260 research outputs found

    On large-scale diagonalization techniques for the Anderson model of localization

    Get PDF
    We propose efficient preconditioning algorithms for an eigenvalue problem arising in quantum physics, namely the computation of a few interior eigenvalues and their associated eigenvectors for large-scale sparse real and symmetric indefinite matrices of the Anderson model of localization. We compare the Lanczos algorithm in the 1987 implementation by Cullum and Willoughby with the shift-and-invert techniques in the implicitly restarted Lanczos method and in the Jacobiā€“Davidson method. Our preconditioning approaches for the shift-and-invert symmetric indefinite linear system are based on maximum weighted matchings and algebraic multilevel incomplete LDLT factorizations. These techniques can be seen as a complement to the alternative idea of using more complete pivoting techniques for the highly ill-conditioned symmetric indefinite Anderson matrices. We demonstrate the effectiveness and the numerical accuracy of these algorithms. Our numerical examples reveal that recent algebraic multilevel preconditioning solvers can accelerate the computation of a large-scale eigenvalue problem corresponding to the Anderson model of localization by several orders of magnitude

    Augmented Block Householder Arnoldi Method

    Get PDF
    AbstractComputing the eigenvalues and eigenvectors of a large sparse nonsymmetric matrix arises in many applications and can be a very computationally challenging problem. In this paper we propose the Augmented Block Householder Arnoldi (ABHA) method that combines the advantages of a block routine with an augmented Krylov routine. A public domain MATLAB code ahbeigs has been developed and numerical experiments indicate that the code is competitive with other publicly available codes

    Investigation of Quantum Phase Transitions using Multi-target DMRG Methods

    Full text link
    In this paper we examine how the predictions of conformal invariance can be widely exploited to overcome the difficulties of the density-matrix renormalization group near quantum critical points. The main idea is to match the set of low-lying energy levels of the lattice Hamiltonian, as a function of the system's size, with the spectrum expected for a given conformal field theory in two dimensions. As in previous studies this procedure requires an accurate targeting of various excited states. Here we discuss how this can be achieved within the DMRG algorithm by means of the recently proposed Thick-restart Lanczos method. As a nontrivial benchmark we use an anisotropic spin-1 Hamiltonian with special attention to the transitions from the Haldane phase. Nonetheless, we think that this procedure could be generally valid in the study of quantum critical phenomena.Comment: 14 pages, LaTeX2e (svjour class), 8 EPS figures. Same version as the published one, with new references and English corrections of the proofreade

    A Fast Hierarchically Preconditioned Eigensolver Based on Multiresolution Matrix Decomposition

    Get PDF
    In this paper we propose a new iterative method to hierarchically compute a relatively large number of leftmost eigenpairs of a sparse symmetric positive matrix under the multiresolution operator compression framework. We exploit the well-conditioned property of every decomposition component by integrating the multiresolution framework into the implicitly restarted Lanczos method. We achieve this combination by proposing an extension-refinement iterative scheme, in which the intrinsic idea is to decompose the target spectrum into several segments such that the corresponding eigenproblem in each segment is well-conditioned. Theoretical analysis and numerical illustration are also reported to illustrate the efficiency and effectiveness of this algorithm

    Optimization Algorithms for Machine Learning Designed for Parallel and Distributed Environments

    Get PDF
    This thesis proposes several optimization methods that utilize parallel algorithms for large-scale machine learning problems. The overall theme is network-based machine learning algorithms; in particular, we consider two machine learning models: graphical models and neural networks. Graphical models are methods categorized under unsupervised machine learning, aiming at recovering conditional dependencies among random variables from observed samples of a multivariable distribution. Neural networks, on the other hand, are methods that learn an implicit approximation to underlying true nonlinear functions based on sample data and utilize that information to generalize to validation data. The goal of finding the best methods relies on an optimization problem tasked with training such models. Improvements in current methods of solving the optimization problem for graphical models are obtained by parallelization and the use of a new update and a new step-size selection rule in the coordinate descent algorithms designed for large-scale problems. For training deep neural networks, we consider the second-order optimization algorithms within trust-region-like optimization frameworks. Deep networks are represented using large-scale vectors of weights and are trained based on very large datasets. Hence, obtaining second-order information is very expensive for these networks. In this thesis, we undertake an extensive exploration of algorithms that use a small number of curvature evaluations and are hence faster than other existing methods

    On Multiscale Algorithms for Selected Applications in Molecular Mechanics

    Get PDF
    • ā€¦
    corecore