Parametric timed automata extend the standard timed automata with the
possibility to use parameters in the clock guards. In general, if the
parameters are real-valued, the problem of language emptiness of such automata
is undecidable even for various restricted subclasses. We thus focus on the
case where parameters are assumed to be integer-valued, while the time still
remains continuous. On the one hand, we show that the problem remains
undecidable for parametric timed automata with three clocks and one parameter.
On the other hand, for the case with arbitrary many clocks where only one of
these clocks is compared with (an arbitrary number of) parameters, we show that
the parametric language emptiness is decidable. The undecidability result
tightens the bounds of a previous result which assumed six parameters, while
the decidability result extends the existing approaches that deal with
discrete-time semantics only. To the best of our knowledge, this is the first
positive result in the case of continuous-time and unbounded integer
parameters, except for the rather simple case of single-clock automata