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DEVELOPMENT OF AN INDUSTRIAL INTERNET OF THINGS (IIOT) 

BASED SMART ROBOTIC WAREHOUSE MANAGEMENT SYSTEM  

 
CKM Lee 

The Hong Kong Polytechnic University 

Hung Hom 

Kowloon 

 

Abstract: 
According to data of Census and Statistics Department, freight transport and storage services 

contributed to 90% of the employment of logistics sector in the period from 2010 to 2014. 

Traditional warehouse operations in Hong Kong are labor-intensive without much automation. 

With the rapid increasing transaction volume through multi-channel, the preference for 

next-day delivery service has been increasing. As a result, 3rd party logistics providers have 

realized the importance of operational efficiency. With the advent of Industry 4.0 emerging 

technologies including Autonomous Robots, Industrial Internet of Things (IIoT), Cloud 

Computing, etc., a smart robotic warehouse management system is proposed as it redefines 

the warehouse put-away and picking operations from man-to-goods to goods-to-man using 

autonomous mobile robots. This paper aims to develop and implement an IIoT-based smart 

robotic warehouse system for managing goods and autonomous robots, as well as to make use 

of the autonomous mobile robots to deliver the goods automatically for put-away and picking 

operations. The significance of the paper is to leverage the Industry 4.0 emerging technologies 

to implement the concept of smart warehousing for better utilization of floor space and labor 

force so as to improve logistics operational efficiency. 

 

Keywords: 
Robotic System, Industrial Internet of Things, Industry 4.0, Swarm Robot, Collision 

Avoidance 

1. Introduction 
The rapid development of the Internet innovates the traditional commercial shopping mode. 

Online shopping has offered new marketing and distribution channel for enterprises all over 

the world. China-based e-commerce giant Alibaba earned 168.2 billion yuan (US$25.3 billion) 

in 24 hours of the Double 11 shopping festival last year. JD.com, Chinese’s second-largest 

e-commerce platform, also reported 127.1 billion yuan (US$19.12) in orders on Double 11. 

As a recent report by Statista (2017) indicates, the retail e-commerce sales in China will 

increase to $840 billion by 2021.  

Driven by the overwhelming growth of the retail e-commerce sales, express delivery plays an 

important role in China’s logistics and supply chain industry. According to statistics from 

iResearch, it is expected that the China express delivery market will grow at a CAGR of 

22.8% from 2016 to 2021, which is shown in Fig. 1. To meet the delivery demand, more 

employees has to be hired in logistic companies. However, the monthly minimum wages in 

major cities such as Beijing, Shanghai and Shenzhen have doubled to over 2000 yuan, which 

puts a heavy burden on the Logistic Service Providers (LSPs). Meanwhile, the labor force 

aged from 15 to 24 years old keeps declining since 2010 because of the sluggish economic 

growth and the one-child policy. Less young people choose to engage in the logistic industry. 
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Facing the enormous challenges, the labor-intensive industry is eager to search for a novel 

method to solve this problem. 

 
Fig 1. 2011-2021E China Express Delivery Market [Source: U.S. Securities and Exchange 

Commission, 2017] 

In response to the severe labor shortage in manufacturing and supply chain, an IIoT-based 

Smart Robotic Warehouse Management System is proposed in this paper. Swarm of 

autonomous unmanned ground vehicles (UGVs) is applied to relieve man of monotonous and 

repetitive logistics operations. With the conversion from man-to-goods to goods-to-man 

picking and replenishment process, the system aims to enhance the efficiency and 

effectiveness of the order fulfilment process. As the UGVs are responsible for the fatigued 

and repeated picking and replenishment process, operators only work in a specific 

workstation, which is more comfortable, safe and attractive compared with the warehouse 

storage area. Comparing with human beings, robots do not need bright lights and comfortable 

air conditioning to perform operations such that the LSPs can save electricity cost and protect 

the environment. 

Although there have been some practitioners equipping their warehouse with material 

handling devices such as trucks, conveyors, carousels and cranes to facilitate the picking 

process, the inherent property of these devices makes it difficult to expand and any changes of 

floor plan needs a lot of effort for renovation. Moreover, it takes a long time for operators to 

be familiar with the layout of the whole working area and the locations of the goods in the 

traditional material handling system (MHS). The emergence of automatic guided vehicles 

(AGVs) saves LSPs from the quandary, since the use of automatic robots supports fast 

expansion and short training time so as to improve enterprises’ competitiveness. However, in 

some traditional warehouses, the AGVs should move on fixed lanes such as wired and 

magnetic, resulting in low flexibility. In most distribution centers, the guided vehicles can 

only move on aisles by using QR code, but the utilization of space is not efficient enough. The 

proposed system solves these problems by allowing UGVs to pass under the racks, which 

maximizes utilization of space, labor and resources. The transformation from traditional, 

labor-intensive and low technology warehouse to modern, unmanned and high technology 

fulfilment center helps the LSPs to satisfy the customers’ needs and expectations. 

The rest of the paper is organized as follows. Section 2 mainly reviews the related research on 

the path planning and motion controlling problem of mobile robot for material handling. 

Section 3 presents the design of the whole system and describes each component in detail, 

followed by a case simulation to illustrate the implementation of the system in Section 4. 

Finally, a short conclusion of the study and the future works are summarized in Section 5. 
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2. Related Studies 
A typical warehouse includes inbound and outbound management. On one hand, the inbound 

process like order receiving and restocking is to receive products and to stock materials until 

they are requested. On the other hand, the outbound procedure like order picking and packing, 

and order delivery is directly in response to the customer demands. Amongst the order 

handling operations in a distribution center, order picking is the most labor intensive process 

and hence accounts for 55% of the overall expense (Accorsi et al., 2014). With the 

development of wireless communication and embedded computing, robots are deployed to 

automate the logistics warehousing system. For example, a large quantity of AGVs are used to 

enhance the effectiveness and efficiency of the warehouses procedure in Amazon, DHL and 

Alibaba (Kehoe et al., 2015). 

A warehouse with a number of AGVs can be viewed as a multi-agent system (MAS). As 

Stone and Veloso (2000) defined, a MAS is consisted of problem-solving agents working 

together to solve complicated problems that are beyond the limit of individual entity’s 

capability. In the autonomous warehouse system, each vehicle represents an agent and 

cooperatively works with each other to fulfil orders. To be more exact, the warehousing 

system is actually a kind of swarm robotic system. Sahin (2005) stated that swarm robotics 

studies the design of the collective behavior from local agent-agent and agent-environment 

interactions. Three properties (robustness, flexibility and scalability) inspired from the 

observation from social insects are desirable in the system. Robustness indicates fault 

tolerance such that the robot swarm is able to continue working even if some individuals fail. 

The robots are flexible if their role can be assigned based on the needs of particular moment. 

As for scalability, it requires that the swarm can complete tasks in different group sizes from 

small to large. 

The advantages of MAS attract practitioners to penetrate AGVs in the distribution centers. 

Nevertheless, since there are plenty of vehicles working in the same area, interferences such 

as blockages, collisions, conflicts and deadlocks may occur. It is a complicated issue for the 

industry to coordinate the motion of AGVs so as to resolve the problem mentioned above. 

Abundant issues of the control of vehicles are discussed in the literature. 

In practice, AGV systems usually build upon a centralized control architecture where various 

tasks are performed by a central unit to schedule mission, plan path and coordinate motion. 

Each vehicle in the system has to communicate with the central unit, so its location can be 

known and action can be carried out. Depending on the amount of information gathered, 

centralized control can be further classified as coupled and decoupled. The coupled method 

treats the coordination as a whole and composite system (Vivaldini et al., 2010; Nishi et al., 

2005; Gawrilow et al., 2007), while the decoupled one breaks it into path planning and motion 

coordination (Zhang et al., 2017; Wu & Zhou, 2007; Klimm et al., 2011). However, the 

centralized control relies on considerable communication demands and heavy computation 

loads, which gives rise to a relatively low level of fault tolerance. Decentralized methods are 

developed to distribute computation (Purwina et al., 2007; Draganjac et al., 2016; Demesure 

et al., 2017). But different unpredictable situations may occur in the decentralized methods. 
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The dominant methodology to find shortest path is Dijkstra’s algorithm (Vivaldini et al., 2010; 

Nishi et al., 2005), although A* is gradually proposed in the pathfinding literature (Draganjac 

et al., 2016). There are two types of routing method offline and online. The offline routing 

assumes that all requests are known at the beginning, while the online method allows requests 

appear sequentially. In terms of the domain to determine route, the online approaches are 

prevailingly divided into static and dynamic routing in the literature. Static routing focuses on 

the spatial dimension (Purwina et al., 2007) and dynamic routing determine paths in 

time-space domain (Smolic-Rocak et al., 2010). Predictive and reactive manners are used to 

solve conflict. Unlike reactive method solving collision in real time (Wu & Zhou, 2007), 

predictive approach provides paths without collision (Krishnamurthy et al., 1993). 

Various methods by considering time window are studied by researchers to control conflicts. 

Vivaldini et al. (2010) used dynamic programming to solve the time window based method, 

but they solved collisions by rerouting vehicles. Heuristic function was applied to optimize 

number of maneuvers so as to generate conflict-free path in the time window, as Vivaldini et 

al. (2010) proposed. Optimization is another method of controlling collision which is often 

solved by heuristics. Saidi-Mehrabad et al. (2015) adopted an Ant Colony Algorithm (ACA) 

to minimize the make-span. Moreover, zone control and petri net methods are also accepted in 

some research. Herrero-Pérez and Martínez-Barberá (2010) employed a topological map to 

represent the large workplace and petri net formalization to model AGVs’ behaviors. Apart 

from the above methods, collision control can be rule-based as well. Zhang et al. (2017) 

suggested three cars following rules such that the vehicles avoid collisions without stopping. 

Additional parameters are also taken into consideration in the research. Penalty cost is added 

to prevent vehicles from choosing the same route as others. Priority is another factor to value 

different tasks. Some researchers also think about kinematic constraints to be feasible to apply 

their methodology in practice. Because of restrictive security issues, centralized structure still 

dominates the logistic industry. Therefore, in this research, a decoupled control architecture 

with static routing is adopted. Taken UGV dynamics and penalty cost into consideration, the 

system bases on rules with time window helps to solve conflict and provides a simulation 

interface to validate the solution. 

 

3. IIoT-based Smart Robotic Warehouse Management System 
To improve the overall performance of the LSPs, the IIoT-based Smart Robotic Warehouse 

Management System redefines the business model of fulfilment center from labor-intensive to 

unmanned. The overview of the system is illustrated in Fig. 2. The implementation of the 

proposed system relies on material handling devices such as vehicles and workstation, the 

core control unit and their communication. There are three main components in the system, 

including  autonomous UGVs, the robotic picking and replenishment workstation and the 

cloud-based swarm robots control system. The detailed description for each part are as 

follows. 

 

3.1 The Autonomous Unmanned Ground Vehicle (UGV) 

The autonomous vehicle is the main component of the whole system. Different from 

traditional manufacturing robots, the employed UGV carries the rack by lifting instead of 

dragging. There is no need to install sensors in the environment to locate the UGV, since the 

UGV automatically locates itself by scanning the QR code stuck on the ground. The heartbeat 

signal is sent and control commands are received via wireless communication. In addition, the 

robot is capable  
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Fig 2. The overview of the IIoT-based Smart Robotic Warehouse Management System 

of detecting obstacles at three different distances by laser and hence slows itself down to 

avoid crash. The physical appearance of the UGV is shown in Fig. 3. The autonomous UGV 

lifts racks to workstations for picking and put-away process. It enables operators to achieve a 

consistently high order picking and replenishment performance, and optimize warehouse 

utilization. 

 
Fig 3. The autonomous UGV 

 

3.2 The IIoT-based Robotic Picking and Replenishment Workstation 

The IIoT-based Robotic Picking and Replenishment Workstation is designed for efficient and 

accurate picking and replenishment activities. When the mobile storage rack is delivered to 

the workstation using autonomous UGV, workers can pick or replenish the goods simply by 

referring to the delivery order instruction shown on screen, and recognize the rack position 

and the required number of goods by referring to the Pick-Put-To-Light (PPTL) Guiding 

Devices. The devices are installed on the frame at the workstation together with the safety 

light curtain. The PPTL Guiding Device indicates the correct picking and replenishment 

location, and the appropriate order bin for that goods. Once worker picked and put the goods 

into the appropriate bin, they press the button of guiding device to confirm the act. The device 

can guide workers and prevent wrong picking and replenishment of goods. The safety light 

curtain is designed to protect workers from dangers. Warnings will be sent to the control 

center if objects reach out the curtain before the rack arrives. All the information is exchanged 
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and monitored in real time with the swarm robot control system to ensure accuracy. The 

surface of the workstation and interface of sample order for picking and replenishment are 

shown in Fig. 4. 

  
Fig 4. The surface of the workstation and the interface of sample order picking 

 
3.3 The Cloud-based Swarm Robots Control System 

The Swarm Robots Control System acts as the brain of the whole system, which is the most 

important and highlighted feature of the proposed system. It is responsible for controlling the 

collaboration between autonomous UGVs and the operations in Picking and Replenishment 

Workstation. The system applies a Robot-as-a-Service (RaaS) model, which integrates 

autonomous UGVs into a cloud computing environment. Autonomous UGVs are offered as a 

service rather than a product. The Cloud links up the robots control system and vehicles to 

allow communications and data exchanges via wireless infrastructures. RaaS is not only 

effective in providing consistently high service quality, but also elastic to deal with various 

service demand. There are four major sections of the cloud system, which are discussed in the 

following part. 

 

3.3.1 Swarm Robots Strategy 

The Swarm Robots Strategy proposes two modes of UGV role assignment, which is 

illustrated in Fig. 5. The first mode is a common one in most robotic warehouse. That is, all 

UGVs are assigned the same role and are responsible for delivering mobile racks from the 

storage area to the workstation and reversely to the storage area. In the second mode, labor is 

divided up among UGVs in peak periods. One group of autonomous vehicles named storage 

robot is in charge of moving racks to the buffer zone and back to the storage zone, while the 

other group named operation robot focuses on delivering racks to the workers for picking and 

replenishment according to rack’s arrival time. The division of labor is beneficial to increase 

productivity and efficiency of the fulfilment center. However, the setting should be pre-set 

carefully for the second mode. For example, the size of the buffer zone is assumed to be 8 and 

the queue size in each workstation is preset as 3. If there are 6 storage robots and 2 operation 

robots, sometimes the storage robot waits for the operation robot to move the rack back to 

buffer zone and sometimes the operation robot waits for the storage robot to move the needed 

rack from the storage area. Therefore, assigning the right number of robot to perform specific 

role is crucial for the overall system performance. 

 

3.3.2 Conflict Resolution with Collision Avoidance 

The control of UGVs is decoupled into path planning and motion coordination. The route 

selection is based on the Dijkstra’s algorithm with dynamic cost table, so the chosen paths can 
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be dispersed to avert conflicts. The penalty cost associated with every grid is predefined as 

, where α and β are the coefficient constants; Distn is the distance from UGV 

n ‘s current gird to the calculated grid; and N denotes the total number of UGVs. If there are 

more robots passing the grid, the cost will be increased such that the UGV assigning new 

tasks can be arranged a route without going through this grid. The dynamic cost table is 

updated every five seconds, so the real-time information can be fetched for efficient 

allocation. 

 
Fig 5. The conceptual diagram of Swarm Robots Strategy 

During the motion coordination step, the foresee path associated with time window tm for 

vehicle i  is used to predict 

possible collisions, where  is the current position of the vehicle and n is the 

length of the foresee path. The length of the foresee path should be long enough to ensure that 

UGV with highest speed can make a full stop before crashing into other UGVs. At the same 

time, the length cannot be too long. Otherwise, the robot will frequently receive unnecessary 

stop command. From our experimental results, it is indicated that the minimal length should 

be set as 4 for safety assurance if the maximal speed of UGV is 1 m/sec. The collision 

detection is processed pair by pair. If the two paths  and  intersects on at 

least a node , conflict may occur. 

The decision tree for collision avoidance is shown in Fig. 6. The collision evaluation step is 

processed per second. Firstly, the four main branches are developed by the UGV status which 

could be running, staying and stopping. There are various conditions to be considered when 

both robots are running, such as the standing flag  indicating whether  

stands on the intersection node, the lifting flag  indicating whether  carries a 

rack, the turning flag  indicating whether  need to turn before arriving the 

intersection node and the overlapping position  indicating whether the two 

paths  and  have more than one intersection node and the position of the 

additional overlapping nodes. Basically, three different types of conflicts including 

same-direction collision, opposite-direction collision and cross-direction collision can be 
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found in the two dimensional space. It is a normal catch-up conflict case when  

or  is true and directions at this node  and  of  and  are 

the same. In this situation, the collision avoidance relies on laser detection or a compulsory 

stop command. When  is true, the control command depends on  and 

 respectively for the opposite-direction collision and cross-direction collision. For 

example, laser avoidance is efficient enough if the turning flag of either vehicle is true for the 

cross-direction collision. Otherwise, stop command will send to the UGV at a longer distance. 

For opposite-direction conflict, a UGV without rack will always give way to UGV carrying 

rack. As for the opposite-direction conflict with  be false, apart from the lifting 

flag, the overlapping flag is also taken into consideration. Cases are more complicated for the 

cross-direction collision detection with  be false. When both vehicles do not lift a 

rack, the control decision is related to . Otherwise, the position of the additional 

overlapping node  will affect the selection of vehicle to be stopped. Rules based 

on the conflict type and the occurrence of UGV on the intersection point effectively detect 

and eliminate collisions and conflicts in advance. 

 
Fig 6. Decision tree for collision avoidance 

 

3.3.3 Warehouse Slotting and Re-slotting Optimization 

Pre-organization of racks’ location is optimized to minimize the delivery distance of goods 

from rack to workstation in peak times and increase service rate. The control system re-slots 

the racks according to existing orders in system, goods turnover and the past delivery records 

during the midnight such that the efficiency can still be guaranteed. Every grid is associated 

with a priority, according to the grid type and its location in the floor plan. A grid closer to the 

workstation gets a higher priority, so idle autonomous UGVs can move racks with goods to be 
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delivered in the next few days near to the picking and replenishment workstation. As a result, 

shorter distance and less time will be required for autonomous UGVs to deliver goods on the 

next working day which can balance workload and reduce peak power. The optimized 

resource allocation can improve the productivity and fulfilment rates, so the total cost can be 

reduced and the profit can be increased. The concept of the re-slotting optimization is 

demonstrated in Fig. 7. 

 

3.3.4 Robotic Warehouse Simulator 

The system offers a “Simulation Mode” for top-management to model, analyze, plan and 

predict future situation and supports decision making on investment of spaces, labors and 

equipment for fulfilment center. Users can see the difference in the performance of operations 

by entering different parameters. The user interface of Robotic Warehouse Simulator is shown 

in Fig. 8. 

 
Fig 7. The conceptual diagram of the Warehouse Slotting and Re-slotting Optimization 

 
Fig 8. The user interface of Robotic Warehouse Simulator 
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4. Case Simulation 
Hong Kong is one of the main trans-shipment hubs from / to China. In recent years, the rapid 

growth of ecommerce at China has generated the demand of cross-border logistics service. To 

commit logistics service demand, lowering delivery cost, high delivery efficiency and 

visualizing traceability are the keys to sustain the competitiveness of Hong Kong third party 

logistics. It is expected that there will be a huge potential for smart robotic warehouse 

management system to increase the efficiency and accuracy of logistics operations. 

As requested by a local trading company named as WT, the pilot simulation experiments are 

mainly conducted based on a floor map covering an area of 2500 square meters, as shown in 

Fig. 9. The travelling time is approximately 51% of the time of picking orders in a traditional 

warehouse, therefore the operators do not need to remember the merchandise location or the 

slotting category and spend most of the time for walking and searching the goods to fulfil 

orders. The tasks done by 6 operators in the traditional distribution center can be finished by 1 

to 3 operators in the autonomous warehouse, which means 50% to 80% reduction in 

manpower. As the pick-put-to-light guidance and the on-screen instructions are given clearly, 

the workers are able to pick one item per second. If there are 8 opening workstations and 24 

active UGVs, it takes nearly 23 minutes to complete 133 order lines. The productivity in a 

conventional shelf warehouse is 100 lines/hour, while the productivity can be improved to 3 

to 4 times in the smart warehouse.  

 
Fig 9. A floor plan with a size of 50 meters X 50 meters 

Additional experiment was done to analyze the impact of robot size on the productivity. 

Assuming the size of order lines to be replenished is 150 and the size of opening workstations 

with queue size be 3 is 2, the robots are in proportional growth. When the UGV size is 4, it 

takes 2 hours to complete all tasks. As the robot size is increased to 6 and 8, the completion 
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time is decreased to 1.5 hours and 68 minutes respectively. Although the robot size is further 

expanded to 10 and 12, the completion time remains to approximately 63 minutes. Since the 

queue size is fixed and the worker’s picking speed has limitation to be further reduced, the 

efficiency is not directly proportional to the robot size. The optimal number of robots can be 

investigated by using the simulator. 

 

5. Conclusion 
Logistics service providers realized that there is a lack of labor for warehouse operation and 

the efficiency to fulfill the increasing e-order demands is low. An Industrial Internet of Things 

(IIoT) based Smart Robotic Warehouse Management System is proposed in this paper to solve 

the labor shortage problem and increase the competitiveness of the logistics company. The 

autonomous UGV is deployed to participate in the repetitively tedious picking and restocking 

process, so the operators can work in a comfortable and safe place instead of walking around 

to find goods. The Pick-Put-To-Light device in the picking and replenishment workstation 

clearly guides the workers to pick and put goods correctly, which reduces the order error rate 

and thus increase the customer satisfaction. By applying intelligent strategy and optimization 

methodology, the system allocates different tasks to UGVs and re-slots the inventory racks to 

balance the workload. A simulator is implemented to model and evaluate the overall 

performance under different parameters settings. Useful suggestions can be achieved from the 

simulator such that the effectiveness and efficiency can be further increased. 

Despite of the remarkable benefits obtained by the system, there are areas for further 

improvement. Currently, the UGV can move at a speed of 1 m/s and its permissible maximum 

load is 500 kg, the loading and the travel speed of the vehicle can be adjusted to improve the 

system performance. Advanced collision avoidance strategies and order sorting methods may 

be studied to enhance the overall efficiency. More real-life experiments will be carried out in 

the future to investigate the possible problem encountered for different warehouse layouts. 
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