2,491 research outputs found

    Separating Agent-Functioning and Inter-Agent Coordination by Activated Modules: The DECOMAS Architecture

    Full text link
    The embedding of self-organizing inter-agent processes in distributed software applications enables the decentralized coordination system elements, solely based on concerted, localized interactions. The separation and encapsulation of the activities that are conceptually related to the coordination, is a crucial concern for systematic development practices in order to prepare the reuse and systematic integration of coordination processes in software systems. Here, we discuss a programming model that is based on the externalization of processes prescriptions and their embedding in Multi-Agent Systems (MAS). One fundamental design concern for a corresponding execution middleware is the minimal-invasive augmentation of the activities that affect coordination. This design challenge is approached by the activation of agent modules. Modules are converted to software elements that reason about and modify their host agent. We discuss and formalize this extension within the context of a generic coordination architecture and exemplify the proposed programming model with the decentralized management of (web) service infrastructures

    Coordination of Supply Webs Based on Dispositive Protocols

    Get PDF
    A lot of curricula in information systems, also at master level, exists today. However, the strong need in new approaches and new curricula still exists, especially, in European area. The paper discusses the modern curriculum in information systems at master level that is currently under development in the Socrates/Erasmus project MOCURIS. The curriculum is oriented to the students of engineering schools of technical universities. The proposed approach takes into account integration trends in European area as well as the transformation of industrial economics into knowledge-based digital economics The paper presents main characteristics of the proposed curriculum, discuses curriculum development techniques used in the project MOCURIS, describes the architecture of the proposed curriculum and the body of knowledge provided by it

    Modelling production management systems

    Get PDF

    A Multi-Agent Architecture for An Intelligent Web-Based Educational System

    Get PDF
    An intelligent educational system must constitute an adaptive system built on multi-agent system architecture. The multi-agent architecture component provides self-organization, self-direction, and other control functionalities that are crucially important for an educational system. On the other hand, the adaptiveness of the system is necessary to provide customization, diversification, and interactional functionalities. Therefore, an educational system architecture that integrates multi-agent functionality [50] with adaptiveness can offer the learner the required independent learning experience. An educational system architecture is a complex structure with an intricate hierarchal organization where the functional components of the system undergo sophisticated and unpredictable internal interactions to perform its function. Hence, the system architecture must constitute adaptive and autonomous agents differentiated according to their functions, called multi-agent systems (MASs). The research paper proposes an adaptive hierarchal multi-agent educational system (AHMAES) [51] as an alternative to the traditional education delivery method. The document explains the various architectural characteristics of an adaptive multi-agent educational system and critically analyzes the systemā€™s factors for software quality attributes

    A theoretical and computational basis for CATNETS

    Get PDF
    The main content of this report is the identification and definition of market mechanisms for Application Layer Networks (ALNs). On basis of the structured Market Engineering process, the work comprises the identification of requirements which adequate market mechanisms for ALNs have to fulfill. Subsequently, two mechanisms for each, the centralized and the decentralized case are described in this document. These build the theoretical foundation for the work within the following two years of the CATNETS project. --Grid Computing

    Development of an Industrial Internet of Things (IIoT) based Smart Robotic Warehouse Management System

    Get PDF
    According to data of Census and Statistics Department, freight transport and storage services contributed to 90% of the employment of logistics sector in the period from 2010 to 2014. Traditional warehouse operations in Hong Kong are labor-intensive without much automation. With the rapid increasing transaction volume through multi-channel, the preference for next-day delivery service has been increasing. As a result, 3rd party logistics providers have realized the importance of operational efficiency. With the advent of Industry 4.0 emerging technologies including Autonomous Robots, Industrial Internet of Things (IIoT), Cloud Computing, etc., a smart robotic warehouse management system is proposed as it redefines the warehouse put-away and picking operations from man-to-goods to goods-to-man using autonomous mobile robots. This paper aims to develop and implement an IIoT-based smart robotic warehouse system for managing goods and autonomous robots, as well as to make use of the autonomous mobile robots to deliver the goods automatically for put-away and picking operations. The significance of the paper is to leverage the Industry 4.0 emerging technologies to implement the concept of smart warehousing for better utilization of floor space and labor force so as to improve logistics operational efficiency

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity networkā€”the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio

    Multi-agent system specification forĀ distributed scheduling inĀ home health care

    Get PDF
    Nowadays, scheduling and allocation of resources and tasks becomes a huge and complex challenge to the most diverse industrial areas, markets, services and health. The problem with current scheduling systems is that their management is still done manually or using classical optimization methods (usually static, time-consuming) and centralized approaches. However, opportunities arise to decentralize solutions with smart systems, which enable the distribution of the computational effort, the flexibility of behaviours and the minimization of operating times and operational planning costs. The paper proposes the specification of a Multi-agent System (MAS) for the Home Health Care (HHC) scheduling and allocation. The MAS technology enables the scheduling of intelligent behaviours and functionalities based on the interaction of agents, and allows the evolution of current strategies and algorithms, as it can guarantee the fast response to condition changes, flexibility and responsiveness in existing planning systems. An experimental HHC case study was considered to test the feasibility and effectiveness of the proposed MAS approach, the results demonstrating promising qualitative and quantitative indicators regarding the efficiency and responsiveness of the HHC scheduling.This work has been supported by FCTā€”FundaĆ§Ć£o para a CiĆŖncia e a Tecnologia within the R&D Units Projects Scope: UIDB/00319/2020 and UIDB/05757/2020. Filipe Alves is supported by FCT Doctorate Grant Reference SFRH/BD/143745/2019

    Role Assignment Adaptation: An Intentional Forgetting Approach

    Get PDF
    In organizations the distribution of tasks is a rising challenge in complex and dynamic environments. By structuring responsibilities and expectations for task processing in roles, organizations provide a transparent approach for collaboration. However, if tasks are being generated unexpectedly, actors who enact multiple roles might be overloaded in dynamic environments. By focusing on relevant information in terms of an intentional forgetting mechanism, actors could overcome these overload situations. Therefore, we provide an agent-based simulation to model and analyze effects of intentional forgetting by adapting role assignments in dynamic environments. The agent architecture utilizes separated revision functions to control an agentā€™s perception and belief acquisition to focus on relevant information. The model is tested using a case-study in a simulated emergency response scenario. The simulation results show that adapting role assignments at runtime improves team performance significantly
    • ā€¦
    corecore