750 research outputs found

    Efficient, decentralized detection of qualitative spatial events in a dynamic scalar field

    Get PDF
    This paper describes an efficient, decentralized algorithm to monitor qualitative spatial events in a dynamic scalar field. The events of interest involve changes to the critical points (i.e., peak, pits and passes) and edges of the surface network derived from the field. Four fundamental types of event (appearance, disappearance, movement and switch) are defined. Our algorithm is designed to rely purely on qualitative information about the neighborhoods of nodes in the sensor network and does not require information about nodes' coordinate positions. Experimental investigations confirm that our algorithm is efficient, with O(n) overall communication complexity (where n is the number of nodes in the sensor network), an even load balance and low operational latency. The accuracy of event detection is comparable to established centralized algorithms for the identification of critical points of a surface network. Our algorithm is relevant to a broad range of environmental monitoring applications of sensor networks

    A new Measure for Optimization of Field Sensor Network with Application to LiDAR

    Get PDF
    This thesis proposes a solution to the problem of modeling and optimizing the field sensor network in terms of the coverage performance. The term field sensor is referred to a class of sensors which can detect the regions in 2D/3D spaces through non-contact measurements. The most widely used field sensors include cameras, LiDAR, ultrasonic sensor, and RADAR, etc. The key challenge in the applications of field sensor networks, such as area coverage, is to develop an effective performance measure, which has to involve both sensor and environment parameters. The nature of space distribution in the case of the field sensor incurs a great deal of difficulties for such development and, hence, poses it as a very interesting research problem. Therefore, to tackle this problem, several attempts have been made in the literature. However, they have failed to address a comprehensive and applicable approach to distinctive types of field sensors (in 3D), as only coverage of a particular sensor is usually addressed at the time. In addition, no coverage model has been proposed yet for some types of field sensors such as LiDAR sensors. In this dissertation, a coverage model is obtained for the field sensors based on the transformation of sensor and task parameters into the sensor geometric model. By providing a mathematical description of the sensor’s sensing region, a performance measure is introduced which characterizes the closeness between a single sensor and target configurations. In this regard, the first contribution is developing an Infinity norm based measure which describes the target distance to the closure of the sensing region expressed by an area-based approach. The second contribution can be geometrically interpreted as mapping the sensor’s sensing region to an n-ball using a homeomorphism map and developing a performance measure. The third contribution is introducing the measurement principle and establishing the coverage model for the class of solid-state (flash) LiDAR sensors. The fourth contribution is point density analysis and developing the coverage model for the class of mechanical (prism rotating mechanism) LiDAR sensors. Finally, the effectiveness of the proposed coverage model is illustrated by simulations, experiments, and comparisons is carried out throughout the dissertation. This coverage model is a powerful tool as it applies to the variety of field sensors

    Proceedings of the Fifth NASA/NSF/DOD Workshop on Aerospace Computational Control

    Get PDF
    The Fifth Annual Workshop on Aerospace Computational Control was one in a series of workshops sponsored by NASA, NSF, and the DOD. The purpose of these workshops is to address computational issues in the analysis, design, and testing of flexible multibody control systems for aerospace applications. The intention in holding these workshops is to bring together users, researchers, and developers of computational tools in aerospace systems (spacecraft, space robotics, aerospace transportation vehicles, etc.) for the purpose of exchanging ideas on the state of the art in computational tools and techniques

    Information Surfing for Radiation Building

    Get PDF
    We develop a control scheme for a group of mobile sensors to map radiation over a given planar polygonal region. The advantage of this methodology is that it provides quick situational awareness regarding radiation levels, which is being updated and refined in real- time as more measurements become available. The control algorithm is based on the concept of information surfing, where navigation is done by following information gradients, taking into account sensing performance and the dynamics of the observed proces

    Proceedings of the 2011 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    This book is a collection of 15 reviewed technical reports summarizing the presentations at the 2011 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory. The covered topics include image processing, optical signal processing, visual inspection, pattern recognition and classification, human-machine interaction, world and situation modeling, autonomous system localization and mapping, information fusion, and trust propagation in sensor networks

    A survey on active simultaneous localization and mapping: state of the art and new frontiers

    Get PDF
    Active simultaneous localization and mapping (SLAM) is the problem of planning and controlling the motion of a robot to build the most accurate and complete model of the surrounding environment. Since the first foundational work in active perception appeared, more than three decades ago, this field has received increasing attention across different scientific communities. This has brought about many different approaches and formulations, and makes a review of the current trends necessary and extremely valuable for both new and experienced researchers. In this article, we survey the state of the art in active SLAM and take an in-depth look at the open challenges that still require attention to meet the needs of modern applications. After providing a historical perspective, we present a unified problem formulation and review the well-established modular solution scheme, which decouples the problem into three stages that identify, select, and execute potential navigation actions. We then analyze alternative approaches, including belief-space planning and deep reinforcement learning techniques, and review related work on multirobot coordination. This article concludes with a discussion of new research directions, addressing reproducible research, active spatial perception, and practical applications, among other topics

    Collaborative Control of Autonomous Swarms with Resource Constraints

    Get PDF
    This dissertation focuses on the collaborative control of homogeneous UAV swarms. A two-level scheme is proposed by combining the high-level path planning and the lowlevel vehicle motion control. A decentralized artificial potential function (APF) based approach, which mimics the bacteria foraging process, is studied for the high-level path planning. The deterministic potential based approach, however, suffers from the local minima entrapment dilemma, which motivate us to fix the "flaw" that is naturally embedded. An innovative decentralized stochastic approach based on the Markov Random Filed (MRF) theory is proposed; this approach traditionally used in statistical mechanics and in image processing. By modeling the local interactions as Gibbs potentials, the movements of vehicles are then decided by using Gibbs sampler based simulated annealing (SA) algorithm. A two-step sampling scheme is proposed to coordinate vehicle networks: in the first sampling step, a vehicle is picked through a properly designed, configuration-dependent proposal distribution, and in the second sampling step, the vehicle makes a move by using the local characteristics of the Gibbs distribution. Convergence properties are established theoretically and confirmed with simulations. In order to reduce the communication cost and the delay, a fully parallel sampling algorithm is studied and analyzed accordingly. In practice, the stochastic nature of the proposed algorithm might lead to a high traveling cost. To mitigate this problem, a hybrid algorithm is eveloped by combining the Gibbs sampler based method with the deterministic gradient-flow method to gain the advantages of both approaches. The robustness of the Gibbs sampler based algorithm is also studied. The convergence properties are investigated for different types sensor errors including range-error and random-error. Error bounds are derived to guarantee the convergence of the stochastic algorithm. In the low-level motion control module, a model predictive control (MPC) approach is investigated for car-like UAV model. Multiple control objectives, for example, minimizing tracking error, avoiding actuator/state saturation, and minimizing control effort, are easily encoded in the objective function. Two numerical optimization approaches, gradient descendent approach and dynamic programming approach, are studied to strike the balance between computation time and complexity

    Optimal Control of an Uninhabited Loyal Wingman

    Get PDF
    As researchers strive to achieve autonomy in systems, many believe the goal is not that machines should attain full autonomy, but rather to obtain the right level of autonomy for an appropriate man-machine interaction. A common phrase for this interaction is manned-unmanned teaming (MUM-T), a subset of which, for unmanned aerial vehicles, is the concept of the loyal wingman. This work demonstrates the use of optimal control and stochastic estimation techniques as an autonomous near real-time dynamic route planner for the DoD concept of the loyal wingman. First, the optimal control problem is formulated for a static threat environment and a hybrid numerical method is demonstrated. The optimal control problem is transcribed to a nonlinear program using direct orthogonal collocation, and a heuristic particle swarm optimization algorithm is used to supply an initial guess to the gradient-based nonlinear programming solver. Next, a dynamic and measurement update model and Kalman filter estimating tool is used to solve the loyal wingman optimal control problem in the presence of moving, stochastic threats. Finally, an algorithm is written to determine if and when the loyal wingman should dynamically re-plan the trajectory based on a critical distance metric which uses speed and stochastics of the moving threat as well as relative distance and angle of approach of the loyal wingman to the threat. These techniques are demonstrated through simulation for computing the global outer-loop optimal path for a minimum time rendezvous with a manned lead while avoiding static as well as moving, non-deterministic threats, then updating the global outer-loop optimal path based on changes in the threat mission environment. Results demonstrate a methodology for rapidly computing an optimal solution to the loyal wingman optimal control problem
    • …
    corecore