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Abstract

Computing the eigenvalues and eigenvectors of a large sparse nonsymmetric matrix arises in many
applications and can be a very computationally challenging problem. In this paper we propose the Augmented
Block Householder Arnoldi (ABHA) method that combines the advantages of a block routine with an
augmented Krylov routine. A public domain MATLAB code ahbeigs has been developed and numerical
experiments indicate that the code is competitive with other publicly available codes.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Finding the extreme eigenvalues and associated eigenvectors of a large-scale eigenvalue prob-
lem

Ax = λx A ∈ Rn×n (1.1)

is one of the most computationally challenging and commonly occurring problems to date.
Applications can be found in almost all scientific disciplines, e.g. computational fluid dynamics,
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electrical engineering, oceanography, and quantum chemistry. See Bai et al. [12] for a description
of some applications, references, and collection of matrices.

Many algorithms are based on the Arnoldi process [2]. For a given starting vector x, the Arnoldi
process builds an orthonormal basis for the Krylov subspace

Km(A, x) = span{x, Ax, A2x, . . . , Am−1x}. (1.2)

The orthonormal basis yields a projection matrix and a relationship that is often referred to as
the Arnoldi decomposition. The eigenvalues and eigenvectors of the projection matrix are then
used as an approximation to the eigenvalues and eigenvectors of A. However, in order to get an
acceptable approximation to the eigenpairs, m must typically be large. This is not always possible
because of storage constraints and orthogonality issues. To overcome these difficulties a restarted
Arnoldi method can be used. A restarted method maintains a modest value for m � n where each
restart either implicitly or explicitly modifies the starting vector x for the next iteration so that
a better approximation is obtained. This creates a sequence of Krylov subspaces that hopefully
converge to an invariant subspace containing the desired eigenvectors.

In a seminal paper, Sorensen [44] proposed the Implicitly Restarted Arnoldi (IRA) method for
the computation of a few eigenpairs of a large sparse nonsymmetric matrix. This restarted method
implicitly modifies the starting vector on each iteration via a shifted curtailed QR-algorithm. This
successful method is the foundation for the very popular eigenvalue software package ARPACK
[28]. Lehoucq and Scott [27] provided a comparison of softwares and concluded that ARPACK
was generally the fastest and most dependable. However, there are numerical examples that have
shown that if care is not taken during the implementation, propagated round-off errors can delay
or prevent convergence of desired eigenvalues and eigenvectors [27,46]. This forward numerical
instability is due to the underlying QR-algorithm, see Lehoucq and Sorensen [27] for remedies.
Morgan [34] showed the IRA method of Sorensen [44] can be implemented by augmenting
the sequence of Krylov subspace basis by certain Ritz vectors. This mathematically equivalent
implementation can be less sensitive to propagated round-off errors than the implementation in
[44]. This relationship has been recently exploited by Wu and Simon [50] for symmetric eigenvalue
problems, by Morgan [35,36] for linear systems and nonsymmetric eigenvalue problems, and by
Baglama and Reichel [10] for singular value problems. The extension of this idea to block Krylov
subspaces (1.3) has been implemented by Morgan [37] and Gu and Ciao [21] for linear systems,
by Möller [33] for nonsymmetric eigenvalue problems, and by Baglama and Reichel [11] for
singular value problems. These extensions to block methods have many favorable attributes, see
the discussion below, eventhough they are no longer mathematically equivalent to the block form
of the IRA method, see Möller [33] for details. The main focus of this paper is on creating an
augmented block Krylov subspace method for the eigenvalue problem (1.1).

The block Arnoldi method only differs from the Arnoldi method in that it uses a set of starting
vectors X = [x1, x2, . . . , xr ] and builds an orthonormal basis for the block Krylov subspace

Kmr(A, X) = span{X, AX, A2X, . . . , Am−1X}. (1.3)

A block routine typically requires more computational effort and larger subspaces for accept-
able approximations. However, the benefits of a block routine include the ability to compute
multiple or clustered eigenvalues more efficiently than an unblocked routine [7,8,25], the use
of Level 3 BLAS [15] matrix–matrix products for faster algorithms [14, Section 2.6], and the
ability to compute matrix–vector products with a block of vectors. These advantages of the
block routines have resulted in a considerable number of algorithms/software in recent years;
see, e.g. [3,8,11,20,21,22,25,30,32,33,37,42,43,51] and references therein. In particular, Lehoucq
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and Maschhoff [25] created an implicitly restarted block Arnoldi (bIRAM) method which is a
straightforward generalization of the IRA method to block form.

Currently, ARPACK does not include the bIRAM method. This may be due to several diffi-
culties in implementation, e.g. shift strategy. In the IRA method, during the implicit modification
of the starting vector, a shift is applied, followed by a reduction in the number of vectors in
the Arnoldi decomposition. There is a one-to-one correspondence between the reduction of the
Arnoldi decomposition and the number of shifts applied, i.e. reducing m to m − 1 in (1.2) after
one shift is applied. However, in the generalization to block form there is no longer a one-to-one
correspondence. The ratio becomes one-to-block size, i.e. reducing mr to mr − r in (1.3) after one
shift is applied. The current shift strategy in ARPACK is “exact” shifts which are the unwanted
Ritz values [44]. Applying “exact” shifts in the bIRAM method may cause a significant number of
unwanted Ritz values not being applied as shifts. This can slow down the convergence drastically.
One solution may be to use an alternate shift strategy, e.g., the zeros of Chebyshev polynomials
[40], Leja points [6], harmonic Ritz values [38], or refined Ritz values [23]. The computer code
irbleigs,2 which is based on the implicitly restarted block Lanczos method, uses Leja points as
shifts for solving the symmetric eigenvalue problem, see [8,9] for details. However, the focus of
this paper is not on shift strategies, but rather on circumventing the use of shifts by implementing
an augmented block routine.

We have developed an augmented block Householder Arnoldi (ABHA) method that combines
the advantages of a block routine and an augmented routine. The development of an augmented
block Arnoldi method is not new, Morgan presents an augmented Arnoldi block routine in [37] to
solve linear systems of equations and Möller in [33] for solving nonsymmetric eigenvalue prob-
lems. However, this paper presents a new implementation, along with a public domain MATLAB
code, ahbeigs.3

This paper is organized as follows. Section 2 introduces notation and presents the block House-
holder Arnoldi algorithm and in Section 3 we outline the ABHA method and provide algorithms.
The MATLAB codeahbeigs is presented in Section 4 and a few numerical examples are presented
in Section 5. Concluding remarks are contained in Section 6.

2. Block Householder Arnoldi

The foundation of our ABHA method is the use of the Householder process to create an
orthonormal basis for the block Krylov subspace (1.3). Algorithm 2.1 extends the Householder
Arnoldi method developed by Walker [49] to block form. Although the Householder process
for creating an orthonormal basis for the Krylov subspace is more expensive than the Modified
Gram-Schmidt (MGS) process with partial reorthogonalization, it is less expensive than the MGS
process with full reorthogonalization [39].

Our method uses the compact WY representation of the Householder product [41]. The Q

matrix in the Householder QR-decomposition is formed from a product of Householder matrices
[39]. The compact WY representation of Q replaces the product with the form, I + YT Y T,
where Y is a lower trapezoidal matrix and T is a square upper triangular matrix. See [13,48] for
details on block reflectors. The advantage of this representation is the heavy use of Level 3 BLAS
matrix–matrix operations.

2 Computer code is available at http://www.math.uri.edu/∼jbaglama or http://math.nist.gov/toms/.
3 Computer code can be downloaded from http://www.math.uri.edu/∼jbaglama or http://www.mathworks.com/matlab-

central/fileexchange.
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Algorithm 2.1. Block Arnoldi Householder Algorithm
Input: A ∈ Rn×n;
Output: Y ∈ Rn×mr+r , T ∈ Rmr+r×mr+r ,

H(i,j) ∈ Rr×r , j = 0, . . . m, i = 1, . . . , j + 1;
(1) Choose r random vectors xi and set X :=[x1, . . . , xr ] ∈ Rn×r ;
(2) for j = 0, 1, . . . , m

(3) Compute the Householder QR-decomposition where

X(jr + 1 : n, 1 : r) = QR and Q = (I + WSWT)

[
I

0

] } ∈ Rr×r

} ∈ R(n−r)×r

(4) if j = 0

(a) Set

⎧⎨⎩
Y :=W

T :=S

H(1,0) :=R

else

(b) Set

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎣H(1,j)

...

H(j,j)

⎤⎥⎦ :=

⎡⎢⎢⎣X(1 : jr, 1 : r)

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ ∈ Rjr×r

[H(j+1,j)] [ R ]} ∈ Rr×r

(c) Set

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
W :=

[
0
W

] } ∈ Rjr×r

} ∈ Rn−jr×r

T :=
[
T T Y TWS

0 S

]
∈ R(j+1)r×(j+1)r

Y :=[Y W ] ∈ Rn×(j+1)r

end

(5) if j < m

(6) Compute X := (I + YT TY T)A(I + YT Y T)

⎡⎣0
I

0

⎤⎦ } ∈ Rjr×r

} ∈ Rr×r

} ∈ R(n−jr−r)×r

(7) end
(8) end

Consider the following orthonormal matrix:

Vmr+r = [V(1), V(2), . . . , V(m+1)] = (I + YT Y T)Imr+r , V(i) ∈ Rn×r , (2.1)

that is created from output of Algorithm 2.1. It is easy to see that Algorithm 2.1 computes a
truncated QR decomposition of the matrix [X, AV(1), . . . , AV(m)] such that

(I + YT TY T) [X, AV(1), . . . , AV(m)]

=

⎡⎢⎢⎢⎣H(1,0)

[
H(1,1)

H(2,1)

]
. . .

⎡⎢⎣ H(1,m)

...

H(m+1,m)

⎤⎥⎦
0 0 · · · 0

⎤⎥⎥⎥⎦
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whereH(i,j) ∈ Rr×r , i = 1, . . . , j , j = 1, . . . , m are r × r blocks, andH(j+1,j) ∈ Rr×r are upper
triangular blocks, that are obtained from step 4 of Algorithm 2.1.

Let

Hmr+r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

H(1,1) . . . H(1,m)

H(2,1) H(2,2)

. . .
...

. . .
. . .

H(m,m−1) H(m,m)

0 H(m+1,m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rmr+r×mr, (2.2)

be the upper block Hessenberg matrix then the following is a block Arnoldi decomposition

AVmr = Vmr+rHmr+r

or (2.3)

AVmr = VmrHmr + V(m+1)H(m+1,m)E
T
r .

During the iteration of the block Arnoldi method a sub-diagonal block H(j+1,j) of the blocked
Hessenberg matrix (2.2) may become singular, implying that a set of vectors in (1.3) have become
linearly dependent on previously generated vectors. Unlike the single vector Arnoldi method,
this occurrence of linearly dependent vectors may not imply an invariant subspace has been
computed unless H(j+1,j) ≡ 0. This “breakdown” rarely occurs, but still needs to be addressed
in the development of a robust software. See [5] for details on the implication of the breakdown
when using the MGS process in the implicitly restarted block Lanczos method and for a solution.
The Householder block Arnoldi method handles this in step 3 of Algorithm 2.1 via the underlying
LAPACK’s QR algorithm with no additional steps required, i.e. a random vector is introduced at
step 3 so that a valid QR factorization is computed.

3. Restarting with Schur vectors

Following the approach by Stewart [46] and more recently by Möller [33] we now outline our
block restarted method.

Assume the block Arnoldi decomposition (2.3) is available and compute the real Schur de-
compostion of Hmr such that,

HmrQ
(Hmr )
mr = Q(Hmr)

mr U(Hmr )
mr , (3.1)

where U
(Hmr )
mr is a quasi-triangular matrix with the eigenvalues of Hmr occurring on the diagonal as

either a real 1 × 1 matrix or a real 2 × 2 matrix. The latter case constitutes complex conjugate pairs
and Q

(Hmr)
mr = [q(Hmr )

1 , q
(Hmr )
2 , . . . , q

(Hmr )
mr ] is an orthogonal matrix. The real Schur decomposition

can be reordered so that the desired eigenvalues occur in the upper left part, U
(Hmr )
k of the matrix

U
(Hmr )
mr . This can be accomplished via LAPACK’s subroutine dtrsen [1]. See Bai and Demmel

[4] for details on reordering the real Schur decomposition.
Let k be the number of desired eigenvalues and we assume for ease of presentation that k does

not split a conjugate pair. In practice, if k does split a conjugate pair it is replaced with k + 1.
After reordering the real Schur decomposition of Hmr and truncating the last mr − k columns we
have

HmrQ
(Hmr )
k = Q

(Hmr)
k U

(Hmr )
k . (3.2)
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For the given matrix A we determine the approximate real partial Schur decomposition
AQ

(A)

k = Q
(A)

k U
(A)

k from (3.1), where

Q
(A)
k = [q(A)

1 , q
(A)
2 , . . . , q

(A)
k ] = VmrQ

(Hmr )
k and U

(A)
k = U

(Hmr )
k . (3.3)

The partial eigenvalue decomposition of A is easily obtained by computing the eigenvalue
decomposition U

(Hmr )
k Sk = SkD

(Hmr )
k and setting

V
(A)
k = VmrQ

(Hmr )
k Sk, D

(A)
k = D

(Hmr)
k to get AV

(A)
k = V

(A)
k D

(A)
k . (3.4)

Using (2.3), (3.1), and (3.4) we have the following

AV
(A)
k − V

(A)
k D

(A)
k = V(m+1)H(m+1,m)E

T
r Q

(Hmr )
k Sk. (3.5)

We see from (3.5) that we have an acceptable approximate partial eigenvalue decomposition
of A when

‖H(m+1,m)E
T
r Q

(Hmr )
k Sk‖ � α · tol, (3.6)

where tol is a user input tolerance value and α is chosen to assure a small backward error, see
ARPACK user guide [29] for a discussion on choosing α.

Rearranging (3.5) we have the following relationship:

AQ
(A)
k = [Q(A)

k V(m+1)]
[

U
(A)
k

H(m+1,m)E
T
r Q

(Hmr )
k

]
. (3.7)

Möller [33] showed via orthogonal transformations that (3.7) can be transformed into a k block
Arnoldi decomposition. Therefore, the block Arnoldi algorithm can be restarted or continued with
the matrix V(m+1). In order to continue our block Arnoldi Householder Algorithm 2.1 the orthogo-

nal matrix [Q(A)
k V(m+1)] must be placed into the compact WY representation of the Householder

product. This is accomplished in Algorithm 3.1. The Algorithm makes use of the fact that the
matrix [Q(A)

k V(m+1)] is orthogonal, see step 3 of Algorithm 3.1. Then Algorithm 3.1 computes

the product Q
(A)
k :=VmrQ

(Hmr )
k in steps 1 and 6, while placing the matrix [Q(A)

k V(m+1)] into
WY representation. Notice when n is large the dominating computational expense of Algorithm
3.1 occurs at step 6a, which parallels the computational cost that is encountered when updating
the block Arnoldi decomposition in the bIRAM [25].

Algorithm 3.1. Algorithm orthogonal
Input: Householder WY-compact matrices: Y ∈ Rn×�+r and T ∈ R�+r×�+r

Orthogonal matrix: Q
(Hmr)
k ∈ R�×k

Output: Householder WY-compact matrices: Ȳ ∈ Rn×k+r and T̄ ∈ Rk+r×k+r

Diagonal matrix of ±1s, R ∈ Rk+r×k+r such that

(I + Ȳ T̄ Ȳ T)Ik+r = (I + YT Y T)I�+r

[
Q

(Hmr)
k 0
0 Ir×r

]
R

1. Compute first k + r rows and columns: T̄1 :=IT
k+r (I + YT Y T)I�+r

[
Q

(Hmr)
k 0
0 Ir×r

]
2. Set Ȳ (1 : k + r, 1 : k + r) = T̄1
3. Compute Householder vectors for Ȳ (1 : k + r, 1 : k + r)
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(a) for i = 1, . . . , k + r

(b) R(i, i) = sign(Ȳ (i, i))

(c) α = 1 + R(i, i)Ȳ (i, i)

(d) Ȳ (i, i) = Ȳ (i, i) + R(i, i)

(e) D(i, i) = 1/Ȳ (i, i)

(f) Ȳ (1 : k + r, i + 1 : k + r) = Ȳ (1 : k + r, i + 1 : k + r) − R(i,i)
α

Ȳ (1 : k + r, i)Ȳ (i,

i + 1 : k + r)

(g) end

4. Set Ȳ (1 : k + r, 1 : k + r) = Ȳ (1 : k + r, 1 : k + r)D and R = −R

5. Compute T̄ = Ȳ (1 : k + r, 1 : k + r)−1(T̄1R − I )Ȳ (1 : k + r, 1 : k + r)−T

6. Set U =
[
Q

(Hmr)
k 0
0 Ir×r

]
R(T̄ Ȳ (1 : k + r, 1 : k + r))−1

(a) Ȳ (k + r + 1 : n, 1 : k + r) = Y (k + r + 1 : n, 1 : m1 + r)T Y (1 : m1 + r, 1 : m1 +
r)U

(b) Ȳ (k + r + 1 : k + r, 1 : k + r) = U(k + r + 1 : k + r, 1 : k + r) + Ȳ (k + r + 1 :
k + r, 1 : k + r)

Using Algorithm 3.1 we have,

(I + Ȳ T̄ Ȳ T)Ik+r = [Q(A)
k V(m+1)]R, (3.8)

where the R matrix is a diagonal matrix of ±1s created in step 3 of Algorithm 3.1 to avoid
numerical cancellation.

Multiplying (3.7) by R̂ :=R(k,k) ∈ Rk×k , the first k columns and rows of R, from the right and
using (3.8) we have,

AQ
(A)
k R̂ = [Q(A)

k V(m+1)]RR

[
U

(A)
k

H(m+1,m)E
T
r Q

(Hmr )
k

]
R̂

= (I + Ȳ T̄ Ȳ T)Ik+r

[
R

[
U

(A)
k

H(m+1,m)E
T
r Q

(Hmr )
k

]
R̂

]
= (I + Ȳ T̄ Ȳ T)Ik+r H̄k+r (3.9)

where

H̄k+r =
[
R

[
U

(A)
k

H(m+1,m)E
T
r Q

(Hmr )
k

]
R̂

]
. (3.10)

Let Q
(A)
k R̂ = [q1, q2, . . . , qk]. The block Householder Algorithm can now be continued with

the next set of r vectors

V(m+1) := (I + Ȳ T̄ Ȳ T)

⎡⎣0
I

0

⎤⎦ } ∈ Rk×r

} ∈ Rr×r

} ∈ R(n−(k+r)×r
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such that

(I + Ȳ T̄ TȲ T)[Aq1, Aq2, . . . , Aqk, AVm+1] =

⎡⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣H̄k+r

⎤⎥⎥⎥⎥⎦
H̄(1,k+r+1)

...

H̄(k+r+1,k+r+1)

H̄(k+r+2,k+r+1)

0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where we have computed the Householder QR-decomposition of X(k + r + 1 : n, 1 : r) :=QR

for X := (I + Ȳ T̄ TȲ T)AV(m+1) to get

Q = (I + WSWT)

[
I

0

] } ∈ Rr×r

} ∈ R(n−r)×r (3.11)

and ⎡⎢⎣ H̄(1,k+r+1)

...

H̄(k+r+1,k+r+1)

⎤⎥⎦ :=
⎡⎢⎣

X(1 : k + r, 1 : r)

⎤⎥⎦
⎫⎪⎬⎪⎭ ∈ Rk+r+1×r ,

[H̄(k+r+2,k+r+1)] [ R ]} ∈ Rr×r . (3.12)

Matrices Ȳ and T̄ are updated with W and S from (3.11) to get the next set of vectors and the
restarted method is continued. Algorithm 3.2 illustrates the restarting process.

Algorithm 3.2. Block Arnoldi Householder Algorithm, cont
Input: A ∈ Rn×n;

Ȳ ∈ Rn×k+r , T̄ ∈ Rk+r×k+r , H̄k+r , and m1

Output: Ȳ ∈ Rn×k+r+m1r+r , T̄ ∈ Rk+r+m1r+r×k+r+m1r+r ,

H̄k+r+m1r+r ; H̄(k+r+i,k+r+j) ∈ Rr×r , j = 1, . . . m1, i = 1, . . . , j + 1;

(1) for j = 1, 2, . . . , m1

(2) Compute X := (I + Ȳ T̄ TȲ T)A(I + Ȳ T̄ Ȳ T)

⎡⎣0
I

0

⎤⎦ } ∈ Rk+(j−1)r×r

} ∈ Rr×r

} ∈ R(n−jr−k)×r

(3) Compute the Householder QR-decomposition, where

X(k + jr + 1 : n, 1 : r) = QR and Q = (I + WSWT)

[
I

0

] } ∈ Rr×r

} ∈ R(n−r)×r

(4) (a) Set

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎣ H̄(1,k+r+j)

...

H̄(k+r+j,k+r+j)

⎤⎥⎦ :=

⎡⎢⎢⎣X(1 : k + jr, 1 : r)

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ ∈ Rk+jr×r

[H̄(k+r+j+1,k+r+j)] [ R ]} ∈ Rr×r

(b) Set

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

W :=
[

0
W

] } ∈ Rk+jr×r

} ∈ Rn−jr−k×r

T :=
[
T T Y TWS

0 S

]
∈ Rk+(j+1)r×k+(j+1)r

Y :=[Y W ] ∈ Rn×k+(j+1)r

(5) end
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After m1 steps where m1 is chosen so that k + r + m1r � mr we have the following relation-
ship analogous to (2.1)–(2.3),

V̄k+r+m1r+r = [q1, . . . , qk, V(m+1), V̄(1), . . . , V̄(m1+1)]
= (I + Ȳ T̄ Ȳ T)Ik+r+m1r+r (3.13)

and

AV̄k+r+m1r = V̄k+r+m1r+r H̄k+r+m1r+r

or (3.14)

AV̄k+r+m1r = V̄k+r+m1r H̄k+r+m1r + V̄(m1+1)H̄(k+r+m1+1,k+r+m1)E
T
r .

where

H̄k+r+m1r+r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H̄(1,k+r+1) . . . H̄(1,k+r+m1)

H̄(2,k+r+1)⎡⎣H̄k+r

⎤⎦ ... . . .
...

H̄(k+r+1,k+r+1)

H̄(k+r+2,k+r+1)

. . . H̄(k+r+m1,k+r+m1)

0 H̄(k+r+m1+1,k+r+m1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Algorithm 3.3 combines the results and outlines our restarted method.

Algorithm 3.3. Augmented Block Arnoldi Householder Algorithm

Input: A ∈ Rn×n, k, m, r, tol, such that (m − 1)r � k;
Output: eigenvalues {λj }kj=1 and eigenvectors {xj }kj=1 of A;

1. Perform m steps of the block Arnoldi Householder Algorithm 2.1 to get the block Arnoldi
decomposition (2.3);

2. Compute and sort the Real Schur decomposition (3.1) of the matrix Hmr or H̄k+r+m1r+r ;
3. Check convergence of the k desired eigenvalues using (3.6)

(a) if all k values converge then compute {λj }kj=1 and {xj }kj=1 using (3.4) and exit;

4. Compute restarting vectors (3.8) using Algorithm 3.1;
5. Compute matrix H̄k+r,k , (3.10);
6. Perform m1 steps of the block Arnoldi Householder Algorithm 3.2 to get the block Arnoldi

decomposition (3.14);
7. Go to step 2;

During the iterations of the algorithm desired Schur vectors converge at different rates. Once
a Schur vector converges, it can either be computed and stored, hard locking, or simply left
alone, soft locking. Hard locking requires the algorithm to store the converged Schur vectors
and orthogonalize them against all future generated Krylov subspaces. Soft locking, which is not
locking the Schur vectors, refers to continuously updating the Schur vectors regardless of residual
values. Hard locking has the benefit of reducing the overall computational cost, however if the
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space spanned by converged Schur vectors is not computed accurately enough then orthognalizing
against it could slow down convergence, see Stathopoulos [45] for some details. The MATLAB
code irbleigs [9] implements hard locking and often has difficulty in computing a large number
of desired eigenvalues, e.g. [51] and Example 1 in Section 5. For this reason we have decided to use
soft locking (i.e. nonlocking) in our computer code ahbeigs even though it is more computational
expensive than hard locking.

4. Software ahbeigs

The algorithms presented in this paper are implemented in the MATLAB program ahbeigs.4

The program was written in MATLAB because of its portability and ease of use. The drawback to
a program written entirely in MATLAB is that it can be significantly slower (CPU-time) than the
same program written in FORTRAN. MATLAB is a gateway to the FORTRAN subroutines in LA-
PACK [1] and whenever possible we use MATLAB’s built-in internal functions, e.g. MATLAB’s
qr function is used to get the Householder vectors in step 3 of Algorithm 2.1. However, not all
routines that are needed in the algorithms in this paper are accessible via built-in internal functions,
e.g. the Schur reordering routine dtrsen is not accessible via a built-in internal function. A link
to the LAPACK routines can be created with MATLAB using MEX files; see [31]. This would
maintain a fast CPU-time but decreases the portability and ease of use of the program. Therefore,
we use only MATLAB syntax and any built-in internal functions whenever possible.

The actual implementation of the algorithms presented in the paper have been implemented with
a small adjustment that exploits the approaches recently advocated in Lehoucq [24] and Baglama
and Reichel [10,11] for faster convergence. The technique, which is not new, is to have the number
of augmenting vectors � used at each restart to be larger than the number of desired eigenpairs k.
For example, if an user wants k eigenpairs, the program ahbeigs will search for � = k + adjust

eigenpairs. The value adjust is automatically increased by the number of converged desired
eigenvectors during the iterations. However, the maximum storage requirement remains fixed,
that is the maximum number of vectors of length n is always � blsz · (nbls + 1). Convergence
is determined by setting tol in (3.6) to be the machine epsilon. The initial value of adjust is set
at 3, see Table 4.1.

The computer code ahbeigs can also solve the generalized eigenvalue problem

Ax = λBx A, B ∈ Rn×n (4.1)

and find eigenvalues located near an input numeric value NVAL, see sigma in Table 4.1. If the
user inputs a numeric value NVAL or wishes to solve the generalized eigenvalue problem (4.1)
the computer code ahbeigs will use the transformation

(A − (NV AL) B)−1Bx = θx (4.2)

where θ = 1/(λ − (NV AL)), see [17] for details. The matrix (A − (NV AL) B)−1 is factored
using MATLAB’s built-in internal function lu. If the matrix B is positive definite and sigma is
nonnumeric then MATLAB’s built-in Cholesky factorization chol is used to compute the upper
triangular Cholesky factor R to get B = RTR. The generalized eigenvalue problem (4.1) can be
a transformed into a standard eigenvalue problem by setting, A :=R−T AR−1. If the standard
eigenvalue problem (1.1) is to be solved where sigma is a nonnumeric input value then no
factorization is required and only matrix–vector products with A are used.

4 Computer code can be downloaded from http://www.math.uri.edu/∼jbaglama or http://www.mathworks.com/matlab-
central/fileexchange.
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Table 4.1
Parameters for ahbeigs.m

adjust Initial number of vectors added to the k restart vectors to speed up convergence. Default value: adjust =3
blsz Block size of block Arnoldi Hessenberg matrix, Hmr . The parameter specifies the value of r in (2.2)–(2.3).

Default value: blsz = 3
cholb Indicates if the Cholesky factorization of the matrix B is available. If the Cholesky factorization matrix R

is available then set cholb = 1 and replace the input matrix B with R where B = RTR. Default value:
cholb = 0

dispr When dispr > 0, available approximations of the k desired eigenvalues and norms of associated residual
errors are displayed each iteration; dispr = 0 inhibits display of these quantities. Default value: dispr =0

permB Permutation vector for the Cholesky factorization of B(permB, permB). When the input matrix B is
replaced with R where B(permB, permB) = RTR then the vector permB is the permutation vector.
Default value: permB = 1 : N

k Number of desired eigenvalues. Default value: k = 6
maxit Maximum number of restarts. Default value: maxit = 100
nbls Number of blocks in the block Arnoldi Hessenberg matrix, Hmr . This parameter specifies the largest value

of m in (2.2)–(2.3). If value of nbls is not sufficiently large enough then ahbeigs will not converge or
miss some desired eigenvalues. Default value: m = 10

sigma Two letter string or numeric value specifying the location of the desired eigenvalues
‘LM’ or ‘SM’ Largest or Smallest magnitude
‘LR’ or ‘SR’ Largest or Smallest real part
‘LI’ or ‘SI’ Largest or Smallest imaginary part
‘LA’ or ‘SA’ Largest or Smallest algebraic (symmetric problems only)
NVAL A numeric value. The program searches for the k closest eigenvalues to the numeric value NVAL.
(ahbeigs will factor the matrix A, see (4.2).) Default value: sigma =‘LM’

tol Tolerance used for convergence (3.6). Default value: tol = 10−6

V0 Initial matrix of r columns for the block Arnoldi Method, Algorithm 2.1. Default value: V0 = randn

The MATLAB function ahbeigs requires certain user-specified parameters to be set. Table
4.1 describes these parameters, their possible values, as well as their default values. The function
will use the default values unless a user specifies otherwise.

The input sequence of ahbeigs is given as

ahbeigs(A, OPTS) or ahbeigs(‘Afunc’, n, OPTS) or ahbeigs(A, B, OPTS)

where the first input argument must be the matrix A which can be passed as a numeric matrix or
as a M-file (‘Afunc’) that computes the product A · X where X is a n × r matrix. If A is passed
as a M-file then the second input argument n is the size of the matrix A. For the generalized
eigenvalue problem (4.1) the matrices A and B must be numeric. The last input value OPT S is
a structure array with the field values as parameter names. The input parameters can be given in
any order and the structure OPT S may contain some or all of the input parameters. The string
for the input parameters can contain upper or lower case characters.

The output options are given as
ahbeigs(...)
Displays the desired eigenvalues.
D=ahbeigs(...)
Returns the desired eigenvalues in the vector D.
[X,D]=ahbeigs(...)
D is a diagonal matrix that contains the desired eigenvalues along the diagonal and the matrix

X contains the corresponding eigenvectors, such that AX = XD or AX = BXD.
[X,D,FLAG]=ahbeigs(...)
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Returns the same as the above option plus a two dimensional array FLAG that reports if the
algorithm converges and the number of matrix vector products. If FLAG(1) = 0, this implies
normal return and all eigenvalues have converged. If FLAG(1) = 1, then the maximum number
of iterations have been reached before all desired eigenvalues have converged. FLAG(2) contains
the number of matrix vector products used by the code. If the maximum number of iterations are
reached then the matrices X and D contain any eigenpairs that have converged plus the computed
Ritz pair approximations from the last iteration for the eigenpairs that have not converged.

The following are the MATLAB commands used to determine the 4 eigenvalues of smallest
magnitude and corresponding eigenvectors of a matrix A using a block size 4 and tolerance of
10−12,

>> OPTS.sigma=‘SM’;
>> OPTS.k=4;
>> OPTS.blsz=4;
>> OPTS.tol=1d-12;
>> [X,D]=ahbeigs(A,OPTS);

5. Numerical examples

In this section we provide examples to illustrate the performance of the code ahbeigs. We
will make direct comparisons with irbleigs 5 [9], eigifp6 [19], jdqr7 [18], jdqz8 [18] and
MATLAB’s internal function eigs. The codes irbleigs and eigifp are only for symmetric
eigenvalue problems and will only be used in Example 1. We will also make indirect comparisons
with the number of matrix–vector products reported in the block papers [22,25,33]. We will refer
to the two methods presented in [33] by Möller(S) and Möller(L). The method presented in
[25] as bIRAM and the method in [22] as Jia. Currently, there are no public domain computer
codes available for these methods. We will not compare CPU times when referring to results
from the block papers [22,25,33]. Both methods jdqr and jdqz are designed to be used with
a preconditioner. When a good preconditioner is known these methods are highly competitive.
However, we will assume no good preconditioner is known for the examples presented in this
paper and use the methods jdqr and jdqz unpreconditioned.

The MATLAB function eigs, which uses ARPACK, is a FORTRAN code except for a small
amount of MATLAB syntax for parsing input/output and handling matrix–vector products via the
reverse communication feature of ARPACK. Since the majority of the code for eigs is written
in FORTRAN it yields the shortest total CPU times when compared with other similar methods
written entirely in MATLAB. Note that the CPU times on average for the matrix–vector products
in the examples is less for ahbeigs even though the number of matrix–vector products is often
more. This is due to the fact that multiplying a matrix by a group of vectors is often faster than
multiplying by only one vector at a time, an advantage of a block routine.

The methods behind the codes eigs and ahbeigs (with block size r = 1) are mathematically
equivalent, however the codes will rarely yield similar number of matrix–vector products for a
given matrix even with the same input vector and common parameters set equal. This is due in part
to how the author(s) of the code implements the method, e.g. orthogonalization of the Arnoldi

5 Computer code is available at http://www.math.uri.edu/∼jbaglama or http://math.nist.gov/toms/.
6 Computer code is available at http://www.ms.uky.edu/∼qye/eigifp.html.
7 Computer code is available at http://www.math.uu.nl/people/sleijpen/index.html.
8 Computer code is available at http://www.math.uu.nl/people/sleijpen/index.html.
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vectors (Householder, Gram-Schmidt with full or partial re-orthogonalization), what tolerance
to use to reorthogonalize the Arnoldi vectors, which method of deflation to use and when to
deflate, when and how to adjust the number of augmenting vectors (adjust) for ahbeigs or the
number of shifts for eigs to avoid stagnation or increase convergence, and what criteria to use
for convergence.

We remark that in order to achieve the least total CPU-time for a block method depends on the
combination of the block size and number of blocks, the problem at hand, and on the architecture of
the computer used. For many problems, the main advantage of using block size r > 1 is increased
reliability, see Example 1.

In the computed examples, we determine the initial block V0 by orthonormalizing the columns
of an n × r matrix with normally distributed random entries. The initial vector for the non-block
routines jdqr, eigifp, jdqz, and eigs was chosen to be the first column of V0. There are
numerous choices and combinations of parameter values for each of the methods. Some choices
and combinations yield faster convergence than others. For the direct comparisons we will use the
default values and only change block size, location of eigenvalues desired, tolerance, and storage
requirements.

In all examples, except example 6, the matrix A was accessed only by calls to a function with
input X ∈ Rn×blsz and output AX. This approach is “matrix-free” in the sense that the matrix A

does not have to be stored.
All computations for direct comparisons were carried out using MATLAB version 7.3.0.267

(R2006b) on a Dell 530 workstation with two 2.4 GHz (512k cache) Xeon processors and 2 GB
(400 MHz) of memory running under the Windows XP operating system. Machine epsilon is
ε = 2.2 × 10−16.

Example 1. Let A ∈ R1600×1600 be obtained by discretizing the 2-dimensional negative Laplace
operator on the unit square by the standard 5-point stencil with Dirichlet boundary conditions.
The MATLAB command

A = delsq(numgrid(‘S’, 42)) (5.1)

determines this matrix. We will compare the MATLAB programs ahbeigs, jdqr, eigifp, eigs,
and irbleigs for the computation of the three smallest eigenvalues and again for the 100 smallest
eigenvalues. The eigenvalues of the matrix A are well-known [47, Section 8.4] and the largest
multiplicity of the 100 smallest eigenvalues is two. We would like the computed Ritz values
to satisfy (3.6) with tol = 10−12. Non-block methods require a smaller tolerance in order to
compute the desired eigenvalues with proper multiplicity, see e.g. [3,7,8,25,26]. This requirement
of a smaller tolerance for a non-block method is demonstrated with ahbeigs with block size 1.
In Table 4.1 we set the parameters blsz = 1, nbls = 20, k = 3, sigma = ‘SA’, tol = 10−12, and
left all other parameters at the default value. The smallest eigenvalue of A has multiplicity one,
however the second and third smallest eigenvalues of A coincide. The graphs in Fig. 5.1 show the
convergence of the three smallest Ritz values. The top graph is the convergence of the smallest
Ritz value and the bottom graph illustrates the convergence of the next two smallest Ritz values.
Notice Ritz(3) does not converge to the multiple eigenvalue until the residual is small ≈10−12.
The big spike in the bottom graph for Ritz(3) is the introduction of the new poorly approximated
Ritz vector for the multiple eigenvalue. Experiments showed that the methods jdqr, eigifp, and
eigs all occasionally missed multiple eigenvalues with tolerance settings above 10−12. Therefore,
to ensure proper calculation of the multiplicity for the nonblock methods (jdqr, eigifp, eigs)
we set the tolerance for all methods to be tol = 10−12. We set the appropriate parameters in all
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Table 5.1
Example 1: (k = 3) 2-dimensional negative Laplace operator

Method Block size # of blocks # mvps CPU time (s) ‖AQ
(A)
k

− Q
(A)
k

U
(A)
k

‖2
mvps Total

ahbeigs 1 20 472 0.233 1.53 O(10−14)

tol = 10−12 2 10 932 0.295 2.39 O(10−14)

ahbeigs 2 10 762 0.141 1.94 O(10−12)

tol = 10−10 2 20 516 0.078 1.95 O(10−12)

ahbeigs 2 10 636 0.095 1.78 O(10−10)

tol = 10−8 2 20 448 0.096 1.78 O(10−10)

irbleigs 2 10 1040 0.234 2.03 O(10−8)

eigifp 1 20 907 0.41 1.69 O(10−13)

jdqr 1 20 637 0.186 1.48 O(10−13)

eigs 1 20 585 0.31 0.86 O(10−14)

The advantage of using ahbeigs allows for a lower tolerance without missing a multiple eigenvalue. tol = 10−12 was
used for all other routines.

Table 5.2
Example 1: (k = 100) 2-dimensional negative Laplace operator

Method Block size # of blocks # mvps CPU time (s) ‖AQ
(A)
k

− Q
(A)
k

U
(A)
k

‖2
mvps Total

ahbeigs 1 120 1180 0.563 88.1 O(10−13)

tol = 10−12 2 60 914 0.21 42.2 O(10−13)

ahbeigs 2 60 860 0.248 38.7 O(10−11)

tol = 10−10 2 120 896 0.203 31.9 O(10−14)

ahbeigs 2 60 824 0.219 36.1 O(10−9)

tol = 10−8 2 120 772 0.235 26.8 O(10−8)

irbleigs 2 60 44066 12.45 320.2 O(10−8)

eigifp 1 120 22244 10.89 150.5 O(10−13)

jdqr 1 120 9737 3.70 203.0 O(10−13)

eigs 1 120 887 0.231 10.9 O(10−13)

methods such that maximum storage requirement is 20 vectors and that the program searches
for the 3 smallest eigenvalues of A. All other parameters were left at the default values. Table
5.1 shows the number of matrix–vector products, CPU-time for the matrix–vector products, total
CPU-time, and the error. Setting the parameters for the number of desired eigenvalues to be 100
and the maximum storage requirement to 120 vectors, Table 5.2 shows the number of matrix–
vector products, CPU-time for the matrix–vector products, total CPU-time, and the error. This
example shows that the MATLAB program ahbeigs is competitive with other available software
and can compute multiple eigenvalues efficiently.

Example 2. We consider the matrix CK6569 from the Non-Hermitian Eigenvalue Problem (NEP)
Collection [12]. This is a 656 × 656 real nonsymmetric matrix with 3884 nonzero entries. It is
known to have eigenvalues of multiplicity two. According to [12] the goal is to compute the
eigenvalues with magnitude greater than one. There are 22 eigenvalues of CK656 with magnitude

9 Matrix available at http://math.nist.gov/MatrixMarket/.
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Ritz(1) ≈ 0.0117

Ritz(2) ≈  0.0293

Ritz(3) ≈  0.0293

Ritz(3) ≈ 0.0469

ahbeigs with blsz = 1, nbls = 20, and  k = 3 

Fig. 5.1. Example 1: The residuals calculated via (3.6) of the 3 smallest Ritz values for the matrix (5.1). The bottom
graphs shows that the program ahbeigs with block size 1 has difficulty approximating a multiple eigenvalue.

greater than one. As in Example 1, we must set the tolerance low so that non-block methods,
jdqr and eigs will compute the desired eigenvalues with the proper multiplicity. We set the
tolerance for all methods to be 10−12. We set the appropriate parameters in all methods such that
maximum storage requirement is 72 vectors and that the program searches for the 22 eigenvalues
of A with largest magnitude. All other parameters were left at the default values. We also recorded
the matrix–vector products for the methods Möller(S) and Möller(L) [33]. Table 5.3 displays
the results.

Example 3. We consider the matrix HOR13110 from the from Harwell-Boeing Sparse Matrix
Collection [16]. This is a 434 × 434 real nonsymmetric matrix with 4710 nonzero entries. Goal
is to compute the 8 eigenvalues of largest real part. We set the appropriate parameters in all
methods such that maximum storage requirement is 24 vectors and that the programs search for
the 8 eigenvalues of A with largest real part. We set the tolerance for all methods to be 10−12.
We also recorded the matrix–vector products for the methods Möller(S) and Möller(L) [33]

10 Matrix available at http://math.nist.gov/MatrixMarket/.
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Table 5.3
Example 2: Finding the 22 eigenvalues of largest magnitude for the matrix CK656 with tolerance set at 10−12

Method Block size # of blocks # mvps CPU time (s) ‖AQ
(A)
k

− Q
(A)
k

U
(A)
k

‖2
mvps Total

ahbeigs 1 72 435 0.020 2.64 O(10−14)

2 36 460 0.016 1.76 O(10−13)

3 24 663 0.047 2.16 O(10−13)

4 18 876 0.078 2.31 O(10−13)

jdqr 1 72 1440 0.298 25.3 O(10−13)

eigs 1 72 433 0.022 0.83 O(10−14)

Möller(S) 1 72 408
2 36 456
4 18 840

Möller(L) 1 72 428
2 36 478
3 24 669
4 18 814

Table 5.4
Example 3: Finding the 8 eigenvalues of largest real part for the matrix HOR131 with tolerance set at 10−12

Method Block size # of blocks # mvps CPU time (s) ‖AQ
(A)
k

− Q
(A)
k

U
(A)
k

‖2
mvps Total

ahbeigs 1 24 67 0.00 0.407 O(10−15)

2 12 96 0.00 0.160 O(10−13)

3 8 168 0.00 0.183 O(10−14)

4 6 288 0.00 0.306 O(10−13)

jdqr 1 24 175 0.03 1.172 O(10−13)

eigs 1 24 74 0.00 0.353 O(10−15)

bIRAM 1 24 77
2 12 84
3 8 99
4 6 108

Möller(S) 1 24 88
2 12 136
4 6 264

Möller(L) 1 24 79
2 12 93
4 6 105

and bIRAM [25]. Table 5.4 displays the results. The CPU-time for matrix–vector products for all
methods except jdqr was less than 10−3 and hence is displayed as 0 in Table 5.4.

Example 4. We consider the matrix TOLS200011 from the Non-Hermitian Eigenvalue Problem
(NEP) Collection [12]. This is a 2000 × 2000 real nonsymmetric matrix with 5184 nonzero
entries. The matrix arises in the stability analysis of a model of an airplane in flight. The goal is to
compute the eigenvalues with largest imaginary parts. The Tolosa matrix is highly nonnormal and
finding the eigenvalues is very difficult numerically. We compare our results with Jia [22]. The

11 Matrix available at http://math.nist.gov/MatrixMarket/.
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Table 5.5
Example 4: Finding the 3 eigenvalues of largest imaginary part for the matrix TOLS2000 with tolerance set at 10−9

Method Block size # of blocks # mvps CPU time (s) ‖AQ
(A)
k

− Q
(A)
k

U
(A)
k

‖2
mvps Total

ahbeigs 1 30 510 0.031 2.43 O(10−7)

2 30 1410 0.188 7.76 O(10−7)

3 30 1854 0.203 11.59 O(10−9)

eigs 1 30 766 0.078 1.52 O(10−7)

Jia 2 30 1980
3 30 1800

Table 5.6
Example 5: Finding the 10 eigenvalues of largest magnitude for the matrix AF23560 with tolerance set at 2.2 × 10−16

Method Block size # of blocks # mvps CPU time (s) ‖AQ
(A)
k

− Q
(A)
k

U
(A)
k

‖2
mvps Total

ahbeigs 1 24 134 0.800 8.68 O(10−12)

2 12 268 0.875 11.78 O(10−11)

3 8 444 1.22 18.45 O(10−10)

4 6 592 1.73 21.33 O(10−10)

eigs 1 24 136 0.61 2.48 O(10−10)

Möller(S) 1 24 136
2 12 264
4 6 600

Möller(L) 1 24 140
2 12 156
4 6 300

goal is to compute the 3 eigenvalues of largest imaginary part. We fixed the number of vectors to
be 30 and set the tolerance to be 10−9 in all methods. Table 5.5 displays the results. jdqr did not
converge with 30, tolerance set at 30, and all other settings at the default values.

Example 5. We consider the matrix AF2356012 from the Non-Hermitian Eigenvalue Problem
(NEP) Collection [12]. This is a 23560 × 23560 real nonsymmetric matrix with 484256 nonzero
entries and is the largest real nonsymmetric matrix in the collection. The goal is to compute 10
eigenvalues of largest magnitude. We set the tolerance for all methods to be machine precision,
i.e ≈2.2 × 10−16. We set the appropriate parameters in all methods such that maximum storage
requirement is 30 vectors and that the program searches for the 10 eigenvalues of A with larg-
est magnitude. We also recorded the matrix–vector products for the methods Möller(S) and
Möller(L) [33]. Table 5.6 displays the results.

Example 6. We consider the matrices BFW782A and BFW782B13 from the Non-Hermitian
Eigenvalue Problem (NEP) Collection [12]. We will solve the generalized eigenproblem . The
eigenvalues and corresponding eigenvectors of interest are the ones with positive real parts, which
correspond to the propagation modes of a waveguide. The matrix A is nonsymmetric and B is

12 Matrix available at http://math.nist.gov/MatrixMarket/.
13 Matrices available at http://math.nist.gov/MatrixMarket/.
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Table 5.7
Example 6: Finding the 4 eigenvalues of largest real part for the generalized eigenvalue problem with matrices BFW782A
and BFW782B

Method Block size # of blocks Total CPU time (s) ‖AQ
(A)
k

− BQ
(A)
k

U
(A)
k

‖2

ahbeigs 1 48 5.77 O(10−10)

2 24 6.97 O(10−10)

3 16 10.78 O(10−9)

4 12 14.00 O(10−9)

jdqz 1 48 10.56 O(10−10)

symmetric indefinite. We set the appropriate parameters in all methods such that maximum storage
requirement is 48 vectors and that the program searches for the 4 eigenvalues of A with largest
real part. We only can make a comparison with jdqz. The program eigs requires B to be positive
definite or for the user to input a matrix–vector product routine to compute B−1Ax. Tolerance for
ahbeigs was set at 10−6 and tolerance for jdqz had to be set to 10−12 in order to get the same
accuracy. Table 5.7 displays the results.

6. Conclusion

This paper presents a block form of the Arnoldi Householder algorithm and shows how to
implement an augmented block Krylov method by utilizing a block form of the Householder
vectors. Computed examples illustrate that the MATLAB function ahbeigs is a competitive
software that can compute multiple eigenvalues more reliably than a single vector method and
in certain examples may determine desired eigenvalues to specified accuracy faster than other
public domain MATLAB functions.
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