3,420 research outputs found

    Toward a unified PNT, Part 1: Complexity and context: Key challenges of multisensor positioning

    Get PDF
    The next generation of navigation and positioning systems must provide greater accuracy and reliability in a range of challenging environments to meet the needs of a variety of mission-critical applications. No single navigation technology is robust enough to meet these requirements on its own, so a multisensor solution is required. Known environmental features, such as signs, buildings, terrain height variation, and magnetic anomalies, may or may not be available for positioning. The system could be stationary, carried by a pedestrian, or on any type of land, sea, or air vehicle. Furthermore, for many applications, the environment and host behavior are subject to change. A multi-sensor solution is thus required. The expert knowledge problem is compounded by the fact that different modules in an integrated navigation system are often supplied by different organizations, who may be reluctant to share necessary design information if this is considered to be intellectual property that must be protected

    Efficient AoA-based wireless indoor localization for hospital outpatients using mobile devices

    Get PDF
    The motivation of this work is to help outpatients find their corresponding departments or clinics, thus, it needs to provide indoor positioning services with a room-level accuracy. Unlike wireless outdoor localization that is dominated by the global positioning system (GPS), wireless indoor localization is still an open issue. Many different schemes are being developed to meet the increasing demand for indoor localization services. In this paper, we investigated the AoA-based wireless indoor localization for outpatients’ wayfinding in a hospital, where Wi-Fi access points (APs) are deployed, in line, on the ceiling. The target position can be determined by a mobile device, like a smartphone, through an efficient geometric calculation with two known APs coordinates and the angles of the incident radios. All possible positions in which the target may appear have been comprehensively investigated, and the corresponding solutions were proven to be the same. Experimental results show that localization error was less than 2.5 m, about 80% of the time, which can satisfy the outpatients’ requirements for wayfinding

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Position Estimation of Robotic Mobile Nodes in Wireless Testbed using GENI

    Full text link
    We present a low complexity experimental RF-based indoor localization system based on the collection and processing of WiFi RSSI signals and processing using a RSS-based multi-lateration algorithm to determine a robotic mobile node's location. We use a real indoor wireless testbed called w-iLab.t that is deployed in Zwijnaarde, Ghent, Belgium. One of the unique attributes of this testbed is that it provides tools and interfaces using Global Environment for Network Innovations (GENI) project to easily create reproducible wireless network experiments in a controlled environment. We provide a low complexity algorithm to estimate the location of the mobile robots in the indoor environment. In addition, we provide a comparison between some of our collected measurements with their corresponding location estimation and the actual robot location. The comparison shows an accuracy between 0.65 and 5 meters.Comment: (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Enhancing integrated indoor/outdoor mobility in a smart campus

    Get PDF
    A Smart City relies on six key factors: Smart Governance, Smart People, Smart Economy, Smart Environment, Smart Living and Smart Mobility. This paper focuses on Smart Mobility by improving one of its key components: positioning. We developed and deployed a novel indoor positioning system (IPS) that is combined with an outdoor positioning system to support seamless indoor and outdoor navigation and wayfinding. The positioning system is implemented as a service in our broader cartography-based smart university platform, called SmartUJI, which centralizes access to a diverse collection of campus information and provides basic and complex services for the Universitat Jaume I (Spain), which serves as surrogate of a small city. Using our IPS and based on the SmartUJI services, we developed, deployed and evaluated two end-user mobile applications: the SmartUJI APP that allows users to obtain map-based information about the different facilities of the campus, and the SmartUJI AR that allows users to interact with the campus through an augmented reality interface. Students, university staff and visitors who tested the applications reported their usefulness in locating university facilities and generally improving spatial orientation

    A multimodal Fingerprint-based Indoor Positioning System for airports

    Full text link
    [EN] Indoor Localization techniques are becoming popular in order to provide a seamless indoor positioning system enhancing the traditional GPS service that is only suitable for outdoor environments. Though there are proprietary and costly approaches targeting high accuracy positioning, Wi-Fi and BLE networks are widely deployed in many public and private buildings (e.g. shopping malls, airports, universities, etc.). These networks are accessible through mobile phones resulting in an effective commercial off-the-self basic infrastructure for an indoor service. The obtained positioning accuracy is still being improved and there is on-going research on algorithms adapted for Wi-Fi and BLE and also for the particularities of indoor environments. This paper focuses not only on indoor positioning techniques, but also on a multimodal approach. Traditional proposals employ only one network technology whereas this paper integrates two different technologies in order to provide improved accuracy. It also sets the basis for combining (merging) additional technologies, if available. The initial results show that the positioning service performs better with a multimodal approach compared to individual (monomodal) approaches and even compared with GoogleÂżs geolocation service in public spaces such as airports.This work was supported in part by the European Commission through the Door to Door Information for Airports and Airlines Project under Grant GA 635885 and in part by the European Commission through the Interoperability of Heterogeneous IoT Platforms Project under Grant 687283.Molina Moreno, B.; Olivares-Gorriti, E.; Palau Salvador, CE.; Esteve Domingo, M. (2018). A multimodal Fingerprint-based Indoor Positioning System for airports. IEEE Access. 6:10092-10106. https://doi.org/10.1109/ACCESS.2018.2798918S1009210106

    Investigation of indoor localization with ambient FM radio stations

    Full text link
    Localization plays an essential role in many ubiquitous computing applications. While the outdoor location-aware services based on GPS are becoming increasingly popular, their proliferation to indoor environments is limited due to the lack of widely available indoor localization systems. The de-facto standard for indoor positioning is based on Wi-Fi and while other localization alternatives exist, they either require expensive hardware or provide a low accuracy. This paper presents an investigation into localization system that leverages signals of broadcasting FM radio stations. The FM stations provide a worldwide coverage, while FM tuners are readily available in many mobile devices. The experimental results show that FM radio can be used for indoor localization, while providing longer battery life than Wi-Fi, making FM an alternative to consider for positioning.Comment: 10th IEEE Pervasive Computing and Communication conference, PerCom 2012, pp. 171 - 17

    Improving indoor localization accuracy through information fusion

    Get PDF

    Evaluating and improving indoor positioning methods

    Get PDF

    Indoor Positioning and Navigating System Application Using Wi-Fi with Fingerprinting Method and Weighted K-Nearest Neighbor Algorithm: English

    Get PDF
    The need for accurate indoor location determination, object tracking, digital maps and indoor travel routes is increasing along with the construction of buildings that have complex and spacious layouts. The current Global Positioning System navigation system is only effective for outdoor use. However, when used indoors it becomes inaccurate due to factors such as signal attenuation and multipath caused by wall obstructions in the building. This study designed an application of Indoor Positioning and Navigating System Using Wi-Fi with Fingerprinting method and Weighted K-Nearest Neighbor algorithm. In the design process, it is necessary to create a fingerprinting database by considering the number of Access points and environmental conditions. Based on the results of the study, the location results of the application show that from floors 1,2, and 3. Floor 1 has a room accuracy result of 89% and a point accuracy of 86% with an average deviation of 1.42 px or 0.9 m, floor 2 has room accuracy results. of 65% and a point accuracy of 70% with an average deviation of 2.43 px or 1.7 m, and the 3rd floor has a room accuracy of 86% and a point accuracy of 68% with an average deviation of 2.27 or 1.5 m. Based on the data above, this application is proven to be able to detect the position of someone in the room with a success percentage on the 1st floor by 90%, the 2nd floor by 55%, and the 3rd floor by 80%
    • …
    corecore