1,795 research outputs found

    Integrative multicellular biological modeling: a case study of 3D epidermal development using GPU algorithms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Simulation of sophisticated biological models requires considerable computational power. These models typically integrate together numerous biological phenomena such as spatially-explicit heterogeneous cells, cell-cell interactions, cell-environment interactions and intracellular gene networks. The recent advent of programming for graphical processing units (GPU) opens up the possibility of developing more integrative, detailed and predictive biological models while at the same time decreasing the computational cost to simulate those models.</p> <p>Results</p> <p>We construct a 3D model of epidermal development and provide a set of GPU algorithms that executes significantly faster than sequential central processing unit (CPU) code. We provide a parallel implementation of the subcellular element method for individual cells residing in a lattice-free spatial environment. Each cell in our epidermal model includes an internal gene network, which integrates cellular interaction of Notch signaling together with environmental interaction of basement membrane adhesion, to specify cellular state and behaviors such as growth and division. We take a pedagogical approach to describing how modeling methods are efficiently implemented on the GPU including memory layout of data structures and functional decomposition. We discuss various programmatic issues and provide a set of design guidelines for GPU programming that are instructive to avoid common pitfalls as well as to extract performance from the GPU architecture.</p> <p>Conclusions</p> <p>We demonstrate that GPU algorithms represent a significant technological advance for the simulation of complex biological models. We further demonstrate with our epidermal model that the integration of multiple complex modeling methods for heterogeneous multicellular biological processes is both feasible and computationally tractable using this new technology. We hope that the provided algorithms and source code will be a starting point for modelers to develop their own GPU implementations, and encourage others to implement their modeling methods on the GPU and to make that code available to the wider community.</p

    Multi-level agent-based modeling - A literature survey

    Full text link
    During last decade, multi-level agent-based modeling has received significant and dramatically increasing interest. In this article we present a comprehensive and structured review of literature on the subject. We present the main theoretical contributions and application domains of this concept, with an emphasis on social, flow, biological and biomedical models.Comment: v2. Ref 102 added. v3-4 Many refs and text added v5-6 bibliographic statistics updated. v7 Change of the name of the paper to reflect what it became, many refs and text added, bibliographic statistics update

    Parallelisation strategies for agent based simulation of immune systems

    Get PDF
    Background In recent years, the study of immune response behaviour using bottom up approach, Agent Based Modeling (ABM), has attracted considerable efforts. The ABM approach is a very common technique in the biological domain due to high demand for a large scale analysis tools for the collection and interpretation of information to solve biological problems. Simulating massive multi-agent systems (i.e. simulations containing a large number of agents/entities) requires major computational effort which is only achievable through the use of parallel computing approaches. Results This paper explores different approaches to parallelising the key component of biological and immune system models within an ABM model: pairwise interactions. The focus of this paper is on the performance and algorithmic design choices of cell interactions in continuous and discrete space where agents/entities are competing to interact with one another within a parallel environment. Conclusions Our performance results demonstrate the applicability of these methods to a broader class of biological systems exhibiting typical cell to cell interactions. The advantage and disadvantage of each implementation is discussed showing each can be used as the basis for developing complete immune system models on parallel hardware

    HIGH PERFORMANCE AGENT-BASED MODELS WITH REAL-TIME IN SITU VISUALIZATION OF INFLAMMATORY AND HEALING RESPONSES IN INJURED VOCAL FOLDS

    Get PDF
    The introduction of clusters of multi-core and many-core processors has played a major role in recent advances in tackling a wide range of new challenging applications and in enabling new frontiers in BigData. However, as the computing power increases, the programming complexity to take optimal advantage of the machine's resources has significantly increased. High-performance computing (HPC) techniques are crucial in realizing the full potential of parallel computing. This research is an interdisciplinary effort focusing on two major directions. The first involves the introduction of HPC techniques to substantially improve the performance of complex biological agent-based models (ABM) simulations, more specifically simulations that are related to the inflammatory and healing responses of vocal folds at the physiological scale in mammals. The second direction involves improvements and extensions of the existing state-of-the-art vocal fold repair models. These improvements and extensions include comprehensive visualization of large data sets generated by the model and a significant increase in user-simulation interactivity. We developed a highly-interactive remote simulation and visualization framework for vocal fold (VF) agent-based modeling (ABM). The 3D VF ABM was verified through comparisons with empirical vocal fold data. Representative trends of biomarker predictions in surgically injured vocal folds were observed. The physiologically representative human VF ABM consisted of more than 15 million mobile biological cells. The model maintained and generated 1.7 billion signaling and extracellular matrix (ECM) protein data points in each iteration. The VF ABM employed HPC techniques to optimize its performance by concurrently utilizing the power of multi-core CPU and multiple GPUs. The optimization techniques included the minimization of data transfer between the CPU host and the rendering GPU. These transfer minimization techniques also reduced transfers between peer GPUs in multi-GPU setups. The data transfer minimization techniques were executed with a scheduling scheme that aims to achieve load balancing, maximum overlap of computation and communication, and a high degree of interactivity. This scheduling scheme achieved optimal interactivity by hyper-tasking the available GPUs (GHT). In comparison to the original serial implementation on a popular ABM framework, NetLogo, these schemes have shown substantial performance improvements of 400x and 800x for the 2D and 3D model, respectively. Furthermore, the combination of data footprint and data transfer reduction techniques with GHT achieved high-interactivity visualization with an average framerate of 42.8 fps. This performance enabled the users to perform real-time data exploration on large simulated outputs and steer the course of their simulation as needed

    Master of Science

    Get PDF
    thesisRecent advancements in High Performance Computing (HPC) infrastructure with tradi- tional computing systems augmented with accelerators like graphic processing units (GPUs) and coprocessors like Intel Xeon Phi have successfully enabled predictive simulations specifi- cally Computational Fluid Dynamics (CFD) with more accuracy and speed. One of the most significant challenges in high-performance computing is to provide a software framework that can scale efficiently and minimize rewriting code to support diverse hardware configurations. Algorithms and framework support have been developed to deal with complexities and provide abstractions for a task to be compatible with various hardware targets. Software is written in C++ and represented as a Directed Acyclic Graph (DAG) with nodes that implement actual mathematical calculations. This thesis will present an improved approach for scheduling and execution of computational tasks within a heterogeneous CPU-GPU com- puting system insulting application developers with the inherent complexity in parallelism. The details will be presented within a context to facilitate the solution of partial differential equations on large clusters using graph theory

    Approaching parallel computing to simulating population dynamics in demography

    Get PDF
    Agent-based modelling and simulation is a promising methodology that can be applied in the study of population dynamics. The main advantage of this technique is that it allows representing the particularities of the individuals that are modeled along with the interactions that take place among them and their environment. Hence, classical numerical simulation approaches are less adequate for reproducing complex dynamics. Nowadays, there is a rise of interest on using distributed computing to perform large-scale simulation of social systems. However, the inherent complexity of this type of applications is challenging and requires the study of possible solutions from the parallel computing perspective (e.g., how to deal with fine grain or irregular workload). In this paper, we discuss the particularities of simulating populating dynamics by using parallel discrete event simulation methodologies. To illustrate our approach, we present a possible solution to make transparent the use of parallel simulation for modeling demographic systems: Yades tool. In Yades, modelers can easily define models that describe different demographic processes with a web user interface and transparently run them on any computer architecture environment thanks to its demographic simulation library and code generator. Therefore, transparency is provided by by two means: the provision of a web user interface where modelers and policy makers can specify their agent-based models with the tools they are familiar with, and the automatic generation of the simulation code that can be executed in any platform (cluster or supercomputer). A study is conducted to evaluate the performance of our solution in a High Performance Computing environment. The main benefit of this outline is that our findings can be generalized to problems with similar characteristics to our demographic simulation model

    Efficient Decision Support Systems

    Get PDF
    This series is directed to diverse managerial professionals who are leading the transformation of individual domains by using expert information and domain knowledge to drive decision support systems (DSSs). The series offers a broad range of subjects addressed in specific areas such as health care, business management, banking, agriculture, environmental improvement, natural resource and spatial management, aviation administration, and hybrid applications of information technology aimed to interdisciplinary issues. This book series is composed of three volumes: Volume 1 consists of general concepts and methodology of DSSs; Volume 2 consists of applications of DSSs in the biomedical domain; Volume 3 consists of hybrid applications of DSSs in multidisciplinary domains. The book is shaped decision support strategies in the new infrastructure that assists the readers in full use of the creative technology to manipulate input data and to transform information into useful decisions for decision makers

    Designing Data-Driven Learning Algorithms: A Necessity to Ensure Effective Post-Genomic Medicine and Biomedical Research

    Get PDF
    Advances in sequencing technology have significantly contributed to shaping the area of genetics and enabled the identification of genetic variants associated with complex traits through genome-wide association studies. This has provided insights into genetic medicine, in which case, genetic factors influence variability in disease and treatment outcomes. On the other side, the missing or hidden heritability has suggested that the host quality of life and other environmental factors may also influence differences in disease risk and drug/treatment responses in genomic medicine, and orient biomedical research, even though this may be highly constrained by genetic capabilities. It is expected that combining these different factors can yield a paradigm-shift of personalized medicine and lead to a more effective medical treatment. With existing “big data” initiatives and high-performance computing infrastructures, there is a need for data-driven learning algorithms and models that enable the selection and prioritization of relevant genetic variants (post-genomic medicine) and trigger effective translation into clinical practice. In this chapter, we survey and discuss existing machine learning algorithms and post-genomic analysis models supporting the process of identifying valuable markers
    corecore