research

Self-similar traffic and network dynamics

Abstract

Copyright © 2002 IEEEOne of the most significant findings of traffic measurement studies over the last decade has been the observed self-similarity in packet network traffic. Subsequent research has focused on the origins of this self-similarity, and the network engineering significance of this phenomenon. This paper reviews what is currently known about network traffic self-similarity and its significance. We then consider a matter of current research, namely, the manner in which network dynamics (specifically, the dynamics of transmission control protocol (TCP), the predominant transport protocol used in today's Internet) can affect the observed self-similarity. To this end, we first discuss some of the pitfalls associated with applying traditional performance evaluation techniques to highly-interacting, large-scale networks such as the Internet. We then present one promising approach based on chaotic maps to capture and model the dynamics of TCP-type feedback control in such networks. Not only can appropriately chosen chaotic map models capture a range of realistic source characteristics, but by coupling these to network state equations, one can study the effects of network dynamics on the observed scaling behavior. We consider several aspects of TCP feedback, and illustrate by examples that while TCP-type feedback can modify the self-similar scaling behavior of network traffic, it neither generates it nor eliminates it.Ashok Erramilli, Matthew Roughan, Darryl Veitch and Walter Willinge

    Similar works