140 research outputs found

    О разрешимости проблем ограниченности для счетчиковых машин Минского

    Get PDF
    In the paper the decidability of boundedness problems for counter Minsky machines is investigated. It is proved, that for Minsky machines with two counters the boundedness is partial decidable, but for the total boundedness problem does not even exist a semidecision algorithm. On the other hand, for one-counter Minsky machines all these problems are polinomial (quantitatively of local machine states) decidable.Исследуется разрешимость проблем ограниченности для счетчиковых машин Минского. Доказывается, что для машин Минского с двумя счетчиками проблема ограниченности лишь частично разрешима, а проблема тотальной ограниченности не является даже частично разрешимой. Для односчет-чиковых машин Минского указанные проблемы разрешимы за время, полиномиально зависящее от общего количества локальных состояний счетчиковой машины

    Undecidability of Coverability and Boundedness for Timed-Arc Petri Nets with Invariants

    Get PDF
    Timed-Arc Petri Nets (TAPN) is a well studied extension of the classical Petri net model where tokens are decorated with real numbers that represent their age. Unlike reachability, which is known to be undecidable for TAPN, boundedness and coverability remain decidable. The model is supported by a recent tool called TAPAAL which, among others, further extends TAPN with invariants on places in order to model urgency. The decidability of boundedness and coverability for this extended model has not yet been considered. We present a reduction from two-counter Minsky machines to TAPN with invariants to show that both the boundedness and coverability problems are undecidable

    Forward Analysis and Model Checking for Trace Bounded WSTS

    Full text link
    We investigate a subclass of well-structured transition systems (WSTS), the bounded---in the sense of Ginsburg and Spanier (Trans. AMS 1964)---complete deterministic ones, which we claim provide an adequate basis for the study of forward analyses as developed by Finkel and Goubault-Larrecq (Logic. Meth. Comput. Sci. 2012). Indeed, we prove that, unlike other conditions considered previously for the termination of forward analysis, boundedness is decidable. Boundedness turns out to be a valuable restriction for WSTS verification, as we show that it further allows to decide all ω\omega-regular properties on the set of infinite traces of the system

    Language Emptiness of Continuous-Time Parametric Timed Automata

    Full text link
    Parametric timed automata extend the standard timed automata with the possibility to use parameters in the clock guards. In general, if the parameters are real-valued, the problem of language emptiness of such automata is undecidable even for various restricted subclasses. We thus focus on the case where parameters are assumed to be integer-valued, while the time still remains continuous. On the one hand, we show that the problem remains undecidable for parametric timed automata with three clocks and one parameter. On the other hand, for the case with arbitrary many clocks where only one of these clocks is compared with (an arbitrary number of) parameters, we show that the parametric language emptiness is decidable. The undecidability result tightens the bounds of a previous result which assumed six parameters, while the decidability result extends the existing approaches that deal with discrete-time semantics only. To the best of our knowledge, this is the first positive result in the case of continuous-time and unbounded integer parameters, except for the rather simple case of single-clock automata

    Dense-choice Counter Machines revisited

    Full text link
    This paper clarifies the picture about Dense-choice Counter Machines, which have been less studied than (discrete) Counter Machines. We revisit the definition of "Dense Counter Machines" so that it now extends (discrete) Counter Machines, and we provide new undecidability and decidability results. Using the first-order additive mixed theory of reals and integers, we give a logical characterization of the sets of configurations reachable by reversal-bounded Dense-choice Counter Machines

    The Well Structured Problem for Presburger Counter Machines

    Get PDF
    International audienceWe introduce the well structured problem as the question of whether a model (here a counter machine) is well structured (here for the usual ordering on integers). We show that it is undecidable for most of the (Presburger-defined) counter machines except for Affine VASS of dimension one. However, the strong well structured problem is decidable for all Presburger counter machines. While Affine VASS of dimension one are not, in general, well structured, we give an algorithm that computes the set of predecessors of a configuration; as a consequence this allows to decide the well structured problem for 1-Affine VASS

    The MSO+U theory of (N, <) is undecidable

    Get PDF
    We consider the logic MSO+U, which is monadic second-order logic extended with the unbounding quantifier. The unbounding quantifier is used to say that a property of finite sets holds for sets of arbitrarily large size. We prove that the logic is undecidable on infinite words, i.e. the MSO+U theory of (N,<) is undecidable. This settles an open problem about the logic, and improves a previous undecidability result, which used infinite trees and additional axioms from set theory.Comment: 9 pages, with 2 figure

    Adaptable processes

    Get PDF
    We propose the concept of adaptable processes as a way of overcoming the limitations that process calculi have for describing patterns of dynamic process evolution. Such patterns rely on direct ways of controlling the behavior and location of running processes, and so they are at the heart of the adaptation capabilities present in many modern concurrent systems. Adaptable processes have a location and are sensible to actions of dynamic update at runtime; this allows to express a wide range of evolvability patterns for concurrent processes. We introduce a core calculus of adaptable processes and propose two verification problems for them: bounded and eventual adaptation. While the former ensures that the number of consecutive erroneous states that can be traversed during a computation is bound by some given number k, the latter ensures that if the system enters into a state with errors then a state without errors will be eventually reached. We study the (un)decidability of these two problems in several variants of the calculus, which result from considering dynamic and static topologies of adaptable processes as well as different evolvability patterns. Rather than a specification language, our calculus intends to be a basis for investigating the fundamental properties of evolvable processes and for developing richer languages with evolvability capabilities
    corecore