “knows” its protocol in a given system. If we think
to the agent as being an observer placed in our system which has access to a subsystem, its
knowledge is the information related to evolution of this subsystem in an unknown environment.

Epistemic logics [17] formalize, in a direct manner, notions of knowledge, possessed by an
agent, or a group of agents, using modalities like KAφ (A knows φ), or Ckφ (all the agents
knows φ, i.e. φ is a common knowledge). These logics supports Kripke-model based semantics,
each basic modality being associated with a binary accessibility relation in these models. Thus
for each epistemic agent A we devise an accessibility relation A−→ , called indistinguishability
relation for A, expressing the agent’s uncertainty about the current state. The states s′ such
that s A−→ s′ are the epistemic alternatives of s to agent A: if the current state of the whole
system is s, A thinks that any of the alternatives s′ may be the current state (as it doesn’t
have enough information to distinguish them). These logics have been extensively studied and
applied to multi-agent systems.

Within computer science, reasoning about knowledge plays an extremely important role in
contemporary theories of (intelligent) agents and it has been proved to be useful in modelling
and understanding complex communication-based multi-agent systems.

Dynamic logics [18] are closer to process calculi, in that they have names for programs
(actions) and operators to combine them. Accessibility relations are interpreted as transitions
induced by programs, and a dynamic modality [π]φ captures the weakest precondition of such a
program w.r.t. a given post-specification φ. Modalities in a dynamic logic form an algebraical
structure: programs are built using basic program constructors such as sequential composition
π.π′ or iteration π∗.

By mixing dynamic and epistemic formalisms Dynamic Epistemic Logics have been devel-
oped [1, 2, 20, 28, 29, 30], aiming to capture properties of information flow, such as communi-
cation, in multi-agent systems. These logics combine a rich expressivity with low complexity
ensuring decidability and complete axiomatizations.

Our approach

The two paradigms of modelling concurrent distributed systems - the process algebraical paradigm
and the epistemic one - were developed in parallel, but to our knowledge, there has been no
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unified paradigm. We propose such a paradigm in this paper, used for constructing a new
logic for concurrency completely axiomatized and decidable. The main idea is to combine the
features of spatial logics with the epistemic logics thus obtaining a special type of dynamic
epistemic logic equipped with spatial operators. We call it Dynamic Epistemic Spatial Logic.

More concretely, our logic extends Hennessy-Milner logic with the parallel operator (hence
it is a spatial logic) and epistemic operators. The role of the epistemic operators is to do most
of the job of the guarantee operator while maintaining decidability. In our logics the epistemic
agents are named by the processes they are related with. Thus KPφ means the agent related
with P knows φ and it holds iff φ is satisfied by any process having P as subprocess. The
intuition is that the agent related with P is an observer inside our system that can see only P .
So, as epistemic agent, it cannot differentiate between the global states P , P |Q or P |R of the
whole system, as in all these states it sees only P . Thus its knowledge rests on the properties
φ that are satisfied by each of these states (processes).

We prove, for Dynamic Epistemic Spatial Logic, the finite model property with respect to
the chosen semantics. Thus, we have decidability for satisfiability, validity and model-checking
problems. In proving the finite model property we use a new congruence on processes - the
structural bisimulation. Informally, it is an approximation of the structural congruence bound
by two dimensions: the height and the weight of a process.

For the logic we propose a complete Hilbert-style axiomatic system, which helps in un-
derstanding the basic algebraical behavior of the classical process operators. We prove its
soundness and completeness with respect to the piece of CCS for which the classic spatial logic
has been proved to be undecidable in [7]. Thus, many properties can be syntactically verified
and proved. Moreover the interplay of our logical operators allows to express, in the syntax,
validity and satisfiability for formulas. We also have characteristic formulas able to identify a
process (agent) up to structural congruence (cloned copies).

The sound-complete axiomatic system in the context of decidability allows the development
of algorithms for solving, in a finite manner, the satisfiability, validity and model-checking
problems.

Concluding, the novelty of our logic with respect to the classical spatial logics is the use of the
epistemic operators, as alternative to guarantee operator, for expressing global properties while
ensuring decidability. The epistemic operators allow to refer directly to agents of our system
by mean of their knowledge. An epistemic agent is, thus, an observer that can be placed
in different places in our system and has access to partial information. By combining these
partial information (“points of view” of different observers) we can specify complex properties
of distributed systems. Further, due to decidability, we can syntactically verify and prove these
properties.

From the epistemic logics perspective, we propose a new class of epistemic logics by imposing
an algebraical structure (CCS-like) on the class of epistemic agents. In this way we may assume
compositional and hierarchically organized agents. Thus P and Q are epistemic agents, but
also P |Q may be another agent. As they are ontologically related (P and Q are ontological
subsidiary of P |Q), our logic allows to derive relations between their knowledge and dynamics
from their ontological relations. In the classical epistemic logics [17] the agents are assumed to
be ontologically independent entities, while our logics accepts dependencies. Other peculiarities
of our epistemic logic comes from the fact that we can activate and deactivate agents: thus in
a system having the current state described by α.P , the agent that sees P is not active, but
it might be activated in a future state. Our logic allows also cloned agents. Thus in a system
described by P |Q|P we have two clones of the agent seeing P .

Thus, we can model simultaneously, as agents in a system, individuals, societies of individ-
uals, societies of societies of individuals, etc and their evolutions. All these features are new for
epistemic logics.
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P |0 ≡ P P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R

Table 1: The axioms the structural congruence

Outline of the paper

The paper is organized as follows. In section 2 we present the process calculus on which we will
focus for the rest of the paper. This calculus provides a semantics against which the classical
spatial logic is undecidable. Section 3 defines some concepts in process algebra which will
be used further, such as structural bisimulation and pruning processes and sets of processes.
Starting with section 4 we define our logics. Two such systems will be introduced LDS and its
extension LDES . For both we will prove the finite model property that entails the decidability
against the process semantics for which the classic spatial logic was proved to be undecidable.
We also develop sound complete Hilbert-style axiomatic systems that comprehend the behavior
of the logical operators involved. In section 6, underpinning on finite model property, we develop
finite algorithms for satisfiability, validity and model-checking properties of distributed systems.
We end the paper with some concluding remarks.

In addition we added an appendix where some examples related with the new concepts
introduced in our paper are presented together with an example where our logic is used to
specify properties for a small system.

For the proofs of the theorems presented in this paper, and for additional results the reader
is referred to [24] for Dynamic Epistemic Spatial Logic and to [23] for Dynamic Spatial Logic.

2 Undecidability results in Spatial Logics

The main reason for introducing spatial logics is to provide appropriate techniques for specifying
and model-checking properties of concurrent distributed systems, therefore most of the work
done in this field points to decidability-related problems. We briefly present hereafter the
(un)decidability results for spatial logics, proved in [7], which motivated our work.

Definition 2.1 (Processes). Consider the fragment of CCS generated by the next syntax,
where A is a denumerable set of actions and α ∈ A:

P ::= 0 | α.P | P |P

Hereafter this calculus2 is the object of our paper. We will use α, β to range over A and we will
denote by P the class of processes.

Definition 2.2 (Structural congruence). The relation of structural congruence is defined
as the least congruence ≡ on processes satisfying the axioms in table 1.

Definition 2.3 (Transition systems). The transition system for the previously defined cal-
culus is ITS = 〈P,A,−→〉, where −→⊂ P × A × P is the transition relation defined by the
rules in table 2, with the assumption that P α−→ Q denotes 〈P, α,Q〉 ∈−→. We denote by −→∗

the transitive closure of −→.

For this calculus, in [7], were considered two spatial logics:

• Lspat given by the syntax

φ ::= > | 0 | φ1 ∧ φ2 | ¬φ | φ1|φ2 | φ1 . φ2 | � φ
2We can, additionally, consider an involution on A that associate to each action α ∈ A an action α ∈ A,

as usual in CCS, and also to take into consideration the silent action τ . But all these represent just syntactic
sugar, irrelevant from the point of view of the logic we discuss.
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α.P
α−→ P

P ≡ Q P
α−→ P ′

Q
α−→ P ′

P
α−→ P ′

P |Q α−→ P ′|Q

Table 2: The transition system

P, v |=M > for any process P
P, v |=M ¬φ iff P, v 6|= φ
P, v |=M φ ∧ ψ iff P, v |=M φ and P, v |=M ψ
P, v |=M 0 iff P ≡ 0
P, v |=M φ|ψ iff P ≡ Q|R, Q, v |=M φ and R, v |=M ψ
P, v |=M φ . ψ iff for any process Q, v |=M φ we have P |Q, v |=M ψ
P, v |=M ∃x.φ iff ∃α ∈ A such that P, (v{x← α}) |=M φ

P, v |=M 〈x〉φ iff ∃Q.P v(x)−→ Q and Q, v |=M φ

Table 3: Semantics of Spatial Logics

• Lmod given, over an infinite set of variables X 3 x, by the syntax

φ ::= > | 0 | φ1 ∧ φ2 | ¬φ | φ1|φ2 | φ1 . φ2 | � φ | 〈x〉φ | ∃x.φ

A valuation is a mapping from a finite subset of X to A. For any valuation v, we write v{x← α}
for the valuation v′ such that v′(x) = α, and v′(y) = v(y) if y 6= x.
The semantics for the two spatial logics, defined by the satisfaction relation P, v |=M φ where
P is a process, M is a set of processes that contains P , φ a formula, and v is a valuation for
the free variables of φ, is presented in Table 3.

In [7] it is proved that Lspat can encode Lmod, hence they are equally expressive. Then it
is proved that model-checking and validity/satisfiability checking for Lspat with respect to this
finite fragment of CCS are all undecidable. But Lspat is the core of all Spatial Logics.

Concluding, though expressive and useful, most of the spatial logics proved to be undecid-
able, even in the absence of quantifiers. Unlike in static spatial logics, the composition adjunct
adds to the expressiveness of the logic, so that adjunct elimination is not possible for dynamic
spatial logics, even quantifier-free [7].

To the best of our knowledge, no alternative operator, to replace the guarantee one in order
to express global properties and still ensuring decidability, has been studied. We propose further
such an alternative.

3 Processes and contexts

In this section, focusing on the fragment of CCS introduced in definition 2.1, we develop some
concepts on which we will base the further constructs.

Assumption (Representativeness modulo structural congruence). As the structural
congruence is the ultimate level of expressivity we want for our logic, hereafter in the paper we
will speak about processes up to structural congruence.

Definition 3.1. We call a process P guarded iff P ≡ α.Q for α ∈ A. We introduce the notation
P k def

= P |...|P︸ ︷︷ ︸
k

, and convey to denote P 0 ≡ 0.

We extend the operators from processes to sets of processes.
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Definition 3.2. For any sets of processes M,N ⊂ P and any α ∈ A we define:
α.M

def
= {α.P | P ∈M} M |N def

= {P |Q | P ∈M,Q ∈ N}
As we speak about processes up to structural congruence, the parallel operator on sets of
processes will be commutative, associative and will have {0} as null.

Now we define the contexts. The intuition is that a context M is a (possibly infinite) set
of processes that contains, in a maximal manner, any process representing a possible state of
our system or of a subsystem of our system. Hence if a process belongs to a context then
any process obtained by pruning its syntactic tree should belong to the context, as it might
represent a subsystem or the information collected by an external observer in a bound time.
For the same reason, the context should be also closed to transitions.

We associate to each process P the set π(P ) of all processes obtained by pruning the syntactic
tree of P .

Definition 3.3 (Pruning the syntactic tree). For P ∈ P we define3 π(P ) ⊂ P by:

1. π(0)
def
= {0} 2. π(α.P )

def
= {0} ∪ α.π(P ) 3. π(P |Q)

def
= π(P )|π(Q)

We extend the definition of π to sets of processes M ⊂ P by π(M)
def
=

⋃
P∈M π(P ).

Definition 3.4 (Context). A context is a nonempty set M⊆ P of processes such that
1. if P ∈M and P −→ P ′ then P ′ ∈M 2. if P ∈M then π(P ) ⊂M

3.1 Size of a process

Further we define the size of a process, following a similar idea developed in [8] for sizes of trees.
The intuition is that the process has a height given by the vertical size of its syntactic tree,
and a width equal to the maximum number of bisimilar subprocesses that can be identified in
a node of the syntactic tree.

Definition 3.5 (Size of a process). We define, inductively, the size (h,w) (h stays for height
and w for width) of a process P , denoted by JP K:
1. J0K def

= (0, 0) 2. JP K def
= (h,w) iff

− P = (α1.Q1)k1 |(α2.Q2)k2 |...|(αj .Qj)kj and JQiK = (hi, wi), i ∈ 1..j
− h = 1 +max(h1, ..., hk), w = max(k1, ..., kj , w1, ..., wj)

We convey to write (h1, w1) ≤ (h2, w2) for h1 ≤ h2 and w1 ≤ w2 and (h1, w1) < (h2, w2) for
h1 < h2 and w1 < w2.

In example A.1, in appendix, we show the sizes for some processes.

Definition 3.6 (Size of a set of processes). Let M ⊂ P. We write JMK = (h,w) iff
(h,w) = max{JP K | P ∈M}4.

3.2 Substitutions

For the future constructs is also useful to introduce the substitutions of actions in a process.

Definition 3.7 (The set of actions of a process). We define Act(P ) ⊂ A, inductively by:

1. Act(0)
def
= ∅ 2. Act(α.P )

def
= {α}∪Act(P ) 3. Act(P |Q)

def
= Act(P )∪Act(Q)

For a set M ⊂ P of processes we define Act(M)
def
=

⋃
P∈M Act(P ).

3We consider also π(P ) defined up to structural congruence.
4Observe that not all the sets of processes have a size, as for an infinite one it might be not possible to have

the maximum required.
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Definition 3.8 (Action substitution). We call action substitution any function σ : A −→ A.
We extend it further, syntactically, from actions to processes, σ : P −→ P, by

1. σ(0)
def
= 0 2. σ(P |Q)

def
= σ(P )|σ(Q) 3. σ(α.P )

def
= σ(α).σ(P )

For M ⊂ P let σ(M)
def
= {σ(P ) | P ∈M}. We also use notation Mσ, Pσ for σ(M) and σ(P ).

The set of actions of σ, act(σ), is defined as act(σ)
def
= {α, β ∈ A | α 6= β, σ(α) = β}.

3.3 Structural bisimulation

The structural bisimulation is a congruence on processes (then extended to contexts) defined
as an approximation of the structural congruence bound by two sizes: the height (the depth
of the syntactic tree) and the weight (the maximum number of bisimilar subprocesses that can
be found in a node of the syntactic tree) of a process. A conceptually similar congruence was
proposed in [8] for analyzing trees of location for the static ambient calculus.

The structural bisimulation analyzes the behavior of a process focusing on a boundary (h,w)
of its syntactic tree. The intuition is that P ≈w

h Q (P and Q are structurally bisimilar on size
(h,w)) iff when we consider for both processes their syntactic trees up to the depth h only
(we prune them on the height h) and we ignore the presence of more than w parallel bisimilar
subprocesses in any node of the syntactic trees (we prune the trees on weight w), we obtain
identical syntactic trees.

Definition 3.9 (Structural bisimulation). Let P,Q ∈ P. We define P ≈w
h Q by:

P ≈w
0 Q always

P ≈w
h+1 Q iff for any i ∈ 1..w and any α ∈ A we have
• if P ≡ α.P1|...|α.Pi|P ′ then Q ≡ α.Q1|...|α.Qi|Q′ with Pj ≈w

h Qj , for j = 1..i
• if Q ≡ α.Q1|...|α.Qi|Q′ then P ≡ α.P1|...|α.Pi|P ′ with Qj ≈w

h Pj , for j = 1..i

In example A.2, in appendix, we exemplify this relation for some processes.

Theorem 3.1 (Congruence). ≈w
h is a congruence on processes.

We extend the definitions of structural bisimulation from processes to contexts.

Definition 3.10 (Structural bisimulation over contexts). LetM,N be two contexts. We
write M≈w

h N iff
1. for any P ∈M there is a Q ∈ N with P ≈w

h Q
2. for any Q ∈ N there is a P ∈M with P ≈w

h Q
We convey to write (M, P ) ≈w

h (N , Q) for the case when P ∈ M, Q ∈ N , P ≈w
h Q and

M≈w
h N .

3.4 Pruning processes and contexts

We introduce an effective method to construct, given a process P , a minimal process Q that
has an established size (h,w) and is structurally bisimilar to P on this size. Because the
construction is based on pruning the syntactic tree of P on a given size, we call this method
bound pruning, and we refer to Q as the pruned of P on the size (h,w).

Theorem 3.2 (Bound pruning theorem). For any process P ∈ P and any (h,w) exists a
process Q ∈ P with P ≈w

h Q and JQK ≤ (h,w).

Proof. We describe the construction5 of Q by induction on h.
For h = 0: we just take Q ≡ 0, because P ≈w

0 Q and J0K = (0, 0).

5This construction is not necessarily unique.
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For h+ 1: suppose that P ≡ α1.P1|...|αn.Pn.
Let P ′i be the result of pruning Pi by (h,w) (we use the inductive step of construction) and
P ′ ≡ α1.P

′
1|...|αn.P

′
n. As for any i = 1..n we have Pi ≈w

h P ′i (by the inductive hypothesis), we
obtain, using theorem 3.1, that αi.Pi ≈w

h+1 αi.P
′
i and further P ≈w

h+1 P
′.

Consider the canonical representation of P ′ ≡ (β1.Q1)k1 |...|(βm.Qm)km .
Let li = min(ki, w) for i = 1..m. Then we define Q ≡ (β1.Q1)l1 |...|(βm.Qm)lm . Obviously
Q ≈w

h+1 P
′ and as P ≈w

h+1 P
′, we obtain P ≈w

h+1 Q. By construction, JQK ≤ (h+ 1, w).

Definition 3.11 (Bound pruning processes). For a process P and for a tuple (h,w) we
denote by P(h,w) the process obtained by pruning P to the size (h,w) by the method described
in the proof of theorem 3.2.

In example A.3, in appendix, we show how a process can be pruned on different sizes.
Further we define the bound pruning of a contextM as the context generated by the set of

pruned processes of M.

Definition 3.12 (System of generators for a context). We say that the set M ⊂ P is
a system of generators for the context M if M is the smallest context that contains M . We
denote this by M =M.

Definition 3.13 (Bound pruning contexts). For any context M and any (h,w) we define

M(h,w)
def
= {P(h,w) | P ∈M}

Theorem 3.3. For any context M, any P ∈M, and any size (h,w) we have

(M, P ) ≈h
w (M(h,w), P(h,w))

Definition 3.14. Let A ⊂ A. We denote by PA
(h,w) the set of all processes with the size at

most (h,w) and the actions in A, and by MA
(h,w) the set of all contexts generated by subsets of

PA
(h,w):

PA
(h,w)

def
= {P ∈ P |Act(P ) ⊆ A, JP K ≤ (h,w)}, MA

(h,w)

def
= {M ⊂ P |Act(M) ⊆ A, JMK ≤ (h,w)}

Theorem 3.4. If A ⊂ A is a finite set of actions, then the following hold:

1. PA
(h,w) is finite 2. IfM∈MA

(h,w) thenM is a finite context 3. MA
(h,w) is finite

Theorem 3.5 (Bound pruning theorem). Let M be a context. Then for any (h,w) there

is a context N ∈M
Act(M)
(h,w) such thatM≈w

h N . Moreover, N =M(h,w) has this property.

4 Logics for specifying distributed systems

In this section we introduce Dynamic Spatial Logic, LDS , as an extension of Hennessy-Milner
logic with the parallel operator and Dynamic Epistemic Spatial Logic, LDES , which extends
LDS with the epistemic operators. The intuition is to define the knowledge of the process P in
the contextM as the common properties of the processes inM that contain P as subprocess.
If we think to the epistemic agent as to an observer that can see only the process P , then its
knowledge about any state of global system concerns only P . Thus, for it, the global states P |Q
and P |R looks indistinguishable. Hence the knowledge implies a kind of universal quantifier over
M, since KPφ, if is satisfied by a process P |Q, then it is satisfied by any process P |R ∈M. We
find this enough for expressing most of the properties considered in the spatial logic literature,
which required the use of the guarantee operator.
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The satisfiability relations will evaluate a formula to a process in a context.
For our logics, we propose Hilbert-style axiomatic systems proved to be sound and complete

with respect to process semantics. LDS and LDES satisfy the finite model property against the
process semantics that entails the decidability for satisfiability, validity and model checking for
both logics.

4.1 Syntax

Definition 4.1 (Languages). We define the language of Dynamic Spatial Logic, FDS , and
the language of Dynamic Epistemic Spatial Logic, FDES , for α ∈ A, by:

φ := 0 | > | ¬φ | φ ∧ φ | φ|φ | 〈α〉φ (FDS)
φ := 0 | > | ¬φ | φ ∧ φ | φ|φ | 〈α〉φ | KQφ (FDES)

Definition 4.2 (Derived operators). In addition we introduce some derived operators:

1. ⊥ def
= ¬> 4. [α]φ

def
= ¬(〈α〉(¬φ)) 6. 〈!α〉ψ def

= (〈α〉ψ) ∧ 1

2. φ ∨ ψ def
= ¬((¬φ) ∧ (¬ψ)) 5. 1

def
= ¬((¬0) | (¬0)) 7.

∼
KQφ

def
= ¬KQ¬φ

3. φ→ ψ
def
= (¬φ) ∨ ψ

Anticipating the semantics, we outline the intuition that motivates the choice of the operators.
The formula 0 is meant to characterize any process structurally congruent with 0 in any

context, expressing “there is no activity here”. It should not be confused with “false”.6

> will be satisfied by any process in any context. ⊥ will be used to express the inconsistency.
The reason for introducing the parallel operator φ|ψ is that we want to be able to express, as

in other spatial logics, the situation in which our system is composed by two parallel subsystems,
one satisfying φ and the other satisfying ψ.

The dynamic-like operator 〈α〉φ is meant to be used to speak about the transitions of our
system. It expresses “the system may perform the action α meeting a state satisfying φ”.

The dynamic-like operator [α]φ, the dual operator of 〈α〉φ, expresses the situation where
either the system cannot perform α, or if the system can perform α then any future state that
can be reached by performing α satisfies φ.

The formula 1 is meant to describe the situation in which the system cannot be decomposed
into two non-trivial subsystems. 1 can describe also the trivial system 0.

The formula 〈!α〉ψ expresses a process guarded by α, which, after consuming α, satisfies ψ.
The formula KQφ express a global property of the context: “in our context any system

having Q as subsystem has the property φ”. Observe the universal quantifier involved.
We could also introduce, for each action α, a derived operator7 〈α, α〉 to express commu-

nication by α, supposing that we have defined an involution co : A −→ A which associates to
each action α its co-action α:

〈α, α〉φ def
=

∨
φ↔φ1|φ2

〈α〉φ1|〈α〉φ2

4.2 Process semantics

A formula of FDS , or of FDES , will be evaluated to processes in a given context, by mean of a
satisfaction relationM, P |= φ.

6We insist on this aspect as some syntaxes of classical logic use 0 for denoting false. This is not our intention.
We use ⊥ to denote false.

7The disjunction is considered up to logically-equivalent decompositions φ ↔ φ1|φ2 that ensures the use of
a finitary formula.
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Definition 4.3 (Models and satisfaction). A model of LDS or of LDES is a contextM for
which we define the satisfaction relation, for P ∈M, as follows:
M, P |= > always
M, P |= 0 iff P ≡ 0
M, P |= ¬φ iff M, P 2 φ
M, P |= φ ∧ ψ iff M, P |= φ and M, P |= ψ
M, P |= φ|ψ iff P ≡ Q|R and M, Q |= φ,M, R |= ψ

M, P |= 〈α〉φ iff there exists a transition P α−→ P ′ and M, P ′ |= φ
M, P |= KQφ iff P ≡ Q|R and ∀Q|R′ ∈M we have M, Q|R′ |= φ

Then the semantics of the derived operators will be:
M, P |= [α]φ iff for any P ′ ∈M such that P α−→ P ′ (if any),M, P ′ |= φ
M, P |= 1 iff P ≡ 0 or P ≡ α.Q (P is null or guarded)
M, P |= 〈!α〉φ iff P ≡ α.Q andM, Q |= φ

M, P |=
∼
KQφ iff either P 6≡ Q|R for any R, or it exists Q|S ∈M such thatM, Q|S |= φ

Remark the interesting semantics of the operators K0 and
∼
K0:

M, P |= K0φ iff for any Q ∈M we have M, Q |= φ

M, P |=
∼
K0φ iff it exists a process Q ∈M such thatM, Q |= φ

If a process P ∈ M satisfies K0φ then φ is valid in M (the same about K0φ) and vice versa.
Hence we can encode, in the syntax, the validity with respect to a given context.

If a process P ∈ M satisfies
∼
K0φ (then all the processes in M satisfy

∼
K0φ) then it exists

a process Q ∈ M that satisfies φ and vice versa. Hence
∼
K0φ provides a way to encode the

satisfiability with respect to a given model.

4.3 Characteristic formulas for processes

In this subsection we use the peculiarities of the dynamic and epistemic operators to define char-
acteristic formulas for processes and for finite contexts. Such formulas will be useful in providing
appropriate axiomatic systems for our logics and, eventually, for proving the completeness.

Definition 4.4 (Characteristic formulas for processes). In FDS we define a class of
formulas (cP )P∈P, indexed by (≡-equivalence classes of) processes, as follows:

1. c0
def
= 0 2. cP |Q

def
= cP |cQ 3. cα.P

def
= 〈!α〉cP

Theorem 4.1.M, P |= cQ iff P ≡ Q.

As FDES is an extension of FDS , (cP )P∈P characterize processes also in FDES .

Specific for FDES only is the possibility to exploit the semantics of the operators K0 and
∼
K0,

as they can describe validity and satisfiability w.r.t a model, in defining characteristic formulas
for finite contexts.

Definition 4.5 (Characteristic formulas for contexts). In FDES , ifM is a finite context,
we can define its characteristic formula by:

cM = K0(
∨

Q∈M
cQ) ∧ (

∧
Q∈M

∼
K0cQ)

Suppose that N , P |= cM. Then the first conjunct K0(
∨

Q∈M cQ) tells us that
∨

Q∈M cQ is a
validity in N , hence each element of N is an element of M, N ⊆ M. The second conjunct

tells us that for each Q ∈M, N , P |=
∼
K0cQ. By the semantics of

∼
K0 this means that it exists

a process P ′ ∈ N such that N , P ′ |= cQ, i.e. P ′ ≡ Q. As the processes are identified up to
structural congruence,M⊆ N . Hence M = N .
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Theorem 4.2. IfM is a finite context and P ∈M thenM, P |= cN iff N =M.

4.4 Finite model property and decidability

Now we prove the finite model property for Dynamic Epistemic Spatial Logic that will entail
the decidability against the process semantics. As a consequence, we obtain decidability for
Dynamic Spatial Logic (being less expressive). Anticipating, we define a size for formulas φ;
then we prove that if M, P |= φ then substituting, by σ, all the actions in M (and implicitly
in P ) that are not in the syntax of φ (as indexes of dynamic or epistemic operators) by a fixed
action with the same property, and then pruning Mσ and Pσ to the size of φ we will obtain
a couple (N , Q) such that N , Q |= φ. The fixed action of substitution can be chosen as the
successor8 of the maximum action of φ, which is unique. Hence N ∈MA

(h,w) where (h,w) is the
size of φ and A is the set of actions of φ augmented with the successor of its maximum, thus A
is finite. But then theorem 3.4 ensures that the set of pairs (N , Q), with this property, is finite.

Definition 4.6 (Size of a formula). We define the sizes of a formula, LφM (height and width),
inductively on FDES , by:

1. L0M = L>M def
= (0, 0) 2. L¬φM def

= LφM
and supposing that LφM = (h,w), LψM = (h′, w′) and JRK = (hR, wR) we define further:

3. Lφ ∧ ψM def
= (max(h, h′),max(w,w′)) 4. Lφ|ψM def

= (max(h, h′), w + w′)

5. L〈α〉φM def
= (1+h, 1+w) 6. LKRφM def

= (1+max(h, hR), 1+max(w,wR))

The next theorem states that φ is “sensitive” via satisfaction only up to size LφM. In other
words, the relation M, P |= φ is conserved by substituting the couple (M,P ) with any other
couple (N,P ) structurally bisimilar to it at the size LφM.

Theorem 4.3. If LφM = (h,w),M, P |= φ and (M, P ) ≈w
h (N , Q) then N , Q |= φ.

Using this theorem, we conclude that if a process, in a context, satisfies φ then by pruning the
process and the context on the size LφM, we still have satisfiability for φ. Indeed the theorems
3.2 and 3.3 prove that if LφM = (h,w) then (M, P ) ≈h

w (MLφM, PLφM). Hence M, P |= φ implies
MLφM, PLφM |= φ.

Definition 4.7 (The set of actions of a formula). We define the set of actions of a formula
φ, act(φ) ⊂ A, inductively by:

1. act(0)
def
= ∅ 3. act(φ∧ψ) = act(φ|ψ)

def
= act(φ)∪act(ψ) 5. act(KRφ)

def
= Act(R)∪act(φ)

2. act(>)
def
= ∅ 4. act(¬φ) = act(φ) 6. act(〈α〉φ)

def
= {α} ∪ act(φ)

The next result states that a formula φ does not reflect properties that involves more then
the actions in its syntax. Thus if M, P |= φ then any substitution σ having the elements of
act(φ) as fix points preserves the satisfaction relation, i.e. Mσ, P σ |= φ.

Theorem 4.4. IfM, P |= φ and σ is a substitution with act(σ)
⋂
act(φ) = ∅ thenMσ, P σ |= φ.

We suppose to have defined on A a lexicographical order �. So, for a finite set A ⊂ A we
can identify a maximal element that is unique. Hence the successor of this element is unique
as well. We convey to denote by A+ the set obtained by adding to A the successor of its
maximal element. Moreover, for a context N 3 P , for a size (h,w) and for a finite set of actions
A ⊂ A we denote by NA

(h,w) (and by PA
(h,w) respectively) the context (the process) obtained by

substituting all the actions α ∈ Act(N ) \ A (α ∈ Act(P ) \ A respectively) by the successor of
the maximum element of A and then pruning the context (the process) obtained to size (h,w).

8We consider defined, on the class of actions A, a lexicographical order.
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Theorem 4.5 (Finite model property).

IfM, P |= φ then ∃N ∈M
act(φ)+
LφM and Q ∈ N such that N , Q |= φ.

Moreover N =Mact(φ)
LφM and Q = P

act(φ)
LφM fulfill the requirements of the theorem.

Because act(φ) is finite implying act(φ)+ finite, we apply theorem 3.4 ensuring that M
act(φ)+
LφM

is finite and any contextM∈M
act(φ)+
LφM is finite as well. Thus we obtain the finite model property

for our logic. A consequence of theorem 4.5 is the decidability for satisfiability, validity and
model checking against the process semantics.

Theorem 4.6 (Decidability of LDES). For LDES validity, satisfiability and model checking
are decidable against the process semantics.

Corollary 4.7 (Decidability of LDS). For LDS validity, satisfiability and model checking
are decidable against the process semantics.

4.5 Axiomatic Systems

In table 4 is proposed a Hilbert-style axiomatic system for LDS . We assume the axioms and
the rules of propositional logic. In addition we will have a set of spatial axioms and rules, and
a set of dynamic axioms and rules.

Spatial axioms
S1: ` >|⊥ → ⊥
S2: ` (φ|ψ)|ρ→ φ|(ψ|ρ)
S3: ` φ|0↔ φ

S4: ` φ|(ψ ∨ ρ)→ (φ|ψ) ∨ (φ|ρ)
S5: ` φ|ψ → ψ|φ
S6: ` (cP ∧ φ|ψ)→

∨
P≡Q|R(cQ ∧ φ)|(cR ∧ ψ)

Spatial rules
SR1: ` φ→ ψ then ` φ|ρ→ ψ|ρ

Dynamic axioms
D7: ` 〈α〉φ|ψ → 〈α〉(φ|ψ)
D8: ` [α](φ→ ψ)→ ([α]φ→ [a]ψ)
D9: ` 0→ [α]⊥

D10: For αi 6= β, ` 〈!α1〉>|...|〈!αn〉> → [β]⊥
D11: ` 〈!α〉φ→ [α]φ

Dynamic rules
DR2: ` φ then ` [α]φ
DR4: `

∨
P∈P

act(φ)+
LφM

cP → φ then ` φ
DR3: If ` φ1 → [α]φ′1 and ` φ2 → [α]φ′2

then ` φ1|φ2 → [α](φ′1|φ2 ∨ φ1|φ′2)

Table 4: The axiomatic system LDS

Concerning the axioms and rules we make two observations. The disjunction involved in
axiom S6 is finitary, as we considered the processes up to structural congruence level. Also the
disjunction involved in rule DR4 has a finite number of terms, as a consequence of the finite
model property.

The axiomatic system for LDES is just an extension of the system of LDS with the set of
epistemic axioms and rules presented in the table 5. Observe that also the rule DR4 has been
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Dynamic rule
DR’4: `

∨
M∈M

act(φ)+
LφM

cM → φ then ` φ

Epistemic axioms

E12: ` KQφ ∧KQ(φ→ ψ)→ KQψ
E13: ` KQφ→ φ
E14: ` KQφ→ KQKQφ
E15: ` KQ> → (¬KQφ→ KQ¬KQφ)

E16: If P ∈ S then ` KP> ↔ cP |>
E17: ` KQφ↔ (KQ> ∧K0(KQ> → φ))
E18: ` K0φ ∧ ψ|ρ→ (K0φ ∧ ψ)|(K0φ ∧ ρ)
E19: ` K0φ→ [α]K0φ
E20: ` K0φ→ (KQ> → KQK0φ)

Epistemic rules

ER5: ` φ then ` KQ> → KQφ
ER6: If M3 P is a finite context and

` cM ∧ cP → K0φ then ` cM → φ

Table 5: The axiomatic system LS
DES

replaced by DR’4, as this logic is sensitive to contexts (due to universal quantifier involved by
the semantics of the epistemic operator).

For the epistemic axioms and rules we point on their similarities with the classic axioms of
knowledge. Thus axiom E12 is the classical (K)-axiom stating that our epistemic operator is
a normal one, while axiom E13 is just the necessity axiom, for the epistemic operator. Also
axiom E14 is well known in epistemic logics. It states that our epistemic agents satisfy the
positive introspection property : if P knows φ then it knows that it knows φ. Axiom E15 states
a variant of the negative introspection, saying that if an agent P is active and if it doesn’t know
φ, then it knows that it doesn’t know φ. These axioms are present in all the epistemic logics
[17]. Axiom E16 is also interesting as it states the equivalence between to be active and to know
for our epistemic agents.

4.6 Soundness and Completeness

The choice of the axioms is motivated by the soundness theorem.

Theorem 4.8 (Soundness). The systems LDS and LDES are sound w.r.t. process semantics.

Hence everything expressed by our axioms and rules about the process semantics is correct
and, in conclusion, using our system, we can derive only theorems that can be meaningfully
interpreted in CCS.

Further we state the completeness of LDS and of LDES with respect to process semantics.
The intuition is that, because cP is a characteristic formulas, we should have an equivalence
between M, P |= φ and ` cP → φ for LDS , and between M, P |= φ and ` cM ∧ cP → φ
for LDES . Using this intuition we proved the completeness theorem. Observe that LDS logic
is not sensitive to contexts, while LDES is, because of the universal quantifier involved in the
semantics of the epistemic operator.

Theorem 4.9 (Completeness). The LDS and LDES are complete with respect to process
semantics.

The completeness ensures that everything that can be derived in the semantics can be
proved as theorem. In this way we have the possibility to syntactically verify (prove) properties
of distributed systems.
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5 Validity, satisfiability and model-checking

In this section, underpinning on finite model property, we present some finite algorithms for
validity, satisfiability and model-checking properties of concurrent distributed systems. The
complexity of these algorithms remain to be studied in future works.

We begin with the case of model checking finite models as being a basic case to which all
the other problems will be reduced.
Model checking on finite models: Given a finite model M, a process P ∈ M and a
formula φ, algorithm 5 decides, in finite time, if is the case that M, P |= φ, or equivalently if
CheckF in(M, P : φ) = >.

Algorithm 1 Model checking on finite models
CheckF in(M, P : >) := >
CheckF in(M, P : 0) := > if P ≡ 0

:= ⊥ else
CheckF in(M, P : ¬φ) := ¬CheckF in(M, P : φ)
CheckF in(M, P : φ ∧ ψ) := CheckF in(M, P : φ) ∧ CheckF in(M, P : ψ)
CheckF in(M, P : φ|ψ) :=

∨
P≡Q|R( CheckF in(M, Q : φ) ∧ CheckF in(M, R : ψ) )

CheckF in(M, P : 〈α〉φ) :=
∨

P
α−→Q

CheckF in(M, Q : φ)
CheckF in(M, P : KQφ) := ⊥ if there is no S such that P ≡ Q|S

:=
∧

Q|R∈M CheckF in(M, Q|R : φ) else

Observe that the disjunctions involved in the algorithm are finitary, as the processes are
considered up to structural congruence. Also the conjunction involved in the evaluation of
epistemic formulas is finitary, as M is finite.

Theorem 5.1. IfM is a finite context and P ∈M then

M, P |= φ iff CheckF in(M, P : φ) = >

Model checking on arbitrary models: Using the algorithm for finite models we will develop
further the general algorithm for model checking. Given a model M, a process P ∈ M and a
formula φ, algorithm 6 decides, in finite time, if it is the case thatM, P |= φ, or equivalently if
Check(M, P : φ) = >. Indeed, by theorem 3.4 Mact(φ)

LφM is a finite context, hence we can reuse
the algorithm 5.

Algorithm 2 Model checking on arbitrary models

Check(M, P : φ) := CheckF in(Mact(φ)
LφM , P

act(φ)
LφM : φ)

Use algorithm5 to compute the value of CheckF in(Mact(φ)
LφM , P

act(φ)
LφM : φ)

Theorem 5.2. IfM is a finite context then Check(M, P : φ) = CheckF in(M, P : φ).

Theorem 5.3. If P ∈M thenM, P |= φ iff Check(M, P : φ) = >.

Satisfiability checking: Recall that the finite model property maps any satisfiability problem
in a satisfiability problem over a finite domain. Indeed, given a formula φ, theorem 3.4 states
that the set of pairs (M, P ) with P ∈ M ∈ M

act(φ)+
LφM is finite, as act(φ) is finite implying

act(φ)+ finite. Further the finite model property entails that if there exists a couple (N , Q)
such that N , Q |= φ then it exists a context M ∈ M

act(φ)+
LφM and a process P ∈ M such that
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Algorithm 3 Satisfiability checking
Sat(φ) :=

∨
P∈M∈M

act(φ)+
LφM

Check(M, P : φ)

Use algorithm6 to compute the value of each Check(M, P : φ) for P ∈M ∈M
act(φ)+
LφM

M, P |= φ. Hence deciding on satisfiability can be reduced to deciding on finite number of
model checking problems, hence it can be solved in finite time using the algorithm 7.

Theorem 5.4. A formula φ ∈ FDES is satisfiable iff Sat(φ) = >

Validity checking: In approaching the validity problem we have two equivalent alternatives:
either we use the fact that validity of φ is equivalent with non-satisfiability of ¬φ, i.e. V ld(φ)

def
=

¬Sat(¬φ), or we can use the semantics of the operator
∼
K0 and define V ld(φ)

def
= Sat(

∼
K0φ).

Algorithm 4 Validity checking

V ld(φ) := Sat(
∼
K0φ)

Use algorithm7 to compute the value of Sat(
∼
K0φ)

Theorem 5.5. A formula φ ∈ FDES is valid iff V ld(φ) = >

6 Validity, satisfiability and model-checking

In this section, underpinning on finite model property, we present some finite algorithms for
validity, satisfiability and model-checking properties of concurrent distributed systems. The
complexity of these algorithms remain to be studied in future works.

We begin with the case of model checking finite models as being a basic case to which all
the other problems will be reduced.
Model checking on finite models: Given a finite model M, a process P ∈ M and a
formula φ, algorithm 5 decides, in finite time, if is the case that M, P |= φ, or equivalently if
CheckF in(M, P : φ) = >.

Algorithm 5 Model checking on finite models
CheckF in(M, P : >) := >
CheckF in(M, P : 0) := > if P ≡ 0

:= ⊥ else
CheckF in(M, P : ¬φ) := ¬CheckF in(M, P : φ)
CheckF in(M, P : φ ∧ ψ) := CheckF in(M, P : φ) ∧ CheckF in(M, P : ψ)
CheckF in(M, P : φ|ψ) :=

∨
P≡Q|R( CheckF in(M, Q : φ) ∧ CheckF in(M, R : ψ) )

CheckF in(M, P : 〈α〉φ) :=
∨

P
α−→Q

CheckF in(M, Q : φ)
CheckF in(M, P : KQφ) := ⊥ if there is no S such that P ≡ Q|S

:=
∧

Q|R∈M CheckF in(M, Q|R : φ) else

Observe that the disjunctions involved in the algorithm are finitary, as the processes are
considered up to structural congruence. Also the conjunction involved in the evaluation of
epistemic formulas is finitary, as M is finite.

Theorem 6.1. IfM is a finite context and P ∈M then

M, P |= φ iff CheckF in(M, P : φ) = >
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Model checking on arbitrary models: Using the algorithm for finite models we will develop
further the general algorithm for model checking. Given a model M, a process P ∈ M and a
formula φ, algorithm 6 decides, in finite time, if it is the case thatM, P |= φ, or equivalently if
Check(M, P : φ) = >. Indeed, by theorem 3.4 Mact(φ)

LφM is a finite context, hence we can reuse
the algorithm 5.

Algorithm 6 Model checking on arbitrary models

Check(M, P : φ) := CheckF in(Mact(φ)
LφM , P

act(φ)
LφM : φ)

Use algorithm5 to compute the value of CheckF in(Mact(φ)
LφM , P

act(φ)
LφM : φ)

Theorem 6.2. IfM is a finite context then Check(M, P : φ) = CheckF in(M, P : φ).

Theorem 6.3. If P ∈M thenM, P |= φ iff Check(M, P : φ) = >.

Satisfiability checking: Recall that the finite model property maps any satisfiability problem
in a satisfiability problem over a finite domain. Indeed, given a formula φ, theorem 3.4 states
that the set of pairs (M, P ) with P ∈ M ∈ M

act(φ)+
LφM is finite, as act(φ) is finite implying

act(φ)+ finite. Further the finite model property entails that if there exists a couple (N , Q)
such that N , Q |= φ then it exists a context M ∈ M

act(φ)+
LφM and a process P ∈ M such that

M, P |= φ. Hence deciding on satisfiability can be reduced to deciding on finite number of
model checking problems, hence it can be solved in finite time using the algorithm 7.

Algorithm 7 Satisfiability checking
Sat(φ) :=

∨
P∈M∈M

act(φ)+
LφM

Check(M, P : φ)

Use algorithm6 to compute the value of each Check(M, P : φ) for P ∈M ∈M
act(φ)+
LφM

Theorem 6.4. A formula φ ∈ FDES is satisfiable iff Sat(φ) = >

Validity checking: In approaching the validity problem we have two equivalent alternatives:
either we use the fact that validity of φ is equivalent with non-satisfiability of ¬φ, i.e. V ld(φ)

def
=

¬Sat(¬φ), or we can use the semantics of the operator
∼
K0 and define V ld(φ)

def
= Sat(

∼
K0φ).

Algorithm 8 Validity checking

V ld(φ) := Sat(
∼
K0φ)

Use algorithm7 to compute the value of Sat(
∼
K0φ)

Theorem 6.5. A formula φ ∈ FDES is valid iff V ld(φ) = >

7 Concluding remarks

In this paper we developed two decidable and complete axiomatized logics for specifying and
model-checking concurrent distributed systems: Dynamic Spatial Logic - LDS and Dynamic
Epistemic Spatial Logic - LDES . They extend Hennessy-Milner logic with the parallel operator
and respectively with epistemic operators. The lasts operators are meant to express global
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properties over contexts. We propose these operators as alternative to the guarantee operator
of the classical spatial logics, in order to obtaining a logic adequately expressive and decidable.
LDES is less expressive than the classic spatial logic. Using the guarantee operator and the

characteristic formulas, we can express our epistemic operators in classic spatial logic, while
guarantee operator cannot be expressed by using our logic: KQφ

def
= cQ|>∧ (¬(cQ|> → φ).⊥).

Validity and satisfiability in a model can be syntactically expressed in our logic. Combining
this feature with the possibility to characterize processes and finite contexts, we may argue
on utility of this logic in most of the CCS-like applications for which classic spatial logic was
proposed.

In the context of decidability, our sound and complete Hilbert-style axiomatic systems pro-
vide powerful tools for making predictions on the evolution of the concurrent distributed sys-
tems. Knowing the current state or a sub-state of a system, we can characterize it syntactically.
And because any other state can be characterized, we can project any prediction-like problem
in syntax and verify its satisfiability. Hence if the system we considered can reach the state we
check, we will obtain that the formula is satisfiable and this method will provide also a minimal
model. These features allowed us to develop some finite algorithms for validity, satisfiability
and model checking.

The axioms and rules considered are very similar to the classical axioms and rules in epis-
temic logic, and some derivable theorems state meaningful properties of epistemic agents. All
these relates our logic with the classical epistemic/doxastic logics and focus the specifications
on external observers as epistemic agents. This interpretation is consistent with the spirit of
process algebras.

Further researches are to be considered such as optimizing the model-algorithms and adding
other operators in logics to fit with more complex process calculi. Challenging will be also the
perspective of considering recursion in semantics.
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A Appendix: Some examples

Example A.1 (Sizes of processes). We show the size for some processes:
1. J0K = (0, 0) 4. Jα.0|α.0K = (1, 2)
2. Jα.0K = (1, 1) 5. Jα.α.0K = Jα.β.0K = (2, 1)
3. Jα.0|β.0K = (1, 1) 6. Jα.(β.0|β.0)K = (2, 2)

Example A.2 (Structural bisimulation). Consider the processes

R ≡ α.(β.0|β.0|β.0)|α.β.0 and S ≡ α.(β.0|β.0)|α.β.α.0

We can verify the requirements of the definition 3.9 and decide that R ≈2
2 S. But R 6≈2

3 S
because on the depth 2 R has an action α (in figure 1 marked with a dashed arrow) while S
does not have it (because the height of S is only 2). Also R 6≈3

2 S because R contains only
2 (bisimilar) copies of β.0 while S contains 3 (the extra one is marked with a dashed arrow).
Hence, for any weight bigger than 2 this feature will show the two processes as different. But if

S ≡ R ≡
α.(β.0|β.0|β.0)|α.β.0

�� **TTTTTTTTTTTTTTTTTT

β.0|β.0|β.0

wwooooooooooooo

�� ''OOOOOOO β.0

��
0 0 0 0

α.(β.0|β.0)|α.β.α.0

�� ((PPPPPPPPPPPP

β.0|β.0

wwooooooooooooo

��

β.α.0

��
0 0 α.0

���
�
�

0

Figure 1: Syntactic trees

we remain on depth 1 we have R ≈3
1 S, as on this deep the two processes have the same number

of bisimilar subprocesses, i.e. any of them can perform α in two ways giving, further, processes
in the relation ≈3

0. Indeed

R ≡ αR′|αR′′, where R′ ≡ β.0|β.0|β.0 and R′′ ≡ β.0
S ≡ α.S′|α.S′′, where S′ ≡ β.0|β.0 and S′′ ≡ β.α.0

By definition, R′ ≈3
0 S

′ and R′′ ≈3
0 S

′′

Example A.3 (Pruning processes). Consider the process

P ≡ α.( β.(γ.0|γ.0|γ.0) | β.γ.0 ) | α.β.γ.0

Observe that JP K = (3, 3), hence P(3,3) ≡ P . For constructing P(3,2) we have to prune the
syntactic tree of P such that to not exist, in any node, more than two bisimilar branches.
Hence P(3,2) = α.( β.(γ.0|γ.0) | β.γ.0) | α.β.γ.0
If we want to prune P on the size (3, 1), we have to prune its syntactic tree such that, in any
node, there are no bisimilar branches. The result is P(3,1) = α.β.γ.0.
For pruning P on the size (2, 2), we have to prune all the nodes on depth 2 and in the new
tree we have to let, in any node, a maximum of two bisimilar branches. As a result of these
modifications, we obtain P(2,2) = α.(β.0|β.0) | α.β.0. Going further we obtain the smaller
processes P(0,0) = 0, P(1,1) = α.0, P(1,2) = α.0|α.0, P(2,1) = α.β.0.
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A small case study

Consider the scenario of the e-mail box receiving messages. A message can be a spam containing
a virus that will be installed in our system if we open the attachment, or it can be a useful
message that will provide information by opening its attachment. We can describe this scenario
using a process calculus as follows.

The Inbox can be described as the agent that, being in contact with a message, can perform
an “open” action (it opens the message), after which it can perform a “run” action that refers
to the attachment (if any), after that stops.

Inb
def
= open.run.0

A message containing harmless information is described as a process that can perform the action
open (can be opened), then allows the Inbox to run its attachment (can perform run), after
which it reveals information.

Msg
def
= open.run.Inf

A spam message has a structure similar to that of an ordinary message, but after consuming
the run action it does not reveal information, but instals a virus.

Spm
def
= open.run.V rs

The intention in introducing the pairs of actions (run, run), (open, open) is to model communication-
like complex actions.

Now, using the logic, we can express properties of a system that implies these processes.
Suppose that we have two formulas, i, v, that describe Inf and V rs respectively (such formulas
do exist as we proved that each process P has a characteristic formula cP and this formula
uniquely describes the process up to structural congruence). As the Internet is a potentially
infinite environment, for evaluating the formulas we consider as context the class of all processes
P (hereafter we omit to write it in the satisfiability formula).

Inf |= i and V rs |= v

We can describe the system in which a virus is revealed by

Infect
def
= v|>

while the situation in which information is revealed by

Update
def
= i|>

We can describe the Inbox, using composed actions, by:

Inb |= 〈!open〉〈!run〉0.

Because in our logic the following holds

` 〈!σ〉φ→ 〈σ〉>

we obtain, based on the soundness results, that

Inb |= KInb〈open〉〈run〉>.

This means that putting the Inbox in any environment we obtain a system that satisfies:

Environment|Inb |= 〈open〉〈run〉>.
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The use of the epistemic operator allows us to identify the information that characterized the
presence of a known subsystem. As our logic permits analysis of smaller systems inside bigger
systems and so on, we can hierarchically organize the information available in given situations.

The interaction between the Inbox and a harmless message can be described by

Inb|Msg |= 〈open〉〈open〉〈run〉〈run〉i

Further we can use the syntactic characterization of satisfiability, axiom D7 and the theorem

` KQ> → φ implies ` KQ> → KQφ

to derive the specification

Inb|Msg |= KInb|Msg〈open〉〈open〉〈run〉〈run〉Update

But ` >|KQφ→ KQφ, and ` KQφ→ φ, hence

Environment|Inb|Msg |= 〈open〉〈open〉〈run〉〈run〉Update

Hence we can prove that 〈open〉〈open〉〈run〉〈run〉Update is a local property of the subsystem
Inb|Msg, and that any upper-system satisfies it.

Similarly, the interaction between the Inbox and a spam containing a virus can be described
by

Inb|Spm |= 〈open〉〈open〉〈run〉〈run〉v

wherefrom, as before, we can derive the property

Inb|Spm |= KInb|Spm〈open〉〈open〉〈run〉〈run〉Infect

that expresses the fact that a system containing the Inbox in parallel with a spam can be
infected by a virus, i.e. that:

Environment|Inb|Spm |= 〈open〉〈open〉〈run〉〈run〉Infect

All this provides a powerful tool to express and argue over the properties of a system such
as Environment|Msg|Spm|Inb, even if Environment is an unknown process, by analyzing
its subsystems. So, this system satisfies the properties of Environment|Inb|Spm but also of
Environment|Inb|Msg, or of Environment|Inb, etc. All these systems satisfy

Environment|Msg|Inb|Spm |= [open][open][run][run](Update ∨ Infect)
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Spatial axioms

Axiom E 1. ` >|⊥ → ⊥

Axiom E 2. ` (φ|ψ)|ρ→ φ|(ψ|ρ)

Axiom E 3. ` φ|0↔ φ

Axiom E 4. ` φ|(ψ ∨ ρ)→ (φ|ψ) ∨ (φ|ρ)

Axiom E 5. ` φ|ψ → ψ|φ

Axiom E 6. ` (cP ∧ φ|ψ)→
∨

P≡Q|R(cQ ∧ φ)|(cR ∧ ψ)

Spatial rules

Rule ER 1. If ` φ→ ψ then ` φ|ρ→ ψ|ρ

Dynamic axioms

Axiom E 7. ` 〈α〉φ|ψ → 〈α〉(φ|ψ)

Axiom E 8. ` [α](φ→ ψ)→ ([α]φ→ [a]ψ)

Axiom E 9. ` 0→ [α]⊥

Axiom E 10. If β 6= αi for i = 1..n then ` 〈!α1〉>|...|〈!αn〉> → [β]⊥

Axiom E 11. ` 〈!α〉φ→ [α]φ

Dynamic rules

Rule ER 2. If ` φ then ` [α]φ

Rule ER 3. If ` φ→ [α]φ′ and ` ψ → [α]ψ′ then ` φ|ψ → [α](φ′|ψ ∨ φ|ψ′).

Rule ER 4. If `
∨

JMK≤LφM cM → φ then ` φ.

Epistemic axioms

Axiom E 12. ` KQφ ∧KQ(φ→ ψ)→ KQψ

Axiom E 13. ` KQφ→ φ

Axiom E 14. ` KQφ→ KQKQφ.

Axiom E 15. ` KQ> → (¬KQφ→ KQ¬KQφ)

Axiom E 16. If P ∈ S then ` KP> ↔ cP |>

Axiom E 17. ` KQφ↔ (KQ> ∧K0(KQ> → φ))

Axiom E 18. ` K0φ ∧ ψ|ρ→ (K0φ ∧ ψ)|(K0φ ∧ ρ)

Axiom E 19. ` K0φ→ [α]K0φ
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Axiom E 20. ` K0φ→ (KQ> → KQK0φ)

Epistemic rules

Rule ER 5. If ` φ then ` KQ> → KQφ.

Rule ER 6. IfM3 P is a finite context and ` cM ∧ cP → K0φ then ` cM → φ.
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