3,404 research outputs found

    Meteorological support for remote sensing programs

    Get PDF
    Many earth-oriented remote sensing spacecraft and aircraft programs are affected by the presence of clouds. Like aerial photography, they require clear or mostly clear skies. To cope with the cloud problem, the National Weather Service through its Spaceflight Meteorology Group (SMG) of the Space Operations Support Division makes cloud cover forecasts, as part of its specialized weather service for various NASA remote sensing and other programs. Forecasting requirements vary in time from a few hours out to several days and in aerial extent from a particular locality to nearly global in coverage. Depending on the stage of program development, some remote sensing programs may involve special climatological studies for planning purposes or need ground-truth data for comparison with remotely sensed information. The importance of computer and weather satellite products to the SMG meteorologist is discussed and the nature of SMG's weather support of past, present, and future remote sensing programs is described

    Simulating Physiological Potentials of Daylight Variables in Lighting Design

    Get PDF
    A holistic approach to daylight dynamics in our built environment can have beneficial outcomes for both physiological and visual effects on humans. Simulations of how daylight variables affect light levels on the horizontal work plane are compared to their physiological effects, measured as melanopic EDI (Melanopic Equivalent Daylight Illuminance) on a vertical plane. The melanopic EDI levels were calculated in a simulated office space in ALFA software (Adaptive Lighting for Alertness) employing the daylight variables of orientation, time of day, season, sky conditions and spatial orientation. Results were analyzed for how daylight design can contribute to the physiological effects of dynamic light in office buildings. Daylight is shown to be a sufficient light source in the majority of cases to meet the recommended values of EDI and provide the suggested horizontal lx level according to the Danish Standards. A mapping of daylight conditions, focusing on the specific factors presented here, can provide guidelines in the design process and future smart building systems. The complex interrelationship between these parameters is important to acknowledge when working with daylight dynamics as a sustainable element in architecture and lighting design

    Day-Ahead Solar Resource Prediction Method Using Weather Forecasts for Peak Shaving

    Get PDF
    Due to recent concerns about energy sustainability, solar power is becoming more prevalent in distributed power generation. There are still obstacles which need to be addressed before solar power can be provided at the level of reliability that utilities require. Some of these issues can be mitigated with strategic use of energy storage. In the case of load shifting, energy storage can be used to supply solar energy during a time of day when utility customer\u27s demand is highest, thus providing partial peak load burden relief or peak shaving. Because solar resource availability is intermittent due to clouds and other atmospheric factors, charge/discharge planning must take weather into consideration. Many inter-day and intra-day solar resource prediction methods have been developed to aid in rm (high-reliability) resource establishment and peak-shaving through various methods and data sources with different levels of complexity. The purpose of this study was to investigate the use of readily-available, day-ahead National Weather Service (NWS) forecasts to develop a PV resource prediction. Using past day-ahead NWS weather forecasts and historical performance data from the Prosperity Energy Storage Project near Mesa del Sol in Albuquerque, New Mexico, several correlations were created based on regression analysis and optimized for minimal Root Mean Square (RMS) error for daily insolation prediction. Though some other methods such as the National Digital Forecast Database (NDFD) and Global Forecast System (GFS) exhibit greater accuracy, this method could prove to be a relatively simple means of planning the use of energy storage for peak-shaving or arbitrage. Additionally, given appropriate considerations for prediction uncertainty one could establish a rm resource to meet customer demand

    Theoretical and experimental investigation of Polymer Dispersed Liquid Crystal glazing for Net-Zero energy buildings in Saudi Arabia and UK

    Get PDF
    In the last few years, energy consumption in the building sector has increased significantly because of the economic and population growth in Saudi Arabia and the United Kingdom. Governmental bodies and policymakers have invested greatly to implement measures to reduce the energy demand and carbon emissions for the building sector. Recently, a new technology of smart windows has emerged such as Polymer Dispersed Liquid Crystal Smart Glazing (PDLC). It has the potential to dynamically control the transmittance of solar radiation into a building by altering the optical and thermal properties. To evaluate the PDLC glazing for building applications, certain properties such as spectral transmission, thermal, and daylight performance need to be investigated. Therefore, this research aims to investigate PDLC glazing to characterise the thermal and daylight performance for energy efficiency for buildings in Saudi Arabia and the United Kingdom. To investigate the thermal and daylight performance of PDLC glazing, theoretical and experimental methodologies were used. In the indoor experiment, the PDLC glazing was investigated to evaluate the spectral transmission and determine the thermal properties. In the outdoor experiment, the PDLC glazing was investigated with and without a solar control film to evaluate the thermal behaviour and daylight performance under various sky conditions. Furthermore, the EnergyPlus simulation tool was used to perform building energy modelling and daylight analysis to evaluate the potential of energy saving of the PDLC glazing for an office building in Saudi Arabia (arid climate) and the United Kingdom (temperate climate). The result of the indoor investigation showed that the investigated PDLC glazing has 2.79 W/m2·K and 2.44 W/m2·K for transparent and opaques states, respectively. In addition, the outdoor evaluation revealed that the PDLC glazing effectively reduced solar heat gain when switched to the opaque state. Visual comfort was also achieved in all sky conditions (sunny, intermittent, cloudy) when a solar control film was attached to the PDLC glazing. In terms of energy savings, the EnergyPlus analysis showed that the PDLC glazing reduced cooling load by 12.7% in Riyadh and heating load by 4.9% in London

    Benchmarking of meteorological indices for sky cloudiness classification

    Get PDF
    Sky classification is a complex problem, due in part to such abstract conceptual definitions as clear, intermediate, and overcast, as well as other intermediate ranges. The CIE (Commission Internationale de L’Éclairage) Standard classification offers a solution to this problem, although its application requires data on the luminance distribution of the whole sky that are less commonly available. A benchmarking and classification system of ten meteorological indices is introduced in this study to classify the sky types from overcast to clear. The indices can be calculated from measurements of global, diffuse, and direct irradiance that are widely available from meteorological ground stations. The classification system uses confusion matrices, a machine-learning tool that generates a visual display of the results of supervised-learning algorithms. The CIE Standard skies classification, applied to half hourly sky-scanner measurements in Burgos (Spain), over the period June 2016 - May 2017, is used in this study as a baseline reference for a comparative review of the results from the meteorological indices and their results. They are classified by four performance ratings: Accuracy, Jaccard, Cohen, and Matthews, which feature both classification similarity and the randomness of any agreement. All meteorological indices yielded a high average degree of accuracy - close to 80% - in a detailed review of their classification. Neverthless, the results suggested that Perez’s Clearness Index based on global, diffuse and direct radiation measurements offered the most precise classification of the skies, followed closely by the Klucher Clearness Index and the Perraudeau Nebulosity Index.Regional Government of Castilla y León under the “Support Program for Recognized Research Groups of Public Universities of Castilla y León” (ORDEN EDU/667/2019) and the Spanish Ministry of Science, Innovation & Universities under the I + D + i state programme “Challenges Research Projects” (Ref. RTI2018-098900-B-I00

    Using all-sky differential photometry to investigate how nocturnal clouds darken the night sky in rural areas

    Full text link
    Artificial light at night has affected most of the natural nocturnal landscapes worldwide and the subsequent light pollution has diverse effects on flora, fauna and human well-being. To evaluate the environmental impacts of light pollution, it is crucial to understand both the natural and artificial components of light at night under all weather conditions. The night sky brightness for clear skies is relatively well understood and a reference point for a lower limit is defined. However, no such reference point exists for cloudy skies. While some studies have examined the brightening of the night sky by clouds in urban areas, the published data on the (natural) darkening by clouds is very sparse. Knowledge of reference points for the illumination of natural nocturnal environments however, is essential for experimental design and ecological modeling to assess the impacts of light pollution. Here we use differential all-sky photometry with a commercial digital camera to investigate how clouds darken sky brightness at two rural sites. The spatially resolved data enables us to identify and study the nearly unpolluted parts of the sky and to set an upper limit on ground illumination for overcast nights at sites without light pollution.Comment: 17 pages, 6 figure

    An Investigation of Daylighting Performance in Sidelit Spaces

    Get PDF
    The positive influence of daylight on people’s work and well-being has been confirmed in many studies. However, excessive daylight causes discomfort glare, which decreases work productivity, impairs occupants’ vision, and may even cause headaches. Substantial studies explored glare by correlating physical lighting measurements and subjective evaluations. With the development of High Dynamic Range (HDR) image techniques, dynamic changes of daylighting distributions can be effectively captured. Consequently, more studies paired HDR image techniques with subject evaluations to explore glare. However, studies merely relying on field measurements are not only time-consuming and labor-intensive but may also disturb occupants. To address these problems, this dissertation proposed the method of integrating three research tools, HDR image techniques, simulations, and questionnaire surveys, to investigate daylight glare. Using sidelit spaces across five buildings as the example, this dissertation aimed to demonstrate the accuracy of simulation results and the correlations between subject occupant evaluations and physical lighting data derived from both field measurements and simulation results. This dissertation is comprised of three sections. The first section focused on field measurements. Over 200 HDR images across five buildings were taken and analyzed using select visual discomfort metrics. The results showed that daylight glare probability (DGP) outperformed the other visual discomfort metrics in terms of identifying intolerable and imperceptible glare. The second section utilized these HDR images to calibrate four of the five buildings’ Radiance models. The relative RMSE of simulated vertical eye illuminance under both the Perez all-weather sky model and the hybrid photo-radiometer sky model were 23.7% and 21.2%, respectively. The frequencies of accurate glare prediction under both sky models were 93.9% and 95.5%, respectively. The results indicated that Radiance models with precise geometries and material properties can accurately represent the real lighting environments. Finally, the third section paired questionnaire surveys with both the HDR image technique and simulations to investigate daylight qualities within an open-plan office. The study found that taller windows, proximity to windows, and facing towards windows caused severe glare. By removing workstation partitions and arranging seating orientations perpendicular to the windows, the renovated layout design increased occupant satisfaction with their daylighting environments and tolerance for daylight glare. The last section demonstrated the effectiveness of integrating the three tools in lighting studies and the importance of interior layout and furniture designs in terms of daylight glare reduction

    Daylight Spectrum Index: A New Metric to Assess the Affinity of Light Sources with Daylighting

    Get PDF
    The current scenario of colorimetry shows a wide variety of different metrics which do not converge in the assessment of the color rendering of light sources. The limitations of the Color Rendering Index have promoted the emergence of new metrics, such as the Color Quality Scale. As in the case of the previous metric, these new concepts are based on the analysis of the deviation of different color samples in a color space, contrasting the results with those obtained with a light source reference, which can vary depending on the color temperature. Within this context, the Daylight Spectrum Index is proposed. This new concept aims to determine the affinity with daylighting of electric light sources, comparing the resulting spectral power distributions of the lamps studied and that observed under natural light. The affinity of an electric light source with daylighting allows for lower energy consumption due to the better performance of human vision. The new metric proposed is evaluated following the results obtained from 80 surveys, demonstrating the usefulness of this new concept in the quantification of color rendering of LED lamps and the affinity of electric light sources with daylighting.Government of Spain BIA2017-86997-

    Photosynthetic active radiation, solar irradiance and the CIE standard sky classification

    Get PDF
    Plant growth is directly related to levels of photosynthetic photon flux density, Qp. The improvement of plant-growth models therefore requires accurate estimations of the Qp parameter that is often indirectly calculated on the basis of its relationship with solar irradiation, RS, due to the scarcity of ground measurements of photosynthetic photon flux density. In this experimental campaign in Burgos, Spain, between April 2019 and January 2020, an average value of the Qp/Rs ratio is determined on the basis of measurements at ten-minute intervals. The most influential factor in the Qp/Rs ratio, over and above any daily or seasonal pattern, is the existence of overcast sky conditions. The CIE standard sky classification can be used to establish an unequivocal characterization of the cloudiness conditions of homogeneous skies. In this study, the relation between the CIE standard sky type and Qp/Rs is investigated. Its conclusions were that the Qp/Rs values, the average of which was 1.93 0.15 mol J�����1, presented statistically significant di erences for each CIE standard sky type. The overcast sky types presented the highest values of the ratio, while the clear sky categories presented the lowest and most dispersed values. During the experimental campaign, only two exceptions were noted for covered and partial covered sky-type categories, respectively, sky types 5 and 9. Their values were closer to those of categories classified as clear sky according to the CIE standard. Both categories presented high uniformity in terms of illumination.Spanish Ministry of Science and Innovation, grant number RTI2018-098900-B-I00 and Consejería de Educación, Junta de Castilla y León, grant number BU021G1

    WCRP surface radiation budget shortwave data product description, version 1.1

    Get PDF
    Shortwave radiative fluxes which reach the Earth's surface are key elements that influence both atmospheric and oceanic circulation. The World Climate Research Program has established the Surface Radiation Budget climatology project with the ultimate goal of determining the various components of the surface radiation budget from satellite data on a global scale. This report describes the first global product that is being produced and archived as part of that effort. The interested user can obtain the monthly global data sets free of charge using e-mail procedures
    corecore