296 research outputs found

    Specifying and Executing User Agents in an Environment of Reasoning and RESTful Systems Using the Guard-Stage-Milestone Approach

    Get PDF
    For Read-Write Linked Data, an environment of reasoning and RESTful interaction, we investigate the use of the Guard-Stage-Milestone approach for specifying and executing user agents. We present an ontology to specify user agents. Moreover, we give operational semantics to the ontology in a rule language that allows for executing user agents on Read-Write Linked Data. We evaluate our approach formally and regarding performance. Our work shows that despite different assumptions of this environment in contrast to the traditional environment of workflow management systems, the Guard-Stage-Milestone approach can be transferred and successfully applied on the web of Read-Write Linked Data

    Controlling Internet of Things devices with Read-Write Linked Data Interfaces using Data-Driven Workflows

    Get PDF
    We present a first rough prototype for our approach to specify and execute agents on Read-Write Linked Data that are given as data-driven workflows, specifically we build on Guard-Stage-Milestone workflows. We showcase our approach in a setting from the Internet of Things, specifically building automation

    Self-managed Workflows for Cyber-physical Systems

    Get PDF
    Workflows are a well-established concept for describing business logics and processes in web-based applications and enterprise application integration scenarios on an abstract implementation-agnostic level. Applying Business Process Management (BPM) technologies to increase autonomy and automate sequences of activities in Cyber-physical Systems (CPS) promises various advantages including a higher flexibility and simplified programming, a more efficient resource usage, and an easier integration and orchestration of CPS devices. However, traditional BPM notations and engines have not been designed to be used in the context of CPS, which raises new research questions occurring with the close coupling of the virtual and physical worlds. Among these challenges are the interaction with complex compounds of heterogeneous sensors, actuators, things and humans; the detection and handling of errors in the physical world; and the synchronization of the cyber-physical process execution models. Novel factors related to the interaction with the physical world including real world obstacles, inconsistencies and inaccuracies may jeopardize the successful execution of workflows in CPS and may lead to unanticipated situations. This thesis investigates properties and requirements of CPS relevant for the introduction of BPM technologies into cyber-physical domains. We discuss existing BPM systems and related work regarding the integration of sensors and actuators into workflows, the development of a Workflow Management System (WfMS) for CPS, and the synchronization of the virtual and physical process execution as part of self-* capabilities for WfMSes. Based on the identified research gap, we present concepts and prototypes regarding the development of a CPS WFMS w.r.t. all phases of the BPM lifecycle. First, we introduce a CPS workflow notation that supports the modelling of the interaction of complex sensors, actuators, humans, dynamic services and WfMSes on the business process level. In addition, the effects of the workflow execution can be specified in the form of goals defining success and error criteria for the execution of individual process steps. Along with that, we introduce the notion of Cyber-physical Consistency. Following, we present a system architecture for a corresponding WfMS (PROtEUS) to execute the modelled processes-also in distributed execution settings and with a focus on interactive process management. Subsequently, the integration of a cyber-physical feedback loop to increase resilience of the process execution at runtime is discussed. Within this MAPE-K loop, sensor and context data are related to the effects of the process execution, deviations from expected behaviour are detected, and compensations are planned and executed. The execution of this feedback loop can be scaled depending on the required level of precision and consistency. Our implementation of the MAPE-K loop proves to be a general framework for adding self-* capabilities to WfMSes. The evaluation of our concepts within a smart home case study shows expected behaviour, reasonable execution times, reduced error rates and high coverage of the identified requirements, which makes our CPS~WfMS a suitable system for introducing workflows on top of systems, devices, things and applications of CPS.:1. Introduction 15 1.1. Motivation 15 1.2. Research Issues 17 1.3. Scope & Contributions 19 1.4. Structure of the Thesis 20 2. Workflows and Cyber-physical Systems 21 2.1. Introduction 21 2.2. Two Motivating Examples 21 2.3. Business Process Management and Workflow Technologies 23 2.4. Cyber-physical Systems 31 2.5. Workflows in CPS 38 2.6. Requirements 42 3. Related Work 45 3.1. Introduction 45 3.2. Existing BPM Systems in Industry and Academia 45 3.3. Modelling of CPS Workflows 49 3.4. CPS Workflow Systems 53 3.5. Cyber-physical Synchronization 58 3.6. Self-* for BPM Systems 63 3.7. Retrofitting Frameworks for WfMSes 69 3.8. Conclusion & Deficits 71 4. Modelling of Cyber-physical Workflows with Consistency Style Sheets 75 4.1. Introduction 75 4.2. Workflow Metamodel 76 4.3. Knowledge Base 87 4.4. Dynamic Services 92 4.5. CPS-related Workflow Effects 94 4.6. Cyber-physical Consistency 100 4.7. Consistency Style Sheets 105 4.8. Tools for Modelling of CPS Workflows 106 4.9. Compatibility with Existing Business Process Notations 111 5. Architecture of a WfMS for Distributed CPS Workflows 115 5.1. Introduction 115 5.2. PROtEUS Process Execution System 116 5.3. Internet of Things Middleware 124 5.4. Dynamic Service Selection via Semantic Access Layer 125 5.5. Process Distribution 126 5.6. Ubiquitous Human Interaction 130 5.7. Towards a CPS WfMS Reference Architecture for Other Domains 137 6. Scalable Execution of Self-managed CPS Workflows 141 6.1. Introduction 141 6.2. MAPE-K Control Loops for Autonomous Workflows 141 6.3. Feedback Loop for Cyber-physical Consistency 148 6.4. Feedback Loop for Distributed Workflows 152 6.5. Consistency Levels, Scalability and Scalable Consistency 157 6.6. Self-managed Workflows 158 6.7. Adaptations and Meta-adaptations 159 6.8. Multiple Feedback Loops and Process Instances 160 6.9. Transactions and ACID for CPS Workflows 161 6.10. Runtime View on Cyber-physical Synchronization for Workflows 162 6.11. Applicability of Workflow Feedback Loops to other CPS Domains 164 6.12. A Retrofitting Framework for Self-managed CPS WfMSes 165 7. Evaluation 171 7.1. Introduction 171 7.2. Hardware and Software 171 7.3. PROtEUS Base System 174 7.4. PROtEUS with Feedback Service 182 7.5. Feedback Service with Legacy WfMSes 213 7.6. Qualitative Discussion of Requirements and Additional CPS Aspects 217 7.7. Comparison with Related Work 232 7.8. Conclusion 234 8. Summary and Future Work 237 8.1. Summary and Conclusion 237 8.2. Advances of this Thesis 240 8.3. Contributions to the Research Area 242 8.4. Relevance 243 8.5. Open Questions 245 8.6. Future Work 247 Bibliography 249 Acronyms 277 List of Figures 281 List of Tables 285 List of Listings 287 Appendices 28

    Provenance : from long-term preservation to query federation and grid reasoning

    Get PDF

    Behaviour on Linked Data - Specification, Monitoring, and Execution

    Get PDF
    People, organisations, and machines around the globe make use of web technologies to communicate. For instance, 4.16 bn people with access to the internet made 4.6 bn pages on the web accessible using the transfer protocol HTTP, organisations such as Amazon built ecosystems around the HTTP-based access to their businesses under the headline RESTful APIs, and the Linking Open Data movement has put billions of facts on the web available in the data model RDF via HTTP. Moreover, under the headline Web of Things, people use RDF and HTTP to access sensors and actuators on the Internet of Things. The necessary communication requires interoperable systems at a truly global scale, for which web technologies provide the necessary standards regarding the transfer and the representation of data: the HTTP protocol specifies how to transfer messages, besides defining the semantics of sending/receiving different types of messages, and the RDF family of languages specifies how to represent the data in the messages, besides providing means to elaborate the semantics of the data in the messages. The combination of HTTP and RDF -together with the shared assumption of HTTP and RDF to use URIs as identifiers- is called Linked Data. While the representation of static data in the context of Linked Data has been formally grounded in mathematical logic, a formal treatment of dynamics and behaviour on Linked Data is largely missing. We regard behaviour in this context as the way in which a system (e.g. a user agent or server) works, and this behaviour manifests itself in dynamic data. Using a formal treatment of behaviour on Linked Data, we could specify applications that use or provide Linked Data in a way that allows for formal analysis (e.g. expressivity, validation, verification). Using an experimental treatment of behaviour, or a treatment of the behaviour\u27s manifestation in dynamic data, we could better design the handling of Linked Data in applications. Hence, in this thesis, we investigate the notion of behaviour in the context of Linked Data. Specifically, we investigate the research question of how to capture the dynamics of Linked Data to inform the design of applications. The first contribution is a corpus that we built and analysed to monitor dynamic Linked Data on the web to study the update behaviour. We provide an extensive analysis to set up a long-term study of the dynamics of Linked Data on the web. We analyse data from the long-term study for dynamics on the level of accessing changing documents and on the level of changes within the documents. The second contribution is a model of computation for Linked Data that allows for expressing executable specifications of application behaviour. We provide a mapping from the conceptual foundations of the standards around Linked Data to Abstract State Machines, a Turing-complete model of computation rooted in mathematical logic. The third contribution is a workflow ontology and corresponding operational semantics to specify applications that execute and monitor behaviour in the context of Linked Data. Our approach allows for monitoring and executing behaviour specified in workflow models and respects the assumptions of the standards and practices around Linked Data. We evaluate our findings using the experimental corpus of dynamic Linked Data on the web and a synthetic benchmark from the Internet of Things, specifically the domain of building automation

    Web service composition: A survey of techniques and tools

    Get PDF
    Web services are a consolidated reality of the modern Web with tremendous, increasing impact on everyday computing tasks. They turned the Web into the largest, most accepted, and most vivid distributed computing platform ever. Yet, the use and integration of Web services into composite services or applications, which is a highly sensible and conceptually non-trivial task, is still not unleashing its full magnitude of power. A consolidated analysis framework that advances the fundamental understanding of Web service composition building blocks in terms of concepts, models, languages, productivity support techniques, and tools is required. This framework is necessary to enable effective exploration, understanding, assessing, comparing, and selecting service composition models, languages, techniques, platforms, and tools. This article establishes such a framework and reviews the state of the art in service composition from an unprecedented, holistic perspective

    A Web Service Composition Method Based on OpenAPI Semantic Annotations

    Full text link
    Automatic Web service composition is a research direction aimed to improve the process of aggregating multiple Web services to create some new, specific functionality. The use of semantics is required as the proper semantic model with annotation standards is enabling the automation of reasoning required to solve non-trivial cases. Most previous models are limited in describing service parameters as concepts of a simple hierarchy. Our proposed method is increasing the expressiveness at the parameter level, using concept properties that define attributes expressed by name and type. Concept properties are inherited. The paper also describes how parameters are matched to create, in an automatic manner, valid compositions. Additionally, the composition algorithm is practically used on descriptions of Web services implemented by REST APIs expressed by OpenAPI specifications. Our proposal uses knowledge models (ontologies) to enhance these OpenAPI constructs with JSON-LD semantic annotations in order to obtain better compositions for involved services. We also propose an adjusted composition algorithm that extends the semantic knowledge defined by our model.Comment: International Conference on e-Business Engineering (ICEBE) 9 page

    Knowledge-Driven Harmonization of Sensor Observations: Exploiting Linked Open Data for IoT Data Streams

    Get PDF
    The rise of the Internet of Things leads to an unprecedented number of continuous sensor observations that are available as IoT data streams. Harmonization of such observations is a labor-intensive task due to heterogeneity in format, syntax, and semantics. We aim to reduce the effort for such harmonization tasks by employing a knowledge-driven approach. To this end, we pursue the idea of exploiting the large body of formalized public knowledge represented as statements in Linked Open Data
    corecore