5 research outputs found

    Polynomial Invariants for Affine Programs

    Get PDF
    We exhibit an algorithm to compute the strongest polynomial (or algebraic) invariants that hold at each location of a given affine program (i.e., a program having only non-deterministic (as opposed to conditional) branching and all of whose assignments are given by affine expressions). Our main tool is an algebraic result of independent interest: given a finite set of rational square matrices of the same dimension, we show how to compute the Zariski closure of the semigroup that they generate

    Decidability of the Membership Problem for 2×22\times 2 integer matrices

    Get PDF
    The main result of this paper is the decidability of the membership problem for 2×22\times 2 nonsingular integer matrices. Namely, we will construct the first algorithm that for any nonsingular 2×22\times 2 integer matrices M1,…,MnM_1,\dots,M_n and MM decides whether MM belongs to the semigroup generated by {M1,…,Mn}\{M_1,\dots,M_n\}. Our algorithm relies on a translation of the numerical problem on matrices into combinatorial problems on words. It also makes use of some algebraical properties of well-known subgroups of GL(2,Z)\mathrm{GL}(2,\mathbb{Z}) and various new techniques and constructions that help to limit an infinite number of possibilities by reducing them to the membership problem for regular languages

    On strongest algebraic program invariants

    Get PDF
    A polynomial program is one in which all assignments are given by polynomial expressions and in which all branching is nondeterministic (as opposed to conditional). Given such a program, an algebraic invariant is one that is defined by polynomial equations over the program variables at each program location. Müller-Olm and Seidl have posed the question of whether one can compute the strongest algebraic invariant of a given polynomial program. In this article, we show that, while strongest algebraic invariants are not computable in general, they can be computed in the special case of affine programs, that is, programs with exclusively linear assignments. For the latter result, our main tool is an algebraic result of independent interest: Given a finite set of rational square matrices of the same dimension, we show how to compute the Zariski closure of the semigroup that they generate

    Decidability of membership problems for flat rational subsets of GL(2, Q) and singular matrices

    Get PDF
    This work relates numerical problems on matrices over the rationals to symbolic algorithms on words and finite automata. Using exact algebraic algorithms and symbolic computation, we prove new decidability results for 2 × 2 matrices over Q. Namely, we introduce a notion of flat rational sets: if M is a monoid and N ≤ M is its submonoid, then flat rational sets of M relative to N are finite unions of the form L0g1 L1 ··· gtLt where all Lis are rational subsets of N and gi ∈ M. We give quite general sufficient conditions under which flat rational sets form an effective relative Boolean algebra. As a corollary, we obtain that the emptiness problem for Boolean combinations of flat rational subsets of GL(2, Q) over GL(2, Z) is decidable. We also show a dichotomy for nontrivial group extension of GL(2, Z) in GL(2, Q): if G is a f.g. group such that GL(2, Z) < G ≤ GL(2, Q), then either G ≅ GL(2, Z) × Zk, for some k ≥ 1, or G contains an extension of the Baumslag-Solitar group BS(1, q), with q ≥ 2, of infinite index. It turns out that in the first case the membership problem for G is decidable but the equality problem for rational subsets of G is undecidable. In the second case, decidability of the membership problem is open for every such G. In the last section we prove new decidability results for flat rational sets that contain singular matrices. In particular, we show that the membership problem is decidable for flat rational subsets of M(2, Q) relative to the submonoid that is generated by the matrices from M(2, Z) with determinants 0, ± 1 and the central rational matrices

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF
    corecore