20,393 research outputs found

    Instrumentation, performance visualization, and debugging tools for multiprocessors

    Get PDF
    The need for computing power has forced a migration from serial computation on a single processor to parallel processing on multiprocessor architectures. However, without effective means to monitor (and visualize) program execution, debugging, and tuning parallel programs becomes intractably difficult as program complexity increases with the number of processors. Research on performance evaluation tools for multiprocessors is being carried out at ARC. Besides investigating new techniques for instrumenting, monitoring, and presenting the state of parallel program execution in a coherent and user-friendly manner, prototypes of software tools are being incorporated into the run-time environments of various hardware testbeds to evaluate their impact on user productivity. Our current tool set, the Ames Instrumentation Systems (AIMS), incorporates features from various software systems developed in academia and industry. The execution of FORTRAN programs on the Intel iPSC/860 can be automatically instrumented and monitored. Performance data collected in this manner can be displayed graphically on workstations supporting X-Windows. We have successfully compared various parallel algorithms for computational fluid dynamics (CFD) applications in collaboration with scientists from the Numerical Aerodynamic Simulation Systems Division. By performing these comparisons, we show that performance monitors and debuggers such as AIMS are practical and can illuminate the complex dynamics that occur within parallel programs

    Collision-Based 3D Layout Algorithm for On-line Graph Visualization in DIVA

    Get PDF
    [[abstract]]Because of the increase in complexity of software programs, debugging without help from tools is no longer adequate. Therefore, debugger has become an important tool in programmer’s everyday life. Nowadays, debuggers only show the debugging information in textual form. It is considered inadequate for understanding complicated data structures. There are some debugging tools that can display debugging information in graphic presentation, which is much more informative than textual information. However, it is useless when too much information is rendered together. In this thesis, a tool called DIVA(Debugging Information Visualization Assistant) is proposed. DIVA has object-oriented framework that enables the separation of VM programming from visualization system and particularly the composability of visualization metaphors. Based on the framework, a layout algorithm called Collision-Based layout algorithm is designed and implemented to arrange visuals in proper positions in a scene.

    A Monitoring Language for Run Time and Post-Mortem Behavior Analysis and Visualization

    Get PDF
    UFO is a new implementation of FORMAN, a declarative monitoring language, in which rules are compiled into execution monitors that run on a virtual machine supported by the Alamo monitor architecture.Comment: In M. Ronsse, K. De Bosschere (eds), proceedings of the Fifth International Workshop on Automated Debugging (AADEBUG 2003), September 2003, Ghent. cs.SE/030902

    An All-in-One Debugging Approach: Java Debugging, Execution Visualization and Verification

    Get PDF
    We devise a widely applicable debugging approach to deal with the prevailing issue that bugs cannot be precisely reproduced in nondeterministic complex concurrent programs. A distinct efficient record-and-playback mechanism is designed to record all the internal states of execution including intermediate results by injecting our own bytecode, which does not affect the source code, and, through a two-step data processing mechanism, these data will be aggregated, structured and parallel processed for the purpose of replay in high fidelity while keeping the overhead at a satisfactory level. Docker and Git are employed to create a clean environment such that the execution will be undertaken repeatedly with a maximum precision of reproducing bugs. In our development, several other forefront technologies, such as MongoDB, Spark and Node.js are utilized and smoothly integrated for easy implementation. Altogether, we develop a system for Java Debugging Execution Visualization and Verification (JDevv), a debugging tool for Java although our debugging approach can apply to other languages as well. JDevv also offers an aggregated and interactive visualization for the ease of users’ code verification

    A Concurrency-Agnostic Protocol for Multi-Paradigm Concurrent Debugging Tools

    Get PDF
    Today's complex software systems combine high-level concurrency models. Each model is used to solve a specific set of problems. Unfortunately, debuggers support only the low-level notions of threads and shared memory, forcing developers to reason about these notions instead of the high-level concurrency models they chose. This paper proposes a concurrency-agnostic debugger protocol that decouples the debugger from the concurrency models employed by the target application. As a result, the underlying language runtime can define custom breakpoints, stepping operations, and execution events for each concurrency model it supports, and a debugger can expose them without having to be specifically adapted. We evaluated the generality of the protocol by applying it to SOMns, a Newspeak implementation, which supports a diversity of concurrency models including communicating sequential processes, communicating event loops, threads and locks, fork/join parallelism, and software transactional memory. We implemented 21 breakpoints and 20 stepping operations for these concurrency models. For none of these, the debugger needed to be changed. Furthermore, we visualize all concurrent interactions independently of a specific concurrency model. To show that tooling for a specific concurrency model is possible, we visualize actor turns and message sends separately.Comment: International Symposium on Dynamic Language

    Inviwo -- A Visualization System with Usage Abstraction Levels

    Full text link
    The complexity of today's visualization applications demands specific visualization systems tailored for the development of these applications. Frequently, such systems utilize levels of abstraction to improve the application development process, for instance by providing a data flow network editor. Unfortunately, these abstractions result in several issues, which need to be circumvented through an abstraction-centered system design. Often, a high level of abstraction hides low level details, which makes it difficult to directly access the underlying computing platform, which would be important to achieve an optimal performance. Therefore, we propose a layer structure developed for modern and sustainable visualization systems allowing developers to interact with all contained abstraction levels. We refer to this interaction capabilities as usage abstraction levels, since we target application developers with various levels of experience. We formulate the requirements for such a system, derive the desired architecture, and present how the concepts have been exemplary realized within the Inviwo visualization system. Furthermore, we address several specific challenges that arise during the realization of such a layered architecture, such as communication between different computing platforms, performance centered encapsulation, as well as layer-independent development by supporting cross layer documentation and debugging capabilities

    Tools for Search Tree Visualization: The APT Tool

    Get PDF
    The control part of the execution of a constraint logic program can be conceptually shown as a search-tree, where nodes correspond to calis, and whose branches represent conjunctions and disjunctions. This tree represents the search space traversed by the program, and has also a direct relationship with the amount of work performed by the program. The nodes of the tree can be used to display information regarding the state and origin of instantiation of the variables involved in each cali. This depiction can also be used for the enumeration process. These are the features implemented in APT, a tool which runs constraint logic programs while depicting a (modified) search-tree, keeping at the same time information about the state of the variables at every moment in the execution. This information can be used to replay the execution at will, both forwards and backwards in time. These views can be abstracted when the size of the execution requires it. The search-tree view is used as a framework onto which constraint-level visualizations (such as those presented in the following chapter) can be attached
    • …
    corecore