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ABSTRACT

Recent advancements in High Performance Computing (HPC) infrastructure with tradi-

tional computing systems augmented with accelerators like graphic processing units (GPUs)

and coprocessors like Intel Xeon Phi have successfully enabled predictive simulations specifi-

cally Computational Fluid Dynamics (CFD) with more accuracy and speed. One of the most

significant challenges in high-performance computing is to provide a software framework that

can scale efficiently and minimize rewriting code to support diverse hardware configurations.

Algorithms and framework support have been developed to deal with complexities and

provide abstractions for a task to be compatible with various hardware targets. Software

is written in C++ and represented as a Directed Acyclic Graph (DAG) with nodes that

implement actual mathematical calculations. This thesis will present an improved approach

for scheduling and execution of computational tasks within a heterogeneous CPU-GPU com-

puting system insulting application developers with the inherent complexity in parallelism.

The details will be presented within a context to facilitate the solution of partial differential

equations on large clusters using graph theory.
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CHAPTER 1

INTRODUCTION AND OVERVIEW

Predetermining the outcome or behavior of some physical system comes with prediction

science. With rapidly increasing computational capability, modeling- and simulation-based

design is taking on increased responsibility for the success of new engineered systems,

in replacement of the present design practice that relies heavily on extensive testing of

components and prototype systems [1]. Modeling and simulation are interrelated terms

that help in mimicking a real system. Associated with this is an emerging interdisciplinary

field of prediction science, which is the application of verified and validated computational

simulations to predict the response of complex systems, particularly in cases where routine

experimental tests are not feasible.

The advancement simulation and modeling is potentially critical to the design of new

and complex engineered systems in a variety of applications across such diverse domains as

microsystems, advanced materials, biological systems, energy generation and consumption,

nuclear systems, and climate modeling. As such complex systems require the integration of

a diverse set of disciplines and the sophisticated multiphysics simulations, there is a need for

developing a new software framework model that can support the underlying new paradigm.

Specifically, the future success requires unified software and algorithmic frameworks for

integrating models and code from multiple disciplines.

In the earlier days, the tools and expertise required for such simulation were not available

to anyone outside of government or large research institutions. However, as the availability

and cost associated with high-performance computing hardware has reduced, the capabili-

ties of commodity hardware has reached a point where conducting accurate simulations has

become feasible to a diverse community.

Along with the rapid improvements in hardware and its availability, there have also been

significant improvements in the general accessibility of software tools for utilizing computa-

tional resources. With the standardization of large-scale message passing standards, such

as the message passing interface (MPI), the idea of using simulation to drive research and
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development has become more feasible. This can be observed across a diverse range of

applications ranging from the pharmaceutical industry [2], astronomical simulations [3],

to computational chemistry simulations [4].

1.1 Advantages with Simulations

A major component of any development process is testing and verification, to ensure

that a product or process functions in the desired fashion and poses no overt danger to the

end user. The testing processes can present significant hazards; complex chemical reactions

with toxic or flammable components, explosives testing, or other high-energy interactions

all have inherent risks associated with them. Utilizing the proper simulation tools, many of

these systems can be examined in a safe environment, before ever being tested in the lab.

This increases safety, reduces material costs, and in the event that a problem is detected

during the testing process, a fix can be implemented and retested with significantly lesser

than would have been possible in a more conventional testing lab. Another issue that

is important to consider is information completeness. In any real system, we are limited

in the amount of data we can collect due to constraints on sensor density and physical

characteristics of the experiment itself. If we wish to examine some type of large-scale

explosion or high-energy [5] behavior, then it is completely not feasible to experimentally

capture the complete behavior of the explosive material and the resulting forces through the

entire life cycle of the process. However, in simulating such a scenario, we can theoretically

capture a complete data profile at all resolved scales of the simulation.

A pipeline of developing, fabricating and testing, and reiterating all the three steps again

can be quite an expensive project for any process design. Most of the time the simulation

testing is cheaper and faster than performing the multiple tests of the design each time. To

simulate something physical, it is necessary to create a mathematical model that represents a

physical domain. Models can take many forms including declarative, functional, constraint,

spatial, or multimodel. A multimodel is a model containing multiple integrated models,

each of which represents a level of granularity for the physical system. You can also execute

(i.e., simulate) the program on a massively parallel computer.

The next biggest advantage of a simulation is the level of details that you can get from

a simulation. A simulation can give you results that are not experimentally measurable

with the current level of technology. Results such as surface interactions on an atomic level,

flow at the exit of a microelectric thruster, or molecular flow inside of a star or simulating

a boiler with various feeds are not measurable by any current devices or a feasible idea. A

simulation can give these results when problems such as these are too small to measure, the
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probe is too big and is skewing the results, or it is very costly to perform tests. You can set

the simulation to run for as many time steps to any level of detail with the only restrictions

being one’s imagination, programming skills, and CPU resources.

1.2 Multicore and Many-core (GPUs)
Architectures

Core clock rates for central processing units (CPUs) grew drastically, starting in the tens

of MegaHertz and ending in the giga hertz range by the end of the decade. However, as

design processes continued to shrink and CPU clock rates pushed higher, it became apparent

that manufacturers were rapidly approaching a performance limit with traditional designs.

Problems related to current leakage and heat generation began to scale more rapidly than

any associated performance gains, and CPU manufacturers such as Intel and Advanced

Micro Devices (AMD) began to look elsewhere for ways to improve performance.

As the speed of individual chips essentially plateaued, Moore’s Law, an idea stating that

the overall number of transistors on chip would double every 18 to 24 months, continued

to hold [6]. Faced with ever-increasing on-chip real estate, CPU manufacturers began to

fabricate chips with multiple processors or cores on a single die. The idea was that if it was

not possible to improve the speed of serial computations, it was certainly still possible to

increase the amount of concurrent work that could be performed on a single device.

GPUs had the potential for much more general computation.Realizing the potential

of generic, programmable, vector hardware, which was capable of operating on massive

amounts of data concurrently, GPU vendors such as NVIDIA began to develop and expose

application programming interfaces (APIs), allowing software developers to more easily

exploit the functionality of their hardware [7]. This has, in turn, created a significant

need to reexamine software design practices related to high-performance computing, as in

certain cases, specific computations may run one or even two orders of magnitude faster

on GPU than would be possible on CPU. With this understanding, the ability of software

to properly distribute workloads across a variety of hardware, keeping task on the device

which gives the best performance, has become extremely important. Hence a new term

GPGPU is introduced. GPGPU (general purpose computing on graphics processing units)

is a methodology for high-performance computing that uses graphics processing units to

crunch data. The characteristics of graphics algorithms that have enabled the development

of extremely high-performance special purpose graphics processors show up in other HPC

algorithms.

GPU properties lead to a very different processor architecture from traditional CPUs.
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CPUs devote a lot of resources (primarily chip area) to make single streams of instructions

run fast, including caching to hide memory latency and complex instruction-stream pro-

cessing (pipelining, out-of-order execution and speculative execution). GPUs, on the other

hand, use the chip area for hundreds of individual processing elements that execute a single

instruction stream on many data elements simultaneously. Memory latency is hidden by

very fast context switching; when a memory fetch is issued while processing one subset of

data elements, that subset is set aside in favor of another subset that is not waiting on a

memory reference.

1.3 Coprocessors and Massively Parallel
Hardware

Unlike CPU cores, which have been traditionally designed to maximize serial perfor-

mance, utilizing complicated circuitry for out of order execution and doing everything

possible to avoid pipeline delays, there has long been the notion of vector-based processors.

Vector processing is the idea of having hardware which is capable of operating on many

pieces of data simultaneously, often executing a single instruction in parallel across each

data element, a process known as single instruction multiple data (SIMD). However, with

the exception of some multimedia extensions, such as streaming SIMD extensions (SSE),

found within x86 processors, this has changed with the advent of discrete programmable

graphics hardware, known as graphics processing units (GPUs). It was originally designed

to accelerate tasks relating to computer graphics, such as geometry translation and coloring,

which can be parallelized.

1.4 Recents Trends in Computational Architectures
—Graphics Processing Units (GPUS)

This trend, requiring added concurrency from software algorithms, has introduced sig-

nificant complications into the process of architecting quality, high-performance, simulation

software. There are now (multi/many)-core CPUs, massively parallel coprocessor like

devices such as general purpose GPUs (GPGPUs), all of which have their own memory,

communication costs, and programing paradigms. Talking specifically about the GPUs, the

key to its success has been due to its massive performance when compared to the traditional

CPU [8].

GPUs are not the only type of accelerator core that has gained interest over the last

decade. Other examples include field programmable gate arrays (FPGAs) and the Cell

Broadband Engine (Cell BE), which have both been highly successful in many application
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areas [9]. Today, however, these receive only a fraction of the attention of GPUs. There are

three major GPU vendors for the PC market today, Intel being the largest. However, Intel

is only dominant in the integrated and low-performance market. For high-performance and

discrete graphics, AMD and NVIDIA are the sole two suppliers.

Heterogeneous computing is the new term that is more prominent in the field of sci-

entific computing and graphics community. The term Heterogeneous computing is the

coordination of two or more different processors, of different architecture types, to perform

a computational task. Generally the CPUs that we are ware of have x86 architecture

type, but you also have another processor (of a different architecture type). The other

processor is an accelerator because it accelerates computations by assisting the CPU to

get the work done. There is a sudden boom in using GPU computing because of its

offered advantages over traditional systems in terms of computation, power consumption

and inexpense. The software necessary to support Heterogeneous Computing is necessary

to exploit the resources. The process for re-writing software involves an understanding of

parallelism.

It is no longer enough to know a general purpose programming language and then express

one’s computational model as a self-contained program. Care must be taken with respect

to taking advantage of the features available from underlying hardware and designing a

program to not only run, but scale effectively on a large computing grid (often consisting

of thousands if not hundreds of thousands of nodes). Additionally, as is the case with

various GPGPU computing elements, more care must be taken with respect to algorithm

correctness, as numeric rounding and floating point representations may not be entirely

consistent between devices.

Generally there are different hardware options that act as augmentation for the tradi-

tional GPU and add to the term heterogeneous computing.

• Intel Xeon Phi - which generally has 60+ core on chip is refereed to as the coprocessor.

It has a new processor architecture which are similar to the older x86 CPUs.

• Intel Integrated graphics - which is Intel’s GPU and not as capable as NVIDIA or

AMD’s GPUs, but comes on the same chip as all Intel’s CPUs and is probably the

most ubiquitous GPU today for that reason.

• AMD FirePro and Radeon - which are the only other first-rate GPUs for desktops

and servers.

• AMD APUs - which is AMD’s merger of Radeon technology onto the same chip as

the AMD CPU i.e, the merge of both CPU and GPU onto the same chip. The GPU
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AMD that is put on APUs today is not as powerful as the full Radeon GPU, but it

can still be used as an accelerator.

• Altera FPGAs - which are used to be restricted to very niche markets, but with the

recent developments towards heterogeneous computing, Altera’s FPGAs and FPGAs

from other vendors will be considered as a viable option for many more applications.

Scientists and model developers should, ideally, be insulated from what would traditionally

be considered engineering or computer science problems, and instead be allowed to focus

upon their domain of specialization. Of course, this cannot always be the case, particularly

given the pace of modern hardware development.

1.5 Task Graph Approach Model

Multiphysics simulation software is driven by complexity in data dependencies. In gen-

eral, a software solving coupled system of partial differential equations (PDEs) representing

a physical system mathematically expressed as transport equations is generally difficult in

exploring low-level data dependencies. Mathematical expressions are represented in the

form of nodes that directly represent the data dependencies in a task graph. The entire

system of expressions forms a task graph, and the high level of layout is automated through

standard graph algorithms [10]. In a multiphysics simulation, the task algorithm is properly

ordered so that it mimics a discretized set of coupled Partial Differential Equations. This

sort of design removes programmers from understanding the complex inner dependencies

present in a multiphysics software. As the algorithms develop, parallelism options can be

explored by task decomposition and using thread-based parallelism or GPU programming

without the domain decomposition.

1.6 Uintah Computational Framework

Uintah [11], [12], [13] is a software framework designed for full-physics simulations on

large-scale clusters. An important trend in the high-performance computing is to design a

software framework that can scale well on varied architectures with peta-flop and eventually

exascale performance. The novelty of this framework is that the formidable scalability and

performance challenges associated while running in hybrid computing systems is insulated

from the application developer [14]. Full physics means that Uintah supports simulations of

both fluid dynamics and rigid body dynamics. Additionally, Uintah supports simulations of

strong interactions between fluids and solids, such as temperature and velocity interactions

as well as chemical and physical transformations. Since Uintah is a framework, each of its
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software components implements the interactions and the numeric calculations underlying

the simulations.

Uintah’s main goal is to handle parallelism at a high level so that its components can

focus on the numeric calculations underlying the simulations. Uintah exploits both of

the major types of parallelism, task and data parallelism. For data parallelism, Uintah

decomposes the physical simulation domain into patches. Uintah sets up the MPI process for

each patch and handles all communication between patches. Additionally, Uintah provides

support for automated load balancing of patches across processors. For task parallelism,

Uintah employs a task graph model. Each node of the task graph specifies various tasks

as well as the dependencies between tasks. Uintah handles scheduling these tasks and

decides when, where, and how to run tasks in parallel. Furthermore, Uintah handles any

communication that occurs between tasks. Thus, components of Uintah focus on what

happens within a Uintah task on a single patch, rather than the interactions between tasks

or patches.

Uintah provides support for other administrative duties for running simulations on

large-scale clusters. Uintah supports adaptive mesh refinement, through which Uintah

can increase or decrease resolution of individual patches based upon runtime flags [12].

For components that support GPU execution, Uintah can manage data transfer and kernel

scheduling. All of the support Uintah provides to its components is centered around tasks

that every simulation project must handle. Thus, component developers can focus their

efforts on implementing models and numeric calculation, independent of resource concerns.

1.7 Wasatch

As stated previously, the goal of this work will be to extend a component of Uintah,

Wasatch [10] for exploring the parallelism opportunities offered by GPUs. The main goal

of this work is to extend the support to execute the computational fluid dynamics problems

expressed in the form of a task graph so that parallelism offered from the device (GPU)

is exploited in terms of graph scheduling algorithms rather than developing new numerical

kernels for the GPUs. The Wasatch framework itself can be thought of as consisting of a

variety of components such as SpatialOps and ExprLib, each of which exists at a different

level and supports for various purposes. The Uintah Computational Framework (UCF)

is primarily designed for providing MPI-based domain decomposition on adaptive mesh

refinement. Expression Library (ExprLib) primarily purpose is to provide support for graph

algorithms that can be used by the tasks defined in Wasatch component of Uintah with
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the MPI interface parallelism and a lower level downstream library - Spatial Operations

(SpatialOps), which implements details related to specific mathematical operators for the

fields defined in the tasks.

1.8 Nebo, a Domain Specific Language (DSL)

High-performance computing applications are by definition very sensitive and susceptible

to inefficient code. To avoid inefficiencies, most high-performance computing code is written

at a very low level. However, with the rise of new architectures, such as multicore CPUs,

many-core CPUs, and GPUs, all of this code must be rewritten for each new architecture

the project is to use [15]. Rewriting all this code is an labor-intensive and error-prone

process. To create code portable between multiple architectures, an efficient domain-specific

language (DSL) embedded in C++ is introduced that is user-friendly for porting the code

to varied architectures. Nebo’s target domain is mostly focused on computational fluid

dynamics (CFD) applications provides necessary abstractions for numerically solving partial

differential equations. Nebo is a declarative DSL for numeric computation over arrays of any

dimensionality. This DSL support of Nebo are reliably used for the projects like SpatialOps,

ExprLib and Wasatch which are explained in further chapters.



CHAPTER 2

SPATIAL FIELDS—FRAMEWORK AND

EXTENSIONS

2.1 Overview

Fields are generally created in Spatial Operation library (SpatialOps) that provides

abstractions such as creation, storage, and destruction of objects, which represent the data

fields and their generic interface to a set of mathematical operators. When attempting to

simulate or describe a physical phenomena, it helps in discretizing spatially and temporally.

The most important concept related to the spatial fields is how to define it. The

dimensions of the field like the size, information regarding the presence of physical boundary

and the number of extra cells, etc are some of the parameters required to construct a spatial

field. The detailed explanation of the above stated field properties is not in the scope of

this context. But in the case of a heterogeneous CPU-GPU task graph where the fields

can reside on CPU or GPU, certain parameters are necessary in constructing a spatial

field. A device index is required for a field that defines the field’s location on a hardware

device target. A pointer to the memory address space specified by the device index and a

field storage mode is also some important parameters to be considered while constructing

a Spatial Field. Detailed information on the field storage mode is explained in §2.2.

2.2 Classification of Fields—Existence

Fields can be classified based on the life time of their existence. Some fields tends to

stay for the entire duration of the simulation and others for a small instance until their

purpose is served. For any simulation, a clear understanding of the life span of a field is

necessary. Based on the lifetime of the fields, it can be classified into two types, scratch

fields and persistent fields.
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2.2.1 Scratch (Temporary) Fields

Scratch fields are used with a purpose of storing the values of field at a temporary

location for performing some intermediate calculations. These fields are used for storing

the field values for a short duration until they are used by another source. A scratch field

can be created from a prototype field so that their field types and other properties can be

mimicked. A scratch field can be created on any hardware device, and it is not necessary

that the hardware device location is the same as that of prototype field. The primary

purpose of a prototype field while creating a scratch field is to grab the information about

the field’s properties so that the scratch field can be constructed based off of that. Once a

field’s properties are available for a scratch field, a device index can be specified to create

the field on the desired hardware target.

2.2.2 Persistent Fields

The name itself indicates that these fields are persistent for the entire duration of the

simulation without discarding its memory like scratch fields. These fields are owned by the

memory manager with a purpose that the field values get stored at each time step or at

the check points so that they can be used for the other purposes like visualization. The

term memory manager is very specific in its purpose and in a broad sense, these managers

are responsible for the management of memory related to the field. Other cases where

the persistent fields are required are when a field is necessary to be carried over to the

subsequent time steps.

The persistent fields are activated by tagging the expression that they belong to. An

expression is a software object that defines a mathematical expression and fields can be

considered as analogous to the variables in mathematical expression. More details about

the expressions are provided in the next chapter. When an expression is marked to be

persistent, the fields underlying it get marked as persistent. A locking mechanism is assigned

to these fields so that a deallocation is not to be performed for them, and this keeps them

persistent. Currently for a task graph, all the topologic edge nodes are flagged to be

persistent. Topologic edge nodes are nodes in a task graph that do not have any parents or

children. When a node gets tagged as persistent, its corresponding expression and the fields

associated with it gets tagged as persistent. This process gives exemption for the fields to

remain dormant for the deallocation procedures.
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2.3 Classification of Fields—Storage Mode

Storage mode is a very important property for a spatial field as it defines the ownership

policy of a field that comes into existence. There are two modes for a field, Internal Storage

and External Storage.

Internal Storage specifies that the values in a field are copied into an internal buffer

managed by the spatial field. The ownership is managed by the spatial field and memory

pools serves the memory requirements, which will be elaborately discussed in §3.4.2.

External Storage specifies that the values in a field are stored by an external entity. The

ownership is generally handled by the external sources like Uintah [11], and a spatial field

is created by wrapping the memory supplied by the external source. The external storage

mode is good in efficacy as it avoids excessive copies of a field, and the internal storage mode

is best in its sanity. This mode protects against the memory corruption and inadvertent

deletion of the field’s underlying memory.

Generally, memory allocated by an external sources has the storage mode as external for

its ownership policy. Other fields that are created as scratch or temporary fields have their

storage mode as internal with their allocation and deallocations managed by the spatial

fields.

2.4 Spatial Fields—Multiple Locations

2.4.1 Overview

Spatial Fields can have field locations on the CPU or GPU or both. A field can be

created on CPU or a GPU, and in a heterogenous CPU-GPU task graph, there could be a

possibility that a field is requested on a different hardware target. In those circumstances,

we designed a concept called consumer field. A field location that is created other than its

actual field location is referred to as a consumer field. This process of adding a consumer

field would increase the count on memory locations for a field across varied hardware targets.

It was initially designed to add a consumer field on any given hardware target so that it

is used as an input field for an expression. As the consumer fields were created to serve

as input fields to the expression, their access is only restricted to read-only mode. For a

instance, when a field is initially created on the CPU and has a consumer field on the GPU,

only one location out of the two was designated to have a write access. A read-write access

is only given for the primary field location, and the consumer fields are restricted for write

access.

This design decision of consumer field to have read-only access is made to meet the

purpose of executing a Nebo [15] statement. The read-only access limitation avoids any
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confusion with the selection of field location for write access in case of a multiple field

locations. A sample code snippet, a <<= b+ c , gives an example of a Nebo statement.

The field (a) on the left hand side is the one to which the values are written from the

calculations, and hence a write access is desired. The fields (b, c) on the right hand side of

the Nebo statement serves as an input field for the calculations and hence, it is desired to

have a read-only access. If a consumer field is added on a location for the field (a), then it

would be difficult choice for the Nebo to decide which field out of the many is available for

the write access. Hence we deny access to any field with an exception that has consumers

to participate as a left hand term for a Nebo statement.

If a write access is provided to a desired field location, the other would get invalidated

from the updates made to the other field location. Hence there is a need for the synchro-

nization between multiple fields locations, so a design limitation has been imposed. This

limitation states that the fields that take part on the left hand side of a Nebo statement

should not add any consumer fields, but for the right hand side, multiple field locations are

allowed with consumer fields as they are restricted to have read-only access. To prevent

an explicit synchronizations that triggers the data transfer across all the field locations, a

read-only access limitation has been imposed.

2.4.2 Classification of Field—Access Permissions

The model of consumer fields have restricted the use of multiple fields, and this limitation

has been discarded with a new model of assigning traits to each of the field locations for a

spatial field that has multiple field location. With this new model on the spatial fields, it

can have multiple field locations on diverse hardware targets. An illustration in Figure 2.1

shows a spatial field with multiple field locations. A new model allows a spatial field to have

multiple field locations with the traits describing about the access permission bestowed on

each field location.

Recent advancement to the spatial fields depricates the use of consumer fields and creates

two traits that describe the state of any field location for a spatial field given by active and

valid. Active field locations are eligible for both read and write access, and valid field

locations are restricted to only read access. An invalid field location is either inaccessible or

contains invalid field values for read or write access. Different modes of access permissions

for a field location is illustrated in Figure 2.2. This type of field location can be validated

by copying data from a valid field source. A valid field location becomes invalid if the values

in the field are modified during a calculation. A valid location can be flagged as an active

field location. There is a limitation imposed which states that no two field locations can



13

Figure 2.1: Spatial field with multiple field locations. A field can have multiple hardware
targets like a CPU location and multiple GPU locations with varying indices.

Figure 2.2: Characteristics of a field with multiple locations. Field locations colored in
green are ACTIVE and in red are INACTIVE. A solid boundary indicates that a field
location is VALID and a dotted boundary is INVALID.
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be active at the same time, as there is a potential danger of getting modified at multiple

locations, which breaks the correctness. This new model has expanded the scope and usage

of the fields with multiple device locations.

2.5 Characteristic Traits of a Field

To maintain validity and correctness of a spatial field with multiple field locations, a field

is characterized by two different states, active and valid. The active state of a field location

gives information about the write access permissions for a particular field location out of

multiple field locations. Any assignment to a field occurs on the active location of the field.

No more than one field location can be active at the same time, which means that inactive

field locations are restricted for write access. This is because the write access is performed

with the help of iterators and indexing operators and that could possibly invalidate the field

values resulting in loosing the correctness.

The other characteristic state of a field is valid, which gives information about the

validness of the data within a field at a particular device location. When a field is valid,

constant iterators and indexing operators are used for providing read-only access to the

field values. Possible traits for a field are summarized in Table 2.1

Table 2.1: Characteristic traits for a field

States Valid Active Summary

Case 1 A field can be in a state of
both valid and active.

Case 2 A field can never be in a state
of active without being valid.

Case 3 A field can be in a state of
valid without being active.

Case 4 A field is neither active nor
valid and needs a validation.



CHAPTER 3

TASK GRAPH EXECUTION AND

SCHEDULING

3.1 Overview

Task graphs are employed in many areas of parallel computing [16] — [17], distributed

computing [18], hardware task scheduling [19], [20]. A task graph is used for representing a

task with communication, computations and dependency structure analysis of the program.

The task graph considered in the Expression Library (ExprLib) is a simple directed acyclic

graph (DAG), which is the primary graph model used for task scheduling. A DAG is a

specialized case of a task graph that will not have circular dependencies within the nodes.

Task graph is a visualization in which nodes or vertices are connected by the edges

pointing in the direction based on the flow of execution or dependency relation. The task

graph representation gives an effective model to solve a multiscale, multiphysics problem on

high-performance computing architectures. This idea can be used effectively in scheduling

a task graph on Hybrid computing systems and multicore computing systems.

The main abstraction of ExprLib is a task graph. A task is a calculation often written

in Nebo assignments that produces a field (or fields) and requires other fields. Each task

advertises the fields it requires and the fields it produces. The field dependencies between

tasks create a directed, acyclic graph (DAG) and can depend upon runtime information.

ExprLib provides functionality that allows a developer to completely focus on writing

code that reflects mathematical expressions while removing much of the complexity associ-

ated with discretization and algorithm development. ExprLib provides heuristics to generate

algorithms based on graph theory so that a task graph can be scheduled and executed on

multicore, many-core (GPUs) computing systems. It also supplies a few different explicit

time-integration schemes. This would allows one to create complex algorithms simply by

specifying the dependency among various expressions taking part in the task graph. A task

graph that describes complex multiphysics problems can be executed on computing system

capable of parallelizing the operation on a hybrid computing system with GPUs.
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Some of the key functionality that the ExprLib achieves

• Supports multithreading, GPGPU for task-based parallelism.

• Automates the process of memory management for fields on multiple hardware targets.

3.1.1 Dependency Task Graph

Dependency graph, the name itself suggests that it describes the dependency relation of

each node connected by edges. The nodes in a graph are responsible for the computations

and edges provides information about the dependency between nodes. This graph is

constructed by introspecting the final resultant expression and querying for its dependencies.

Figure 3.1 shows an illustration of a dependency graph with relation between nodes.

Introspection of the graph is necessary to determine the properties of a graph before it is

used for task scheduling and execution. A count of expressions, in-edges, out-edges, and field

size are some of the important parameters to be taken into account while introspecting a

task graph. The number of expression determines the graph density, and the field size

gives an estimate of node density. A root node is the starting point and generally a

resultant expression for constructing a dependency task graph. The bottom most node

in a dependency graph does not have any dependencies and serves as the starting point for

the task execution, as discussed in §3.2.

3.1.2 Execution Task Graph

An inverse or transpose of edges of a dependency graph would result in a execution

graph. This means that the root nodes that are at the at the top of the dependency graph

will be the last set of tasks to be executed. The expressions computed from the bottom of

the dependency graph reach to the top node of the graph meeting the dependencies and

performing computations. The dependency graph represents our intuitive understanding of

how a series of operations forming an algorithm are connected and will serve as an initial

step in the process of translating a real model description into its graph representation.

Figure 3.2 shows an illustration for flow of execution for a execution task graph.

Node hardware execution targets are assigned based on the properties of the underlying

expressions, and it is an important property that determines the nature of a task graph

described in §3.1.3 and §3.1.4. Each node is examined for a count on number of in-edges

and out-edges. The out-edges determines a count on number of consumers that require field

or fields produced for their respective calculations. In-edges determines a count on number

of dependency relations to achieve for a given node to start the computations.
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Figure 3.1: Nodes of a task graph showing the dependency relation. The arrows connecting
the nodes shows the direction of dependence.

Figure 3.2: Nodes of a task graph showing the flow of execution. The arrows connecting
the nodes shows the direction of execution.
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3.1.3 Homogeneous Task Graph

Task graph can be classified into two types based on their node execution hardware target

information. The first type is homogeneous task graph, in which all the nodes, including

topologic edge nodes, have the same hardware targets assigned to it. These hardware targets

can be single or multicore architecture without any accelerators designated as CPU. Figure

3.3 shows an illustration of a homogeneous task graph where each node is assigned the same

hardware target.

3.1.4 Heterogeneous Task Graph

The second type is a heterogeneous task graph in which only some nodes can be executed

on GPU, whereas others cannot. This is practically encountered for cases in which the code

performing computations is not suitable for parallelization, which implies that some nodes

have execution hardware target as GPU and others as CPU only. Figure 3.4 shows an

illustration of a heterogeneous task graph where each node is assigned with a different

hardware target.

3.2 CUDA Resources

When a expression is created, it is associated with unique CUDA resource handles,

cudaStream. CUDA streams are necessary for an expression in managing computations and

data transfer operations on a device and are discussed in §3.2.1.

3.2.1 CUDA Streams

A stream is a resource handle of sequence of instructions that execute in order. Different

streams, on the other hand, may execute their instructions out of order with respect to one

another. A stream is defined by creating a CUDA stream object and specifying it as the

stream parameter to a sequence of kernel executions or for host-to-device or device-to-host

asynchronous data transfers. In case of a NULL stream, the operations will not be performed

until all the preceding operations on the GPU have been completed. Streams are helpful

to launch as many kernels as the device capability supports that can run concurrently

with a host-to-device and a device-to-host asynchronous copy before there is a need for

synchronization.

CUDA streams play an important role for expressions that can perform calculations on

GPU. Expressions has its own CUDA stream, and it ensures the performance of sequential

execution of calculations written in the form of Nebo statements [15]. Every expression

has it individual CUDA stream, and they can be executed out of order to explore task
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Figure 3.3: Homogeneous task graph with the nodes having same hardware target. This
implies that there is no data-transfer between any other hardware targets.

Figure 3.4: Heterogeneous task graph with the nodes having different hardware target.
This implies that there is a need to perform data-transfer between the nodes of different
colors indicating different hardware targets.
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parallelism and concurrency on the device. Usage of CUDA stream for an expression helps

in triggering a asynchronous execution with respect to host thread and enables the host

thread to launch all the other expressions that are ready in the queue to begin execution.

Detailed usage of CUDA stream with a task graph is explained in §3.4

3.2.2 CUDA Kernels

The CUDA kernels are analogous to functions in C / C++, and it is important to

know about the launch, execution characteristics, and resource management considerations.

The kernels are asynchronous functions that can concurrently be executed with GPU. The

meaning of asynchronous is that the control of the thread returns to the CPU before the

GPU has actually completed its requested operations. The main purpose of having the

asynchronous state for the kernel is to hide the driver overhead when performing multiple

kernel launches consecutively.

A CUDA kernel is launched by specifying an array of threads, stream ID, and block

ID, which are often passed as parameters to the kernel. There is nothing special about

passing parameters to a kernel. The triple angle-bracket <<< >>> syntax or execution

configuration is used to define a CUDA kernel. Each thread that is responsible to execute

the kernel is given a unique ID that is readily accessible to the kernel through a built-in

threadIdx variable. The runtime system takes care of any complexity introduced by the fact

that these parameters need to get from the host to the device. A CUDA kernel has to be

defined using a global keyword declaration specifier so that it is qualified to be invoked

from a host (CPU) or a device (GPU). If a kernel gets launched with a zero or default

stream ID, the operations are performed in the same order as that of the launch sequence.

When a kernel gets launched, it runs with the help of a grid of block of threads. It is

not necessary that all the blocks run concurrently. Each block is assigned to a streaming

multiprocessor (SM), and each SM maintains the context for multiple blocks. The CUDA

programming model does not guarantee for the order of execution or the concurrency of

the blocks or threads. It is the responsibility of the developer to ensure that race condition

is avoided by maintaining order of execution decisions. The maximum number of kernel

launches that a device can execute concurrently is 32 on devices with compute capability

3.5 and 16 on devices with lower compute capability [7].

3.3 Task Graph Scheduling

ExprLib uses a scheduler, a priority queue, and a threadpool to exploit task parallelism.

When all the dependencies of a task are completed, the scheduler adds the task to the
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priority queue. The threads in the threadpool repeatedly pull tasks from the priority queue.

When a thread finishes a task, the thread informs the scheduler so that other tasks that

depend on the just finished task can be scheduled.

For memory management, ExprLib uses memory pools as discussed in §3.4.2, one for each

type of memory (CPU or GPU). When a task begins execution, the appropriate memory

memory management procedures serves the memory requirement for the scratch fields and

persistent fields as discussed in §2.2. After a field is used by all the tasks that depend upon

it, the field’s memory is returned to the appropriate memory pool. Thus, the same memory

can be used for multiple fields produced from different tasks in the same graph.

With this view of task-graph, ExprLib has the appropriate information to determine

where to deploy a task on a heterogeneous system and manages memory transfers between

host or device. Each task is either tagged as runnable on CPU or GPU, with tasks that

are written using Nebo syntax explicitly tagged as GPU runnable by default. Tasks that

contain handwritten C++ code are tagged as CPU only, and tasks that contain only Nebo

assignments are tagged as runnable on GPU because of its offered support. Depending upon

the hardware location of the fields, ExprLib’s scheduler performs the necessary procedures

for memory management and scheduling of tasks.

A GPU-enabled task is likely to run on CPU if its input fields are produced by CPU-only

tasks and its output fields are used by CPU-only tasks. The reason is to avoid the overhead

obtained from data transfer of fields between host and device. On the other hand, a chain of

GPU-enabled tasks is likely to run on the GPU. In both the above stated cases, the decision

was based on avoiding expensive data transfers between CPU and GPU. Currently, we are

working on heuristics for minimizing the overall execution time of a heterogeneous task

graph with smart scheduling heuristics.

Finally, for a GPU task execution, it bears mentioning that each task is assigned a

different CUDA stream. This stream manages high-level concurrency between CUDA

kernels as explained in §3.2.1 and §3.2.2. Each Nebo assignment corresponds to a single

CUDA kernel, and each ExprLib task can contain multiple Nebo assignments. Since each

task has a unique stream, multiple Nebo assignments within a task result in sequential

kernel execution, maintaining order of execution within a task, but allowing out-of-order

execution among tasks, moderated by the scheduler.

3.3.1 Task Scheduling on a Multithreaded System

The precise semantics of threads differ from one operating system to another, but in

general the threads of a single program are akin to multiple processes except that they
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share the same address space. This means that they can all examine and modify the same

variables. On the other hand, each thread has its own registers and execution stack and

perhaps private memory. Multithreading execution refers to an application with multiple

threads running within a process supplied by the operating system. A thread is a stream of

instructions that is an entity in a process. Each thread is process/task specific and has its

own registers and stack memory. The virtual address space is process specific or common

to all threads within a process. So the data on a heap are shared or can be accessed by

all the threads within a process. Multithreading can also be applied to a single process to

enable parallel execution on a multiprocessing system. Threads require mutually exclusive

operations often implemented in semaphores in order to prevent common data from being

simultaneously modified or read while in execution of a process.

The Expression Library framework is capable of exploiting the task level parallelism by

decomposing the task and its corresponding expressions. A thread pool is maintained, and

each individual thread is assigned with a set of expressions to be executed. The inherent

parallelism at the Nebo operator level uses a first in, first out (FIFO) thread pool [15].

As the Nebo operator thread pool is accessible to the task scheduler, higher flexibility is

attained to address computational block necks.

A thread pool is maintained so that the tasks are assigned to an available number of

active threads. Each task is assigned to a thread and executed sequentially on a particular

thread. Every task exposes its fields for the data parallelism available by sub dividing

the fields such that each subfield is assigned with a thread at the Nebo level. Threads at

task level and at the Nebo level share computational work such that idle time for a thread

is minimized. This can be easily determined by providing the scheduler with the total

number of processing resources that are allocated from a thread pool. More details on the

multithreaded scheduling of tasks is not under the scope of this work.

3.3.2 Task Scheduling on Hybrid CPU-GPU Architecture

An important emerging trend in high performance computing is to use both the CPU

and GPUs to reach the desired exascale computing limits. This would require a software

framework that manages complexities in handling task scheduling, memory management,

and computations on these hybrid architectures. Such a framework must address the above

stated challenges to meet scalability and performance. Scheduling a task to the computing

systems augmented with graphics processing units (GPUs) is a complex task that involves

efficient memory management on both the CPU and GPUs on-node. For computing systems

with on-node multiple GPUs, the scheduler must additionally manage a CUDA context for



23

each device.

A heterogeneous task graph with complex dependencies can be scheduled using a hybrid

CPU-GPU scheduler present in ExprLib. In this case, a scheduler should manage task

ordering along with computations and data transfers. The scheduler iterates from its root

nodes and makes a query for all its dependency expressions. During this phase, the scheduler

collects information about consumer and dependent expressions to maintain a counter for

each node in the task graph.

Every vertex is tagged as CPU or GPU depending upon the properties of the expressions

within it. The hardware execution target is assigned based on the property of expressions in

any given vertex. If an expression in a vertex is capable of running on the GPU, the node is

assigned to be GPU runnable and for other cases as CPU runnable. After hardware targets

are assigned to the vertices, suitable memory manager tags are determined to manage

memory for the fields within a given vertex. These tags aids the memory managers with

mechanisms such as locking a field’s memory, tagging them as persistent for other subsequent

operations, and managing the memory appropriately that is owned by other sources.

3.4 Task Graph Execution

After the task scheduling phase, execution of a task depends on the nature of the task

parallelism involved in it. Details on task execution with multithreading is not in the scope

of this work. When an expression reports its completion, a callback mechanism is triggered

that updates consumer and dependency vertices as discussed in §3.3.2. If a vertex attains

all its dependencies, the task is populated to the queue for execution. A thread launches

the execution of the vertex based on its assigned hardware target.

For a heterogeneous graph introduced in §3.1.4, there is a need for moving fields from

one hardware target to another so that the vertex attains all the fields on the appropriate

hardware target assigned for computations. There can be a case where a field/fields

produced on the CPU is required on the GPU or vice-versa, so a data transfer is performed

based on the source and destination hardware targets for each vertex. In case of a densely

populated task graph, memory associated with the fields that are produced and have been

used by the other vertices stay idle and not being used. Memory can be reclaimed and

reused from these dormant fields, and the details are explained in §3.4.1.

While executing a heterogeneous task graph, there is a chance that computations and

data transfer can be overlapped on a device with the help of a stream and also currently

perform work on the CPU as well. This asynchronous mode is of vital importance for a
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heterogenous task graph execution, and details regarding asynchronous mode are explained

in §3.4.3.

3.4.1 Memory Resources Reuse

For a heterogeneous or homogeneous task graph model, a better understanding of

memory usage is necessary for improving performance and reducing memory requirements.

When a field/fields are produced as a result from computations, it is supplied as an input for

the upstream dependency expressions. After the computations in all the consumer vertices

or expressions are completed, their input fields are no longer necessary and remain dormant

for the rest of the time step. The memory associated with these fields can be deallocated

so that the same can be reused for other fields. This process will prevent any unnecesary

memory management heuristics from being performed on other fields. Before releasing

memory for the dormant fields, a check is performed to ensure that a field is not locked

for persistence requirements. Unless a field is marked as persistent, which means that the

memory associated with the field should exists at each step and not be deallocated. The

persistency requirements are enforced on to the fields so that they can be used for the

time-stepping purposes, and hence memory deallocation is not desired.

Consider a task graph shown in Figure 3.5, which has 10 nodes named from A till J,

out of which A, B, E, H, and J are tagged for GPU execution and C, D, F, G, and I for

CPU execution. Topologic edge nodes in a task graph like A, G, H, I, and J are tagged to

be persistent. During execution, the nodes G, H, I, and J act as starting nodes for a graph

execution. As the computations in the starting nodes (G,H,I, and J) are finished with their

computations, their field values are made available for their consumer expressions. The

fields G, H, I, and J are made available for vertices D, E, and F based on their dependency

relation. Once the computations in the vertices D, E, and F are complete, input fields G,

H, I, and J are no longer required. These fields can be deallocated, but as they are tagged

to be persistent for their memory to reuse.

As the nodes D, E, and F completes their computations and made their fields available as

inputs for vertices B and C, which are its consumers. Once the vertices D, E and F complete

their calculations, the memory associated with their input fields can be deallocated as they

are no longer required and also not tagged to be persistent. Similarly, nodes B and C have

made their fields available for performing computations on node A, and after completion,

memory for fields B and C can also be released. It is very important to note that node A,

which is a final resultant topologic edge node should not be deallocated. When releasing

the memory of a dormant field that is no longer required, it is important to note that the
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Figure 3.5: Illustration of a heterogeneous task graph. The nodes colored in blue are
GPU runnable, and nodes in red are CPU runnable. The memory resources allocated for
the nodes can be reused for a better memory management.

dormant fields does not release the memory until the computations in the expressions using

these fields as inputs are complete.

3.4.2 Memory Pools

The motivation behind using a memory pool is to minimize the memory latency overhead

when performing repeated dynamic memory allocation and deallocation procedures. Fields

that are no longer required are deallocated, and the memory is released to the operating

system so that the new fields can get the memory. Instead of deallocating and performing

an allocation when memory is required for a field, the memory can be put into a pool so

that a new field can reuse the memory by pulling it out of the pool. This will avoid the

overhead generated from performing repeated allocation and deallocation.

A memory pool is a preallocated memory space assigned with a fixed size, which is

a high water level. The high water level mark is the safest maximum allowable memory

requirement for running an application without starving the application during runtime.

The high water mark can be approximately estimated by the parameters like the number



26

of fields actively participating at each time step, problem size, etc., for the simulation. As

the number of fields created and destroyed at each time step remains same, estimating the

high water mark can be approximated with ease. If the memory consumption increases

with each time step, then it is a clear indication that a potential memory leak exists in the

simulation as the field count should not change for every time step.

The dynamic memory allocation and deallocation procedures on both CPU and GPU

would add a significant overhead because of its repeated calls to the operators new/

cudaMalloc or delete/cudaFree. To avoid this, separate memory pools for the

CPU and GPU are maintained from which memory is pooled based on the requirements

for the fields. These memory pools are destroyed at the end of the simulation, freeing the

memory to the operating system. The memory for a new field object that is required as

an internal-storage mode described in §2.3 is allocated and discarded after their lifetime.

The CPU memory requirements from the pool are served by CUDA pinned memory for a

GPU-build targeting heterogeneous CPU-GPU tasks. Further details on pinned memory

support for the heterogenous tasks are explained in §3.6.

The memory for fields on a device is provided by a GPU memory pool. Memory

allocation for a device is accomplished by CUDA API cudaMalloc and when a pool is

destroyed, its memory is released to the operating system by using CUDA API cudaFree.

Returning memory to an incorrect memory pool would result in an undefined behavior

because of the difference in memory management procedures. As shown in Figure 3.5,

the memory associated with fields B, C, D, E, and F can be deallocated so that it can be

reassigned to a new field. Fields B and E have memory on GPU, managed by GPU memory

pools and fields C, D, and F are managed by CPU memory pools.

3.4.3 ExprLib Task Execution Configuration

The task execution configuration depends on many factors, such as nature of task graph,

whether it is homogeneous or heterogeneous, node hardware targets and the dependency

relation between them. In this section, the execution configuration for a homogeneous GPU

task and heterogeneous CPU-GPU task graph is elaborately described. A single host thread

is used for the task execution. Every node in the task graph is assumed to have enough

computational complexity. Nature of a task graph is introspected at the scheduling phase

where all the nodes in a task graph are traversed. All the nodes are queried for the GPU

executable properties of the expressions within it and based on that, a decision is made

whether a task is a homogeneous or heterogeneous in nature.

Based on the nature of the nodes in a graph, the task can be classified as follows
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• Homogeneous GPU task

• Heterogeneous CPU-GPU task

3.4.3.1 Homogeneous GPU Task

Homogeneous GPU task execution is explained using Figure 3.6 for a single threaded

execution on host and using a single GPU. As shown in Figure 3.6, there are six nodes,

each consisting of expressions capable of running on a GPU. To explore the asynchronous

capability on the device, it is necessary to use cudaStream and hence, every expression is

assigned with a stream. A single host thread is used and hence, the launch sequence is as

follows: node D is launched first, followed by E and F. As the configuration is asynchronous,

the host thread launches the calculations on the device and returns without waiting for the

calculations to actually complete on the device. With an assumption of having enough

computational complexity, these nodes are capable of executing concurrently on the device

as they have independent streams. If an expression is tagged as GPU executable, each Nebo

statement within the node is treated as a separate CUDA kernel that shares the same stream

assigned for the expression. Kernels in the expression are in-order execution as queued up

by the hardware thread. Hence the execution of Nebo statements within an expression is

synchronous with respect to the device, but still it is asynchronous with respect to the host.

With the help of the above mentioned functionality, both the copy and compute engines on

the GPU can be concurrent.

Once all nodes D, E, and F in the lower level are computed, the host thread is ready

to launch their respective consumers. For executing node B, the calculations in the nodes

D and E have to be complete and their fields made available. As the calculations are

asynchronous with respect to host, there is a potential danger of launching new expressions

whose dependencies are met as seen by the host thread, but the device-side work might

still be not complete. The status of work on the cudaStream is checked using CUDA API

cudaStreamQuery, which returns cudaSuccess when there are no pending instructions.

If the stream is still performing the work, an explicit synchronization is performed by using

CUDA API cudaStreamSynchronize. This process ensures that any race conditions

are avoided.

It is necessary to check if the cudaStreams of the respective dependencies (node D, E,

and F ) have completed the set of instructions assigned to them. A check on cudaStream is

performed before the consumers (node B / C ) is launched for the computations to exploit

the advantages of avoiding explicit synchronizations. For the last node, the calculations

performed for vertex A are also asynchronous and hence, a synchronization is performed to
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Figure 3.6: Homogeneous GPU task execution using asynchronous mode. Configurations
of hardware targets, thread resources and the order of kernel execution is shown.
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ensure that the task execution is complete. The host thread is made to wait until the work

on the stream associated with the expression A is complete on the device.

3.4.3.2 Heterogeneous CPU-GPU Task

Heterogeneous CPU-GPU task execution is explained using Figure 3.7 for a single

threaded execution on host and using a single GPU. The node hardware targets are already

assigned, as explained in §3.3.2. The distinct feature that is involved in heterogeneous

graphs is that a data transfer can be performed along with the computations. The main

purpose of using asynchronous task execution is to overlap data transfer with computation

kernels wherever possible. All the expressions whether they are tagged for CPU or GPU

execution are assigned with a stream.

A single host thread is used and hence, the launch sequence is as follows: node D is

launched first, followed by nodes E and F. Calculations are performed on the CPU when

the host thread invokes node D. Once the calculations for node D are complete, data transfer

from host-to-device is also performed, as it is required for one of its consumer (node B) to

have the field on GPU. The data transfer is asynchronous with respect to the host and hence,

the control of the host thread returns immediately after launching it. Node E is tagged as

GPU executable and a data transfer from device to host is also required, as one of its

consumers (node C) needs to have the field produced from E on CPU. The calculations

and data transfer associated with an expression are asynchronous with respect to host

and share the same stream. This ensures that the instructions are in-order so that data

transfer is performed only after the calculations are complete. There are some synchronous

instructions on the device but still asynchronous with respect to host. The host thread

after launching the work for node E can start executing the calculations in node F on the

CPU. At this point, there can be a data transfer from device to host performed for node

D, calculations on device, and device to host data transfer for node E, and calculations for

node F on host can go concurrently. This is illustrated in Figure 3.7, using lines with filled

circles. As the configuration is asynchronous, a check has to be performed before launching

a new expression just as explained in §3.4.3.1.

The concurrency can also be attained with the help of multithreaded parallelism at

task level in which threads would start launching multiple expressions that are ready to be

executed and in turn launching its kernels underneath the expressions. Using multithreading

for launching tasks, multiple CPU and GPU expressions can be launched as opposed to

single-threaded host task execution. Further details regarding the multithreaded host-GPU

execution model is not in the scope of this discussion.
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Figure 3.7: Heterogeneous GPU task execution using asynchronous mode. Configurations
of hardware targets, thread resources, and the order of data-transfer and kernel execution
is shown.
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3.5 Device Selection for On-node Multi-GPUs

Device selection and assignment is an important task while working with a heterogeneous

CPU-GPU task graph or a Homogeneous GPU task graph. The host thread can set the

device context by making a call to a CUDA API cudaSetDevice. The device context is

set before using any of the CUDA APIs for device operations. This ensures a proper device

context is assigned before invoking any CUDA API functions. Maintaing device context

is important while using CUDA resource handles like cudaStream and cudaEvent for

operations such as status query, synchronization, creation, and deletion of resources. Using

the resource handles with an invalid device context would lead to undefined behavior.

The selection and assignment of a device to a task graph is operated by different entities

depending upon the environment of the simulations. In a brief summary, for a simulation

outside of Wasatch, the hybrid scheduler operating within ExprLib handles the device

selection and assignment for a given task graph by round robin fashion. For Wasatch,

assigning a device to a task depends upon the nature of the task graph and the controlling

entity. For a homogeneous GPU task graph, the controlling entity to assign device index

for a task is bestowed with Uintah. Uintah’s Unified Scheduler supports a dynamic, round

robin assignment of device per task [14], and further details are not in the scope of this

discussion. For a heterogeneous task graph, the controlling entity to assign the device index

is with Wasatch, as information about the GPU runnable properties of a task graph are not

known to Uintah.

3.6 Optimization Strategies

The most important optimization technique used to perform the asynchronous opera-

tions is to use CPU/GPU concurrency, which hides the memory management overhead and

the memory transfer overhead of CUDA runtime API launches. The CUDA driver takes

valuable CPU time to write instructions to the GPU, and hence, overlapping that CPU

execution with the GPU processing can improve the performance.

3.6.1 Pinned and Pageable Memory

Understanding pageable and pinned memory is critical for asynchronous memory copies

using cudaMemcpyAsync. When memory is allocated on the CPU (host) by using standard

new or malloc operator, the memory is pageable by default. The GPU (device) cannot

access this pageable memory directly and hence, when a host-to-device or device-to-host

memory transfer is invoked, the CUDA runtime driver allocates a page-locked or a tempo-

rary buffer so that host data structure is copied to the staging area. Once the data are on
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the staging area, the data are copied to the device memory. This procedure involves two

stages of data transfer from host memory to a staging buffer and then moving the data

from the staging buffer to the device memory. This limits the bandwidth and increases the

time for completing a data transfer.

With the use of cudaMallocHost or cudaAllocHost API provided by CUDA,

memory is allocated on the host with pinned privileges. There is certainly an overhead

on using these methods. However, the overhead can be hidden if the simulation occurs

over a prolonged time scale with fairly higher problem sizes. Pinned memory is a bit

expensive procedure for allocating and deallocating but provides higher transfer throughputs

by effectively utilizing the available bandwidth. The pinned memory allocation occurs only

at the first time step when the memory pool is constructed and deallocated when the

memory pool is destructed and hence, it minimizes the calls to this API.

Figure 3.8 gives information of a test case that is run over problem sizes varying from

163 to 1283, and it can be clearly seen that there is a significant advantage with using

the pinned memory over pageable memory. The computations involved in both versions

are the same and the only difference is the effect of using pinned memory over pageable

memory while performing data transfer. At a given problem size of 1283, the percentage

of computation for both the cases is the same, and the data transfer is about 57% of total

computation time while using the pageable memory, and a percentage of data transfer

is about 43% while using pinned memory. Using a lot of pinned memory can degrade

the overall performance of the system and hence, the pinned memory should be limited

in its usage. The pinned memory can be limited depending upon the system’s memory

and hence, a failure in allocating pinned memory can be expected due to the shortage of

requested memory. In these circumstances, dynamic memory allocation is performed, and

the memory is tracked for appropriate deallocation procedures.
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CHAPTER 4

WASATCH

4.1 Overview

Wasatch [10] is a component of Uintah that interfaces with Expression Library and

SpatialOps downstream libraries to facilitate the rapid development of time dependent

partial differential equation solvers and upstream with Uintah. Wasatch is designed to be a

highly flexible simulation component for solution of transient partial differential equations

(PDEs). Based on the same lines of major computational framework like Uintah and a

downstream project like Expression Library, Wasatch is also designed based on Graph

Theory. However, it allows dynamic construction and introspection of graphs. Each node

in a graph defines its direct dependencies, and the graph is constructed recursively with

the support of Expression Library. This is in contrast to Uintah where the user defines the

graph statically.

The dynamic graph generation support of Wasatch allows very easy definition of complex

algorithms and allows a great deal of flexibility when modifying models. Wasatch interfaces

with Expression Library for the graph construction and introspection and SpatialOps for

the field operations. Similar to Uintah, Wasatch decomposes the simulation model and

numeric calculations into a task graph. Each Wasatch task calculates one or more terms of

a partial differential equation. Wasatch provides a collection of expressions that can be used

to define each term for implementing partial differential equations for a variety of models.

Thus end users can quickly and easily design and run simulations on a variety of models.

Every Wasatch task is created by Uintah. Unlike Uintah, Wasatch’s task graph is inferred

at runtime. Every Wasatch task is defined with the fields that it computes and fields that

are required for the computation of the task. At runtime, Wasatch recursively constructs

the task graph by adding tasks that compute needed dependencies.
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4.2 Wasatch Interface

In the current work, the discussion is related to providing support for running a Wasatch

task on GPU. The motivation for exploring the Wasatch GPU implementation is the

ability for Uintah to run asynchronous, out-of-order scheduling of both CPU and GPU

computational tasks. Uintah framework is already in a state to be deployed on traditional

systems augmented with the graphic processing units (GPUs) and Intel Xeon Phi.

A Wasatch task is a simple task graph that is exposed to Uintah for the execution.

A thin layer of interface is present in Wasatch that shares information regarding a given

task with Uintah upstream and to the ExprLib downstream. When a task is created,

information about which fields are required to perform calculations in the task, which fields

are produced as a result from the task, and which fields act as modifies for a given task is

defined. Hence a field mode is defined that tags a given field as REQUIRES, COMPUTES,

or MODIFIES for defining a task. When the information about the abstraction of fields is

exposed to Uintah, it can be scheduled to the Uintah computational framework (UCF) for

task execution. On the other hand, when the Uintah performs the task execution, ExprLib

is responsible for the actual task execution with the dynamic graph algorithms present in

it. Before the task execution on GPU is elaborated, it is necessary to understand the setup

process that is necessary so that Wasatch task complies with the support available from

Uintah and ExprLib.

For any given Wasatch task, the fields that are owned and managed by Uintah are tagged

as persistent fields, and others that are managed by ExprLib are tagged as scratch fields.

These are some of the cases where fields are tagged as persistent and managed by Uintah.

• When a field is required to be saved for I/O purpose, the Uintah manages the field so

that the values associated with the field is stored in a proper format to be compatible

for a visualization tool.

• Fields that are topologic edge nodes of a task graph are tagged as persistent for

time-stepping scheme.

All the other fields are internally managed by ExprLib. These are scratch fields that

are discarded to the memory pool after their brief existence as explained in §2.2. Certain

limitations have been imposed by Uintah when executing task graphs on GPU. It is required

that all the expressions should be GPU runnable and every field associated with it should

have GPU memory. To use the support of UCF GPU task scheduling and execution, all

the fields should have their memory on GPU so that the fields that are managed by Uintah

can register them. This enforces a homogeneous GPU task graph model and exposes its



36

limitation on task graphs with nodes that cannot run on a GPU. Hence, heterogeneous

CPU-GPU task graphs are its limitations, and a support for this is explained in the further

section.

For configuring a task to support GPU execution, a simple yet effective analysis is

performed to meet the above stated conditions imposed by Uintah for running a GPU task

graph. Before a task is exposed to Uintah for scheduling and execution, an introspection

is necessary to determine the nature of the task-graph as either homogeneous GPU or

heterogeneous CPU-GPU task graph. Depending upon the nature of the task graph, a

given task is marked as Uintah’s GPU task.

There are two important phases to prepare a task for GPU execution,

• Wasatch Task Setup

• Wasatch Task Execute

4.2.1 Homogeneous Wasatch GPU Task Setup

This is a special case of a Uintah GPU task where all the expressions are GPU runnable

and the task graph is said to be a homogeneous GPU task, which meets the conditions

imposed by Uintah. A task can be marked as Uintah’s GPU task after introspection is

performed on all nodes. Once a task is flagged, Uintah’s Unified Scheduler [14] performs a

setup process for scheduling and execution. When a task is marked as Uintah’s GPU task,

a cudaStream is assigned to it from Uintah. Before the actual task execution begins,

configuring the task for GPU runs is important so that the ExprLib is informed about the

nature of the fields. An illustration for the setup process on homogeneous GPU tasks is

illustrated in Figure 4.1.

At the interface of Wasatch and ExprLib, the fields owned by Uintah are wrapped as

spatial fields so that a better field abstractions are used that are compatible for performing

operations using Nebo. During the setup phase, ExprLib’s Hybrid Scheduler prepares the

nodes of a task graph with the assigned hardware targets. Depending upon the ownership

of a given field classified as Uintah field or a scratch field, appropriate memory management

techniques are adopted. Field mode (REQUIRES, COMPUTES, MODIFIES) is assigned

to all the fields managed by Uintah. A GPU data warehouse is defined in Uintah that acts

as a container to keep track of all the variables managed by Uintah. When a field mode is

defined as requires, the variable is obtained from the data warehouse. For the field mode

as computes, the memory is allocated for the variable, and it is registered with the data

warehouse and the same follows for field mode modifies. For each field mode, the memory

is provided by Uintah and it is wrapped as spatial field.
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During wrapping of a Uintah field as a spatial field, memory on CPU is necessary

to obtain information regarding the field properties. This information is crucial while

performing operations on fields using Nebo. The CPU field supplied by Uintah is temporary

and is not registered to a data warehouse. A GPU field is obtained from Uintah as a

raw pointer with a valid memory on GPU. Using the information obtained from the CPU

field and raw memory of the GPU field, a spatial field is created. The expression library

scheduler is responsible for initiating and setting up the memory for scratch fields. This

initialization procedure provides an opportunity to explore the low-level task and data

parallelism opportunities by ExprLib and SpatialOps projects.

A stream with proper device context is made available for Uintah GPU tasks during

execution. The fields owned by Uintah have their memory associated with a particular

device context, and the same device context has to be used in downstream projects while

creating memory for scratch fields, wrapping Uintah field as a spatial field, assigning node

hardware targets to the GPU nodes and creating streams with appropriate device context.

There is certainly a possibility that a device context ID can change during the task

execution, and as the control for assigning a device index is vested with Uintah, dynamic

assignment of device context occurs for an on-node multi-GPU system. For this condition,

the memory associated with the fields has to be deallocated and a new memory with

appropriate device index has to be allocated. Streams associated with the expressions are

destroyed and recreated. The scheduler has to perform the setup process again to assign

appropriate node hardware targets for the GPU nodes.

4.2.2 Heterogeneous Wasatch CPU-GPU Task Setup

Heterogeneous CPU-GPU task graphs are always possible when an expression is written

in standalone C++, or the operators that are not supported for a hardware device, or the

code is not yet written using Nebo [15] syntax always forces the task computations only on

the CPU. This enables the task graph to become a heterogeneous CPU-GPU task in nature.

Uintah GPU task scheduling and execution support is limited only to the homogeneous

GPU tasks and because of this limitation imposed by Uintah, heterogeneous CPU-GPU

tasks would face a potential problem.

When a heterogenous task is found from the introspection for the GPU runnable prop-

erties on the expressions, the task is masked to Uintah as a complete CPU only task. Before

a task is scheduled for execution, the GPU runnable properties of all the eligible expressions

are converted to CPU only as shown in Figure 4.2. Once a task is exposed to Uintah, the

GPU runnable properties can later be restored as illustrated in Figure 4.3.



39

F
ig
u
re

4
.2

:
F

li
p

p
in

g
th

e
G

P
U

-r
u

n
n
ab

le
p

ro
p

er
ti

es
of

ex
p

re
ss

io
n

s.
G

P
U

ru
n

n
ab

le
ex

p
re

ss
io

n
s

(c
ol

or
ed

in
b

lu
e)

ar
e

co
n
v
er

te
d

to
C

P
U

ru
n

n
ab

le
ex

p
re

ss
io

n
s

(c
o
lo

re
d

in
re

d
)

b
ef

or
e

a
ta

sk
is

ex
p

os
ed

to
U

in
ta

h
fr

am
ew

or
k

fo
r

a
h

et
er

og
en

eo
u

s
C

P
U

-G
P

U
ta

sk
gr

ap
h

ex
ec

u
ti

on
.



40

F
ig
u
re

4
.3

:
R

es
to

ra
ti

on
o
f

th
e

G
P

U
-r

u
n

n
ab

le
p

ro
p

er
ti

es
of

th
e

ex
p

re
ss

io
n

s.
P

ro
p

er
ti

es
th

at
w

er
e

fl
ip

p
ed

fo
r

p
ro

ce
ss

in
g

a
h
et

er
og

en
eo

u
s

C
P

U
-G

P
U

ta
sk

g
ra

p
h

a
re

re
st

o
re

d
.



41

The setup process involved in configuring a heterogeneous CPU-GPU task is almost

the same as that of a homogeneous task graph. As explained in §4.2.1, there are two

types of fields—Uintah field and scratch field. Once a mode (COMPUTES / REQUIRES

/ MODIFIES) is assigned to the fields, they can be wrapped as a spatial field. The Uintah

framework is not aware that some of the expressions and its fields are eligible for executing

on GPU, the GPU data warehouse is not created; instead, a CPU data warehouse is made

available. This CPU data warehouse keeps track of all the Uintah based fields. The memory

obtained for wrapping a Uintah field is only on the CPU. Hence, all the eligible GPU fields

will create a memory location on GPU with appropriate device context using the information

provided from their respective CPU mirror fields, as illustrated in Figure 4.4.

For all the eligible Uintah based GPU fields, a field location on the CPU, owned and

managed by Uintah already exists. Along with that, an additional field location on the

GPU is managed as a scratch field. Uintah is not aware of the additional field location that

has been added for heterogeneous task graphs. The other scratch fields have their memory

allocated and managed with the information provided by the ExprLib’s Hybrid Scheduler.

As the task is marked as a CPU only task for Uintah, neither a stream nor a device context

is assigned by Uintah for execution. Hence, a GPU load balancer is designed for handling

the process of selecting and assigning GPU device contexts for a heterogeneous CPU-GPU

task graph. More details on the GPU-load balancer are explained in §4.2.2.1

4.2.2.1 Device Index Selection and Assignment

Uintah cannot process a heterogeneous CPU-GPU task graph and this is a reason why

a device index is not assigned. The GPU-load balancer is designed that assigns a device

context per task in a round-robin fashion. The GPU load balancer does static assigning of

device context per task unlike the Uintah’s device assignment, which is dynamic. Assigning

a particular device context has to be made at the earlier stages of execution. Information

about the device context is informed to the hybrid scheduler, which is responsible for

creating cudaStreams for expressions and also assigning proper hardware targets for the

GPU nodes. This process unifies and ensure that the memory management and wrapping

of Uintah’s fields and scratch fields have the same device context.
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4.3 Wasatch GPU Task Execute

4.3.1 Homogeneous GPU Task Execute

When a task gets to a phase of the execution, a cudaStream with its device context is

made available by the scheduler. A cudaStream keeps a track of the progress and reports

the status to Unified Scheduler of the Uintah, which manages the task scheduling. The

execution work flow is the same as explained in §3.4.3.1.

In reference to Figure 3.6, the nodes A, D, E, and F are managed by Uintah and hence,

their memory is not deallocated until to the end of the simulation, whereas B and C, which

act as scratch fields, manage their memory from the memory pool. It is very important

to note that the cudaStream supplied by Uintah should not report task completion to

the Unified Scheduler before a task is actually completed. As already stated in §3.4.3.1,

the resultant node A performs calculations asynchronously with respect to the host; hence,

a synchronization is performed so that the host thread is made to wait till all the work

assigned to the stream is complete. This way the Uintah’s stream does not prematurely

report the completion status of a task to the scheduler. Any changes to the device index

by the Uintah during a task execution phase is handled as explained in §4.2.1.

4.3.2 Heterogeneous CPU-GPU Task Execute

A heterogeneous CPU-GPU task graph is viewed by the Uintah as the CPU only task,

as explained in §4.2.2. A static device index is assigned by the GPU-load balancer for

the heterogeneous CPU-GPU tasks. The execution work flow is the same as explained in

§3.4.3.2. The illustration in Figure 4.5 shows the nodes A, D, E, and F are managed by

Uintah, whereas B and C are managed as as scratch fields. The Uintah’s fields A and E,

tagged as GPU runnable, are required to have their memory on an appropriate device for

performing calculations on GPU. This is the reason an additional field location on the GPU

is added. This GPU field location is allocated as a scratch field and it is indicated by a

circular marker with a square enclosure in Figure 4.5. It is critical that the original Uintah

based CPU fields are informed regarding any changes because of calculations done on their

GPU counterparts. As calculations are performed on the expressions A and E, its associated

GPU fields are updated with the recent field values as a result from the calculations. As

the field associated with a variable is updated, a validation of the actual Uintah CPU fields

are preformed, which invokes a device to host asynchronous data transfer from its valid

source GPU fields. This process ensures that all the Uintah based CPU fields valid at each

time step. A sanity check is performed to ensure that all the device-side work is completed

before releasing the host thread.
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Figure 4.5: Execution phase of a heterogeneous CPU-GPU task graph. The schematics
shows the control flow during the task execution process.



CHAPTER 5

RESULTS AND SUMMARY

5.1 Overview

All the test cases were chosen to demonstrate the abilities of the projects to scale

on trending and emerging architectures with providing the support that has not been

explored before. Earlier, the capability of running GPU was limited to the test cases

in the Expression Library (ExprLib) and with the recent developments in Uintah and its

component Wasatch, supporting of fields on multiple hardware targets has led to exploration

of the GPU capabilities. Wasatch is capable of supporting both the homogeneous GPU as

well as heterogeneous CPU-GPU tasks, and the performance constraints are reported in the

further sections.

The GPU add-on extension for the Wasatch component to support multiple hardware

targets and also to provide the flexibility in scheduling and executing any nature of task

graph has been demostrated. Unless specified, all the tests were run on a 12-core Intel Xeon

E5-2620 (2x6 cores at 2.00 GHz) with 16 GB RAM and a NVidia GeForce GTX 680.

5.2 Test Case—ExprLib

We set up several tests of different computational intensity in ExprLib that evaluates

diffusion and source term expressions to compute solution variables. The source terms

involved in these tests are similar to the calculations performed in a detailed chemical

kinetics simulation. Each of these tests evaluate 30 partial differential equations (PDEs)

arranged in the form of a task graph for 100 iterations. Each of the 30 PDEs has an

expression that computes the diffusive flux and the source term. A right side expression

performs the divergence of the fluxes and adds all the source terms if applied.

The mathematical expression governing these tests is as follows:

∂φi
∂t

=
∂

∂x

(
− Γi

∂φi
∂x

)
+

∂

∂y

(
− Γi

∂φi
∂y

)
+

∂

∂z

(
− Γi

∂φi
∂z

)
+ si (5.1)

si =

n∑
j=1

exp(φj) (5.2)



46

si =

n∑
i=1

exp(φi) (5.3)

where si are source terms. For example, if the source terms are expected to operate as

coupled as shown in (5.2), there will be all-to-all coupling of terms, and the independent

source terms as shown in (5.3) have one-to-one coupling of terms.

The coupled-source terms are used to signify the importance of complex dependencies

to be attained before calculating an expression. For 20 PDEs, each source term has to read

in the inputs from all the 20 input fields every time. In this process, each term has to

wait until all the 20 input fields are initialized and available for computation. Therefore,

the calculation of solution variables for the PDEs are interdependent. For the calculations

involving independent source terms, each source term expression has a one-to-one coupling

and independent with other source term expressions. Hence, the calculation of one PDE

does not have any effect on the calculation of another.

The first test case calculates the divergence of diffusive flux without any source terms

along with taking divergence of fluxes as indicated mathematically in (5.4).

∂φi
∂t

=
∂

∂x

(
− Γi

∂φi
∂x

)
+

∂

∂y

(
− Γi

∂φi
∂y

)
+

∂

∂z

(
− Γi

∂φi
∂z

)
(5.4)

The second test case focuses on calculating diffusive flux with the independent source term

along with the divergence of fluxes. Equation (5.1) is the governing equation and (5.3) is

the source term that governs this test case. The third test case is regarding the calculation

of diffusive flux along with coupled source terms. Equation (5.1) along with (5.2) governs

the third test. In Figure 5.1, a prototype for the third test that involves 2 PDEs that solves

diffusive flux along with coupled source terms is illustrated. Diffusive fluxes along with

evaluating source terms in separate expressions are performed. The right hand side term

does the task of calculating the divergence of fluxes and adding the source term. These

tests are in order of increasing computational intensity.

Figure 5.2 shows the speedup of multithreaded performance over single-threaded perfor-

mance for all three test cases with problem size varying from 643 and 1283. It can be inferred

from Figure 5.2 that coupled source with diffusion test scales well when compared to other

test cases. This states that the performance of single threaded to that of multithreaded is

good for the coupled-source test, which is because of computationally intensive calculations

and interdependencies among the fields while coupling the source terms. It can be analyzed

that the calculation of diffusive flux is common in all the three test variants. The only

difference among the tests that can contribute and cause a difference is the way the source

terms are being computed.
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Figure 5.2: ExprLib-scalability test showing multicore performance. Thread counts are
varied from 2–16 in the x-axis and speedup on y-axis. The problem size under study is 163

and 1283.
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As with the multithread backend tests, the diffusion with a coupled source term test

case scales the best, and the diffusion-only test scales the worst. The general trend of these

tests is that more computationally dense calculations (coupled source terms with diffusion)

perform better than less computationally dense (diffusion only) calculations. The reason for

this trend is that memory latency is being hidden while performing the intensive calculations

and more pronounced in case of less dense calculations. Finally, it is interesting to note

that Nebo’s multithread backend with 16 threads improves over 12 threads for most tests

on a system with 12 cores. This limited improvement comes from hyperthreading.

It is very evident that the diffusive flux calculation alone without the source terms does

not scale well after a certain thread count. This is because there are more thread resources

available for computation than available work. It is also observed that after 8 threads

the performance tends to get stable. There is also a gradual decline in the performance

because of launching more threads from the pool that is causing overhead for creating or

pulling active worker threads out of a pool. For the independent source term and diffusion

calculations, the performance curves are in between to the coupled source terms test and

diffusion only test. This is because the computational intensity involved is intermediate

when compared with the other tests. It is seen that any resources that are greater than 12

threads have a negative effect on the performance. The scaling of the tests degrade because

of the same reason for not having enough work to the available computational resources.

The diffusion-only test does not scale well for thread count more than 8, and the diffusive

flux with independent source terms test case does not scale well for threads greater than 12.

The most computationally intensive of all is the diffusive flux with the coupled-source terms.

The coupled source terms calculation is performed over all the coupled dependencies and

hence, there is also a significant memory caching overhead expected for the coupled-source

terms. The diffusion with independent source term test does not scale as well, especially for

the smaller problem size; moreover, the diffusion-only test does not scale well, particularly

beyond 4 cores.

Likewise, Figure 5.3 shows speedup of many-core (GPU) performance over single-thread

performance for the same tests and varied problem sizes. These tests are performed with

synchronous task execution and does not involve any data-transfers. All the tests can be

considered as homogeneous tasks. Each expression has Nebo expressions that are capable

of performing computations on GPU. Figure 5.3 shows that at almost every problem size,

the many-core GPU execution performance is more than 10x faster than the single thread

execution, with the fastest being just over 140x at an increased thread count.
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5.3 Test Case—Wasatch

The test case under consideration is very similar to the one used in §5.2. The diffusive

flux and coupled source terms test is used to perform scaling analysis for its role in doing

some intensive calculations for testing Wasatch framework. This test is carried out on a

framework that is preliminarily in the stages of Wasatch development for supporting on

GPU and hence, there is still a scope for optimization.

Figure 5.4 shows a prototype for a test case that involves calculation of diffusive flus

in all three directions, x, y, and z, with source terms along with time stepping integration.

Figure 5.4 shows the prototype equation with a single PDE and the test case under study

involves 20 similar PDEs arranged in the form of a task graph for 50 time steps. Each of

the 20 PDEs has an expression that computes the diffusive flux and source terms, which

form the right hand side of the equation and stores the result in a solution variable. After

computing the diffusive flux and source terms, divergence on the diffusive flux is calculated

and the source terms are added to the result. Once the right hand side of the expression is

computed, a time stepping procedure is invoked to advance the solution variable for a time

dependent PDE. The time stepping procedure is the only additional task that is performed

in the Wasatch, which makes these test cases differ from ExprLib test cases.

The complexity involved with the time stepping scheme are the time stepping variables

- time, dt, rkstage, and timestep indicated in the graph within a node colored

in grey. These nodes are tagged only to execute on the CPU. Time stepping scheme is

implemented in Uintah and the underlying type of the time stepping variables are not yet

supported for GPU execution. These variables forces the graph and makes it a heterogeneous

CPU-GPU task graph. There is a particular nomenclature that indicates whether a node is

GPU runnable or CPU runnable, as shown in Figure 5.4. The nodes colored in green and

blue diamond shapes are GPU runnable, and the nodes with a grey color are only CPU

runnable. This makes the graph to be heterogeneous in nature for execution on multiple

hardware targets and forces the data transfer to be performed on all the Uintah managed

variables to be synchronized with their mirror GPU fields at each time step.

As seen from Figure 5.4, all the three components x, y, and z of the diffusive fluxes are

computed with a source term that gets added along with the diffusive fluxes. A divergence

operation on the diffusive flux is performed in a seperate task and the source terms gets

added to the resultant expression of divergence. Once the right hand side of the expression

is computed, time stepping scheme is invoked with the help of time stepping variables as

discussed above. As there are several variables that can only be computed on the CPU, the
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nature of this task graph is inherently tagged for heterogeneous CPU-GPU task execution.

Figure 5.5 shows the total computation time for a test case in Wasatch for three different

modes of execution. The first mode is about a task graph executed for a completely serial

run on the CPU with a single core. The second mode is about scheduling and execution of

a task graph in the form of a homogeneous GPU version, where all the nodes compute on

GPU with the support from Uintah, as explained in §4.3.1. The last mode is a heterogeneous

CPU-GPU task graph, that involves a different execution pattern, as explained in §4.3.2.

As seen in Figure 5.5, the total computation time is more for the serial CPU version

than its counterpart’s homogeneous and heterogeneous GPU execution. When comparing

the performance between the homogeneous and heterogeneous test runs, the homogeneous

performs better than the heterogeneous task execution. This is because of the explicit data

transfers in the form of synchronization of the CPU field location for all the Uintah-managed

variables in a heterogeneous task graphs that slows the performance.

Figure 5.6 is about the speedup comparisons for the homogeneous GPU and heteroge-

neous GPU task execution over a serial CPU version. Around 42X speedup is observed

for the homogeneous task graph and about 22X for heterogeneous task graph at a problem

size of 1283(128, 128, 128). Heterogeneous tasks perform explicit data transfer, and the field

size is considered to be huge at this problem size of 1283, and along with 20 PDEs over

50 iterations makes the performance drop to about 22X. All the tests are performed at

an increasing computational intensity with a problem size varying from 163(16, 16, 16) to

1283(128, 128, 128) with 20 PDEs for 50 iterations.

5.3.1 Insight—Level of Concurrency

Level of concurrency is an important issue to be considered while performing asyn-

chronous execution of a task graph. In a heterogeneous architecture environment, level

of concurrency is a parameter that defines the parallelization efficiency. We focus on

elaborating the use of cudaStream in exploiting concurrency on GPU. CUDA resource

handles are created for each expression to enable concurrent execution as discussed in §3.3.2.

A test case is carried out to check the level of concurrency that is expected out of a

synchronous task execution and asynchronous task execution for a problem size solving for

20 PDEs and a single PDE. Synchronous mode is created by enforcing a single cudaStream

to the entire tree, that performs computations and data transfer in an orderly fashion

they are queued into the stream with respect to host thread. In case of an asynchronous

mode, separate stream handles provide concurrent computations and data transfer for the

independent tasks.
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As shown in Figure 5.7, the total computation time for solving a single PDE in shown

for asynchronous and synchronous mode of execution. The reason for not plotting data

seperately in solving a single PDE in an asynchronous and sychronous mode is because the

task graph is not dense enough to show a significant difference. The test cases involve,

calculating diffusive flux with coupled source terms along with divergence of fluxes that

evaluates over 20 PDEs and 1 PDE for 10 iterations over a problem size varying from 163

to 1283. Data is also shown for solving 20 PDEs in asynchronous and synchronous modes

in the same figure, and there is a noticeable difference in the computation time. In terms of

speedup, the asynchronous version is faster up to 8.5X at a problem size of 163 and about

2.75X faster at a problem size of 1283 when compared to the synchronous version, as shown

in Figure 5.8.

Figure 5.8 shows the speedup comparison of the asynchronous mode over the syn-

chronous mode for 20 PDEs. There is a gradual decrease in the speedup with the increase

in problem size, and this is because of the computational intensity. At a lower problem

size of 163, the speedup is about 8.5X and at 1283 grid size, the speedup is just 2.5X. The

field sizes at 1283 involve a heavy kernel computation, data transfer, and some necessary

synchronizations done to avoid any race conditions performed for every expression.

This shows that the behavior of the asynchronous task execution tends to gradually

move towards synchronous task execution because of the intense work involved in it. It is

still commendable that a performance speedup of 2.5X is observed at a problem size of 1283

for 20 PDEs.

5.4 Future Work

• Nebo supports implementation of boundary conditions for GPU and modifications are

certainly necessary for graph algorithms to get the GPU execution support. Currently,

all the extra work (modifiers, boundary conditions) that is assigned to the expression

has been turned to CPU-only, and this has to be addressed for GPU execution.

• Edge and node weights are an important property to be considered while examining

a expression tree. This can provide insight in understanding critical parameters for

assigning a node hardware target for a heterogeneous CPU-GPU task graph.

• GPU execution with host multithreaded support is necessary for performing con-

current task execution on hybrid computing architectures. This goal is to achieve

execution of the tasks that can be concurrently executed on multi-GPUs and also use

Nebo multithreaded backend for CPU expressions.
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• CUDA 6.0 provides support for Unified Memory Addressing (UVA), which can be

adopted to ease the memory management heuristics and improving the code readabil-

ity. With the use of UVA, the same pointer can be used for accessing the memory both

on host and device that removes the complexities that arise with separating memory

management procedures and drastically reduces code.

5.5 Summary

Addressing issues on task graph scheduling and execution on heterogeneous and emerg-

ing architectures are important for better performance and improved accuracy. This work

majorly focus on providing support for directed acyclic task graph based approach for

solving partial differential equations to use heterogeneous computing systems augmented

with GPUs by exploiting much of the task-based parallelism. This is an initial effort towards

achieving the goal of extreme scale computing for computational science and engineering

applications.

• The primary objective of this work is to addresses the infrastructure abilities for

carrying out Wasatch tasks on diverse hardware targets in conjunction with the Uintah

Computational Framework. More details can be found in §4.2

• With the support of task graph execution on heterogeneous computing systems, vari-

ous other projects like Lattice Based Multiscale Simulation (LBMS), One-Dimensional

Turbulence (ODT), etc., can use the opportunity to explore the new areas of high

performance computing.

• Robust memory management heuristics are designed for better organizing memory on

CPU and GPU. More details regarding this can be found in §3.4.2

• The concept on consumer field which restricts permissions on write access is depre-

cated as elaborated in §2.4.

• There has been major advancements with respect to graph algorithms to efficiently

schedule tasks when using multiple hardware targets. A synchronous task execution

model is changed to an asynchronous task execution model that was enabled to explore

task-based parallelism on GPUs with the help of cudaStream. More details can be

found in §3.4
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