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ABSTRACT

The focus of this paper is the design of a mechanism to help economic agents - either autonomously or 

cooperatively planning - to achieve Pareto-optimal allocation of resources via a completely decen-

tralized coordination of a logistics network. Besides giving a classification and a short review of 

existing scheduling approaches capable for supply chain management, this article specifies and 

evaluates protocols employing time-depended price-functions. By performing simulations with the 

implemented protocol using well-known Job Shop Scheduling Problems as a benchmark we show the 

efficiency and feasibility of the designed mechanism. The approach enables each agent to exploit the 

external effects caused by resource constraints of its supply chain contractors by adapting its 

production planning. Additionally the systems capability to reconfigure itself in case of production 

resources failure is increased. The evaluation of the protocols concludes with a welfare analysis 

investigating the payoff distribution along the supply chain. Finally we conclude that future research 

on this topic should turn to learning agent systems to reduce communication costs. 
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1. SCHEDULING TECHNIQUES IN AGENT-BASED SUPPLY CHAIN 

MANAGEMENT

Modeling, automation and optimization of a Supply Chain (SC), like most problems in operations 

management, are characterized by the two dimensions time and location, as well as a utility function 

which depends on both. The vectors time and location themselves span two problem classes in the 

operations management domain, which are closely related to Supply Chain Management (SCM): the 

class of Routing Problems (RP) and the class of Scheduling Problems (SP). Traditionally, RP are 

rarely considered to be in the scope of SCM. Literature mainly focuses on the scheduling aspects of 

SCM and assumes the RP to be solved at a later stage of planning. SP mostly turn out to be 

computationally hard (NP-hard)1 and SCM makes no exception in this context. Handling this difficulty 

in SCM has led to various approaches, which could be roughly assigned to the following classes: 

Solution method: Properties of scheduler: Core domains:

Combinatorial Auctions  central    Game Theory, Ontologies 

Bargaining Processes  distributed   Game Theory, Ontologies 

Random Search   central, distributed  Stochastic Optimization

Knowledge Based Systems central, distributed  Automated Reasoning, Ontologies 

Learning Systems  central, distributed  Machine Learning   

Despite the appearance of the auctioneer as a central scheduler within the first solution method, the 

decision for a distributed architecture as a Multi Agent System (MAS) should be clear in every other 

case for three reasons: 

MAS can describe the SCM directly by transforming physical nodes in the Supply Chain topology into 

agents.

MAS are flexible with respect to the mobility of transported and transformed goods, e.g. software 

agents can be attached to the regarding good as module. 

MAS represent distributed computing power, which is helpful for solving complex problems. 

MAS could be considered as communities of small autonomous software programs which should have 

the following properties: rationality, pro- and interactivity [Wooldridge and Jennings, 1995; 

Franklin and Graesser, 1996]. The MAS itself behaves different compared to the plain sum of actions 

resulting from the individual rationality of its members, a phenomenon which is called emergence 

[Goldstein, 1999].  

Bargaining Processes (BP): 

CONTRACT NET [Davis and Smith, 1983] provided one of the first attempts to design an effective 

communication protocol that supports the co-ordination and control of distributed problem solving 

systems. It assigns the tasks by a distributed bilateral, step-by-step ask bid mechanism between 

“managers” and “contractors” and tries thereby to avoid redundant communication traffic. Sub 

protocols for special tasks could be defined between groups of agents to announce, bid and award 

tasks, using example adjacency, processing capability and current workload as selection criterion. 

[Sandholm, 1993] creates a formal model for the allocation process which is based on a marginal cost 

calculus of the task performance. [Rosenschein and Zlotkin, 1994; Durfee and Rosenschein, 1994; 

1  E.g. for the Job Shop Scheduling Problem see [Garey et al., 1976]. 
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Rosenschein and Zlotkin, 1996] and [Sandholm and Lesser, 1995; Sandholm, 1996] introduce aspects 

of Game Theory into contracting mechanisms by questioning the assumption of collaboration. 

Depending on the aims of the agents [Rosenschein and Zlotkin, 1994] postulate three frameworks: 

Task Oriented Domains (TOD), State Oriented Domains (SOD) and Worth Oriented Domains (WOD). 

The hiding of information, the pretending of decoy tasks and the lying about true intentions are further 

variants of applicable complications in agents’ behavior. This extension is a consequence of the 

differing economic interests of the supply chain participants and the reason why traditional enterprise 

scheduling mechanisms cannot be easily applied to the SCM domain. Despite efforts are made in 

many bargaining approaches driven by Game Theory, mechanism design does not always provide a 

satisfying trade off for the conflict Pareto optimality vs. individual utility optimization.  

[Sen and Durfee, 1996] enhance the CONTRACT NET protocol with different decision models for 

distributed scheduling bringing communication costs for the negotiation process into account. 

[Wooldrige and Jennings, 1999] present a model of cooperative problem solving, which is also based 

on CONTRACT NET. In this model agents try to recognise a potential of cooperation with respect to 

their own objectives. The process of coalition formation is described by multi-modal logic which 

represents the mental states of the agents. 

[Sierra et al., 2000] introduce argumentation based negotiation for agents to overcome some 

shortcomings of Game Theoretic approaches. Mainly the fact that only offer and counter-offer on one 

issue characterise the negotiation space in CONTRACT NET is criticised. The negotiation space is 

therefore extended by allowing additional information exchange. This should stimulate a persuasion 

process.

The aforementioned examples only demonstrate a small scope of the range of existing negotiation 

mechanisms that can be employed to manage the scheduling of tasks in a SC. 

A further crucial point in the SC engineering domain is the semantic design of the communication 

process. Creating sophisticated protocols is usually done by employing Ontologies.2 An 

implementation of an ontology designated for agent communication is Knowledge Query and 

Manipulation Language (KQML) [Finin et al., 1994]. KQML is both a message format and a message 

handling protocol to support knowledge sharing among agents. KQML focuses on an extensible set of 

performatives, which defines permissible “speech acts”. Negotiation processes like those utilised in 

CONTRACT NET have been modelled in KQML. 

Knowledge Interchange Formalism (KIF) [Genesereth, 1998] represents a subset of KQML. KIF is 

based on first order logic and includes both a specification of syntax for the language as well as a 

specification for semantics. KIF is often used to support translation from one content language to 

another between two agents. 

With the Coordination Language (COOL) [Barbuceanu and Fox, 1995; Barbuceanu and Fox, 1996] 

present a subset of KQML designed for the description of co-ordination processes. The models of co-

ordination involving speech acts are described with a Finite State Machine (FSM). Including a set of 

rules that is matched to the system states, the MAS communicating in COOL is enabled to meet 

decisions about resource allocation. The application, which is especially engineered for SCs, performs 

well in contracting and scheduling for larger networks, even for sophisticated rule sets. 

Combinatorial Auctions (CA): 

One way to resolve the strong complementarities constructing a SC is to auction the resources offered 

and requested by the participants, employing mechanisms which take account of them. Such auctions 

are called Combinatorial Auctions. In CA, agents place all or nothing bids for bundles of goods. The 

2  See [Grüninger and Uschold, 1996] for a comprehensive introduction. 
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auction computes high quality allocation of bundles, ensuring that the agents do not receive 

undesirable partial bundles. Although the general problem of winner determination is NP-hard 

[Rothkopf et al., 1998] the problem could be solved relatively quickly for larger allocation problems 

with mixed-integer-linear programming [Anderson et al., 2000]. 

[Wellman, 1993] creates Market Oriented Programming (MOP) as a base to solve the Task Allocation 

Problem (TAP) associated with distributed problem solving. The tasks are scheduled by an auction 

algorithm called WALRAS [Cheng and Wellman, 1995], which computes an equilibrium price for the 

bids (offers) of the consumers (producers) coupled to a utility- (production-) function. Wellman 

applies the MOP to a transportation network to calculate the cheapest maximum flow solution. 

[Wellman and Walsh, 1998; Wellman et al., 2001] try to develop auction protocols, which can handle 

CAs in the MOP-framework. They inquire Simple Ascending Auction Protocols (SAAP) and a 

Generalized Vickery Auction Protocols (GVAP) recognizing that none of both can guarantee an 

optimal solution for decentralized scheduling.  

Based on TODs introduced in [Rosenschein and Zlotkin, 1994], [Walsh et al., 1998; 

Walsh and Wellman, 1999] present the concept of Task Dependency Networks (TDN) to facilitate the 

modeling of interdependent tasks in a SC. One of the crucial points for the design of auction 

mechanisms is, as already discussed for BPs, the question whether the agents act strategically or not. 

So far auction models relied on truth-telling agents. In [Walsh et al., 2000] examine a one-shot CA-

mechanism with strategic bidding policies, computed by Monte-Carlo simulations. The protocol 

avoids some difficulties of the coordination mechanism by allowing de-commitment. While non-

strategic bidding leads always to the construction of a stable SC-network with almost optimal 

allocations, strategic-bidding can augment the gains of the suppliers, including the imperfection of 

preventing a stable network for bidding margins near zero. A comprehensive and detailed explanation 

of the material presented above can be found in [Walsh, 2001].  

Randomized Search Strategies (RSS): 

Randomized Search Strategies (RSS) are one way to circumvent the computational consequences of 

NP-completeness sacrificing some solution quality. They use random choice to guide themselves 

through the problem search space. The search path, however, is not a directionless random walk, 

moreover, knowledge gained from previous results is used and recombined with some randomizing 

features. Popular representatives of this techniques are Genetic Algorithms (GA) proposed by 

[Holland, 1975; Goldberg, 1989] and Simulated Annealing (SA) first described by [Kirkpatrick 

and Gelatt, 1983]. Combination of both methodologies presented by [Goldberg and Mahfoud, 1993; 

Wendt, 1994] outperform the plain approach in some problem domains, e.g. for the Traveling 

Salesman Problem (TSP). The first applications of GAs to scheduling problems were introduced by 

[Davis, 1985]. The main problem for constructing efficient heuristics lies in finding the right 

representation of the tasks and resources on the alleles. In the mid 90s this problem was solved by 

reusing encoding patterns employed for sequencing problems, mainly the TSP [Fang et al., 1993; 

Husbands, 1994; Singh and Youssef, 1996; Yamada and Nakano, 1997; Lin et al., 1997a]. Parallel GA 

applications for the Job-Shop Scheduling Problem (JSSP) where examined by [Lin et al., 1997b] and 

obtained a more-than-linear acceleration compared to the single GA approach, as well as a better 

solution quality. 

[Aarts et al., 1988] examined the applicability of SA to scheduling [Sadeh and Nakakuki, 1996; 

Sadeh et al., 1997]. A hybrid approach called Genetic Simulated Annealing is used by 

[Shroff et al., 1996]. It combines classical crossover operators with Simulated Annealing’s acceptance 

probabilities, thus allowing for “longer jumps” within the search space than Cooperative Simulated 

Annealing [König and Wendt, 2000], which often gets trapped in local optima of the “rugged” fitness 

landscapes spanned by purely local search operators. In [Yamada and Nakano, 1996] the role of the 

“escape” operator is successfully played by a repair operator based on the Shifting Bottleneck 

Algorithm, which is used whenever a new local neighbor solution gets rejected by the SA. 
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With Agent Network for Task Scheduler (ANTS) [Sauter and Parunak, 1999] present an Agent Based

Market Architecture (ABMA) using a modified CONTRACT NET protocol for communication. Task 

scheduling is handled by unit-process- and part-brokers employing a function called Density-based 

Emergent Scheduling Kernel (DESK) which represents the ratio between the minimal resource 

commitment time and the time span available in the overall production schedule for every part. 

Minimizing the aggregate workload for all resources is objective of shifting tasks within available time 

span. If a conflict is not resolvable a renegotiation of a part of the schedule is necessary. 

Within the ABMA MAGNET (Multi Agent Negotiation Testbed) [Collins et al., 1997; Collins et al., 

1999; Collins et al., 2000] create a hybrid method between CA and SA which allows multi period 

negotiations of customer and supplier agents within the framework of a market place. The customer 

agent builds feasible plans for the production process based on his operational requirements with the 

Critical Path Method (CPM) and places these offers. Supplier agents respond with bids for the 

composite tasks, or parts of them, if they are willing to give a discount for breaking the structure. The 

customer agent selects the best bid bundle offered by the suppliers by means of an SA evaluation 

algorithm. Re-negotiation is allowed, and if a suitable solution is found the market manager confirms 

the commitment and supervises the execution. 

In the MASCOT (Multi Agent Supply Chain Coordination Tool) environment [Sadeh and Fox, 1998; 

Kjenstadt, 1998; Sadeh et al., 1999] use coordination agents to meet optimal planning decisions for the 

suppliers and customers in a production process. The decisions on the low level tier of the architecture 

are made by employing a stochastic optimization tool named MICRO-BOSS (Micro Bottleneck

Scheduling System) [Sadeh, 1991; Sadeh, 1994]. The micro-opportunistic scheduler propagates the 

resource constraints and apparent cost for a proposed schedule to all agents and applies a conflict 

resolution technique in case of collisions. Critical activities are determined for the resources and then 

jobs are assigned by a least cost approach. The process is iterated until a feasible solution emerges. 

Knowledge Based Systems (KBS): 

Knowledge Based Systems (KBS) for scheduling tasks can be considered as hybrid systems. For one 

thing they make use of a Blackboard Architecture (BA) [Hayes-Roth, 1985], for another they rely on 

RSS.

A blackboard is an information processing structure composed of several cooperating Knowledge 

Sources (KS): each containing any kind of algorithm, rules, data, and so forth, a separate Control 

Element (CE): determining the order in which the KS are executed, and the blackboard itself: the locus 

of communication and global memory. 

[Hildum, 1994; Neimann et al., 1994] outlines a blackboard hierarchy with a scheduler blackboard 

containing schedule-, resource- and goal-KSs on the one hand, and a simulator blackboard embedding 

a world-, events-, application data-blackboard on the other hand. Triggered through events and 

determined by teamwork of the remaining KS using implicit rules, the blackboard system applies 

different RSS implemented in the scheduler’s board (based on MICRO-BOSS) until a feasible plan for 

resource allocation emerges. 

With Integrating Process Planning and Production Scheduling (IP3S) Architecture [Sadeh et al., 1996; 

Sadeh et al., 1998] present a blackboard-based shell which supports, concurrent development and 

dynamic revision of integrated process planning and production scheduling solutions, mixed initiative 

functionalities (which allows users the creation and testing of “what-if scenarios”), workflow 

management functionalities, and supply chain coordination functionalities. 

[Grüninger and Fox, 1997] propose an ontology for enterprise integration in a cooperating MAS for 

integrated supply chain management. Activities of the intelligent agents are represented in first-order 

logic axioms, which are embedded in a micro-theory. By reasoning with these axioms, a satisfying 

propagation of scheduling constraints is achieved. 
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Learning Systems (LS): 

One way to augment system performance of distributed scheduling systems in SCs is to introduce 

learning in the agents’ behaviour. In the domain of Machine Learning (ML), Reinforcement Learning 

(RL) is an encouraging approach [Sutton and Barto, 1998]. RL is derived as a hybrid between 

Dynamic Programming and Monte-Carlo simulation. The advantage of this optimization method lies 

in the fact that the search for optimal decision sweeps only over regions in the state space, which could 

be considered as relevant. Mostly the RL system is implemented employing Artificial Neural 

Networks (ANNs), Principle Component Analysis (PCA) and GA Selection (GAS) for further state 

space compression. 

[Zhang, 1996; Zhang and Dietterich, 1995] apply RL to learn domain-specific heuristics for job shop 

scheduling. A repair based scheduler starts with a critical-path schedule and incrementally repairs 

constraint violations with the goal of finding a short conflict-free schedule. The RL-algorithm is allied 

to train a NN to learn a heuristic evaluation function over states. This evaluation function is used by a 

one–step lookahead search to find good solutions to new scheduling problems. The performance of the 

system is better than the best known non-learning search procedure based on SA [Zhang and 

Dietterich, 2000]. 

[Miagkikh and Punch, 1999] propose a distributed system of RL-agents to solve combinatorial 

optimization problems. The system performs local search encoding information by RL and global 

search through the emergent action of the agent population. 

[Arai et al., 2000] use a population of RL-agents employing a modified RL method called Profit 

Sharing (PS). PS uses trial and error experiences and reinforces effective rules instead of estimating 

values using the sequential values in state space. Applied to a scheduling task PS outpaces the 

traditional RL strategy. 

[Zeng and Sycara, 1996; Zeng and Sycara, 1997] show an alternative approach to learning agents in 

the negotiation domain. They present a sequential decision making model of negotiation called 

Baazar. The model learns by a Bayesian belief update process. The model addresses complicated 

issues such as multi-issue and multi-criteria negotiation. 

COORDINATION OF SUPPLY WEBS BY SOFTWARE AGENTS 

The area of research described here clearly funds in the randomized search strategies domain. The

following section contrasts different processes/protocols for collaborative rescheduling in supply 

webs. Along with the description of the three different protocols it compares their characteristics with 

respect to efficiency of coordination and communication overhead. 

Figure 1 illustrates a rescheduling protocol for an agent not having access to any information except 

for time and price information agreed upon in the current contracts with its customers and suppliers. 

Each agent successively tries to improve its schedule by randomly selecting new start times for its 

tasks and then requesting up-to-date price information from both predecessors and successors in the 

supply web. Whenever this step turns out to be profitable (compared to the status quo), both contracts 

get updated. 
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Task rescheduling based on price information for a single point in time 

Fig. 1 Simple rescheduling protocol based on single-point price information (AUML
3
)

Task rescheduling based on price functions

Fig. 2 Rescheduling based on price vector information

In order to reduce communication efforts and the number of rejected and therefore wasted 

rescheduling steps, agents may proactively propagate price vectors for all relevant points in time the 

service might presumably be contracted for. Figure 2 illustrates the rescheduling activity: Since every 

agent may use the stored price vectors received from his supplier or customers to find a tentative 

answer to the question whether the partner would agree to a specific rescheduling proposal, there is no 

3  To better illustrate the process we choose the Agent Unified Modelling Language (AUML). To get 

further information we suggest reading the following papers [Odell et al., 2001; Bauer, 1999] or refer to the 

website http://www.auml.org. 
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need to communicate a proposal until a point in time has been found that makes one’s partners better 

off, too. However (due to the asynchronous planning of all partners in the supply web) the available 

“copy” of the partners’ price vector might turn out to be outdated, whenever the actual rescheduling is 

proposed, thus making it necessary to reconfirm before the actual rescheduling occurs (which is done 

by simply transmitting a copy of the regarding contract time and price). 

Propagation of price vectors 

Figure 3 shows a randomly generated schedule needing 57 time units to completion, which is still far 

above the minimal schedule that could be generated if (and only if) all information were available to a 

central planning agent. In this example every agent plans the execution of four different tasks, each of 

them being part of four different supply chains (indicated by different textures). With the exception of 

the first agent of each supply chain, each agent has contracted the delivery of his product with his 

successor in the respective supply chain4. Each contract is defined by a pair (t; p) agreed upon by the 

two parties. Both the supplier and the customer may propose a new pair of delivery time and price 

which may be accepted or rejected by the other party. Whenever it gets accepted, the requesting agent 

makes the final decision whether or not the old contract gets replaced by the new one5.

The first number shown at the tasks represents the point in time when the product will be supplied by 

the predecessor, the second number represents the planned start time of task execution6.

Fig. 3 Initial Schedule with current contract times and planned production times 

Agent 0 and agent 3 did contract a delivery (for the “checkered“ supply chain) at time 51 (refer to the 

arrow). At the start of our simulation, all contracts are arbitrarily7 fixed at a price of 1000 monetary 

units (MU). Relating to this contract, agent 0 now communicates a (time-based) price function to 

agent 3, indicating his willingness to charge more or less than the agreed price for an earlier or later 

delivery. Since an earlier delivery is not possible, no values are communicated (i.e. the price is 

4  The last agent contracts with a “consumer” (not shown in the figure), who needs all four products and 

whose utility is determined by the arrival of the latest delivery. 

5  This allows for asynchronously requesting multiple binding offers and then substituting all relevant 

contracts in one single rescheduling step. 

6 The “no“ at the first task of a supply chain indicates, that there is no predecessor.

7  Since for the evaluation of any replanning activities, only the agent’s relative profit or loss are relevant, 

this assumption does not pose any restrictions to generality.  
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“infinitely high”), for a delayed delivery agent 0 is not willing to offer a discount in this stage of the 

negotiation process, i.e. his prices are the same as for current contract time 51. All suppliers 

communicate their time-based price vectors to their customers while the customers communicate their 

respective willingness to pay more or less for early or late delivery in the analogue way. The upper 

diagram of figure 4 shows the resulting time-based offers (prices of the supplier agent 3 relating to the 

“checkered” supply chain). The vertical line relates to the agreed delivery time specified in the 

corresponding contract. 

Fig. 4 Time-based supply and demand prices communicated to agent 3 

(for the “checkered” process) 

The lower part of figure 4 shows the demand side, communicated to agent 3 by the final “consumer”, 

being the terminal to all four supply chains. The vertical line indicates the agreed delivery at time 57. 

For each time unit of delay will only be accepted by the consumer for a rebate of 100 MU. A speedup 

of one time unit, on the other hand, pays off by an increase of the customers’ willingness to pay8 to a 

total of 1100 MU. 

Since we abstract from storage cost in this first model, all time-based price functions are monotonous, 

since no customer disagrees to an earlier and no supplier to a later delivery. 

Agent 3’s current schedule permits him to shift the checkered task to an earlier point of time (up to 28 

time units), but for an earlier delivery of his input from agent 0 he would only be willing to pay more 

if he receives (at least) the same amount form the consumer for an earlier contract. 

This means that every agent combines the time-based demand function received from his customer(s) 

with information concerning his current planning situation to derive his own time-based demand 

function he communicates to his supplier(s). This way the demand price functions propagate from the 

end of the supply web (the consumer) to the beginning, while, the time-based price functions for the 

supply propagate vice versa, i.e. from the manufacturer of the first raw materials to the consumer. Of 

course, the rationale that an agent uses to “blend” his own local information on rescheduling 

opportunities into this propagation process ultimately determines his profit (and the profit of other 

agents).

8  The consumer agent’s willingness to pay is exogenous to the model and thus will not change during the 

renegotiation process. 
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Simultaneous Rescheduling of two tasks by a single agent 

As we pointed out above, propagating time-based price functions should help to reduce 

communication overhead for unprofitable offers. On the other hand, running a complete local 

optimization of the internal rescheduling opportunities and then trying to implement this schedule by 

simultaneously renegotiating all contracts did not yield acceptable results either. 

As a “compromise” we therefore implemented a Shift&Swap protocol, that randomly (with a given 

probability) decides either to try shifting a single task (as outlined in figure 2) or, alternatively, to 

swap the order of two adjacent tasks. 

Fig. 5 Shift&Swap protocol

Assume that agent 0 randomly selects the white task (refer to figure 3) for an operation. Unfortunately, 

this task is completely stuck in between its predecessor and successor, leaving no room for any shift. 

Alternatively, the agent can try to swap the task, i.e. he tries to reverse the order of two tasks’ 

execution. The immediate interal successor task to the white is the checkered one, and the profitable 

effect of their swap may be derived from the current time-based price functions displayed in figure 6. 
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Fig. 6 Time-based supply and demand price functions communicated to agent 0 for the white 

task (job2, left) and the checkered task (job 0, right) 

The checkered task (job 0) will now be terminated at time 45, yielding 1100 MU which is an excess 

profit of 100 MU. Of course, the white task (Job 2) will now be executed from time 45 to time 51 and 

thus its delivery to the customer gets delayed by nine time units from 42 to 51 but as we see from 

figure 6, delivery of the white task does no seem to be a bottleneck for the consumer since he is still 

willing to pay the full 1000 MU, leaving agent 0 with a total profit of 100 MU from this swap. 

Note that for the checkered task agent 0 receives his input by time 30 and thus there is no need to 

renegotiate with the supply side for this swap. The same is true for the white task, since the delayed 

start of task execution could never lead to supply side problems (in the absence of storage cost). But in 

general, side effects for a maximum of four agents have to be considered to evaluate the profitability 

of a swap, two agents on the supply and two on the demand side. For a shift, there is only one agent 

involved on the demand an one on the supply side. Of course, this number increases, once we do 

introduce multiple sourcing. 

WELFARE ANALYSIS FOR THE SUPPLY WEB 

Applying the negotiation protocols introduced above to a multi-agent system (six production agents 

and one consumption agent) results in the average payoff distribution depicted in figure 10 (right) 

given the decentralized version of the well-known Fisher-and-Thompson 6x6 problem 

[Fisher and Thompson, 1963] and 5,000 runs of 25.000 transitions each.

The respective agents receive disproportionate payoff shares resulting from renegotiation. While 

agents 4 and 6 get most of the profit the payoff for agents 1 and 2 remains significantly below average. 

How can the welfare distribution be explained? One approach is identifying the agents’ average 

position within the supply web. Comparing the agents’ orders to their payoffs within the course of the 

Fisher-and-Thompson 6x6 problem reveals that especially those agents with low net earnings do not 

supply any task directly to the consumer.  

To support this hypothesis individual payoffs for all tasks were determined using numerical 

simulations. The simulation pattern is as follows: First, all positions of tasks within the process chain 

are assigned increasing ordinal numbers. Thus, all tasks at the source are numbered “1” and the tasks 

directly delivered to the consumer agent are numbered “6”. Now, the payoffs of all positions (1 to 6) 

(for every agent after a simulation run consisting of 25,000 steps) are cumulated. These payoffs are 

determined as the difference between supply and delivery price for the respective task. These results in 
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the histogram illustrated by figure 7 (left) showing aggregate return for every process step. Noticeably, 

significant parts of overall profits are produced by direct sales to the consumer while considerably 

smaller amounts are used to pay agents with an “upstream position” in the supply chain.  

To anticipate individual profits we use a simple exponential estimator for the distribution. Here, 

determining an estimation results in p 2,873 with p denoting process position9.

Fig. 7: Aggregated payoffs and estimator for each job step (left), 

Aggregated payoffs and estimator for each agent (right) 

Figure 7 (right) depicts the expected profit distribution when the estimator is applied: Adding the 

estimates according to the respective sub processes for each agent results in an overall estimation 

concerning the profit situation of an agent with regard to all his production steps. The maximum profit 

(made by agent 4) was normalized to 100. The assumption that higher payoffs indicate key positions 

in the supply chain implies that the dominating players are positioned “downstream”. 

CONCLUSION

Most scheduling systems for supply chain optimization rely on Randomized Search Strategies (RSS) 

employing price information valid only for a single point in time. The introduction of time dependency 

via dispositive protocols in our RSS driven approach enables agents to exploit the external effects 

caused by resource constraints of its supply chain contractors by adapting its production planning. The 

assumption of individual rationality holds for the system, because the agents act only for their own 

behalf. This property gives us the chance to analyze the payoff distribution along the supply chain, 

indicating an exponential growth “downstream”. Besides higher system flexibility if rescheduling is 

required in case of production-failure, time dependant price functions seem to be a suitable medium 

for the integration of detailed information in the agents’ communication process. Related work on the 

scheduling domain shows that involving learning in agent’s behavior is a promising approach to 

improve system performance and should therefore be in the focus of our future work. 

9  The confidence interval for the exponent (95 percent) is (2.85365; 2.89344). 
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