4,074 research outputs found

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Fractional Order Fuzzy Control of Nuclear Reactor Power with Thermal-Hydraulic Effects in the Presence of Random Network Induced Delay and Sensor Noise having Long Range Dependence

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Nonlinear state space modeling of a nuclear reactor has been done for the purpose of controlling its global power in load following mode. The nonlinear state space model has been linearized at different percentage of reactor powers and a novel fractional order (FO) fuzzy proportional integral derivative (PID) controller is designed using real coded Genetic Algorithm (GA) to control the reactor power level at various operating conditions. The effectiveness of using the fuzzy FOPID controller over conventional fuzzy PID controllers has been shown with numerical simulations. The controllers tuned with the highest power models are shown to work well at other operating conditions as well; over the lowest power model based design and hence are robust with respect to the changes in nuclear reactor operating power levels. This paper also analyzes the degradation of nuclear reactor power signal due to network induced random delays in shared communication network and due to sensor noise while being fed-back to the Reactor Regulating System (RRS). The effect of long range dependence (LRD) which is a practical consideration for the stochastic processes like network induced delay and sensor noise has been tackled by optimum tuning of FO fuzzy PID controllers using GA, while also taking the operating point shift into consideration

    Self-similar traffic and network dynamics

    Get PDF
    Copyright © 2002 IEEEOne of the most significant findings of traffic measurement studies over the last decade has been the observed self-similarity in packet network traffic. Subsequent research has focused on the origins of this self-similarity, and the network engineering significance of this phenomenon. This paper reviews what is currently known about network traffic self-similarity and its significance. We then consider a matter of current research, namely, the manner in which network dynamics (specifically, the dynamics of transmission control protocol (TCP), the predominant transport protocol used in today's Internet) can affect the observed self-similarity. To this end, we first discuss some of the pitfalls associated with applying traditional performance evaluation techniques to highly-interacting, large-scale networks such as the Internet. We then present one promising approach based on chaotic maps to capture and model the dynamics of TCP-type feedback control in such networks. Not only can appropriately chosen chaotic map models capture a range of realistic source characteristics, but by coupling these to network state equations, one can study the effects of network dynamics on the observed scaling behavior. We consider several aspects of TCP feedback, and illustrate by examples that while TCP-type feedback can modify the self-similar scaling behavior of network traffic, it neither generates it nor eliminates it.Ashok Erramilli, Matthew Roughan, Darryl Veitch and Walter Willinge

    Communication-constrained feedback stability and Multi-agent System consensusability in Networked Control Systems

    Get PDF
    With the advances in wireless communication, the topic of Networked Control Systems (NCSs) has become an interesting research subject. Moreover, the advantages they offer convinced companies to implement and use data networks for remote industrial control and process automation. Data networks prove to be very efficient for controlling distributed systems, which would otherwise require complex wiring connections on large or inaccessible areas. In addition, they are easier to maintain and more cost efficient. Unfortunately, stability and performance control is always going to be affected by network and communication issues, such as band-limited channels, quantization errors, sampling, delays, packet dropouts or system architecture. The first part of this research aims to study the effects of both input and output quantization on an NCS. Both input and output quantization errors are going to be modeled as sector bounded multiplicative uncertainties, the main goal being the minimization of the quantization density, while maintaining feedback stability. Modeling quantization errors as uncertainties allows for robust optimal control strategies to be applied in order to study the accepted uncertainty levels, which are directly related to the quantization levels. A new feedback law is proposed that will improve closed-loop system stability by increasing the upper bound of allowed uncertainty, and thus allowing the use of a coarser quantizer. Another aspect of NCS deals with coordination of the independent agents within a Multi-agent System (MAS). This research addresses the consensus problem for a set of discrete-time agents communicating through a network with directed information flow. It examines the combined effect of agent dynamics and network topology on agents\u27 consensusability. Given a particular consensus protocol, a sufficient condition is given for agents to be consensusable. This condition requires the eigenvalues of the digraph modeling the network topology to be outer bounded by a fan-shaped area determined by the Mahler measure of the agents\u27 dynamics matrix

    Algebraic robust control of a closed circuit heating-cooling system with a heat exchanger and internal loop delays

    Get PDF
    This study demonstrates the use of a simple algebraic controller design for a cooling-heating plant with a through-flow air-water heat exchanger that evinces long internal delays with respect to the robustness to plant model uncertainties and variable ambient temperature conditions during the season. The advantage of the proposed design method consists in that the delays are not approximated but fully considered. Moreover, the reduction of sensitivity to model parameters’ variations yields the better applicability regardless modeling errors or environmental fluctuations. The infinite-dimensional mathematical model of the plant has been obtained by using anisochronic modeling principles. The key tool for the design is the ring special of quasipolynomial meromorphic functions (RQM). The Two-Feedback-Controllers (TFC) rather than the simple negative control feedback loop is utilized, which enables to solve the reference tracking and disturbance rejection independently and more efficiently. The eventual controller is then tuned such that robust stability and robust performance requirements are fulfilled. The tuning procedure is supported by a performance optimization idea. Since the originally obtained controller is of the infinite-dimensional nature, a possible way how to substitute it by a simplified finite-dimensional one is proposed for engineering practice. The functionality of both the controllers is compared and verified by simulations as well as by real measurements which prove a very good performance. © 2016 Elsevier LtdEuropean Regional Development Fund under the project CEBIA-Tech Instrumentation [CZ.1.05/2.1.00/19.0376

    Implementation of ultrasonic sensing for high resolution measurement of binary gas mixture fractions

    Get PDF
    We describe an ultrasonic instrument for continuous real-time analysis of the fractional mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks of a high molecular weight gas into a system that is nominally composed of a single gas. Sensitivity < 5 × 10−5 is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during a long duration (18 month) continuous study. The sensitivity of the described measurement system is shown to depend on the difference in molecular masses of the two gases in the mixture. The impact of temperature and pressure variances on the accuracy of the measurement is analysed. Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak detection systems are also described. Although development of the described systems was motivated by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to the detection of leaks of many other gases and to processes requiring continuous knowledge of particular binary gas mixture fractions

    Analysis of temperature time-series: embedding dynamics into the MDS method

    Get PDF
    Global warming and the associated climate changes are being the subject of intensive research due to their major impact on social, economic and health aspects of the human life. Surface temperature time-series characterise Earth as a slow dynamics spatiotemporal system, evidencing long memory behaviour, typical of fractional order systems. Such phenomena are difficult to model and analyse, demanding for alternative approaches. This paper studies the complex correlations between global temperature time-series using the Multidimensional scaling (MDS) approach. MDS provides a graphical representation of the pattern of climatic similarities between regions around the globe. The similarities are quantified through two mathematical indices that correlate the monthly average temperatures observed in meteorological stations, over a given period of time. Furthermore, time dynamics is analysed by performing the MDS analysis over slices sampling the time series. MDS generates maps describing the stations’ locus in the perspective that, if they are perceived to be similar to each other, then they are placed on the map forming clusters. We show that MDS provides an intuitive and useful visual representation of the complex relationships that are present among temperature time-series, which are not perceived on traditional geographic maps. Moreover, MDS avoids sensitivity to the irregular distribution density of the meteorological stations

    Integer Ambiguity Resolution for Multi-GNSS and Multi-Signal Raw Phase Observations

    Get PDF
    The continuous modernisation of existing Global Navigation Satellite Systems (GNSS) and the development of new systems with a multitude of different carrier frequencies and a variety of signal modulations creates a true multi-GNSS and multi-signal environment available today. Still most precise GNSS processing strategies rely on dual-frequency measurements only by applying the Ionosphere-Free (IF) Linear Combination (LC) of GNSS observables and therefore do not benefit from the available multi-signal environment. While in this processing approach the first order effect of the ionospheric delay can be eliminated almost completely, the formation of linear combinations of GNSS observables leads to a noise increase for the resulting observations and a loss of some of the physical characteristics of the original signals, like the integer nature of the carrier phase ambiguity. In order to benefit from the multi-GNSS and multi-signal environment available today, the scientific analyses and precise applications presented in this work are based on the raw observation processing approach, which makes use of the original (raw) observations without forming any linear combinations or differences of GNSS observables. This processing strategy provides the flexibility to make use of all or a selection of available multi-GNSS and multi-signal raw observations, which are jointly processed in a single adjustment as there is no inherent limitation on the number of usable signals. The renunciation of linear combinations and observation differences preserves the physical characteristics of individual signals and implies that multi-signal biases and ionospheric delays need to be properly determined or corrected in the parameter estimation process. The raw observation processing approach is used in this work to jointly process measurements from up to three different GNSS, including eleven signals tracked on up to eight different carrier frequencies in one single adjustment. The bias handling for multi-GNSS and multi-signal applications is analysed with a focus on physically meaningful parameter estimates to demonstrate the benefits of handling clock offset parameters, multi-signal code biases and ionospheric delay estimates in a physically meaningful and consistent way. In this context, receiver-specific multi-GNSS and multisignal biases are analysed and calibrated by the use of a GNSS signal simulator. The disadvantages of eliminating physical characteristics due to the formation of linear combinations of observations or commonly used parameter estimation strategies are demonstrated and discussed. The carrier phase Integer Ambiguity Resolution (IAR) approach developed and implemented in the course of this work is based on the joint processing of multi-GNSS and multi-signal raw observations without forming any linear combinations or observation differences. Details of the implemented IAR approach are described and the performance is analysed for available carrier signal frequencies of different GNSS. Achieved results are compared to the conventional IAR approach based on IF linear combinations and the so called Widelane (WL) and Narrowlane (NL) ambiguities. In addition, the resolution of inter-system integer ambiguities is analysed for common GNSS signal frequencies. The performance of the implemented IAR approach is demonstrated and analysed by the joint Precise Orbit Determination (POD) of multi-GNSS satellites based on fixed multi-frequency carrier phase ambiguities. The improvement of the satellite orbit and clock quality by fixing raw observation ambiguities confirms the successful implementation of the IAR approach based on raw observation processing. Multi-GNSS satellite orbits and clock offsets determined with this approach are compared to results generated with the conventional IF linear combination processing approach and independent external products. This comparison demonstrates an at least equivalent performance of the implemented IAR approach based on raw observation processing. In addition, the fixed raw observation ambiguities are used to investigate and discuss characteristics of multi-GNSS and multi-frequency phase biases
    corecore