
10. Tools for Search-Tree Visualization: The
APT Tool
M. Carro and M. Hermenegildo

Technical University of Madrid, 28660-Madrid, Spain.
{mcarro,herme}@fi.upm.es

Summary.
The control part of the execution of a constraint logic program can be
conceptually shown as a search-tree, where nodes correspond to calis, and
whose branches represent conjunctions and disjunctions. This tree repre-
sents the search space traversed by the program, and has also a direct
relationship with the amount of work performed by the program. The
nodes of the tree can be used to display information regarding the state
and origin of instantiation of the variables involved in each cali. This depic-
tion can also be used for the enumeration process. These are the features
implemented in APT, a tool which runs constraint logic programs while
depicting a (modified) search-tree, keeping at the same time information
about the state of the variables at every moment in the execution. This
information can be used to replay the execution at will, both forwards
and backwards in time. These views can be abstracted when the size of
the execution requires it. The search-tree view is used as a framework
onto which constraint-level visualizations (such as those presented in the
following chapter) can be attached.

10.1 Introduction

Visualization of CLP executions is receiving much attention recently, since it
appears that classical visualizations are often too dependent on the program-
ming paradigms they were devised for, and do not adapt well to the nature
of the computations performed by CLP programs. Also, the needs of CLP
programmers are quite different [10.14]. Basic applications of visualization in
the context of CLP, as well as Logic Programming (LP), include:

— Debugging. In this case it is often crucial that the programmer obtain a
clear view of the program state (including, if possible, the program point)
from the picture displayed. In this application, visualization is clearly com-
plementary to other methods such as assertions [10.2, 10.10, 10.5] or text-
based debugging [10.6, 10.12,10.15]). In fact, many proposed visualizations
designed for debugging purposes can be seen as a graphical front-end to
text-based debuggers [10.11].

— Tuning and optimizing programs and programming systems (which may
be termed—and we will refer to it with this ñame—as performance debug­
ging). This is an application where visualization can have a major impact,
possibly in combination with other well-established methods as, for exam-
ple, proñling statistics.

— Teaching and education. Some applications to this end have already been
developed and tested, using different approaches (see, for example, [10.13,
10.16]).

In all of the above situations, a good pictorial representation is funda­
mental for achieving a useful visualization. Thus, it is important to devise
representations that are well suited to the characteristics of CLP data and
control. In addition, a recurring problem in the graphical representations
of even medium-sized executions is the huge amount of information that is
usually available to represent. To cope successfully with these undoubtedly
relevant cases, abstractions of the representations are also needed. Ideally,
such abstractions should show the most interesting characteristics (accord-
ing to the particular objectives of the visualization process, which may be
different in each case), without cluttering the display with unneeded details.

The aim of the visualization paradigms we discuss is quite broad—i.e.,
we are not committing exclusively to teaching, or to debugging—, but our
focus is debugging for correctness and, mainly, for performance. Visualization
paradigms can be divided into three categories (which can coexist together
seamlessly, and even be used together to achieve a better visualization): vi-
sualizing the execution flow / control of the program, visualizing the actual
variables (i.e., representing their run-time valúes), and visualizing constraints
among variables. The three views are amenable to abstraction.

In this chapter we will focus on the task of visualizing the execution
flow of constraint logic programs. This is complementary to the discussion
on depiction of items of data and their relationship (e.g., the constraints
themselves), that will be discussed in Chapter 11. Herein, we will discuss
general ways in which the control aspects of CLP execution can be visualized.
Also, we will briefly describe APT, a prototype visualizer developed at UPM
which implements some of the ideas presented in the chapter.

10.2 Visualizing Control

Program flow visualization (using flowcharts and block diagrams, for exam­
ple) has been one of the classical targets of visualization in Computer Science.
See, for example, [10.3] or the múltiple versions of animated sorting algo­
ritmias (e.g., those under h t t p : / / r e a l i t y . sgi . com/austern/j ava/demo/demo.html
or ht tp: / /www.es .ubc.ca/spider /harr ison/Java/sor t ing-demo.html) , for
some depictions of data evolution in procedural and object-oriented paradigms.
The examples shown there have a strong educational component, but at the
same time can be used for studying performance problems in the algorithms
under consideration.

One of the main characteristics of declarative programming is the absence
of explicit control. Although this theoretical property results in many advan-
tages regarding, for example, program analysis and transformation, programs

http://www.es.ubc.ca/spider/harrison/Java/sorting-demo.html),for

are executed in practice with fixed evaluation rules,1 and different declara-
tively correct programs aimed at the same task can show wide differences in
efficiency (including termination, which obviously affects total correctness).
These differences are often related to the evaluation order. Understanding
those evaluation rules is important in order to write efficient programs. In
this context, a good visualization of the program execution (probably com-
bined with other tools) can help to uncover performance (or even correctness)
bugs which might otherwise be very difñcult to lócate.

In CLP programs (especially in those using finite domains) it is possi-
ble to distinguish two execution phases from the point of view of control
flow: the programmed search which results from the actual program steps en-
coded in the program clauses, and the solver operations, which encompass the
steps performed inside the solver when adding equations or when calling the
(generally built-in) enumeration predicates. These two phases can be freely
interleaved during the execution.

10.3 The Programmed Search as a Search Tree

The programmed search part of CLP execution is similar in many ways to
that of LP execution. The visualization of this part of (C)LP program exe­
cution traditionally takes the form of a direct representation of the search-
tree, whose nodes stand for ca l i s , successes, redos and f ailures—i.e., the
events which take place during execution. Classical LP visualization tools,
of which the Transparent Prolog Machine (TPM [10.13]) is paradigmatic,
are based on this representation. In particular, the TPM uses an augmented
AND-OR tree (AORTA), in which AND and OR branches are compressed
and take up less vertical space, but the information conveyed by it is ba-
sically the same as in a usual AND-OR tree (see below a more complete
description of the AORTA tree). This tree can be used both for displaying
the search as explicitly coded by the programmer, and for representing the
search implicitly performed by enumeration predicates.

It is true that in CLP programs the control part has usually less impor-
tance than in LP, since most of the time is spent in equation solving and
enumeration. However, note that one of the main differences between C(L)P
and, e.g., Operations Research, is the ability to set up equations in an algo-
rithmic fashion, and to search for the right set of equations. Although this
part may sometimes be short (and perhaps deterministic), it may also be
quite large and it is in any case relevant, for performance debugging, to be
able to represent and understand its control flow.

Given the previous considerations, a first approach which can be used
in order to visualize CLP executions is to represent the part corresponding

1 By "fixed" we mean that these rules can be deterministically known at run-time,
although maybe not known statically.

to the execution of the program clauses (the programmed search) using a
search-tree depiction. Note that the constraint-related operations of a CLP
execution (enumeration/propagation) typically occur in "bursts" which can
be associated to points of the search-tree. Thus, the search tree depiction can
be seen as primary view or a skeleton onto which other views of the state of
the constraint store during enumeration and propagation (and which we will
address in Section 10.4) can be grafted or to which they can be related.

10.4 Representing the Enumeration Process

The enumeration process typically performed by finite domain solvers (in-
volving, e.g., domain splitting, choosing paths for constraint propagation,
and heuristics for enumeration) often affects performance critically. Observ-
ing the behavior of this process in a given problem (or class of problems)
can help to understand the source of performance flaws and reveal that a
different set of constraints or a different enumeration strategy would improve
the efñciency of the program.

The enumeration phase can be seen as a search for a mapping of valúes to
variables which satisfy all the constraints set up so far. It takes the form of (or
can be modeled as) a search which non-deterministically narrows the domains
of the variables and, as a result of the propagation of these changes, updates
the domains of other variables. Each of these steps results in either failure (in
which case another branch of the search is chosen by setting the domain of the
selected variable differently or by picking another variable to update) or in
a new state with updated domains for the variables.2 Thus, one approach in
order to depict this process is to use the same representation proposed for the
programmed search, i.e., to use a tree representation, in either time or event
space. In this case nodes concerning the selection of variables and selection of
domains should be clearly distinguished, as they represent radically different
choices. Another alternative, which focuses more on data evolution than on
control flow, is to simply visualize those steps as a succession of states for
all the variables (as shown in Section 11.2.1 and Figures 11.3 and 11.4 of
Chapter 11), or show an altogether ad-hoc representation of enumeration.

The display of the enumeration process can have different degrees of faith-
fulness to what actually happens internally in the solver. Showing the internal
behavior of the solver is not always possible, since in some CLP systems the
enumeration and propagation parts of the execution are performed at a level
not accessible from user code. This complicates the program visualization,
since in order to gather data, either the system itself has to be instrumented

2 This enumeration can often be encoded as a Prolog-like search procedure which
selects a variable, inspects its domain, and narrows it, with failure as a possible
result. The inspection and setting of the domains of the variables are typically
primitive operations of the underlying system.

to produce the data (as in the CHIP Tree Visualizer [10.1], Chapter 7), or
sufficient knowledge about the solver operation must be available so that its
operation can be mimicked externally in a meta-interpreter inside the visual­
izer, and inserted transparently between the user-perceived execution steps.

Other types of visualization concerned with the internal work performed
by the solver need low-level support from the constraint solver. They are
very useful for system implementors who have access to the system internáis,
and for the programmer who wants to really ñne-tune a program to achieve
superior performance in a given platform, but its own nature prevenís them
from being portable across platforms. Therefore we chose to move towards
generalization at the expense of some losses, and base a more general, user-
definable depiction, on simpler, portable primitives, while possible. These
may not have access to all the internal characteristics of a programming
system, but in turn can be used in a variety of environments.

10.5 Coupling Control Visualization with Assertions

One of the techniques used frequently for program verification and correct-
ness debugging is to use assertions which (partially) describe the speciñcation
and check the program against these assertions (see, e.g., [10.2, 10.10, 10.5],
and Chapters 1, 2, 3, and 4 and their references). The program can some-
times be checked statically for compliance with the assertions, and when this
cannot be ensured, run-time tests can be automatically incorporated into the
program. Typically, a warning is issued if any of these run-time tests fail,
flagging an error in the program, since it has reached a state not allowed
by the speciñcation. It appears useful to couple this kind of run-time testing
with control visualization. Nodes which correspond to run-time tests can be,
for example, color coded to reflect whether the associated check succeeded
or failed; the latter case may not necessarily mean that the branch being
executed has to fail as well. This allows the programmer to easily pinpoint
the state of the execution that results in the violation of an assertion (and,
thus, of the speciñcation) and, by clicking on the nodes associated to the
run-time checks, to explore for the reason of the error by following the source
of instantiation of the variables. As mentioned before, the design of the tree
is independent from the constraint domain, and so the user should be able
to click on a node and bring up a window (perhaps under the control of a
different application) which shows the variables / constraints active at the
moment in which the node was clicked. This window allows the programmer
to peruse the state of the variables and detect which are the precise sources
of the valúes of the variables involved in the faulty assertion.

This does not mean, of course, that assertion checking at compile time
should be looked on as opposed to visualization: rather, visualization can be
effectively used as user interface, with interesting characteristics of its own,
to assertion-based debugging methods.

10.6 The A P T Tool

In order to test the basic ideas of the previous sections, we extended the
APT tool (A Prolog Tracer [10.17]) to serve as a CLP control visualizer.
APT is essentially a TPM-based search-tree visualizer,3 and inherits many
characteristics from the TPM. However, APT also adds some interesting
new features. APT is built around a meta-interpreter coded in Prolog which
rewrites the source program and runs it, gathering information about the
goals executed and the state of the store at run-time. This execution can be
performed depth-ñrst or breadth-ñrst, and can be replayed at will, using the
collected information. All APT windows are animated, and are updated as
the (re)execution of the program proceeds.

a(X,Y):-
a(X,Y):-

b (l , 2) .

c (2 , 4) .

b(X,Z), c(Z,Y)
X=Y.

Fíg. 10.1. Sample code

X=Y
Fíg. 10.2. AORTA execution tree for the program in Figure 10.1

The main visualization of APT offers a tree-like depiction, in which nodes
from calis to user code are represented by squares and are adorned optionally
with the ñame of the predícate being called. Nodes corresponding to built-ins
appear as circles. Figure 10.1 shows a small program, and Figure 10.2 the
execution tree corresponding to this program with the query a (2 , 2). Goals
in the body of the first clause of a/2 (b(X, Z) and c(Z,Y)) are shown as
nodes whose edges to their parent are crossed with a line — these are AND-
branches corresponding to the goals inside the clause. The goals in the body

3 Another CLP visualizer that depicts the control part as a tree in the TPM spirit
is the one developed by ProloglA [10.19], Chapter 6.

of the second clause (only one, in this case) are linked to the parent node
with a sepárate set of edges. The actual run-time arguments are not shown
at this level, but nodes can be blown up for more detail, as we will see later.

Execution Visualization

ExecutLon Type User Query More Solutions Help

begin play stop quit

•u

I
_ l

/

i s o (v o i d , v o i d) .
i s o (t (R , 1 1 , D I) , t (R ,

i s o (I l , D 2) ,
i s o (D l , 1 2) .

1 2 , D 2)) : -

Fíg. 10.3. A small execution tree, as shown by APT

Figure 10.3 shows a view of an actual APT window. In a real execution,
the state of each node (not yet callea, callea but not yet exited, exited, failed)
is shown by means of a color code. Clicking on a node opens a different
window in which the relevant part of the program source, i.e., the calling
body atom and the matching clause head, is represented together with the
(run-time) state of the variables in that node (Figure 10.4).

The presentation of these node views depends on the type of data (e.g.,
the constraint domain) used. This is one of the most useful general concepts
underlying the design of APT: the graphical display of control is logically
separated from that of data. This allows developing data visualizations inde-
pendently from the control visualization, and using them together. The data
visualization can then be taken care of by a variety of tools, depending on the
data to be visualized. Following the proposal outlined in the previous section,
this allows using APT as a control skeleton for visualizing CLP execution. In
this case, the windows which are opened when clicking on the tree nodes offer
views of the constraint store in the state represented by the selected node.
These views vary depending on the constraint domain used, or even for the
same domain, depending on the data visualization paradigm used.

The figure at the left of the program text (still in Figure 10.4) represents
the state of the cali: marked with a tick (i/) for success (as in this case),
crossed (x) for failure, and signaled with a question mark if the cali has not

F~

1
h±

y
2

1 ¿
i

Móde View ¡só

T t
i s o (t (V a l „ , T 1 „

T t
i s o (t (Rj^ , 11 ^

{2} { t (3 , void , void)

1_ t

, void

i
, D 1 1

)

T
, t (2 , T 2 „

4 T

(vo id

•J T

, t (3 , vo

4

)

rt,

Ld , v o i d)) >

) >

^

Fíg. 10.4. Detailed view of a node (Herbrand domain)

finished yet. The number below the symbol denotes the number of clauses
in the predícate. For each of these clauses there is a small segment sticking
out from the bottom of the box. Clauses tried and failed have a "bottom"
(_L) sign; the clause (if any) currently under execution, but not yet finished,
has a small box with a question mark; and a clause finished with success is
marked with a tick.

Visualizations for constraints and constrained data are discussed else-
where (for example, in Chapters 11, 11.5, and 12, and their references). As
an example of such a visualization, Figure 10.4 shows a depiction used for
the Herbrand domain (which is built into APT as the default node depic­
tion, given that most CLP systems include the Herbrand domain). The node
blow-up shows the run-time cali on top and the matching head below it.
The answer substitution (i.e., the result of head unification and/or body
execution) is shown enclosed by rounded rectangles. The arrows represent
the source and target of the substitution, i.e., the data flow. In the example
shown, variable Ri received a valué 2 from a cali, and this valué is commu-
nicated through head unification to variable Val0, which returns it to the
caller. On the other hand, variable Tl0 in the cali unifies with variable l l i in
the head, and returns an output valué t (3 , void, void) which comes from
some internal body cali (l l i does not appear anywhere else in the head of
the clause).

APT is able to show the origin of the instantiation of any variables at any
moment in the execution. In order to do that, APT keeps track of the point
in the tree in which the (current) substitution of a variable was generated.
Clicking on a substitution causes a line in the main tree to be drawn from
the current node to the node where the substitution was generated. This is
a very powerful feature which helps in correctness debugging, as the source
of a (presumably) wrong instantiation (causing, for example an unexpected
failure or a wrong answer) can be easily located. The culprit node can in turn

be blown up and inspected to find out the cause of the generation of those
valúes.4

Some More Detaüs on The APT Tool. The tool reads and executes programs,
generating an internal trace with information about the search-tree, the vari­
ables in each cali, and the run-time (Herbrand) constraints associated. The
execution can then be replayed, either automatically or step-by-step, and the
user can move forwards and backwards in time. More detailed information
about each invocation can be requested. The tool has a built-in text editor,
with a full range of editing commands, most of them compatible with Emacs.
Files open from the visualizer are loaded into the editor.

Execution can be performed either in depth-first or breadth-first mode.
In the case of depth-first search, the user can specify a máximum depth to
search; when this depth has been reached, the user is warned and prompted to
decide whether to stop executing, or to search with a new, deeper máximum
level. The search mode and search depth are controlled by the metainterpreter
built in APT, so that no special characteristic is required from the underlying
CLP system.

The queries to the program are entered in the window APT was launched
from. Once a query has been finished, the user can ask for another solution
to the same query. As in a toplevel, this is performed by forcing backtracking
after a simulated failure. If the tree to be visualized is too large to fit in
the window (which is often the case), slide bars make it possible to navigate
through the execution.

APT uses Tcl/Tk [10.18] to provide the graphical interface. The original
implementation of APT was developed under SICStus Prolog. It has also
been ported to the clp(fd)/Calypso system developed at INRIA [10.9].

10.7 Event-based and Time-based Depiction of Control

In our experience, tree-based representations such as those of the TPM, APT,
and similar tools are certainly quite useful in education and for correctness
and performance debugging. In some cases, the shape of the search-tree can
help in tracking down sources of unexpected low performance, showing, for
example, which computation patterns have been executed more often, or
which parts dominate the execution. However, the lack of a representation
of time (or, in general, of resource consumption) greatly hinders the use of
simple search-trees in performance debugging. AND-OR trees, as those used
in APT, do not depict usually time (or in general, resource) consumption;
they need to be adorned with more information.

4 APT uses a "rich" meta-interpreter, in the sense that it keeps track of a large
amount of information. In retrospect, the "rich meta-interpreter" approach has
advantages and disadvantages. On one hand it allows determining very interest-
ing information such, e.g., the origin of a given binding mentioned previously.
On the other hand, it cannot cope with large executions.

One approach in order to remedy this is to incorpórate resource-related
information into the depiction itself, for example by making the distance be-
tween a node and its children reflect the elapsed time (or amount of resource
consumed). Such a representation in time space provides insight into the cost
of different parts of the execution: in a CLP language not all user-perceived
steps have the same cost, and therefore they should be represented with a
different associated height. For example, constraint addition, removal, unifi-
cation, backtracking, etc. can have different associated penalties for different
programs, and, even for the same program, the very same operation can cause
a different overhead at different points in the execution.

| DeltaT: 6052-1 .- •• I : . • 6 . T2: 18-47576

redreíamg... You <an Reduce, E>fi&ad,or re-Load

File CPU Zoom Horkers Icons Labííl.s Scaling Print Quit

ITJI H
qu2.8.vt OR-Parallelism

Fíg. 10.5. VisAndOr showing an execution in time space

Time-oriented views have been used in several other (C)LP visualization
tools, such as VisAndOr [10.7] (included with recent distributions of SICStus
[10.21]) and VISTA [10.22]. VisAndOr is a graphical tool aimed at displaying
and understanding the performance of parallel execution of logic programs,
while VISTA focuses on concurrent logic programs. In VisAndOr, time runs
from top to bottom, and parallel tasks are drawn as vertical lines (see Fig­
ure 10.5). These lines use different colors and thickness to represent which
processor executes each task and the state of the task: running, waiting to

visandor

Fíg. 10.6. VisAndOr showing an execution in event space

be executed, or finished. In this case, the length of the vertical lines reflects
accurately a measure of the time spent.

A VisAndOr view can be described as an skeletal depiction of a logic
program execution in which only nodes with relevance to the parallelism
(forks & joins) were chosen to be displayed. And, as an interesting feature,
the tree is adorned with tags (colors and line thickness) which add information
without cluttering the display. VisAndOr allows also switching to an event
space, in which every event in the execution (say, the creation, the start,
and the end of a task, among others) takes the same amount of space—see
Figure 10.6, where the same execution as in Figure 10.5 is depicted. Note that
in this view the structure of the execution is easier to see, but the notion of
time is lost—or, better, traded off for an altérnate view. This event-oriented
visualization is the one usually portrayed in the tree-like representation for
the execution of logic programs: events are associated to the ca l i s made in
the program, and space is evenly divided among those events. Thus, event-
and time-based visualization are not exclusive, but rather complementary
to each other, and it is worth having both in a visualization tool aimed at
program debugging.

10.8 Abstracting Control

'JiíAaádi, VEI-SÍOIÍ O/Í-1? i

.

A u c (ftauwi .̂.. Kw o s fierinee, frpaaa\ or re-Loan

File CPU Zoom Workers Icons L«ÍM Scaling Print Quit

qu2. 8 . Vt OR-Parallelism

Fíg. 10.7. Zoomed view in VisAndOr

The search-tree discussed throughout this chapter gives a good represen­
taron of the space being traversed. It also offers some degree of abstraction
with respect to a classical search-tree by reusing the tree nodes during back-
tracking. But it has the drawback of being too explicit, taking up too much
space, and showing too much detail to be useful in medium-sized computa-
tions, which can easily genérate thousands of nodes. A means of abstracting
this view is desirable.

An obvious way to cope with a very large number of objects (nodes and
links) in the limited space provided by a screen is using a virtual canvas
larger than the physical screen (as done by APT). However, this makes it
difficult to perceive the "big picture". An alternative is simply squeezing the
picture to fit into the available space; this can be made uniformly, or with a
selection which changes the compression ratio in different parts of the image
(this, in fact, is related to whether a time- or event-oriented view is used).
The former has the drawback that we lose the capability to see the details of
the execution when necessary. The latter seems more promising, since there
might be parts of the tree which the user is not really interested in watching
in detail (for example, because they belong to parts of the program which
have already been tested).

r

Fíg. 10.8. Exposing hidden parts of a tree

An example of a tool which compresses automatically parts of the search-
tree is the VISTA tool for the visualization of concurrent logic programs
[10.22]. This compression is performed automatically at the points of greater
density of objects—near the leaves. But this disallows blowing up those parts
if a greater detail is needed. An alternative possibility is to allow the user to
slide virtual magnifying lenses, which provide with a sort of ñsh-eye trans-
formation and give both a global view (because the whole tree is shrunk to
fit in a window) and a detailed view (because selected parts of the tree are
zoomed out to greater detail). Providing at the same time a compressed view
of the whole search-tree, in which the área being zoomed is clearly depicted,
can also help to lócate the place we are looking at; this option was already
present in VisAndOr, where the canvas could be zoomed out, and the win­
dow on it was represented as a dotted square in a reduced view of the whole
execution (Figure 10.7, corresponding to the dotted square in the top right
córner of Figure 10.5).

Fíg. 10.9. Abstracting parts of a tree

Another possibility to avoid cluttering up the display is to allow the user
to hide parts of the tree (see Figure 10.8 and [10.20]). This actually allows
for the selective exploration of the tree (i.e., in the cases where a cali is being

made to a predícate known to be correct, or whose performance has already
been tested). Whereas this avoids having too many objects at a time, feed-
back on the relative sizes of the subtrees is lost. It can be recovered, though,
by tagging the collapsed subtrees with a mark which measures the relative im-
portance of the subtrees. This "importance" can range from execution time to
the number of nodes, number of calis, number of added constraints, number of
fixpoint steps in the solver, etc.; different measures would lead to different ab-
straction points of view. Possible tagging schemes are raw numbers attached
to the collapsed subtrees (indicating the concrete valué measured under the
subtree) or different shades of gray (which should be automatically re-scaled
as subtrees are collapsed/expanded; see Figure 10.9). Representations of tree
abstractions are currently being incorporated into APT.

10.9 Conclusions

We have presented some design considerations regarding the depiction of
search-trees resulting from the execution of constraint logic programs. We
have argued that these depictions are applicable to the programmed search
part and to the enumeration parts of such executions. We have also presented
a concrete tool, APT, based on these ideas. Two interesting characteristics
of this tool are, ñrst, the decoupling of the representation of control from
the constraint domain used in the program (and from the representation of
the store), and, second, the recording of the point in which every variable is
created and assigned a valué. The former allows visualizers for variables and
constraints in different domains (such as those presented in Chapter 11) to
be plugged and used when necessary. The latter allows tracking the source
of unexpected valúes and failures.

APT has served mainly as an experimentation prototype for, on one hand,
studying the viability of some of the depictions proposed, and, on the other,
as a skeleton on which the constraint-level views presented in the following
chapters can be attached. Also, some of the views and ideas proposed have
since made their way to other tools, such as those developed by Cosytec for
the CHIP system, and which are described in other chapters.

References

10.1 A. Aggoun and H. Simonis. Search Tree Visualization. Technical Report
D.WP1.1.M1.1-2, COSYTEC, June 1997. In the ESPRIT LTR Project 22352
DiSCiPl.

10.2 K. R. Apt and E. Marchiori. Reasoning about Prolog programs: from modes
through types to assertions. Formal Aspects of Computing, 6(6):743-765, 1994.

10.3 R. Baecker, C. DiGiano, and A. Marcus. Software Visualization for Debugging.
Communications of the ACM, 40(4):44-54, April 1997.

10.4 F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López, and G. Puebla.
The Ciao Prolog System. Reference Manual. The Ciao System Documentation
Series-TR CLIP3/97.1, School of Computer Science, Technical University of
Madrid (UPM), August 1997.

10.5 F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo,
J. Maluszynski, and G. Puebla. On the Role of Semantic Approximations
in Validation and Diagnosis of Constraint Logic Programs. In Proc. of the
3rd. Int'l Workshop on Automated Debugging-AADEBUG'97, pages 155-170,
Linkoping, Sweden, May 1997. U. of Linkoping Press.

10.6 L. Byrd. Understanding the Control Flow of Prolog Programs. In S.-A.
Tarnlund, editor, Workshop on Logic Programming, Debrecen, 1980.

10.7 M. Carro, L. Gómez, and M. Hermenegildo. Some Paradigms for Visualizing
Parallel Execution of Logic Programs. In 1993 International Conference on
Logic Programming, pages 184-201. MIT Press, June 1993.

10.8 M. Carro and M. Hermenegildo. Some Design Issues in the Visualization of
Constraint Program Execution. In AGP'98 Joint Conference on Declarative
Programming, pages 71-86, July 1998.

10.9 Daniel Diaz and Philippe Codognet. A minimal extensión of the WAM for
clp(FD). In David S. Warren, editor, Proceedings of the Tenth International
Conference on Logic Programming, pages 774-790, Budapest, Hungary, 1993.
The MIT Press.

10.10 W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. Algorithmic debugging
with assertions. In H. Abramson and M.H.Rogers, editors, Meta-programming
in Logic Programming, pages 501-522. MIT Press, 1989.

10.11 M. Ducassé and J. Noyé. Logic programming environments: Dynamic pro­
gram analysis and debugging. Journal of Logic Programming, 19,20:351-384,
1994.

10.12 Mireille Ducassé. A General Query Mechanism Based on Prolog. In
M. Bruynooghe and M. Wirsing, editors, International Symposium on Pro­
gramming Language Implementation and Logic Programming, PLILP'92, vol­
unte 631 of LNCS, pages 400-414. Springer-Verlag, 1992.

10.13 M. Eisenstadt and M. Brayshaw. The Transparent Prolog Machine (TPM):
An Execution Model and Graphical Debugger for Logic Programming. Journal
of Logic Programming, 5(4), 1988.

10.14 Massimo Fabris. CP Debugging Needs. Technical report, ICÓN s.r.L, April
1997. ESPRIT LTR Project 22352 DiSCiPl deliverable D.WP1.1.M1.1.

10.15 J.M. Fernández. Declarative debugging for babel. Master's thesis, School of
Computer Science, Technical University of Madrid, October 1994.

10.16 K. Kahn. Drawing on Napkins, Video-game Animation, and Other ways to
program Computers. Communications of the ACM, 39(8):49-59, August 1996.

10.17 A. López Luengo. Apt: Implementing a graphical visualizer of the execution
of logic programs. Master's thesis, Technical University of Madrid, School
of Computer Science, E-28660, Boadilla del Monte, Madrid, Spain, October
1997.

10.18 John K. Ousterhout. Tcl and the Tk Toolkit. Professional Computing Series.
Addison-Wesley, 1994.

10.19 ProloglA. Visual tools for debugging of Prolog IV programs. Technical
Report D.WP3.5.M2.2, ESPRIT LTR Project 22352 DiSCiPl, October 1998.

10.20 Christian Schulte. Oz explorer: A visual constraint programming tool. In
Lee Naish, editor, ICLP'97. MIT Press, July 1997.

10.21 Swedish Institute of Computer Science, P.O. Box 1263, S-16313 Spanga, Swe-
den. Sicstus Prolog VS.O User's Manual, 1995.

10.22 Evan Tick. Visualizing Parallel Logic Programming with VISTA. In Inter­
national Conference on Fifth Generation Computer Systems, pages 934-942.
Tokio, ICOT, June 1992.

