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Abstract
This work relates numerical problems on matrices over the rationals to symbolic algorithms on words and finite
automata. Using exact algebraic algorithms and symbolic computation, we prove various new decidability results
for 2× 2 matrices over Q. For that, we introduce the concept of flat rational sets: if M is a monoid and N is a
submonoid, then flat rational sets of M over N are finite unions of the form L0g1L1 · · · gtLt where all Li’s are
rational subsets of N and gi ∈ M . We give quite general sufficient conditions under which flat rational sets
form an effective relative Boolean algebra. As a corollary, we obtain that the emptiness problem for Boolean
combinations of flat rational subsets of GL(2,Q) over GL(2,Z) is decidable (in singly exponential time). It is
possible that such a strong decidability result cannot be pushed any further inside GL(2,Q).

We also show a dichotomy for nontrivial group extension of GL(2,Z) in GL(2,Q): if G is a f.g. group such
that GL(2,Z) < G ≤ GL(2,Q), then either G ∼= GL(2,Z)× Zk, for some k ≥ 1, or G contains an extension
of the Baumslag-Solitar group BS(1, q), with q ≥ 2, of infinite index. In the first case of the dichotomy the
membership problem for G is decidable but the equality problem for rational subsets of G is undecidable. In the
second case, decidability of the membership problem for rational subsets in G is open.

In the last part we prove new decidability results for flat rational sets that contain singular matrices. In
particular, we show that the membership problem is decidable (in doubly exponential time) for flat rational subsets
of Q2×2 over the submonoid that is generated by the matrices from Z2×2 with determinants in {−1, 0, 1}.

Finally, this paper improves and overarching all known decidability results for 2× 2 matrices and it also
supports these results with concrete complexity bounds for the first time.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Computing methodologies→ Symbolic and algebraic algorithms

Keywords and phrases Membership problem, NFA, (flat) rational set, linear group, GL(2,Q), GL(2,Z)

1 Introduction

Many problems in the analysis of matrix products are inherently difficult to solve even in dimension
two, and most of such problems become undecidable in general starting from dimension three or four.
One of these hard questions is the membership problem for matrix semigroups: Given n× n matrices
{M,M1, . . . ,Mm}, determine whether there exist an integer k ≥ 1 and i1, . . . , ik ∈ {1, . . . ,m}
such that M = Mi1 · · ·Mik . In other words, determine whether a matrix belongs to a finitely
generated (f.g. for short) semigroup. The membership problem has been intensively studied since
1947 when A. Markov showed in [32] that this problem is undecidable for matrices in Z6×6. A natural
and important generalization is the membership problem in rational subsets of a monoid. Rational
sets are those which can be specified by regular expressions. A special case is the problem above:
membership in the semigroup generated by the matrices M1, . . . ,Mm. Another difficult question
is to decide the knapsack problem: “∃x1, . . . , xm ∈ N : Mx1

1 · · ·Mxm
m = M?”. Even significantly
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2 Decidability of membership problems for flat rational subsets

restricted cases of these problems become undecidable for high dimensional matrices over the integers
[5, 27]; and very few cases are known to be decidable, see [2, 6, 11]. The decidability of the above
problems remains open even for 2× 2 matrices over integers [10, 12, 22, 26, 37].

Membership in rational subsets of GL(2,Z) (the 2× 2 integer matrices with determinant ±1) is
decidable. Indeed, GL(2,Z) has a free subgroup of rank 2 and of index 24 by [35]. Hence, it is a
finitely generated virtually free group, and therefore the family of rational subsets forms an effective
Boolean algebra [42, 45]. Two previous results extend the border of decidability for the membership
problem beyond GL(2,Z) are [38, 39]. The first one is for semigroups of 2× 2 nonsingular integer
matrices, and the second result is for GL(2,Z) extended by integer matrices with zero determinant.

This paper pushes the decidability border further. First of all, we consider membership problems
for 2×2 matrices over the rationals whereas [38, 39] deal only with integer matrices. Since decidability
of the rational membership problem is known for GL(2,Z), we focus on finitely generated (f.g. for
short) subgroupsG of GL(2,Q) which contain GL(2,Z). In contrast to [38, 39] we also give concrete
complexity bounds. In order to provide self contained exposition of the main results we combined a
number of auxiliary results in Section 2 and Section 3. In Section 2 we characterize recognizable and
rational sets in semigroups, provide techniques for transferring results for rational subsets in groups
and highlight essential properties of Boolean algebras. In Section 3 we describe and prove the cubic
procedure to compute the Smith normal form of a non-zero matrix g in Q2×2.

In Section 4 we prove one of the main results which is Theorem 17. It states a dichotomy
for a f.g. subgroup G sitting strictly between GL(2,Z) and GL(2,Q): there are two cases which
exclude each other. In the first case of the dichotomy, G is generated by GL(2,Z) and finitely many
non-singular central matrices ( r 0

0 r ). In that case G is isomorphic to GL(2,Z)× Zk for k ≥ 1. It can
be derived from known results in the literature about free partially commutative monoids and groups
that equality test for rational sets in G is undecidable, but the membership problem in rational subsets
is still decidable.

So, this is the best we can hope for groups sitting strictly between GL(2,Z) and GL(2,Q), in
general. If such a f.g. group G is not isomorphic to GL(2,Z)× Zk, then our dichotomy states that it
contains a Baumslag-Solitar group BS(1, q) for q ≥ 2. The Baumslag-Solitar groups BS(p, q) are
defined by two generators a and t with the defining relation tapt−1 = aq. They were introduced in
[3] and widely studied since then. It is fairly easy to see (much more is known) that they have no free
subgroup of finite index unless pq = 0, see [19]. As a consequence, in both cases of the dichotomy,
GL(2,Z) has infinite index in G. Actually, we prove more, namely, if G contains a matrix of the form(
r1 0
0 r2

)
with |r1| 6= |r2| (which is the second case in the dichotomy), then G contains some BS(1, q)

for q ≥ 2 which has infinite index in G. It is wide open whether the membership to rational subsets of
G can be decided in that second case. For example, let p ≥ 2 be a prime, and let G′ be generated by( 0 −1

1 0
)
, ( 1 1

0 1 ), and
( 1 0

0 p
)
. In this case

(
p 0
0 p−1

)
also belongs to G′. As usual, Z[1/p] denotes the ring

{pnr ∈ Q |n, r ∈ Z}; and it is known by [4] that
( 0 −1

1 0
)
, ( 1 1

0 1 ), and
(
p 0
0 p−1

)
generate SL(2,Z[1/p]).

Hence, G′ contains SL(2,Z[1/p]) as a subgroup. The structure SL(2,Z[1/p]) is given in [44, II.1
Cor. 2]: it is an amalgam of two copies of SL(2,Z) over common subgroup of finite index. It is
however unknown how to decide subgroup membership in such amalgams. Moreover,

( 1 0
0 p
)

acts
by conjugation on SL(2,Z[1/p]), and since

( 1 0
0 p
)

generates an infinite cyclic group, we have that
G′ = SL(2,Z[1/p])oZ. Hence, even if subgroup membership for SL(2,Z[1/p]) was decidable, then
it could still be undecidable in G′. The situation is more friendly for the subgroup generated by the
matrices ( 1 1

0 1 ) and
( 1 0

0 p
)

because it is the group UT(2,Z[1/p])oZ ∼= Z[1/p]oZ ∼= BS(1, p). The
group BS(1, p) is metabelian and the subgroup membership is decidable in f.g. metabelian groups [40].
Actually, a stronger result is known for Baumslag-Solitar groups: decidability of membership for
rational subsets in BS(1, q) for all q ≥ 1 was shown by Cadilhac, Chistikov, and Zetzsche in [9].

In Section 7 we prove new decidability results for flat rational sets that contain singular matrices.
In particular, we show that the membership problem is decidable (in doubly exponential time) for
flat rational subsets of Q2×2 over the submonoid that is generated by the matrices from Z2×2 with
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determinants in {−1, 0, 1}.
In order to keep the paper essentially self-contained and for convenience to the reader some proofs

of well-known (or folklore) results have been included in the appendix, Section 9. For example the
appendix contains a calculation of the generators for SL(2,Z[1/p]).

2 Notation and preliminaries

A monoid M is a semigroup (M, ·) with a neutral element 1. If we use a multiplicative notation,
then 1 denotes the neutral element of a monoid. In particular, the empty word in free monoids is
denoted by 1 as well. A zero in (M, ·) is an element 0 such that x · 0 = 0 · x = 0 for all x ∈ M .
In commutative monoids without a zero-element, we might use an additive operation, and then the
neutral element is denoted as 0. This is standard and there will be no risk of confusion. The set of
units of M is the subgroup of invertible elements: it is the submonoid of x ∈M such that there is
some x ∈M with xx = 1. If x is an invertible element in M , then xZ denotes the set of elements xn

where n ∈ Z and x−1 = x. We apply this concept when M is a monoid of 2× 2 integer matrices. In
this case the group of units is M ∩GL(2,Z). For a subset S ⊆M we denote by 〈S〉 the submonoid
of M which is generated by S. Another notation for 〈S〉 is S∗.

For groups (and more generally for monoids) we write N ≤M if N is a submonoid of M and
N < M if N ≤M but N 6= M . If M is a monoid, then Z(M) denotes the center of M , that is, the
submonoid of elements which commute with all elements in M . By U(M) we denote the group of
units of M . It can be defined a follows:

U(M) = {g ∈M | 1 ∈ gM} . (1)

It is easy to see that U(M) is a submonoid of M (which contains 1) where every element has a
right-inverse. Therefore, U(M) is a group, but not necessarily the largest subgroup (with respect to
to size) which appears as a subsemigroup in M .

A subsemigroup I of a monoid M is an ideal if M IM ⊆ I . The empty set ∅ is an ideal. If M
contains a zero, then {0} is the smallest nonempty ideal. If an ideal I contains an element of U(M),
then I = M . Hence, M \ U(M) is the greatest ideal in M which is not equal to M .

A group is finitely generated as a group if and only if it is finitely generated as a monoid.1 As
mentioned in the introduction write “f.g.” as an abbreviation for “finitely generated”.

Throughout we let log(x) = max{1, log2(x)}. Let f, g : N → R≥0 be two functions with
values in non-negative real numbers. As usual, we let f ∈ O(g) if there is some k ∈ N such that
f(n) ≤ (kg(n) + k) for all n ∈ N. Sometimes we measure complexities in soft O-notation Õ,
too. We write f ∈ Õ(g) if f ∈ O(g · logk(g)) for some k ∈ N. Thus, poly-logarithmic factors are
neglected.

2.1 Reductions and complexity classes

We follow standard notation in complexity theory as it can can be found for example in [36]. Decision
problems are encoded as subsets in {0, 1}∗. We define complexity classes via the notion of reduction.
For that we use DTIME(f) as well as NTIME(f) reductions between problems P and Q.

Let f : N→ N be some function. A DTIME(f) (resp. NTIME(f)) reduction is realized by a
deterministic (resp. nondeterministic) Turing machine which on every input u ∈ {0, 1}∗ of length n
stops after at most O(f(n)) steps. In particular, every computation stops. We assume that machine
has a separate write-only output-tape which is initially empty. In every perhaps nondeterministic
computation the contents on the output-tape is some v ∈ {0, 1}∗ when the machine had stopped. By
construction, we have |v| ∈ O(f(n)).

1 A nontrivial free group of rank k requires k group generators and k + 1 monoid generators.



4 Decidability of membership problems for flat rational subsets

We call it a reduction from P to Q if for all u ∈ P there is some (perhaps nondeterministic)
computation with an output v such that v ∈ Q. On the other hand, if u /∈ P , then there is no
computation which can produce any output v such that v ∈ Q.

A P-reduction (resp. NP-reduction) is a DTIME(f) (resp. NTIME(f)) reduction where f
is bounded by some polynomial. Note that the class NP is closed under NP reductions. A
DEXPTIME-reduction (resp. NEXPTIME-reduction) is a DTIME(f) (resp. NTIME(f))
reduction where f is bounded by a function of type 2p where p is some polynomial.

If there is a DTIME(f) (resp. NTIME(f)) reduction of a problem P to a singleton like {1},
then we say that P belongs to the complexity class DTIME(f) (resp. NTIME(f)).

2.2 Computation of greatest common divisors

The results of this subsection are (most probably) well-known or folklore. However, the polynomial
time bounds for our main results rely on a polynomial time bound to compute binary integers x and y
in Proposition 2. Elementary proofs of Lemma 1 and Proposition 2 are in the appendix.

I Lemma 1. Let 0 6= q ∈ Z. Let gcd(b, d) = 1. Then there are 1 ≤ x, y < |q| such that
gcd(x, y) = 1 and xb+ yd ≡ 0 mod q.

I Proposition 2. Given two n-bits integer numbers a and b, we can compute in time Õ(n2) integer
numbers x and y such that ax+ by = gcd(a, b) with |x|, |y| ≤ max{|a|, |b|}.

2.3 Recognizable and rational sets in semigroups

Throughout this subsection M = (M, ·) denotes a semigroup. We recall some classical facts as they
can be found, for example, in the textbook of Eilenberg [17]. We do not give proofs since they are
standard and they appear in Eilenberg’s book, too.

I Definition 3. A subset L ⊆M belongs to the family of recognizable sets Rec(M) if there exists
a homomorphism ϕ : M → N of M to a finite semigroup N such that L = ϕ−1(ϕ(L). We also say
that ϕ (resp. N ) recognizes L.

I Definition 4. The family Rat(M) has the following inductive definition using rational (aka
regular) expressions.

1. |L| <∞, L ⊆M =⇒ L ∈ Rat(M).
2. L1, L2 ∈ Rat(M) =⇒ L1 ∪ L2, L1 · L2, and L+

1 ∈ Rat(M).

Here, for L ⊆ M the set L+ denotes the subsemigroup of M which is generated by L. If M is a
monoid, then the submonoid generated by L is L∗ = L+ ∪ {1}. It is called the Kleene-star2 of L.

Note that the definition of Rat(M) is intrinsic without reference to any generating set.

I Remark 5. Let G be any group. Then L ⊆ G is recognizable if and only if there is normal
subgroup H of finite index and a finite subset {g1, . . . , gk} ⊆ G such that L =

⋃
{giH | 1 ≤ i ≤ k}.

In particular, if G is infinite, then no finite subset of G is recognizable. A subgroup H belongs
to Rat(G) (resp. Rec(G) if and only if H is f.g. (resp. the index G/H is finite), [1]. This does
not hold for submonoids: the group Z × Z contains the infinitely generated rational submonoid
{(m,n) ∈ N× N |m = 0 ∨ n ≥ 1} = (0, 1) + N× N. A group G is finite if and only if Rec(G) =
Rat(G) because finite subsets are rational.

2 We have L+ = LL∗ and L∗ = L+ ∪ {1}. Hence, for monoids we can replace the closure under L+ by the closure
under Kleene-star without changing the class Rat(M).
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I Proposition 6. Let h : M → M ′ be any homomorphism of monoids. Then the following
assertions hold.

If L′ ∈ Rec(M ′), then h−1(L′) ∈ Rec(M).
If L ∈ Rat(M), then h(L) ∈ Rat(M ′).
If L ∈ Rec(M) and K ∈ Rat(M), then L ∩K ∈ Rat(M).
Kleene’s Theorem, [25]: If Σ∗ denotes a f.g. free monoid, then Rec(Σ∗) = Rat(Σ∗).
McKnight’s Theorem, [33]: M is finitely generated if and only if Rec(M) ⊆ Rat(M) if and only
if M ∈ Rat(M).

Thanks to Kleene’s Theorem, we define for f.g. free monoids the family of regular languages Reg(Σ∗)
by Reg(Σ∗) = Rec(Σ∗) = Rat(Σ∗). In the present paper the notation “regular language” always
refers to a subset in some finitely generated free monoid. Note that frequently Rec(M) 6= Rat(M).
This happens, for example, as soon as M is an infinite group, or if M contains a free partially
commutative monoid like {a, c}∗ × {b}∗, see e. g. [15]. We shall use a weaker form of McKnight’s
Theorem, only: if M ∈ Rat(M), then M is finitely generated. Hence, if M ∈ Rat(M), then
Rec(M) ⊆ Rat(M) by the third item above.

I Definition 7. A nondeterministic finite automaton over subset S of M (or S-NFA for short if the
semigroup M is clear from the context) is a tuple A = (Q, δ, I, F ) where Q is a finite set of states,
δ ⊆ Q× S ×Q is a finite set of transitions, and I, F are subsets of Q. The set I (resp. F ) is called
the set of initial (resp. final) states.

A transition (p, s, q) ∈ δ is also written as p s−→ q. Let m ∈M . We say that m is accepted by A
if there are q0 ∈ I , qn ∈ F , and m admits a factorization m = s1 · · · sn such that there is a path of
transitions

q0
s1−→ q1 · · · qn−1

sn−→ qn

with si ∈ S. For n = 0 this means m = 1 ∈ M and I ∩ F 6= ∅. The accepted language L(A) is
the set of m ∈ M which are accepted by A. The NFA A is called trim, if every state is on some
accepting path. Whenever convenient we assume that A is trim. Note that for every NFA A there is a
f.g. subsemigroup N ≤M such that L(A) ⊆ N . Indeed, a possible set generators for N is given by
the finite set of labels of transitions in δ.

I Proposition 8. Let L ⊆M be any subset. Then the following assertions are equivalent.

We have L ∈ RAT(M).
There is some M -NFA A such that L = L(A).
The set L is the image ϕ(K) of a regular set K ⊆ Σ+ under some homomorphism ϕ : Σ+ →M .

2.4 Transfer results for rational subsets in groups

Let G be a group with a subgroup H . The aim of Section 2.4 is to show Theorem 11.3 It states that
L ⊆ H and L ∈ Rat(G) implies L ∈ Rat(H). Remark 5 shows that such a statement does not hold
for submonoids of a group G, but for subgroups H it holds without any hypothesis on the group G
and a subgroup H . Even in this general form, our proof of Section 2.4 is conceptually simple: it is a
direct transformation of a G-NFA accepting L. The general form is used in the proof of Theorem 22.

I Lemma 9. Let H be a finite index subgroup of G. Then

{L ⊆ H |L ∈ Rat(G)} = {L ∩H |L ∈ Rat(G)} .

3 An independent (unpublished) proof of Theorem 11 leaning on finite transducers was given by Sénizergues [43].
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Proof. The inclusion ⊆ is trivial. The other inclusion is clear by Proposition 6 since |G/H| <∞
implies H ∈ Rec(G). J

I Remark 10. Lemma 9 cannot be extended to the case where H has infinite index, in general.
For example, the extension fails as soon G does not have the so-called Howson property: there are
f.g. subgroupsH,L such that L∩H is not finitely generated. Free groups satisfy the Howson property,
but G = F (a, c)× F (b) does not. To see this, let H be the subgroup of (infinite index) in G which
is generated by (a, b) and (c, 1); and let L be the subgroup of G generated by (a, 1) and (c, b). It is
enough to show that the subgroup G′ = H ∩L is not rational. For that we denote by π : G→ F (a, c)
the canonical projection onto F (a, c). Assume by contradiction that G′ ∈ Rat(F (a, b)). The family
Rat(F (a, b)) is closed under intersection by [8]. Hence, G′ ∩ a∗b∗ ∈ Reg({a, b}∗) since {a, b}∗ is
a free submonoid. However, G′ ∩ a∗b∗ = {anbn |n ∈ N} is not regular. Contradiction.

I Theorem 11. Let G be any group and H ≤ G be a subgroup. Then

{L ⊆ H |L ∈ Rat(G)} = Rat(H).

If L ⊆ H is definable by some G-NFA A with n states, then there exists an NFA A′ with at most n
states and labels in H such that A′ accepts L, too.

Moreover, suppose first that G is a f.g. group with decidable word problem and second that the
question “g ∈ H?” is decidable for g ∈ G. Then the constrution of A′ is effective.

Proof. Without restriction, we may assume that A is trim: every state p is on some accepting path.
Since A has only finitely many transitions, there is a finite set 1 ∈ Σ ⊆ G such that each label of a
transition appears in Σ. For every state p of A we find some word w ∈ Σ∗ of length less than n such
that wp labels some path from p to some final state. We let Γ be the union of Σ and the set of these
words wp viewed as elements in G. Thus, there exists a finite subset R ⊆ G with |R| ≤ |Γ| such that,
first, 1 ∈ R and, second, the canonical mapping s 7→ Hs from R to the set of right-cosets H\G is
injective. In particular, the transition are labeled by elements having the form as with a ∈ H ′ and
s ∈ R where H ′ is a finite subset of H . Note that if G is a f.g. group with decidable word problem
such that the question “g ∈ H?” is decidable for g ∈ G, then we can effectively compute Γ and the
finite set H ′. Let G′ the subgroup of G which is generated by the finite set H ′ ∪R. By construction,
G′ is a f.g. subgroup of G such that L(A) ∈ Rat(G′).

Suppose we read a word u over the alphabet H ′ ∪ Σ such that reading that word from an initial
state leads to the state p. Since A is trim, there is some f ∈ G which labels a path from p to some
final state. Thus, uf ∈ L(A) ⊆ H , and therefore u ∈ Hf−1. This means Hf−1 = Hr with r ∈ R
by construction. Therefore r doesn’t depend on u. It depends on p only: each state p ∈ Q “knows”
its value r = r(p) ∈ R such that if u′ is any word which we can read from any initial state to p, then
u′ ∈ H r(p). Moreover, if p is any initial or final state, then we have r(p) = 1.

Let r = r(p) ∈ R for p ∈ Q. We introduce exactly one new state (p, r) with transitions

p
r−→ (p, r) and (p, r) r−→ p. This does not change the language. Recall our convention that

r = r−1.
Now for each outgoing transition p sa−→ q with r = r(p) and t = r(q) ∈ R define b by the

equation b = rsat−1. Recall, if we read u reaching p, then ur−1 ∈ H and usat−1 ∈ H . Therefore,
ur−1rsat−1 ∈ H and hence b ∈ H . We add a transition

(p, r) b−→ (q, t).

This doesn’t change the language as b = rsat−1 in G and before we added the transition there was a

path (p, r) r−→ p
sa−→ q

t−→ (q, t) as can be seen in the following picture:
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(p, r) (q, t)

p q

b

sa

rr tt

Now, the larger NFA still accepts L, but the crucial point is that for u ∈ L(A) we can accept the
same element in G by reading just labels from H . Indeed, consider any path p0

s1a1−→ p1 · · ·
skak−→ pk,

where k ≥ 0 and p0 is an initial. We claim that the new NFA contains a path labeled by b1 · · · bk
with b1, . . . , bk ∈ H from p0 to (pk, r(pk)) such that b1 · · · bk = s1a1 · · · skakr(pk)−1 in G. This
holds for k = 0 because r(p0) = 1 and there is a transition with label 1 from p0 to (p0, 1). Let
k ≥ 1. By induction the claim holds for k − 1. Then, inspecting the figure above, where b = bk,
sa = skak, (p, r) = (pk−1, r(pk−1)) and (q, t) = (pk, r(pk)), we see that the claim holds for k
since r(pk−1)−1

bk = skakr(pk)−1; and so:

b1 · · · bk−1bk = s1a1 · · · sk−1ak−1r(pk−1)−1
bk

= s1a1 · · · sk−1ak−1skakr(pk)−1
.

We are done, since r(pk) = 1 whenever pk is final and hence there is a transition with label 1 from
(pk, 1) to pk.

Now we can remove all original states since they are good for nothing anymore by making (p, 1)
initial (resp. final) if and only if p was initial (resp. final). Let us denote the new NFA by A′. Then A′

has no more states as A. J

Theorem 11 was proved first under the assumption that H has finite index in G, [20, 42, 45]4.
This suffices to show the following fact.

I Corollary 12. Let H be a subgroup of finite index in a f.g group G. If the membership problem
for rational subsets of H is decidable, then it is decidable for rational subsets of G.

Proof. Since H is of finite index, there is a normal subgroup N of finite index in G such that
N ≤ H ≤ G. Using the canonical homomorphism from G to G/N we see that H is recognizable.
Hence, “g ∈ H?” is decidable. We want to decide “g ∈ R?” for some R ∈ Rat(G). Suppose
u1, . . . , uk are all representatives of right cosets of H in G. Choose i such that gu−1

i ∈ H . Then we
have g ∈ R if and only if gu−1

i ∈ Ru
−1
i ∩H . SinceH is recognizable, we haveRu−1

i ∩H ∈ Rat(G).
By Theorem 11, we have Ru−1

i ∩H ∈ Rat(H); and hence we can decide whether g ∈ R. J

2.5 (Relative) Boolean algebras

I Definition 13. Let U by any set and B be a family of subsets of U .

We say that B is a Boolean algebra, if B is closed under finite union and complement.
We say that B is a relative Boolean algebra if B is closed under finite union and relative
complement: L, K ∈ B =⇒ L \K ∈ B.
We say that B is a effective relative Boolean algebra if first, every L ∈ B is given by an effective
description and second, for L,K ∈ B the union L∪K and the relative complement K \L belong
to B, and, in addition, an effective description for them is computable.

Every Boolean algebra is a relative Boolean algebra, and if B is a relative Boolean algebra, then
∅ ∈ B. Moreover, a relative Boolean algebra is closed under nonempty finite intersection. Indeed,

4 The proof in [42] states the result for f.g. virtually free groups, only.
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L ∩K = S \ ((S \ L) ∪ (S \K)) where S = L ∪K. A relative Boolean algebra B is a Boolean
algebra if it is closed under finite intersection (that is: U ∈ B).

Let us give some classical examples of (relative) Boolean algebra

1. The family of regular sets Reg(Σ∗) is an effective Boolean algebra. More general, if M is any
f.g. monoid, then the family of recognizable sets Rec(M) is an effective Boolean algebra.

2. If Rat(Mi) is an (effective) Boolean algebra for i = 1, 2, then Rat(M) is an (effective) Boolean
algebra where M the free product M = M1 ? M1, see [41] and [29] for a generalization.

3. Let A be a f.g. abelian monoid. Then Rat(A) is an effective Boolean algebra. Rational sets in
a f.g. abelian monoid are also called semi-linear and the result follows from [18]. In particular,
Rat(M) is an effective Boolean algebra if M = Zk or M = Nk for some k ∈ N.

4. Let Q be the additive group or the rational numbers. Then Q is not f.g. and every f.g. subgroup is
isomorphic to Z. As a consequence, Rat(Q) is an effective relative Boolean algebra, but not a
Boolean algebra.

5. A group G is called virtually free if it contains a free group of finite index. If G is f.g. virtually
free group, then the family of rational sets Rat(G) is an effective Boolean algebra. If G is an
infinitely generated free group, then Rat(G) is a relative Boolean algebra, but not a Boolean
algebra. The special case of f.g. free groups is due to Michèle Benois [8]. The extension to
virtually free groups are in [20, 42, 45].

3 Matrices

By Rn×n we denote the ring of n× n matrices over a commutative ring R, and det : Rn×n → R is
the determinant. The units of R are denoted by R∗. We view R as a subring of Rn×n by identifying
r ∈ R with the matrix r ( 1 0

0 1 ) = ( r 0
0 r ). Hence, we may write 1 = ( 1 0

0 1 ) and −1 =
(−1 0

0 −1
)
.

By GL(n,R) we mean the group of invertible matrices, that is, the matrices g ∈ Rn×n where
det(g) ∈ R∗ is a unit. For n ≥ 2 the center of GL(n,R) is R∗ = {( r 0

0 r ) | r ∈ R∗}. By SL(n,R)
we denote the special linear group det−1(1). It is a normal subgroup of GL(n,R). Of particular
interest for us are SL(2,Z) and GL(2,Z). The structure of SL(2,Z) is well-understood.5 It is the
amalgamated product SL(2,Z) = Z/4Z ?Z/2Z Z/6Z. Its quotient PSL(2,Z) = SL(2,Z)/{±1} is
the projective special linear group. It is the free product Z/2Z ? Z/3Z. It is shown in [35] that
PSL(2,Z) has a free subgroup of rank 2 and index 6. Hence, SL(2,Z) has a free subgroup of rank 2
of index 12 and GL(2,Z) has a free subgroup of rank 2 of index 24. In particular, all three groups
are f.g. virtually free groups because the class of f.g. virtually free groups is closed under finite
extensions.

3.1 The input size of matrices and NFAs over matrices

The (bit-)complexity of an algorithm depends on the bit encoding of the input. If (in the present paper)
we consider complexities, then we work mostly with NFAs where the labels of transitions are 2× 2
matrices over Q. We begin with fixing the binary size of matrices. Given m ∈ Q2×2, we assume
that m is written as m = p−1 ( a b

c d

)
where p is the least positive integer such that

(
a b
c d

)
∈ Z2×2.

Next, we let ‖
(
a b
c d

)
‖max = max{|a| , |b| , |c| , |d|} and ‖m ‖max = p‖

(
a b
c d

)
‖max. It does not yield a

matrix norm, however we have:

‖m1 · · ·mn ‖max ≤ 2n−1
n∏
i=1
‖mi ‖max. (2)

5 A detailed discussion about the algebraic structure of SL(2,Z) including the computation of normal forms can be
found, for example, in [14, Sec. 8.12].
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Since we are mainly interested in the bit complexity, we define ‖m ‖bin = log(‖m ‖max) In particular,
for a, b, c, d ∈ Z we have ‖

(
a b
c d

)
‖bin = log2(max{2, |a| , |b| , |c| , |d|}).

I Lemma 14. Let m = m1 · · ·mn be a product of of n matrices in Q2×2 such that ‖mi ‖max ≤ 2k
for all i. Then we have ‖m ‖bin ∈ O(nk).

Proof. This is direct consequence of the inequality in (2). J

I Definition 15. Let A = (Q, δ, I, F ) be an NFA where ‖m ‖bin is defined for all labels of
transitions. The weight of a transition (p,m, q) ∈ δ is defined as 1 + ‖m ‖bin. The weight ‖A‖bin of
A is defined as 1 + the number of states + the weight of all transitions. That is,

‖A‖bin = 1 + |Q|+ |δ|+
∑

(p,m,q)∈δ

‖m ‖bin. (3)

The weight ‖A‖bin is used as the binary input size of the NFA A.

3.2 Smith normal forms and commensurators

The intended application for our results is GL(2,Q), but the results are more general. They have the
potential to go beyond. Let n ∈ N. It is a classical fact from linear algebra that each nonzero matrix
m ∈ Qn×n admits a Smith normal form. This is a factorization m = r e

( 1 0
0 q
)
f such that r ∈ Q

is a positive rational number, e, f ∈ SL(n,Z), and q ∈ Z. The matrices e and f in the factorization
are not unique, but both numbers r and q are. The existence and uniqueness of r and q are easy to
see by the corresponding statement for integer matrices. More details are in Section 3.3. Clearly,
r2q = det(m). So, for m ∈ GL(2,Q), the sign of det(m) is determined by the sign of q.

The notion of “commensurator” is well established in group theory. Let H be a subgroup in G,
then the commensurator of H in G is the set of all g ∈ G such that gHg−1 ∩H has finite index in H
(note that this also implies that H ∩ g−1Hg has finite index in g−1Hg, too). If H has finite index in
G, then G is always a commensurator of H because the normal subgroup N =

⋂{
gHg−1

∣∣ g ∈ G}
is of finite index in G if and only if G/H is finite.

Moreover, if H has finite index in H ′ and if H ′ ≤ G′ ≤ G such that G is a commensurator of
H , then G′ is a commensurator of H ′. The notion of a commensurator pops up naturally in our
context. Indeed, let sq =

( 1 0
0 q
)

and H = SL(2,Z). Write g ∈ GL(2,Q) in its Smith normal form
g = r e sq f . Then the index of gHg−1 ∩ H in H is the same as the index of sqHs−1

q ∩ H in

H; and every matrix of the form
(
a b/q
qc d

)
is in sqHs−1

q if
(
a b
c d

)
∈ SL(2,Z). Thus, the index of

sqHs
−1
q ∩H in H is bounded by the size of the finite group SL(n,Z/qZ). For n = 2 this size is in

O(q3). It follows that GL(2,Q) is the commensurator of SL(2,Z), and hence of GL(2,Z). Actually,
GL(n,Q) is the commensurator of SL(n,Z) for all n ∈ N, see for example [16, Ex. 5.19]

3.3 Computation of the Smith normal form

Let us recall the definition of the Smith normal form of a non-zero matrix g in Q2×2. It is a
factorization g = s/t · e

( 1 0
0 q
)
f where s and t are positive integers, e, f ∈ SL(2,Z), and q ∈ Z.

Moreover, s/t and q are uniquely determined by g (but e and f are not unique). The uniqueness of s/t
and q can be seen as follows. Let g = r1 · e1

( 1 0
0 p
)
f1 = r2 · e2

( 1 0
0 q
)
f2 Multiplying M on the left by

r2
−1 · e2

−1 and on the right by f1
−1, we see that is enough to show that that st · e

( 1 0
0 p
)

=
( 1 0

0 q
)
f

implies s/t = 1 and p = q. We may assume that s, t are positive rational numbers with gcd(s, t) = 1.
Let e = (eij) and f = (fij), then

( se11 spe12
se21 spe22 ) =

(
tf11 tf12
tqf21 tqf22

)
.

Since gcd(s, t) = 1, the positive integer t divides e11 and e21. Hence, t divides det(e) = 1.
Thus, t = 1 and by symmetry s = 1, too. Thus, we have e

( 1 0
0 p
)

=
( 1 0

0 q
)
f and therefore
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det(
( 1 0

0 p
)
) = det(

( 1 0
0 q
)
). Clearly, this implies p = q. The following lemma is a special case of

result by Kannan and Bachem, [24]. We include a proof because the result for 2 × 2 matrices is
rather easy to show. This allows us to keep the paper essentially self-contained. Moreover, for 2× 2
matrices we obtain a soft cubic time bound which might be better than the polynomial time bound for
the general case.6

I Lemma 16. On input m ∈ Q2×2 with n = ‖m ‖bin we can compute r ∈ Q, e, f ∈ SL(2,Z),
and q ∈ Z in polynomial time Õ(n3) such that m = r · e

( 1 0
0 q
)
f .

Proof. Our proof follows the same lines as in [24]. The assertion is trivial, if m is the zero matrix.
So let m 6= 0. On input m we calculate the smallest positive integer p such that g = p

(
a b
c d

)
where(

a b
c d

)
∈ Z2×2. Hence, w.l.o.g. we may assume that g =

(
a b
c d

)
and a = ‖A ‖max > 0. In the

following g, g′ denote divisors of a, and D = det(A).
First step: If a = 1, then we are done because( 1 0

−c 1
)
·
(

1 b
c d

)
·
( 1 −b

0 1
)

= ( 1 0
0 D ) .

Hence, from now on we assume a ≥ 2.
Let g = gcd(a, b) = pa+qb with 0 ≤ q < a. This is possible since (p+b)a+(q−a)b = pa+qb.

Then
(
p −b/g
q a/g

)
∈ SL(2,Z). Hence:

(
a b
c d

)
·
(
p −b/g
q a/g

)
=
(

g 0
pc+qd D/g

)
.

If gcd(a, b) = a, then we choose p = 1 and q = 0. Otherwise a/g ≥ 2 and |b| < a = ‖A ‖max.
Hence:

|p| =
∣∣∣∣g − qba

∣∣∣∣ ≤ g

a
+ (a− 1) |b|

a
≤ 1/2 + a− 1 < a.

Hence, after the first step and by left-right symmetry due to transposition of matrices, we may assume
without restriction that we actually start with a matrix

A′ ∈
{(

g 0
D′ D/g

)
,
(
g D′

0 D/g

)}
where g|a and 0 ≤ |D′| < 2‖A‖2

max. If D′ = 0, then we stop because the matrix is diagonal which is
the aim for this phase.

Otherwise, let g′ = gcd(g,D′) = pg + qD′ with 0 ≤ q < g. Hence(
p q

−D′/g′ g/g′
)
·
(
g 0
D′ D/g

)
=
(
g′ qD/g

0 D/g′

)
.

Clearly: g′|g|a. Let D′′ = qD/g. Then

0 ≤ |D′′| < |D| ≤ 2‖A‖2
max.

If g|D′, then we choose p = 1 and q = 0. Then g′ = g and we obtain
(
g 0
0 D/g

)
which is diagonal

and stops the process. (This happens in particular, if g = 1.)
For g|D′ we have q = 0 and |p| = 1. Otherwise, since g′ ≤ |D′|, we have

|p| =
∣∣∣∣g′ − qD′g

∣∣∣∣ ≤ g′

g
+ (g − 1)|D′|

g
= |D′|+ g′

g
− |D

′|
g
≤ |D′| < 2‖A‖2

max.

Since either each time g/g′ ≥ 2 or g|D′, we finish after at most log ‖A‖max steps.

6 We do not know the current state of the art with respect to the time complexities for the result in [24].
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We continue with a matrix A′′ =
(
g 0
0 D/g

)
for some g|a. If g|D/g we are done. Thus, w.l.o.g.

D 6= 0 and letting d = D/g we write(
g 0
0 d
)

=
(

gcd(g,d) 0
0 gcd(g,d)

)
·
(
g/ gcd(g,d) 0

0 d/ gcd(g,d)

)
.

Let g′ = g/ gcd(g, d) and d′ = d/ gcd(g, d). Note that g′ ≥ 2 because g 6= gcd(g, d). We
add the right column of

(
g′ 0
0 d′

)
to the left one by multiplying with the matrix ( 1 0

1 1 ). We obtain

the matrix
(
g′ 0
d′ d′

)
. We let pg′ + qd′ = 1 with 0 ≤q < g′ and p = (1 − qd′)/g′. Hence,

|p| ≤ |d′|+ 1/g′ − |d′| /g′ ≤ |d′| ≤ |D| ≤ 2‖A‖2
max. Then,( p q

−d′ g′
)
·
(
g′ 0
d′ d′

)
=
(

1 qd′

0 g′d′

)
.

Subtracting qd′ times the left column from the right one by multiplying with the matrix
( 1 −qd′

0 1

)
, we

obtain the desired result. J

We summarize. For every non-zero matrix m =
(
a b
c d

)
∈ Z2×2 we can calculate in soft cubic

time r = gcd{a, b, c, d} (hence a divisor of ‖m ‖max) and matrices e, f ∈ SL(2,Z) such that
m = r e

( 1 0
0 q
)
f . Moreover, r and q are uniquely defined by m.

4 Dichotomy in GL(2,Q)

One of the main results is Theorem 17. It states a dichotomy for a f.g. subgroup G sitting strictly
between GL(2,Z) and GL(2,Q): there are two cases which exclude each other. Moreover, Rat(G)
is not closed under finite intersection in both cases. In particular, Rat(G) is not a relative Boolean
algebra. In the dichotomy the Baumslag-Solitar group BS(1, q) = 〈a, t | tapt−1 = aq〉 for q ≥ 2
pops up. The BS(1, q) has a faithful representation in SL(2,Z). It belongs to the widely studied
family of Baumslag-Solitar groups BS(p, q) = 〈a, t | tapt−1 = aq〉. In algebraic terms BS(1, q) is
an HNN-extension of Z over the isomorphism between Z and its subgroup qZ which sends 1 to q.

I Theorem 17. Let G be a f.g. group such that GL(2,Z) < G ≤ GL(2,Q). Then Rat(G) is not
closed under finite intersection. Moreover, there are two mutually exclusive cases.

1. G is isomorphic to GL(2,Z)× Zk for some k ≥ 1.
2. G contains a subgroup which is an extension of infinite index of BS(1, q) for some q ≥ 2.

Proof. We first show the dichotomy. Then we give a direct proof showing that Rat(G) is never
closed under finite intersection if BS(1, q) ≤ G and q ≥ 2. Finally, we show the analogous statement
for groups containing GL(2,Z)× Z.

Let H = GL(2,Z). There are two cases. In the first case some finite generating set for G
contains only elements from H and from the center Z(G). Since GL(2,Z) ≤ G we see that
Z(G) ≤ {( r 0

0 r ) | r ∈ Q}. Moreover, since
(−1 0

0 −1
)
∈ H , we may assume in the fist case that G is

generated by H and f.g. subgroup Z ≤ {( r 0
0 r ) | r ∈ Q ∧ r > 0}. The homomorphism g 7→ |det(g)|

embeds Z into the torsion free group {r ∈ Q∗ | r > 0}. Hence, Z is isomorphic to Zk for some
k ≥ 1. Since Z ∩ H = {1}, the canonical surjective homomorphism from Z × H onto G is an
isomorphism.

In the second case we start with any generating set and we write the generators in Smith normal
form e

(
r 0
0 rq

)
f . Since e, f ∈ GL(2,Z) and GL(2,Z) < G, without restriction, the generators are

either from GL(2,Z) or they have the form
(
r 0
0 rq

)
with r > 0 and 0 6= q ∈ N. So, if we are not in

the first case, there is at least one generator s =
(
r 0
0 rq

)
where r > 0 and 2 ≤ q ∈ N.

Let BS be the subgroup ofG which is generated by ( 1 0
1 1 ) and s; and let BS(1, q) be the Baumslag-

Solitar group with generators b and t such that tbt−1 = bq. We have s ( 1 0
1 1 ) s−1 = ( 1 0

1 1 )q. Hence,
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there is a surjective homomorphism ϕ : BS(1, q)→ BS such that ϕ(t) = s and ϕ(b) = ( 1 0
1 1 ). Let

us show that ϕ is an isomorphism. Every element g ∈ BS(1, q) can be written in the form tkbxtn

where k, x, n are integers. Suppose g = tkbxtn and ϕ(g) = 1. Then ( 1 0
x 1 ) = ϕ(bx) = ϕ(t−k−n) =(

r 0
0 rq

)−k−n
is a diagonal matrix and x = 0. Hence, g = tm and ϕ(g) = sm = 1. This implies

m = 0, and ϕ is an isomorphism and BS is the group BS(1, q).
Next, consider any g ∈ BS∩SL(2,Z). As above g = sk ( 1 0

1 1 )x sm with x, k,m ∈ Z. Since

by assumption det(g) = 1 we obtain m = −k and hence g =
(

1 0
qkx 1

)
∈ ( 1 0

1 1 )Z. Therefore

SL(2,Z) ∩ BS is the infinite cyclic group generated by ( 1 0
1 1 ). It has infinite index in SL(2,Z). It

follows that G contains an extension of BS(1, q) of infinite index.
But this is not enough, we need to show that GL(2,Z)× Zk cannot contain BS(1, q), otherwise

there is no dichotomy. Actually, we do more: there is no abelian group A such that BS(1, q) is a
subgroup of GL(2,Z)×A.

Assume by contradiction that it is. Then there are generators b = (a, x), t = (s, y) ∈ GL(2,Z)×
A such that tbt−1 = bq. This implies (q − 1)x = 0. Since q ≥ 2, the element x generates a finite
subgroup in A. Since b generates an infinite cyclic group, we conclude that am 6= 1 for all m 6= 0.
Consider the canonical projection ϕ of GL(2,Z)×A onto GL(2,Z) such that ϕ(b) = a and ϕ(t) = s.
We claim that the restriction of ϕ to 〈b, t〉 is injective.

Let ϕ(g) = 1 for g ∈ 〈b, t〉. As above we write g = tkbztn with z, k, n ∈ Z. Then we
have skazsn = 1 ∈ GL(2,Z); and therefore az = s−k−n. Hence az commutes with s. Hence
az = sazs−1 = aqz . We conclude a(q−1)z = 1. Since am 6= 1 for all m 6= 0 and q ≥ 2 we
have z = 0. Hence g = tm for some m ∈ Z. Since ϕ(g) = 1, we know sm = 1. Therefore,
tm = (sm,my) acts trivially on b. But in BS(1, q) this happens for m = 0, only. This tells us that ϕ
is injective on 〈b, t〉, and the claim follows.

The above claim implies that BS(1, q) appears as a subgroup in GL(2,Z) but GL(2,Z) is
virtually free. Hence it is hyperbolic. This contradicts a result of Gersten. His paper [19] shows that
a Baumslag-Solitar group BS(p, q) with pq 6= 0 cannot appear in any hyperbolic group. However,
instead of using [19], let us derive a contradiction by showing a stronger result. We claim that
Rat(BS(1, q)) (for q ≥ 2) is not closed under intersection.7 This leads to a contradiction because
Rat(BS(1, q)) ⊆ Rat(GL(2,Z)) and Rat(GL(2,Z)) is a Boolean algebra.

Recall that BS(1, q) has two generators a and t with one defining relation tat = aq where,
x = x−1 for x ∈ BS(1, q). For the ease of notation, assume q = 2. We view {a, a, t, t}∗ as a free
monoid of rank 4 and ψ : {a, a, t, t}∗ → BS(1, q) denotes the canonical projection. Now, consider
L = t∗at ∗ ∩ a∗. Then L =

{
a2n ∣∣n ∈ N

}
is the intersection of two rational sets. Assume by

contradiction that L was rational. Then L = ψ(K) for some regular language K ⊆ {a, a, t, t}∗. By
the pumping-lemma for regular languages (also known as uvw-Theorem), there is a constant p such
that whenever z ∈ K with |z| > p, we can factorize z = uvw such that |uv| ≤ p, |v| ≥ 1, and
uw ∈ K. Consider a2n ∈ L such that its K-geodesic length m (= length of a shortest representing
word in K) is larger than p. Choose z ∈ K such that ψ(z) = a2n

and |z| = m. Factorize z = uvw

such that |uv| ≤ p, |v| ≥ 1, and uw ∈ K. Let g = ψ(uw) and h = a2n = ψ(uvw). Note that g 6= h

because z is the smallest representative in K. Since uw ∈ K, we have g = a2k

for some k 6= n.
Assume k < n as the other case is easier. Consider hg−1 = ψ(uvu) = a2n−2k = a2k(2n−k−1).Note
that |uvu| ≤ 2 |p|, and hence there are finitely many possible values for ψ(uvu). Therefore, k and
nk must be bounded by some constant C, which implies that n ≤ 2C. This gives a contradiction
since n can be arbitrarily large. Hence, the claim: if BS(1, q) ≤ G, then Rat(G) is not closed under
intersection, and therefore G 6= GL(2,Z).

Finally, GL(2,Z) contains a free subgroup of rank 2. Hence, for k ≥ 1 the groupG = GL(2,Z)×
Zk contains the free partially commutative monoid M = {a, b}∗ × {c}∗ . In Remark 10 we have

7 This fact is also stated in [9], but with a different proof.
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seen that Rat(G) is not closed under intersection. J

IProposition 18. LetG be isomorphic to GL(2,Z)×Zk with k ≥ 1. Then, the question “L = R?”
on input L,R ∈ Rat(G) is undecidable. However, the question “g ∈ R?” on input g ∈ G and
R ∈ Rat(G) is decidable.

Proof. As just stated in the last lines of the proof above, G contains the free partially commutative
monoid M = {a, b}∗ × {c}∗. It was by Aalbersberg and Hoogeboom in [23] that the question
“L = R?” on input L,R ∈ Rat(G) is undecidable for M .

For the decidability we use the fact that GL(2,Z) has a free subgroup F of rank two and index
24. In [30] Lohrey and Steinberg showed that the question “g ∈ R?” is decidable for F × Zk. Since
F × Zk is of finite index (actually 24) in G, the membership problem for rational subsets in G is
decidable by Corollary 12. J

I Remark 19. Let G be a group extension of GL(2,Z) inside GL(2,Q) which is not isomorphic
to GL(2,Z) × Zk for k ≥ 0. Then, by Theorem 17, the group G contains an infinite extension of
BS(1, q) for q ≥ 2. By [9] the membership in rational sets of BS(1, q) is decidable. However, to date
it is not clear how to extend this result to infinite extensions of BS(1, q).

5 Flat rational sets

In Definition 20 we introduce the general notion of a flat rational set. It allows to extend decidability
results for Rat(N) to a larger family Frat(M,N) whenever N ≤M . The main result in this section
is Theorem 23. It implies that the membership problem and (even stronger) the emptiness problem
for Boolean combinations of flat rational sets are decidable in Frat(GL(2,Q),GL(2,Z)).

The best situation is when Rat(M) is an effective Boolean algebra because in this case all decision
problems we are studying here are decidable. However, our focus is on matrices over the rational
or integer numbers, in which case such a strong assertion is either not known or wrong. The most
prominent example is the direct product F2 × F2 of two free groups of rank 2 in which, due to the
construction of Mihailova [34], there exists a finitely generated subgroup with undecidable subgroup
membership problem.

The notation is as follows. Let M = (M, ·) be a semigroup containing a submonoid N with a
subset T such that N is the subsemigroup generated by T . That is, we can write N = 〈T 〉.

I Definition 20. We say that L ⊆M is a flat rational subset of M over T if L is a finite union of
languages of the form L0g1L1 · · · gtLt where all Li ∈ Rat(〈T 〉) and gi ∈ M . The family of these
sets is denoted by Frat(M,T ) or Frat(M,N) since N = 〈T 〉.

In order to specify a set in Frat(M,T ) we shall use an M -NFA with a syntactic restriction according
to Definition 21. In particular, as soon as membership to T is decidable, we can check whether an
M -NFA is flat over T , and, if yes, this entails that the accepted language belongs to Frat(M,T ).

I Definition 21. An M -NFA A = (Q, δ, I, F ) is called flat over a subset T ⊆M if no transition
labeled by an element m ∈M \ T lies on a directed cycle.

Let M be any semigroup containing a subgroup H . Then the neutral element in H is an idempotent
e = e2. The subsemigroup eMe of M is a monoid and H is a subgroup of its units U(eMe). Recall
that M \ H is an ideal of M if and only if H = U(eMe). This fact can be easily derived from
Equation (1). In such a situation Theorem 22 yields an inductive definition of Frat(M,H) as a subset
of Rat(M): Theorem 22 says that the class of flat rational sets of M over H can be defined as the
family of rational sets when the Kleene-star is restricted to subsets which belong to the submonoid H .

I Theorem 22. Let M be a semigroup containing a subgroup H with neutral element e. Then the
family Frat(M,H) is the smallest familyR of subsets of M satisfying the following conditions.
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R contains all finite subsets of M ,
R is closed under finite union and concatenation,
R is closed under taking the Kleene-star over subsets of H which belong toR.

Proof. As usual, let U(eMe) be the group of units of the monoid eMe. For the proof let G =
U(eMe). Clearly, Rat(H) ⊆ R and hence, all flat rational sets over H are contained inR. To prove
inclusion in the other direction, we need to show that the family of flat rational subsets of M over
H (i) contains all finite subsets of M , (ii) is closed under finite union and concatenation, and (iii)
is closed under taking the Kleene-star over subsets of H . The first two conditions are obvious. We
show (iii) in two steps. Let L be a flat rational set over H such that L ⊆ H . In the first step we show
L ∈ Rat(G). Recall that L is a finite union of languages L0g1L1 · · · gtLt, where ∅ 6= Li ∈ Rat(H)
and gi ∈M . If gi ∈M \G for some i, then we have L0g1L1 · · · gtLt \G 6= ∅ because M \G is an
ideal. Hence, L 6⊆ G. Thus, if L ⊆ H , then all gi ∈ G and L ∈ Rat(G). In the second step we apply
Theorem 11. It implies that L is a rational subset of H , and hence L∗ ∈ Rat(H). In particular, L∗ is
flat rational over H . J

In our applications of Theorem 22 we have M = Q2×2 to be the multiplicative monoid of 2 × 2
matrices with rational entries and H = GL(2,Z). In this setting it is clear that Q2×2 \GL(2,Q) is
an ideal. As we will see the following theorem applies to H = GL(2,Z) and H ≤ G ≤ GL(2,Q)
where G is finitely generated.

I Theorem 23. Let H be a subgroup of a group G with decidable word problem8 such that the
following conditions hold:

Rat(H) is an effective relative Boolean algebra.9

G is the commensurator of H , and on input g ∈ G, we can compute the index of Hg in H .
On input g ∈ G, the membership to H (that is, “g ∈ H?”) is decidable.

Then Frat(G,H) forms an effective relative Boolean algebra. In particular, given a finite Boolean
combination B of flat rational sets of G over H , we can decide the emptiness of B.

Before giving the proof of Theorem 23 let us first state a consequence.

I Corollary 24. LetB ⊆ GL(2,Q) be a finite Boolean combination of flat rational sets of GL(2,Q)
over GL(2,Z), then we can decide the emptiness of B.

Proof. As explained above, it is a well-known classical fact that GL(2,Z) is a finitely generated
virtually free group, namely, it contains a free subgroup of rank 2 and index 24. Hence Rat(GL(2,Z))
is an effective Boolean algebra by [45]. LetG be a f.g. subgroup of GL(2,Q) that containsB. Clearly,
G has a decidable word problem. Section 3.2 states that GL(2,Q) is the commensurator subgroup
of GL(2,Z) in GL(2,Q). Hence, G is the commensurator of GL(2,Z), too. Thus all hypotheses of
Theorem 23 are satisfied. J

A direct consequence of Corollary 24 is that we can decide the membership in flat rational subsets
of GL(2,Q) over GL(2,Z). However, by Section 4, we are far away to decide the membership for
all rational subsets of GL(2,Q). It is tempting to believe that Rat(GL(2,Q)) has an undecidable
membership problem.

For the proof of Theorem 23 we need the following observation.

8 In case G is not f.g., we assume that G comes with an effective presentation. For example: G ≤ GL(n,Q).
9 Recall that this does not imply H ∈ Rat(H): possibly H it not f.g.
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I Lemma 25. Let L ∈ Rat(H) and g ∈ G. Recall that

Hg = gHg−1 ∩H =
{
h ∈ H

∣∣ g−1hg ∈ H
}
.

Then under the assumptions of Theorem 23 we can compute an NFA accepting g−1(L ∩ Hg)g ∈
Rat(H) where all labels of transitions are in H .

Proof. Since Hg = gHg−1 ∩ H is of finite index in H , we can compute an NFA A′ accepting
L′ = L∩Hg ∈ Rat(Hg) by Theorem 11. The labels of transitions are inHg . We have g−1Hgg ⊆ H .
Hence it is enough to change every label h of transitions in A′ to g−1hg. This gives the NFA A for
g−1(L ∩Hg)g over H . J

Proof of Theorem 23. Let g ∈ G and K ∈ Rat(H). First, we claim that we can rewrite Kg ∈
Rat(G) as a finite union of languages g′K ′ with g′ ∈ G and K ′ ∈ Rat(H).

Note that we can compute a set Ug ⊆ H of left-representatives such that H =
⋃
{uHg |u ∈ Ug}.

Indeed, by assumption, the membership to H is decidable, and hence the membership to gHg−1

and to Hg = gHg−1 ∩H is decidable, too. By the second assumption, we can compute the index
k = |H : Hg|. Thus we can enumerate the elements of H until we find k elements that belong to k
different left cosets of Hg . Checking if two elements belong to the same coset is decidable since the
membership to Hg can be decided. Thus,

Kg =
⋃
{K ∩ uHg |u ∈ Ug} g =

⋃{
ug g−1(u−1K ∩Hg)g

∣∣u ∈ Ug}
=
⋃{

g′g−1(gg′−1
K ∩Hg)g

∣∣∣ g′ ∈ Ugg} .
Using Lemma 25 we obtain g−1(gg′−1

K ∩Hg)g = K ′ ∈ Rat(H). This shows the claim.
Let L ∈ Frat(G,H). Hence, L is equal to a finite union of languages L0g1L1 · · · gtLt where

all Li ∈ Rat(H). Using the claim, we can write L as a finite union of languages gK with g ∈ G
and K ∈ Rat(H). Since membership in H is decidable, we can effectively enumerate a set S of all
distinct representatives of the right cosets of H , and moreover for each g ∈ G find a representative
g′ ∈ S such that g ∈ g′H . Since g = g′h for some h ∈ H , we can write gK = g′(hK), where
hK ∈ Rat(H). Therefore, every flat rational set L can be written as a union L =

⋃n
i=1 giKi, where

gi ∈ S and Ki ∈ Rat(H). Since gK1 ∪ gK2 = g(K1 ∪ K2), we may assume that all gi in the
expression L =

⋃n
i=1 giKi are different.

Now let L and R be two flat rational sets. By the above argument we may assume that L =⋃n
i=1 aiLi and R =

⋃m
j=1 bjRj , where ai, bj ∈ S and Li, Rj ∈ Rat(H). Then we have L \ R =⋃n

i=1
(
aiLi \

⋃m
j=1 bjRj

)
. Note that if ai /∈ {b1, . . . , bm}, then aiLi \

⋃m
j=1 bjRj = aiLi, but if

ai = bj for some j then aiLi \
⋃m
j=1 bjRj = ai(Li \ Rj). Since Rat(H) is an effective relative

Boolean algebra, we can compute the rational expression for Li \Rj in H . Hence we can compute
the flat rational expression for L \R. J

5.1 Reducing the membership problem of Frat(M, G) to that of
Frat(M, H) for |G/H| <∞

We suppose throughout this subjection that the group of units in M contains the subgroups G with
a subgroup H such that the index of H in G is finite. It is clear that the membership problem
of Frat(M,H) is a special case of the membership problem of Frat(M,G). The aim is to prove
the converse: the membership problem of Frat(M,G) is reducible to the membership problem of
Frat(M,H). The proof uses Theorem 11. In order to make the reduction effective, we impose some
mild decidability conditions. As usual, elements of the monoid M are encoded by bit-strings. If the
encoding of an element m ∈M uses b bits, then we let ‖m ‖bin = 1 + b. In particular, we can use (3)
as the binary input size for an M -NFA A. Next, we assume the following conditions.

1. The bit encoding is unique, thus m = m′ if their bit encoding is the same.
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2. Given the bit encodings of m,m′ ∈M we can compute the bit encoding of the product mm′.
3. The index |G/H| is known and given the bit encoding of an element m ∈ M we can decide

whether m ∈ G; and if yes, we can decide whether m ∈ H .

I Theorem 26. Let G be a subgroup of the units in M and H ≤ G be a finite index subgroup.
Then membership problem of Frat(M,G) is reducible to the membership problem of Frat(M,H).

More precisely, given m ∈M and an M -NFA A which is flat over G, then there is an M -NFA B
which is flat over H such that ‖B ‖bin is polynomial in ‖A‖bin and we have m ∈ L(A) ⇐⇒ m ∈
L(B). If M satisfies the mild decidability conditions above, then the construction is effective.

The main ingredient of the following proof of Theorem 26 is the application of Theorem 11.

Proof. We assume that the input is specified by an M -NFA A = (Q, δ, qin, qfin) which is flat over
G, and by an element m ∈ M . W.l.o.g., qinit is the unique initial state and without any incoming
transition and qfin the unique final state and without any outgoing transition. Moreover, qin 6= qfin. By
adding, if necessary ε-selfloops, we may assume that all other states have incoming and outgoing
transitions.

For i = 1, . . . , t let Ai = (Qi, δi, Ii, Fi) be the set of (disjoint) subautomata of A which are
induced be the strongly connected components of A with a nonempty set of transitions. Thus, qin, qfin

are not included. Let 1 ∈ R ⊆ G a finite set of right-coset representatives for H\G. That is,
G is the disjoint union G =

⋃
f∈RHf with 1 ∈ R. For each 1 ≤ i ≤ t and f ∈ R there is a

G-NFA Ai,f = (Qi,f , δi,f , Ii,f , Fi,f ) of polynomial size in ‖A‖bin where Qi,f = Qi ×R such that
L(Ai,f ) = L(Ai) ∩Hf . Note that we have |δi,f | ≤ |δi| by trimming. Hence,

∑
1≤i≤t |δi,f | ≤ |δ|.

Moreover, w.l.o.g. Ii,f ≤ Ii and Fi,f ≤ Fi. The construction is effective, if M satisfies the mild
decidability conditions above, then the construction is effective.

Introduce a new final state pi,f and for each p ∈ Fi,f a new transition p
f−→ pi,f where

f = f−1 in G. This leads to a new G-NFA A′i,f = (Q′i,f , δ′i,f , Ii,f , {pi,f}) such that L(A′i,f ) =
L(Ai,f )f−1 ⊆ H . Since L(A′i,f ) ∈ Rat(G), we may apply Theorem 11. After renaming, we obtain
an H-NFA Bi,f = (Q′i,f , δ′′i,f , Ii,f , {pi,f}) such that L(Bi,f ) = L(A′i,f ).

We are almost done. We begin with a disjoint union

B = {qin, qfin} ∪
⋃

1≤i≤t,f∈R
Bi,f (4)

Thus, qin and qfin are reintroduced for the same purpose: qin becomes the unique initial state and qfin

becomes the unique final state.
For all f ∈ F we let Q0,f = {qin} and Qt+1,f = {qfin}. One after anther consider all pairs (i, j)

where 0 ≤ i, j ≤ t+ 1 and i 6= j. Then introduce for every transition pi
mi,j−→ qj ∈ δ with pi ∈ Qi

and qj ∈ Qj for every f ∈ R a new transition pi,f
f mi,j−→ q′j,f ∈ δ where pi,f is the unique final state

in Bi,f and q′j,f is an initial state in Bi,f . J

I Example 27. The construction in Theorem 26 is, in particular, effective in the following setting.
Let A be GL(2,Z)-NFA with n states which is flat over SL(2,Z). Then, on input A, we can
compute in deterministic polynomial time an SL(2,Z)-NFA A′ with at most n states such that
1 ∈ L(A) ⇐⇒ 1 ∈ L(A′).

To see this, let us recall the construction underlying the proof of Theorem 11 which is the core
for the proof of Theorem 26. For that we first define the matrix s =

( 1 0
0 −1

)
. Hence, GL(2,Z) =

SL(2,Z) ∪ SL(2,Z) is a disjoint union and s2 = 1. Next, let Q′ be the disjoint copy of the state
space Q of A. For a state p ∈ Q we denote by p′ the corresponding copy in Q′. Without restriction
we may assume that A is trim. We let B = Q ∪Q′ a new state space and for each transition p a−→ q

in A we introduce new transitions, depending on whether a ∈ SL(2,Z). For a ∈ SL(2,Z) we use
the left picture and for a ∈ GL(2,Z) \ SL(2,Z) we use the right one. (Note that the positions of q
and q′ interchanged in order to avoid to draw crossing edges.)
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p′ q′

p q

sas

a

ss ss

p′ q

p q′

sa

as

a
ss ss

Clearly, 1 ∈ L(A) ⇐⇒ 1 ∈ L(B). In order to defineA′ we keep the initial and final states ofA, but
we remove all transitions which do not have a label in SL(2,Z). This leads to an SL(2,Z)-NFA B′
with 1 ∈ L(A) ⇐⇒ 1 ∈ L(B′). Finally, we trim the NFA B′; and that yields the desired NFA A′.
Note that in the trimming process for each p ∈ Q exactly one of the states p, p′ survives. Moreover,
the initial and final of A survive since we assumed A to be trim.

I Corollary 28. Let T be any subset of Q2×2. Then the following task can be computed in
deterministic polynomial time.

The input is a T -NFA A which is flat over GL(2,Z). The output is a T -NFA A′ which is flat over
SL(2,Z) such that

L(A) = L(A′) (5)

That is: for 2× 2 matrices with entries in rational numbers there is a P-reduction of the membership
problem for flat rational sets over GL(2,Z) to that over SL(2,Z).

Proof. We may assume that A is trim. First we compute the {Ai | 1 ≤ i ≤ k} of strongly connected
components of A. By modifying A we may assume that for entering each Ai one has to use a
unique ε-transition p̃i

1−→ pi and in order to leave it, one has to use a unique ε-transition qi
1−→ q̃i

where pi 6= qi. Moreover, no state in any Ai is initial or final with respect to the NFA A. We view
each Ai as a GL(2,Z)-NFA. Let A′i be a disjoint copy of Ai. By a slight modification of Ai and
A′i we may assume that pi is the unique initial state of Ai without incoming transitions and that
p′i is the unique initial state of Ai without incoming transitions. Using essentially the very same
construction as in Example 27 (which was illustrating a special case for the use of Theorem 26)
we can make another modification to Ai and A′i (without using additional states) such that first,
L(Ai) = L(Ai) ∩ SL(2,Z) and L(A′i) = sL(Ai) ∩ SL(2,Z) where s =

( 1 0
0 −1

)
, and second, Ai

and A′i are both SL(2,Z)-NFAs. Finally, we connect each A′i to the ambient NFA A by a a transition
p̃i

s−→ pi (which has label s) and an ε-transition q′i
1−→ q̃i. This yields a T -NFA A′ being flat over

SL(2,Z) such that L(A) = L(A′). J

Corollary 28 implies that it does not really matter if we consider 2×2 matrices with respect to flatness
over SL(2,Z) or GL(2,Z). While flatness over GL(2,Z) yields, formally, stronger statements, the
use of SL(2,Z) is sometimes more convenient.

6 Membership to flat rational sets of nonsingular matrices

The aim of this section is to investigate the time complexity of deciding the membership problem
in Frat(GL(2,Q),GL(2,Z)). In Section 6.3 we generalize the result to Frat(GL(2,Q),M), where
M is the submonoid of GL(2,Q) that is equal to the union of GL(2,Z) and the set of matrices
g ∈ GL(2,Q) with |det(g)| > 1.

In the following, whenever we consider a class Frat(Q2×2, N), then the notation NFA always
refers to an Q2×2-NFA. Thus, the transitions are labeled with 2× 2 matrices over Q. If an NFA only
uses transitions in Z2×2, then we call the NFA an Z2×2-NFA.

We are interested in the time complexity of the following decision problem “g ∈ L(A)?” where
NFA A is flat over GL(2,Z). For the input size we use binary encoding. Recall that the binary input
size of a matrix and of an NFA was defined in Section 3.1. Since we can construct in polynomial
time an NFA which is flat over GL(2,Z) and which accepts g−1L(A), it is enough to consider the
following special case.



18 Decidability of membership problems for flat rational subsets

B Problem 1.
INPUT: A Q2×2-NFA A which is flat over GL(2,Z).
QUESTION: “1 ∈ L(A)?”

6.1 Membership for SL(2,Z)
Let us recall the simplest version Problem 1. We begin with an NFA A such that all matrices are
in SL(2,Z) and we ask “1 ∈ L(A)?”. So far it is known that the problem is NP-hard and stated
to be NP-complete for by PSL(2,Z)[7]. For the subgroup membership problem better complexity
bounds are known due to Lohrey, [28]: If L(A) defines a subgroup of GL(2,Z), then, on input A
where matrix entries are written in binary, the question “1 ∈ L(A)?” can be answered in P. This
generalizes a result of [21] for the modular group PSL(2,Z). Actually, Lohrey shows an even stronger
result using the notion of power words. However, it is not known how to apply these P-results to
the membership problem for flat rational sets. We therefore content ourselves with the following
pseudo-polynomial time result. (The complexity is pseudo-polynomial if it is polynomial time when
integers are given in unary.)

I Proposition 29. There is some fixed constant κ such that the following decision problem can be
decided in DTIME((sM)κ).
INPUT: An NFA A with s transitions and with labels in SL(2,Z) and where M is the maximal

absolute value of an integer entry appearing in matrix which labels a transition.
QUESTION: “1 ∈ L(A)?”

Proof. Since the factor commutator subgroup of SL(2,Z) is a free subgroup of rank 2 and of index
12 (by [35]), we can reduce the problem in polynomial time to the special instance where all matrices
are in a free group F with a finite generating set Σ = Σ−1. In a second polynomial time reduction
we replace matrices by words over Σ. More precisely, based on [21] (actually a refinement in [14]) it
is possible to replace the matrices in F by words over Σ where each transition is labeled with word of
length in O(1) such that the number of transitions is in O(sM). Formally, this is now an NFA A′
with L(A′) ⊆ Σ∗. The details are in [13]. Having this we apply Benois’ result on free groups, [8].
The result is another automaton L(B′) having, up to a constant factor, the same number of states as B
such that B′ accepts as an NFA over Σ∗ exactly the reduced normal forms belonging to L(A). The
answer to the question “1 ∈ L(A)?” is now the same as the answer to question whether the empty
word is accepted by B′. This can be done in polynomial time with respect to sM . J

I Remark 30. If we started with an input where matrices are written in binary, then the above
statement shows decidability in DEXPTIME by using Benois’ algorithm in [8]. Possibly, a more
sophisticated method could lead to solving Problem 1 in NP for binary inputs.

6.2 Membership for Frat(Q2×2, GL(2,Z)) for non-singular matrices

Throughout, an ε-transition means a transition p 1−→ q where 1 = ( 1 0
0 1 ) denotes the identity matrix.

I Lemma 31. There is an NP reduction of Problem 1 to following problem.

B Problem 2. The input is written in binary.
INPUT: A positive integer m and an Z2×2-NFA A which is flat over GL(2,Z).
QUESTION: “m ∈ L(A)?”

Moreover, if D denotes the maximal absolute value |det(pmm)| over all labels m ∈ GL(2,Q) which
appear on transitions of A and where pm is the least positive integer such that pmm ∈ Z2×2, then
NP reduction does not increase value D.
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Proof. Using Corollary 28 and the fact that the input 1 to Problem 1 is nonsingular, it is enough to
consider the case where A is an GL(2,Q)-NFA being flat over SL(2,Z). If 1 ∈ L(A), then there is
an accepting path where transitions outside SL(2,Z) are used t times where t is less than the number
of strongly connected components of A. Thus, we can guess an initial state q0 and a sequence of t
transitions qj−1

gj−→ qj for 1 ≤ j ≤ t such that all other transitions (which are used on that path) are
labeled with matrices from SL(2,Z). W.l.o.g. t ≥ 1 since we may assume that no initial state in A is
final.

Thus, by making the NFA not larger, having done the guesses above, we compute in polynomial
time t subautomata Ai of A for 1 ≤ j ≤ t such that 1 ∈ L(A) implies

1 ∈ g1L(A1)g2L(A2) · · · gtL(At). (6)

Let Rj = L(Aj). Now for each 1 ≤ j ≤ t let pj be the least positive integer that pjgj ∈ Z2×2

and m =
∏
j pj . Let g′j = pjgj . Suppose that ‖ gj ‖bin ≤ n for all j, then Lemma 14 implies that∏

j ‖ g′j ‖bin
∈ O(n2) which is polynomial and therefore acceptable. Next, we have

1 ∈ g1R1 · · · gtRt ⇐⇒ m ∈ g′1R1 · · · g′tRt.

Thanks to the definition of the g′j’s, the value D is not increasing. J

By Lemma 31 we content ourselves to study the membership in Frat(GL(2,Q),SL(2,Z)) in the
special case where all matrices involved are integer matrices.

I Definition 32. Let 0 6= q ∈ Z and e ∈ {b, c}. Then we denote

He,q =
{(

a b
c d

)
∈ SL(2,Z)

∣∣ e ≡ 0 mod q
}
.

I Lemma 33. The subgroups Hb,q and Hc,q of SL(2,Z) in Definition 32 are conjugated:( 1 0
0 q
)−1

Hc,q

( 1 0
0 q
)

= Hb,q. (7)

Moreover their index in SL(2,Z) is less than q2. In particular, they are of finite index and therefore
recognizable subsets in SL(2,Z) and GL(2,Z).

Proof. Calculating mod q we see that Hb,q and Hc,q are subgroups of the normal subgroup where
the determinant is 1 mod q. This normal subgroup has an index about q3. However, we can be more
precise. The image of Hb,q in SL(2,Z/qZ) is the group{(

a b
c d

)
∈ SL(2,Z/qZ)

∣∣ b = 0
}
.

Thus, the image has size |(Z/qZ)∗ × Z/qZ| which is at most (q − 1)q < q2. J

I Lemma 34. Let q ∈ Z and g =
(
a b
c d

)
∈ SL(2,Z) be given in binary encoding. Then for

e ∈ {b, c} there is a matrix m = ( x y
z w ) ∈ SL(2,Z) where ‖m ‖max ≤ q such that g ∈ mHe,q. In

particular, ‖m ‖bin ≤ log(q); and we can guess the matrix m in NP and verify in polynomial time
that m−1g ∈ He,q .

Proof. Since g ∈ SL(2,Z), the entries b and d are coprime. By Lemma 1 there are coprime x and y
such that first, xb+ yd ≡ 0 mod q and second 1 ≤ x, y ≤ |q|. We can guess x, y within NP. Next,
we apply Proposition 2 to obtain w, z in polynomial time such that first, xz − yw = 1 and second
1 ≤ |w| , |z| ≤ max{x, y} ≤ |q|. We obtain ( x y

z w )
(
a b
c d

)
∈ Hb,q. This shows the result for e = b.

The result for e = c is symmetric. J

I Theorem 35. Let g ∈ GL(2,Q) and R = L(A) such that the NFA A is flat over GL(2,Z) and
the matrix g and all matrices which appear as labels of transitions are nonsingular matrices with
entries in Q. LetD denote the maximal absolute value |det(phh)| over all labels h ∈ GL(2,Q) which
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appear on transitions of A and where each ph is the least positive integer such that phh ∈ Z2×2.
Finally, let n = ‖ g ‖bin + ‖A‖bin be the input size. Then the problem “g ∈ R?” can be decided in
DTIME(2nO(1)) = DEXPTIME and, moreover, there is a NTIME(DO(n)nO(1)) reduction of
the decision problem “g ∈ R?” to a problem 1 ∈ R′ where R′ ∈ RAT(SL(2,Z)) and R′ is given by
some NFA A′ where all labels of transitions are matrices in SL(2,Z).

Proof. We begin by showing that there exists a constant κ such that there exists the claimed
NTIME(DO(n)nκ) reduction. In the first step, we apply the NP-reduction in Lemma 31. Recall that
the reduction does not increase D. Thus, it suffices to deal with Problem 2. This means the starting
point is a Z2×2 ∩ GL(2,Q)-NFA A which is flat over SL(2,Z) and the question is m ∈ L(A) for
some positive integer m. Hence, we assume that g and all labels h ∈ GL(2,Q) which appear on
transitions of A are integer matrices. In particular, ph = 1 for all matrices h and D is the maximal
absolute value |det(h)| over all labels h which appear in A. In case that D = 1 we are done with
the reduction since L(A) ⊆ GL(2,Z). Since g ∈ GL(2,Z) we may assume without restriction
that g = 1. Thus, the question is whether 1 ∈ L(A) where A is a GL(2,Z)-NFA. We are done by
Corollary 28, since we can transform A in deterministic polynomial time into an SL(2,Z)-NFA A′
such that 1 ∈ L(A) ⇐⇒ 1 ∈ L(A′). We assume that g and all labels h ∈ GL(2,Q) which appear
on transitions of A are integer matrices. In particular, ph = 1 for all matrices h and D is the maximal
absolute value |det(h)| over all labels h which appear in A. In case that D = 1 we are done with the
reduction since L(A) ⊆ GL(2,Z) and then we can apply Theorem 26.

Thus, henceforth, we may assume without restriction that D ≥ 2. Since A is flat over GL(2,Z),
we can guess in a second step within NP the following items: a natural number t ≤ n, matrices
g1, . . . , gt which appear as labels of transitions in A, and t (disjoint) trim subautomata Ai of A such
that

g ∈ R ⇐⇒ (m 0
0 m ) ∈ g1R1 · · · gtRt. (8)

In (8) we have 0 < m ∈ N and Ri = L(Ai) ⊆ SL(2,Z) for 1 ≤ i ≤ t ≤ n. We perform the
following steps.

1. For each i with the help of two additional states pi and qi two ε-transitions pi
ε−→ p′i and

q′i
ε−→ qi we have the following: Each Ri is given by some NFA with a single initial state pi

without incoming edge and a single final state qi without outgoing edge. Moreover, pi has exactly
one outgoing transition pi

mi−→ p′i and qi has exactly one incoming transition q′i
ni−→ qi where

mi, ni ∈ SL(2,Z).
We keep this property as a loop-invariant. In the beginning we let mi = ni = 1 = ( 1 0

0 1 ).
2. For each 1 ≤ i ≤ t compute for gi its Smith normal form gi = riei

( 1 0
0 qi

)
fi in polynomial time.

Replace each gi by g′i = ei
( 1 0

0 qi

)
fi and the left hand side r by r′ = r/

∏
i ri.

We then ask whether r′ ∈ g′1R1 · · · g′tRt. By conjugation with e1, question is equivalent to the
question

“r′ ∈
( 1 0

0 q1

)
f1R1g

′
2R2 · · · g′tRte1?”.

Note that the product
∏

1≤i≤t r
2
i qi ≤ Dt < Dn. Writing down the product r =

∏
1≤i≤t ri in

binary requires at most n log(D)/2 bits.

3. For 1 ≤ i ≤ t, replace the transitions pi
ni−→ p′i by pi

fi·ni−→ p′i.

4. For 1 ≤ i ≤ t, replace the transitions q′i
mi−→ qi by q′i

mi·ei+1−→ qi where we let et+1 = e1. These
additional transitions replace Ri with R′i = fiRiei+1 for 1 ≤ i ≤ t, where et+1 = e1. To
simplify the notation, we rename R′i back to Ri.

5. Adding less than 3t ε-transitions, we may assume without restriction that t is a power of 2. Thus,
t ∈ 2N.
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The last step finishes the preprocessing phase. After that the problem is to decide whether

r ∈ g1R1 · · · gtRt (9)

where r ∈ Q is positive, Ri ∈ Rat(SL(2,Z)), and gi =
( 1 0

0 qi

)
for all 1 ≤ i ≤ t ∈ 2N with 0 6= qi ∈

Z. Each Ri is represented by some NFA Ai such that Ri = L(Ai). Let q = max {|qi| | 1 ≤ i ≤ t}.
Then we have q ≤ D we aim now at a NTIME(qO(n)nκ) reduction. This suffices and it

facilitates the following explanation. Without restriction we assume t ≥ 2. We perform log t
rounds. In round k = 1, . . . , log t we let s = t/2k−1. Each round s starts with a question “rs ∈
g1,sR1,s · · · gts,sRts,s?” where 0 < rs ∈ Q, Ri,s = L(Ai,s) ∈ Rat(SL(2,Z)), and gi,s =

( 1 0
0 qi,s

)
for all i, s with 0 6= qi,s ∈ Z. Moreover, ts ∈ 2N. The first round starts with “r ∈ g1R1 · · · gtRt?”
which was defined in (8) and which has the form above. After that each round will halve the number s
until s becomes 1 where we stop. In the k-th round we perform the following steps where s = t/2k−1.

1. For sake of a simplified notation we rename Ri,s and L(Ai,s) as Ri resp. as L(Ai). Thus, the
question in the k-th round becomes the question

“r ∈
( 1 0

0 q1

)
R1 · · ·

( 1 0
0 qs

)
Rs?”

2. By Lemma 33 we can write SL(2,Z) =
⋃
i∈I {mHc,qi

|m ∈ Sqi
} where |I| ≤ q2

i . Moreover, by
Lemma 34 we can choose finite sets Sqi ⊆ SL(2,Z) such ‖m ‖bin ≤ log qi for all m ∈ Sqi .
Therefore, the “witness” for r ∈

( 1 0
0 q1

)
R1 · · ·

( 1 0
0 q1

)
Rs is a sequence of s − 1 matrices

(m2, . . . ,ms) in SL(2,Z) such that

r ∈
( 1 0

0 q1

)
(R1 ∩m2Hc,q2) · · ·

( 1 0
0 qs−1

)
(Rs−1 ∩msHc,qs

)
( 1 0

0 qs

)
Rs with mj ∈ Sqj

.

(10)

Hence, ‖mj ‖bin ≤ log(qj).
3. With a new single initial state and additional transitions (and after a renaming) we may assume

that L(Ai) = mi
−1Ri−1 for all i ≥ 2. We don’t touch the L(A1).

4. Again, using Lemma 33, we know that the subgroup Hc,qi
is of finite index less than q2

i in
SL(2,Z); and thus, Hc,qi

is recognizable. This implies Li = mi
−1Ri−1 ∩Hc,qi

is rational in
SL(2,Z). (As stated in the proof of Lemma 9, the implication is a general fact for monoids.)
More precisely, for all even i, starting with the product NFA of Ai with an NFA having as states
the right cosets Hc,qi\ SL(2,Z), we construct another NFA Bi such that first, the NFA accepts
Li = mi

−1Ri−1 ∩Hc,qi
and second, all labels of transitions are in Hc,qi

. By the techniques used
in the proof of Theorem 11 the construction can be done in time which is a polynomial in qi.

5. For all i redefine gi =
( 1 0

0 qi

)
. For every even i we write

(Ri−1 ∩miHc,qi)gi = mi(mi
−1Ri−1 ∩Hc,qi)gi

= migi
(
gi
−1(mi

−1Ri−1 ∩Hc,qi
)gi
)

= migi
(
gi
−1Ljgi

)
.

6. Define Ki = giLigi. The NFA for accepting Ki is the NFA Bi where every label m ∈ Hc,qi is
replaced by gimgi. Thus, the new labels belong to the subgroup Hb,qi

of SL(2,Z).
7. Define R′i = Ki · Ri and let g′i = gi−1migi. Compute the Smith normal form of g′i =

r′ie
′
i

(
1 0
0 q′i

)
f ′i in time which is fixed polynomial in log(qi). This follows from Lemma 34.

Thus, for some fixed constant κ we have |q′i| ≤ |qκi | and therefore the binary presentation of q′i is
linear in the binary presentation of qi.

8. Repeat what we have done above. First, for each i push the positive r′i integers to left by
multiplying the left side of the question with 1/r′i. This yields a new positive rational number

r′ on the left side. In addition, the g′i become equal to e′i
(

1 0
0 q′i

)
f ′i . Second, replace R′i by

R′′i = f ′iR
′
ie
′
i+1 where e′s+1 = e′1. Third, let e′′i =

(
1 0
0 q′i

)
. Overall, we ask now the quesition

“r′ ∈
(

1 0
0 q′1

)
R′′1 · · ·

( 1 0
0 qs/2

)
R′′s/2?”. If s/2 + 1, then we have q′1 = 1.
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This finishes the non-deterministic reduction after the preprocessing. For the time complexity
observe that after log t rounds the largest value |qi| is bounded by qO(logn) ≤ 2O(n logn) ≤ 2O(n2).
However, due to the product automaton construction we need for some fixed κ nondeterministic time
NTIME(qO(n)nκ). Together with the preprocessing we obtain NTIME(DO(n)nκ).

If we avoid all nondeterministic guesses of matrices, then we can run a deterministic reduction
in DTIME(2nO(1)). Finally, we apply Proposition 29. It uses two parameters s and M . Here, s is
the number of transitions and M is the maximal ‖m‖ where m runs over the label of transitions.
The construction above shows s ∈ DTIME(2nO(1)) and M ∈ DTIME(2nO(1)). Therefore, sM ∈
DTIME(2nO(1)) and we are done. J

6.3 Flat over g ∈ GL(2,Z) ∪ {g ∈ GL(2,Q) | | det(g)| > 1}
So far, we considered Frat(GL(2,Q),M) only when M = GL(2,Z) or M = SL(2,Z). In this
subsection we show that membership to Frat(GL(2,Q),M) is decidable for the monoid

M = GL(2,Z) ∪ {g ∈ GL(2,Q) | |det(g)| > 1} . (11)

Theorem 36 generalizes Theorem 35 with respect to decidability. However, not very surpriningly, our
complexity estimation becomes worse. We consider the following problem

B Problem 3.
INPUT: An GL(2,Q)-NFA A which is flat over GL(2,Z) ∪ {g ∈ GL(2,Q) | |det(g)| > 1} where
matrices are written in binary.
QUESTION: “ 1 ∈ L(A)?”

I Theorem 36. Problem 3 is decidable in deterministic doubly exponential time DTIME(22p),
where p is some polynomial.

Proof. As we did in the proof of Problem 1, it no restriction to start in Problem 3 with a question

“ r ∈ g1L(A1)g2L(A2) · · · gtL(At) ?”. (12)

Here r ∈ Q is positive and we have gi ∈ Z2×2 ∩GL(2,Q) and Ai is an M -NFA for all 1 ≤ i ≤ t.
Thus, each gi belongs to M , and we can work with a single M -NFA A′ and we ask “ r ∈ L(A′)?”.
Let us define n = ‖ ( r 0

0 r ) ‖bin + ‖A‖bin, then n is polynomial in the original binary input size; which
we can ignore. The new starting point is the question “ r ∈ L(A′)?”. For simplicity of notation, we
rename A′ as A.

Let T = {g ∈ GL(2,Q) | |det(g)| > 1 and g is the label of a transition in A}. If T = ∅ we are
done. Hence, we may assume T 6= ∅. LetN ∈ N be the smallest number such that 1+1/N ≤ |det| (g)
for all g ∈ T . A direct calculation shows N ≤ 22n+1. If r ∈ L(A), then there is a minimal k ∈ N
such that transitions with label in T are used exactly k times. Let give an upper bound of k. ForN = 1
we have 2k ≤ r2. Hence, k ∈ O(log r) ⊆ O(n). Thus, we may assume N ≥ 2 and 1/N ≤ 1/2.
Since ex < 1 + 2x for 0 < x ≤ 1, it is enough to estimate an upper bound of k using the bound
ek/N ≤ r2. This implies k ∈ O(Nn). Thus, in NTIME(O(Nn)) we can guess a sequence of length
k of the form

r ∈ g1L(A1)g2L(A2) · · · gkL(Ak). (13)

Here, r is as in (13), the gj-th belong to T , and each Ai is a subautomaton of some Aj mentioned in
(13). As a consequence, the NFA B is flat over GL(2,Z) and it satisfies

r ∈ g1L(A1)g2L(A2) · · · gkL(Ak) ⇐⇒ r ∈ L(AB). (14)

Theorem 35 implies that we can decide whether r ∈ L(AB) in doubly deterministic exponential
time DTIME(2O(Nn)). We have NTIME(O(Nn)) ⊆ DTIME(2O(Nn)). However, running two
DTIME(2O(Nn)) one after another is still in DTIME(2O(Nn)). In worst case, we have N ∈ 2O(n)

and n was a polynomial in the original input size. The result follows. J
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7 Nonsingular and singular matrices

Recall that sq for q ∈ Z denotes the matrix
( 1 0

0 q
)
. The most general problem in the paper where we

have positive decidability results is the next one.

B Problem 4. INPUT: A matrix g ∈ Q2×2 and an Q2×2-NFA A which is flat over the set

GL(2,Z) ∪ {r ∈ Q | |r| > 1} ∪ {s0} if g 6= 0 (15)

GL(2,Z) ∪Q ∪ {s0} if g = 0 (16)

QUESTION: “ g ∈ L(A) ?”

Concerning Problem 4 the aim of this section is to prove the following theorem.

I Theorem 37. Let ‖ g ‖bin + ‖A‖bin be the (binary) input size in Problem 4. Then there is an
NP-reduction of Problem 4 to polynomially many instances of Problem 1. In particular, Problem 4
is decidable in deterministic doubly exponential time DTIME(22p) where p is some polynomial.

7.1 Proof of Theorem 37

The following lemma is used below in Section 7.1.1 when we reduce (20) to (24).

I Lemma 38. Let m ∈ Z and
(
a a′

b b′

)
,
(
c d
c′ d′

)
∈ Z2×2 such that

(m 0
0 0 ) =

(
a a′

b b′

)
s0
(
c d
c′ d′

)
. (17)

Then ac = m. For m 6= 0 we have
(
a a′

b b′

)
s0 = ( a 0

0 0 ) and s0
(
c d
c′ d′

)
= ( c 0

0 0 ) . For m = 0 we have(
a a′

b b′

)
s0 = 0 or s0

(
c d
c′ d′

)
= 0.

Proof. We have(
a a′

b b′

)
s0
(
c d
c′ d′

)
=
(
a a′

b b′

)
s0s0

(
c d
c′ d′

)
= ( a 0

b 0 ) ( c d0 0 ) =
(
ac ad
bc bd

)
We conclude ac = m and ad = bc = bd = 0. For m 6= 0 this implies a 6= 0 6= c and therefore
b = d = 0. For m = 0 this implies a = 0 or c = 0. Say, by symmetry, a = 0. If b = 0, we are done.
Hence. we may assume b 6= 0. This implies d = 0. The lemma follows. J

I Definition 39. For a ∈ Z we let Mij(a) = {( g11 g12
g21 g22 ) ∈ GL(2,Z) | gij = a} .

B Problem 5.
INPUT: An integer a ∈ Z and a GL(2,Q)-NFA A which is flat over GL(2,Z): The interger a and
matrix entries are written in binary.
QUESTION: “M11(a) ∩ L(A) 6= ∅ ?”

I Lemma 40. There is a NP reduction of Problem 5 to Problem 1. In particular, we can solve
Problem 5 in DEXPTIME by Theorem 35.

Proof. W.l.o.g. A is a (GL(2,Q) ∩ Z2×2)-NFA with input size n = ‖ a ‖bin + ‖A‖bin. We have
M11(a) ∩ L(A) 6= ∅ if and only if there b, c, d ∈ Z such that

(
a b
c d

)
∈ L(A). Since A is flat over

GL(2,Z) the determinant D = det
(
a b
c d

)
is bounded by some polynomial in n. Hence, we can guess

D. For a = 0 we have bc = D and we can guess b and c and then compute 0 ≤ d′ ≤ |c| such that(
0 b
c d

)
∈ L(A) ⇐⇒

( 0 b
c d′
)
∈ L(A) ( 1 1

0 1 )Z .

The question “
( 0 b
c d′
)
∈ L(A) ( 1 1

0 1 )Z ?” is an instance of Problem 1. Thus, we may assume a 6= 0.
As a consequence, there are integers b′, c′, d′ with 0 ≤ |b′| , |c′| ≤ |a| such that(

a b
c d

)
∈ L(A) ⇐⇒

(
a b′

c′ d′

)
∈ ( 1 0

1 1 )Z L(A) ( 1 1
0 1 )Z .

Since d′ = (D + b′c′)/a, the binary size of d′ is polynomially bounded in n. Thus, we can guess the
integers b′, c′ within NP and compute d′. We conclude as we did for a = 0, and we are done. J
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7.1.1 Preprocessing

For a nonsingular input matrix g we are done by Theorem 36. Indeed, a singular matrix cannot appear
on any accepting path and {r ∈ Q | |r| > 1} ⊆ {g ∈ GL(2,Q) | |det(g)| > 1}. Thus, henceforth in
the proof we assume that the input matrix g is singular.

Throughout, we denote by Ssing and S0,sing the following subsets of Q2×2:

Ssing = GL(2,Z) ∪ {r ∈ Q | |r| > 1} ∪ {s0} (18)

S0,sing = GL(2,Z) ∪ {s0} (19)

We begin with a preprocessing.

1. In a first step modify the input such that all matrices are in Z2×2.
2. In a second step we compute in deterministic polynomial time for every label of a transition its

Smith normal form and split the corresponding transitions into three. In particular,, we can write
g = e0 (m 0

0 0 ) f0 where m ∈ N and e0f0 ∈ GL(2,Z).
3. Making guesses within NP we assume without restriction that we start with the question whether

the following assertion is true.

e0 (m 0
0 0 ) f0 ∈ L(A1)e1

( 1 0
0 q1

)
f1 · · ·L(At)et

( 1 0
0 qt

)
ft. (20)

Here, t ≥ 1 and for all i we have ei, fi ∈ GL(2,Z), and qi ∈ Z. Moreover, we can assume that
following additional properties.

Each Ai is a trim Ssing-NFA.
The assertion (20) holds. If not, then we will make sure that every nondeterministic run of the
algorithm will either make no output at all or it will say “No”.
The NFA A is without any transition labeled by 0. In particular, A is flat over Ssing. This is
clear for m 6= 0. For m = 0 we do the contrary: if some transition labeled by 0 appears, then
we accept immediately because A is trim.
Whenever the label a′ of a transition p s−→ q is an integer, then a′ divides m. For m = 0
we make an additional modification. Whenever the label of a transition p r−→ q is a rational
number, then we replace the label by 1 = ( 1 0

0 1 ). Thus, A is a S0,sing-NFA for g = 0, and we
keep this as an invariant.

4. In deterministic polynomial time (and with a renaming) we reduce (20) to the following problem.

(m 0
0 0 ) ∈ L(A1)

( 1 0
0 q1

)
· · ·L(At)

( 1 0
0 qt

)
. (21)

The notation and the conditions are as for (20). Moreover, we may assume |qi| ≥ 2 for all
1 ≤ i ≤ t. Note that (m 0

0 0 ) ∈ L(A1)
( 1 0

0 q1

)
· · ·L(At) implies that that at least one matrix

s0 = ( 1 0
0 0 ) is used on every accepting path. If m = 0 then every accepting path must use it at

least twice.
5. Nondeterministically we guess a transition inside some Ai which is labeled by s0; and we guess

a factorization m = a′a′′ with a′, a′′ ∈ Z. (For m = 0 it is enough to guess whether a′ = 0 or
a′′ = 0.) Next, we apply Lemma 38. Since A is trim and s2

0 = s0, we can reduce (21) for m 6= 0
to the following two problems (and for m = 0 to the first problem if a′ = 0 and otherwise to the
second problem):(

a′ 0
0 0
)
∈ L(A′1)

(
1 0
0 q′1

)
· · ·L(At′)

(
1 0
0 q′

t′

)
s0 (22)(

a′′ 0
0 0
)
∈ s0L(A′′1)

(
1 0
0 q′′1

)
· · ·L(At′′)

(
1 0
0 q′′

t′

)
(23)

By left-right symmetry, it is enough to consider the second problem in (23). After a renaming we
have reduced (20) to the following problem

( a 0
0 0 ) ∈ s0L(A1)

( 1 0
0 q1

)
· · ·L(At)

( 1 0
0 qt

)
. (24)
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The notation and conditions are as in (21). Note that in (24) actually every accepting path start
with a transition labeled by s0. By a abuse of language we denote the NFA corresponding to
the right-hand side in (24) by A again. Thus, in the new notation we begin with the assertion
as0 ∈ L(A) with a ∈ Z; and we have to verify it nondeterministically.

This finishes the preprocessing phase.

I Lemma 41. The preprocessing can be realized by an NP-reduction. That is, in order to prove
Theorem 37 it is enough to assume that the question in Problem 4 is given in the form

“( a 0
0 0 ) ∈ s0L(A1)

( 1 0
0 q1

)
· · ·L(At) ?” (25)

where according to (24) we have a ∈ N.

Proof. Clearly, if a < 0, then we can modify A1 to replace the a by −a ∈ N. Expecting the
preprocessing it is clear that time complexity of every run of the nondeterministic procedure is
bounded by some polynomial. Moreover, if the answer to the question in Problem 4 is “Yes”, then
there is at least one output with a “Yes”-answer to the question in (25). Finally, if the answer to the
question in Problem 4 is “No”, then there no nondeterministic output with a “Yes”-answer to that
question. J

7.1.2 After preprocessing

Lemma 41 tells us that it is enough to prove Theorem 37 in the special case where the question is
“( a 0

0 0 ) ∈ L(B) ?” with a ∈ N and B denotes the NFA corresponding to the flat rational expression in
Equation (24)

s0L(A1)
( 1 0

0 q1

)
· · ·L(At)

( 1 0
0 qt

)
.

Without restriction the following conditions are satisfied.

1. The NFA B is trim.
2. We have t ≥ 1 and for each 1 ≤ i ≤ t every label of every transition in Ai is in Ssing for a 6= 0

and in the (smaller set) S0,sing for a = 0. In particular, there is no transition with label 0.
3. We have |qi| ≥ 2 for 1 ≤ i < t and qt = 0 for a = 0 and qt = 1, otherwise.
4. There is a unique initial state p0 and a unique final state p′t such that p0 6= p′t.
5. The initial state p0 has no incoming transitions and all outgoing transitions are labeled by s0.
6. The final state p′t has no outgoing transition and exactly one incoming transition pt

gt−→ p′t where
gt =

( 1 0
0 qt

)
.

For states p, q in B, we denote by B[p, q] the maximal subautomaton of B which defined by the
following conditions

There is a unique minimal state p and a unique final state q.
Every label of a transition in B belongs to GL(2,Q). That is, all transitions with label s0 are
removed, and therefore L(B[p, q]) ⊆ GL(2,Z).

We are interested only in the automata B[p1, q] where L(B[p, q]) 6= ∅ and q 6= p′t.
We now perform a Benois-type of flooding the NFA B by adding polynomially many s0-transitions.

Formally we run the following procedure which transforms the pair (a,B).

procedure FLOODING(a,B)
Repeat the following loop until the pair (a,B) stabilizes

loop
If necessary, make B smaller such that B becomes trim.
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Guess that ( a 0
0 0 ) ∈ L(B).

Let π denote a path from a state to the state pt such that the path (p0
s0−→ p1, π, pt

gt−→ p′t)
accepts ( a 0

0 0 ). Moreover, among all possible choices, let π minimize the number of transitions on
π which are labeled by s0. Guess, whether the number is zero. If the guess is zero, then exit the
loop with the current pair (a,B).
Thus, we can assume that π uses a transition p s0−→ q. We guess that transition; and we write
π = (π′, p s0−→ q, π′′).
Guess the state p and verify L(B[p1, p]) 6= ∅. Note that such a state p exists because we can guess
the first transition on π which is labeled by s0.
Suppose in this item that a = 0.
Check whether M11(0) ∩ L(B[p1, p]) 6= ∅. If the answer is “yes”, then we stop the procedure
with the answer: “Yes, we have 0 ∈ L(B)”.
If the answer is “no”, then there exists some 0 6= a ∈ Z such that M11(a) ∩ L(B[p1, p]) 6= ∅ and
we introduce an s0-transition p0

s0−→ q. This is a new transition because the number of transitions
on π which are labeled by s0 is minimal, and (p0

s0−→ q, π′′, pt
gt−→ p′t) is an accepting path for 0

using less s0’s than π since the additional s0-transition allows a shortcut for accepting 0.
If the procedure did not stop, then let B′ be the NFA with one more s0-transition than B′. By
construction we have 0 ∈ L(B) ⇐⇒ 0 ∈ L(B′). Rename B′ as B.
Suppose in this item that a 6= 0.
Since a > 0 there must be some integer matrix

(
a′ b′

c′ d′

)
∈ L(B[p1, p]) where 0 < a′ divides a and

‖
(
a′ b′

c′ d′

)
‖

bin
can be guessed in NP by Lemma 40.

For a moment introduce a new transition p0
a′s0−→ q. For a′ = 1 it is a new transition because (just

as in the case above where a = 0) the path (p0
s0−→ q, π′′, pt

gt−→ p′t) is accepting for as0 and π′′

is using less s0’s than π.
If a′ 6= 1, then let a′′ = a/a′. Note that 0 < a′′ < a. Remove all outgoing transitions at the
initial state p0 and after that introduce p0

s0−→ q as the unique outgoing transition at the initial
state. Then the path (p0

1−→ q, π′′, pt
gt−→ p′t) is an accepting path for a′′s0 with |a′′| ≤ |a|/2.

Let B′ be the NFA after these modification. Note that we have the following property.(
a′′ 0
0 0

)
∈ L(B′) ⊆ L(B) (26)

Rename the pair (a′′,B′) as (a,B).
endloop
For a = 0 we check whether there is a transition p0

s0−→ p1 such that M11(0) ∩L(B[p1, pt]) 6= ∅.
We can do so by Lemma 40. In the positive case we output “Yes”, otherwise we stop without any
output. Indeed, we have qt = 0 and 0 = s0

(
a b
c d

)
s0 ⇐⇒

(
a b
c d

)
∈M11(0).

For 0 < a we ask whether there exists a matrix ( a 0
c d ) ∈ L(B[p1, pt]) because s0

(
a b
c d

)
= ( a b0 0 )

and qt = 1. Since a ∈ N and ( a 0
c d ) ∈ GL(2,Z), we conclude a = d = 1. Note that we have

( 1 0
c 1 ) ∈ L(B[p1, pt]) if and only if 1 ∈ ( 1 0

1 1 )ZL(B[p1, pt]). we check whether there is a transition
p0

s0−→ p1 such that M11(0) ∩ L(B[p1, pt]) 6= ∅. We can do so by Lemma 40.
Thus, for 0 < a we check first that a = 1. If a 6= 1, then we stop without any output. If a = 1,
then we check 1 ∈ ( 1 0

1 1 )ZL(B[p1, pt]). This is an instance of Problem 1.
The algorithm returns “Yes” if and only if there is some transition p0

s0−→ p1 such that 1 ∈
( 1 0

1 1 )ZL(B[p1, pt]) is true. Otherwise it stops without any output.

endprocedure

I Lemma 42. Let n = ‖ a ‖bin + ‖B ‖bin and t(n) be an upper bound for worst-case running time
of the procedure FLOODING(a,B) under the assumption that instances to Problem 1 are answered by
some oracle in constant time. Then the following assertions hold.

1. We can bound t(n) by some polynomial in n. In particular, every run terminates.
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2. If ( a 0
0 0 ) ∈ L(B), then there is at least one successful run answering “Yes”.

3. If ( a 0
0 0 ) /∈ L(B), then no run answers “Yes”: either no output is produced or the answer is “No”.

Proof. Let s be the number of states of B. The procedure never increases s. In order to find an
polynomial upper bound on t(n) we observe that in each loop either a new s0-transition is introduced
or 0 < a and we decrease the number a by at a/2.

If ( a 0
0 0 ) ∈ L(B), then we are able to guess at each step correctly; and there is at least one run

answering “Yes”.
If ( a 0

0 0 ) /∈ L(B), then, of course, the first guess ( a 0
0 0 ) ∈ L(B) is wrong. The procedure forces us

to leave the loop where ( a 0
0 0 ) ∈ L(B) is still wrong.

Inspecting the behavior of the procedure after the line endloop an output “Yes” proves ( a 0
0 0 ) ∈

L(B). Contradiction. J

Lemma 42 finishes the proof of Theorem 35 and therefore Section 7.1.

8 Conclusion

Decidability of membership in group theory has a long history going back to the work of Dehn (and
others) at the beginning of the 20th century. Of particular interest are the membership problems for
GL(n,Z) and GL(n,Q) but as soon as n ≥ 3 various natural decision problems become undecidable,
whereas the corresponding problems remain open for n = 2.

The contributions of the paper are as follows. On a conceptual level, we introduce the notion of a
family of flat rational sets Frat(M,N) with respect to a semigroup M and a submonoid N . It turns
out that Frat(M,N) contains Rat(N), and it is a subfamily of Rat(M). For us, the most interesting
case is when N = H is group. In this case Frat(M,N) has an inductive definition which is without
reference to a particular presentation of M or H , see Theorem 22.

Another main contribution is the dichotomy stated in Theorem 17. It shows that if a subgroup G
of GL(2,Q) contains GL(2,Z) and a diagonal but not central matrix g, then G contains a Baumslag-
Solitar group BS(1, q) where q ≥ 2 and the Baumslag-Solitar group has infinite index in G. As a
consequence there is no hyperbolic subgroup in GL(2,Q) which has GL(2,Z) as a proper subgroup.
In particular, with respect to inclusion, GL(2,Z) is a maximal virtually free group in GL(2,Q).

There is a natural hierarchy of decision problems.

1. Membership to f.g. subgroups.
2. Membership to f.g. submonoids.
3. Membership to rational subsets.
4. Equality of rational subsets.

For GL(2,Z), equality of rational subsets is decidable. The dichotomy implies that for any subgroup
G, which is larger than GL(2,Z), either membership to rational subsets is decidable but equality
rational of subsets is undecidable or, in the other case, we don’t know (when the paper is written)
whether membership to f.g. subgroups for G is decidable. These facts were main reasons to define
the notion of a flat rational set. It pushes the positive decidability results for GL(2,Z) further to the
relative Boolean algebra Frat(GL(2,Q),GL(2,Z)) (and beyond if we include nonsingular matrices).
Using several structural results of flat rational sets, the main positive decidability result Theorem 37
being a generalization of Theorem 36 since it includes singular matrices.

Lines for future research include the following topics. (1) Find other natural applications using
membership problems for flat rational sets. For example, when considering GL(2, k) where k is an
algebraic field over Q or a function field in one variable over a finite field. (2) Is the membership
problem for f.g. subgroups in any subgroupG of GL(2,Q) decidable if GL(2,Z) ≤ G and

( 1 0
0 p
)
∈ G

where p is prime? (3) Several statements of our paper contain complexity bounds but we don’t know
whether they are sharp. For example, we don’t know whether Problem 1 is NP-complete.



28 Decidability of membership problems for flat rational subsets

References

1 A. V. Anisimow and F. D. Seifert. Zur algebraischen Charakteristik der durch kontext-freie Sprachen
definierten Gruppen. Elektron. Informationsverarbeit. Kybernetik, 11(10–12):695–702, 1975.

2 L. Babai, R. Beals, J.-Y. Cai, G. Ivanyos, and E. M. Luks. Multiplicative equations over commuting
matrices. In Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’96, pages 498–507, Philadelphia, PA, USA, 1996. Society for Industrial and Applied Mathematics.

3 G. Baumslag and D. Solitar. Some two-generator one-relator non-Hopfian groups. Bull. Amer. Math. Soc.,
68:199–201, 1962.

4 H. Behr and J. Mennicke. A presentation of the groups PSL(2, p). Canadian Journal of Mathematics,
20:1432–1438, 1968.

5 P. Bell, V. Halava, T. Harju, J. Karhumäki, and I. Potapov. Matrix equations and Hilbert’s tenth problem.
International Journal of Algebra and Computation, 18:1231–1241, 2008.

6 P. Bell, I. Potapov, and P. Semukhin. On the mortality problem: From multiplicative matrix equations to
linear recurrence sequences and beyond. In Proc. 44th MFCS, LIPIcs, pages 83:1–83:15, 2019.

7 P. C. Bell, M. Hirvensalo, and I. Potapov. The identity problem for matrix semigroups in sl2(z) is
np-complete. In P. N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 187–206.
SIAM, 2017.

8 M. Benois. Parties rationelles du groupe libre. C. R. Acad. Sci. Paris, Sér. A, 269:1188–1190, 1969.
9 M. Cadilhac, D. Chistikov, and G. Zetzsche. Rational subsets of Baumslag-Solitar groups. In A. Czumaj,

A. Dawar, and E. Merelli, editors, 47th International Colloquium on Automata, Languages, and
Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume
168 of LIPIcs, pages 116:1–116:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

10 J. Cassaigne, V. Halava, T. Harju, and F. Nicolas. Tighter undecidability bounds for matrix mortality,
zero-in-the-corner problems, and more. arXiv eprints, abs/1404.0644, 2014.

11 É. Charlier and J. Honkala. The freeness problem over matrix semigroups and bounded languages. Inf.
Comp., 237:243–256, 2014.

12 T. Colcombet, J. Ouaknine, P. Semukhin, and J. Worrell. On reachability problems for low-dimensional
matrix semigroups. In C. Baier, I. Chatzigiannakis, P. Flocchini, and S. Leonardi, editors, 46th
International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019,
Patras, Greece, volume 132 of LIPIcs, pages 44:1–44:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019.

13 V. Diekert and M. Elder. Solutions to twisted word equations and equations in virtually free groups.
International Journal of Algebra and Computation, 30:731–819, 2020. Based on the conference in
LIPIcs.ICALP.2017.96:1–96:14.

14 V. Diekert, M. Kufleitner, G. Rosenberger, and U. Hertrampf. Discrete Algebraic Methods. Arithmetic,
Cryptography, Automata and Groups. Walter de Gruyter, 2016.

15 V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, Singapore, 1995.
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9 Appendix

9.1 Missing proofs for Section 2.2

Proof of Proposition 2. W.l.o.g. suppose that 0 ≤ b ≤ a. We describe an algorithm gcd(a, b) that
outputs x and y such that ax+ by = gcd(a, b) and |x|, |y| ≤ max{a, b}. If b ∈ {0, a}, then output
x = 1 and y = 0 since the gcd(a, b) = a in this case.

Suppose 0 < b < a. Compute k and r such that a = kb+ r, where 0 ≤ r < b. Note that we also
have r ≤ a/2. The computation of k involves an integer division which is known to have the same
complexity as multiplication. For example, by Schönhage-Strassen multiplication can be done in
time Õ(n). Since we use soft-O-notation the reduction from integer division to multiplication is easy
using Newton’s method.

If r = 0, then return x = 0 and y = 1 since gcd(a, b) = b. If r > 0, then recursively call
gcd(b, r). Let u, v be the outputs of gcd(b, r) such that bu + rv = gcd(b, r) = gcd(a, b) and
|u|, |v| ≤ b. Then we have

gcd(a, b) = bu+ rv = bu+ (a− kb)v = av + b(u− kv).

The algorithm gcd(a, b) outputs x = v and y = u− kv. The number y = u− kv can be computed
in time Õ(n) since the absolute values of u, v and k are bounded by a, and hence they are n-bit
numbers. We already have |x| = |v| ≤ b ≤ a. To estimate |y|, observe that

|y| ≤ | gcd(a, b)− av|
b

≤ gcd(a, b)
b

+ a|v|
b
≤ gcd(a, b)

b
+ a.

The assumption r > 0 implies that gcd(a, b) < b. Thus gcd(a, b)/b < 1. Since |y| and a are integers,
it follows that |y| ≤ a as required.

It is not hard to see that gcd(a, b) requires O(n) recursive calls because as we noted above
r ≤ a/2. Since each call takes Õ(n) time, the total running time is Õ(n2). J

It is possible to improve the running time to compute the values x, y in time O(n2). But this is
not important since for the following results any polynomial time bound would suffice.

Proof of Lemma 1. For |q| = 1, the numbers x = y = 1 are coprime; and they satisfy
xb+ yd ≡ 0 mod q because all integers are congruent modulo 1. Hence, we may assume 2 ≤ |q|.

Let P1 be the set of primes p such that gcd(p, d) = 1 and P2 the set of all other primes. That is
p ∈ P2 implies p | d. Write q = q1 · q2 such that qi uses primes from Pi, only. For every prime p we
have

p ∈ P1 =⇒ gcd(p, d) = 1 (27)

p ∈ P2 =⇒ gcd(p, b) = 1, because gcd(b, d) = 1. (28)

Hence, d is invertible in Z/q1 and b is invertible in Z/q2. Therefore we can solve the following.

x1 ≡ 1 mod q1 and y1 ≡ −bd−1 mod q1 (29)

y2 ≡ 1 mod q2 and x2 ≡ −db−1 mod q2 (30)

Since gcd(q1, q2) = 1 we obtain by Chinese remaindering x, y with 1 ≤ x, y < |q| such that

x ≡ 1 mod q1 and x ≡ −db−1 mod q2 (31)

y ≡ 1 mod q2 and y ≡ −bd−1 mod q1 (32)

The congruences in (31) and (32) tell us that these x, y with 1 ≤ x, y < |q| satisfy

xb+ yd ≡ 0 mod q. (33)
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Indeed, the congruence in (33) holds modq1 and modq2, hence it holds modq.
We claim that gcd(x, y, q) = 1. To see this, let p | q. Then p | qi for exactly one i ∈ {1, 2}. Say

i = 1, then x ≡ 1 mod q1 implies x ≡ 1 mod p because p | q1. Hence, gcd(x, q1) = 1. For i = 2
we obtain gcd(y, q2) = 1 and therefore gcd(x, y, q) = 1 since q = q1q2. Thus, the claim.

It is still possible that there is a prime p such that p | x and p | y. However, since gcd(x, y, q) = 1
such a prime p is invertible in Z/q. Thus,

x

p
b+ y

p
d ≡ 0 mod q. (34)

The property gcd(xp ,
y
p , q) = 1 is inherited. So we can make x and y smaller. We are done. J

9.2 Generators of SL(2,Z[1/p])
First, we prove a claim used in the proof of Corollary 12 which states that if H is a subgroup of finite
index in a f.g. group G such the word problem for H is decidable, then the word problem for G is
decidable.

Since G/H is finite, H is f.g.. This is classical fact, see e. g. [31]. Having this, assume we can
decide the word problem for H in time t(n) for words on length n over some finite generating set A
for H . Let R ⊆ G be a subset of size |G/H| − 1 such that G \H = HR∪H . Then A∪R generates
G. Moreover for each a ∈ A∪R and r ∈ R we find a word va,r ∈ A∗ and an element sa,r ∈ R such
that ra = va,rsa,r in G. By moving coset representatives to the right we can transform any word
w of length n over A ∪R to a word w′ in A∗ ∪A∗R. The length of the word w′ is bounded by cn
where c = max {|va,r| | a ∈ A ∪R, r ∈ R}. For w = 1 ∈ G we must have w′ ∈ A∗. Thus we can
check whether w′ = 1 in time t(cn). Changing to another generating set for G leads to time t(O(n)).

Finally, we give a simple proof for the well-known fact that SL(2,Z[1/p]) is generated by
( 0 −1

1 0
)
,

( 1 1
0 1 ), and

(
p 0
0 p−1

)
. As usual, Z[1/p] is the ring {pnr ∈ Q |n, r ∈ Z}. We use the following notation:

let α, β, γ, δ denote elements in Z[1/p], and a, b, c, d denote elements in Z. Starting with a matrix(
α β
γ δ

)
we do the following:

1. Multiply by
(
p−1 0

0 p

)
on the left until we reach

(
α β
c d

)
.

2. Multiply by
( 0 −1

1 0
)
,
( 1 ±1

0 1
)
, and

( 1 0
±1 1

)
until we reach

(
α β
0 d

)
. This is trivial for |c| = |d|. In

the other case we may assume |c| > |d|. Next, transform
(
α β
c d

)
into a matrix of type

(
α β
c±d d

)
such that |c± d| < |c|. Use induction on |c|+ |d|.

3. Multiply by
(
p 0
0 p−1

)
on the left until we reach

(
α b
0 δ

)
.

4. Now, αδ = 1. Hence α = pma and δ = pnd where gcd(a, p) = gcd(d, p) = 1. Since p is a
prime, m+ n = 0 and ad = 1.

5. WLOG a = d = 1 and m ≥ 1 and hence,
(
α b
0 δ

)
=
(
pm b

0 p−m

)
.

6. Using
( 1 ±1

0 1
)

we can add or subtract the lower row pm|b| times to the upper row. Since m ≥ 1
we obtain

(
p 0
0 p−1

)m
.
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