
Provenance:
From Long-Term Preservation to Query
Federation and Grid Reasoning

Herkomstinformatie:
Van Langetermijnpreservatie tot Queryfederatie
en Netwerkgebaseerd Redeneren

Sam Coppens

Promotoren: prof. dr. ir. E. Mannens; prof. dr. ir. R. Van de Walle

Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. R. Van de Walle
Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2014-2015

Acknowledgements

Writing a PhD dissertation is one of the most difficult things I have ever
done. For several years, I have worked hard to achieve this PhD title.
And it is not finished yet. At this moment of writing, a few hours before
my deadline of submission, I am still struggling to put my thoughts on
paper. There is no magic trick, no routine or established work process
for publishing research. It is exactly like Thomas Edison said:

Genius is one percent inspiration, ninety-nine percent per-
spiration.

I do not want to compare myself to a genius, by far not, but as PhD
student, I like to pretend I am. Everybody talks about the inspiration
and we all hide the perspiration. Why? Because a true genius is 100
percent inspiration, without perspiration, right? Wrong! Let me get this
straight: regardless of how smart you are, it will always be ninety-nine
percent perspiration. And this is even a best case scenario. The case
where you belong to the happy few, who have enough inspiration to
spend one percent of their time on it.

Here am I, talking about the hard work I did to finish this PhD dis-
sertation. But hard work is relative. It is all about perception. Indeed,
numerous nights, I have spent doing research, writing papers and
articles, preparing presentations. The radio was my best friend. It
never let me down. It always reminded me I was not the only one in
the world who was awake, working. Another friend who never let me
down: coffee. My comfort during those nights, during the following
hard mornings. Yet, 211 pages as a result of seven years of (hard) work.
That is an average of 41 words a day. 3 sentences a day! And still I
have the perception I worked hard for this. A wise man once told me:
Working at a research lab is like working at a sheltered workshop, but
for intellectuals. There might be some truth in there.

ii

I must admit: I did work hard. But undoubtedly, there must be some
inefficiency. I blame peer review for this. A normal peer review process
consists of first a major revision, then a minor revision, and finally
preparing your print-ready version. This means that before you publish
41 words, you must have rewritten them already three times. And
then you are lucky, because during every review stage, you might get a
reject. As you can see, doing a PhD can be boring, rewriting the same
stuff over and over again. It can be frustrating, because who likes to
chew a gum that has been chewed already three times? Still, if you
want that publication, you will chew that gum, again... At the same
time, that frustration is key for publication. Publication is often a test of
strength with your peer reviewers: or you give up, or they give up. If
they give up, bingo! Accepted! And frustration can make the difference
in this test of strength. Frustration is also very important for writing
good reviews. Let me confess: my best reviews were even driven by
frustration. Because I wanted to reject a paper, but needed to give a
good justification for my rejection. And rejecting a paper, for the sole
reason you once wrote a better paper which was rejected, is still not
considered a valid reason for rejection...

But why do we want that publication? Of course, because we need it
for our PhD, but there is also another reason: we like to travel across
the world for the sole purpose of spamming about our work, and
networking. Spamming and networking are other key concepts to a
successful PhD. My best cited article was written by my network. My
second best cited article was cited by my network. My third best cited
article was cited only by myself. As I said: spamming and networking,
they make the difference.

Now, I do not want to discourage anyone to do a PhD. I recommend
it even. It is a very inspiring and enriching experience, but it can only
succeed with the right guidance. I would like to express my special
appreciation and thanks to my advisor Professor Dr. Ir. Erik Mannens
and my supervisor Professor Dr. Ir. Rik van de Walle. Both of you
have been a tremendous mentor for me. I would like to thank you
for giving me this experience, and encouraging me all those years. I
learned a lot from both of you. Your advice on both research as well
as on my career have been priceless. A special thanks goes to Erik,
who was always pushing me to do this PhD, up to the end. Without
you, I would never have finished it. I would also like to thank all my
jury members for serving as my committee members for letting my

iii

defense be an enjoyable moment, and for your brilliant comments and
suggestions, making my dissertation better. I would also like to thank
all my colleagues from MMLab. I had a great time with you, not only
working together, but also outside work. Doing conference together
left me with remarkable memories.

A special thanks to my family. Words cannot express how grateful I
am to my mother, father, and sister for all of the sacrifices that you
have made on my behalf. You were always there for me. Without you,
I would never have had this chance. I was not always the most easy
son and student, but your unconditional support made me the man I
am today. Last but not least, I would like to express my appreciation
for my wife Jamilia, and our twins, Seth and Finn. You were my
motivation, my driving force for this PhD. Jamilia, you supported me
always during lots of sleepless nights and you were always there for
me. Your support was needed to bring this to a successful end and this
PhD can be written also on your name. Seth and Finn, this is also for
you guys. You will not realise it for the moment, but both you boys
were a huge motivation.

This PhD is dedicated to my father, Ward. All my life, I looked up to
you. You were my big example, my inspiration. You taught me the love
for technology, from a very young age. We were always discussing the
latest evolutions. You were sending me constantly interesting articles
on computer science. You paved my way. During my whole life, you
stood by me. You supported every decision I have ever made. I could
lean on you. Literally, up to your last day, you were motivating me for
this PhD. I will never forget this. I will never forget you. You were my
biggest fan, and I am your biggest fan. This is for you!

Sam Coppens
Date, 2015

iv

Summary

The content on the Web is growing exponential and the management
of all the data is becoming problematic. Semantic Web technologies
will overcome this huge problem by letting machines act on the data
and actually manage the data. The Semantic Web is an extension of the
current Web, with the primary goal of making all the information on
the Web machine-interpretable. Together with the rise of the Semantic
Web, provenance information has gained a lot of interest. It can tell you
who did what with which piece of information to get a history track
of the information. On the Semantic Web, this information is machine-
understandable, such that even machine agents can perform a trust
evaluation of the offered information. In this dissertation, we focus
on all aspects of provenance information within the Semantic Web:
representing it in a machine-readable form, generating it automatically,
disseminating it so machines can easily discover it, and consuming the
provenance information.

The information on the Semantic Web is described using Resource
Description Data (RDF) to form a huge knowledge graph, where all
the information is linked to each other. This allows to easily reuse
information from other data providers, as reuse becomes only linking
your information graph to the other information graph. As information
is being combined with other pieces of information on the Web, the
provenance of the information becomes very important. It will tell
where the information came from, who created the information, who
manipulated the information, which processes were involved in creating
and adapting the information, etc.

In the future, this need for provenance information will grow. At
this moment, the Semantic Web, and the Linked Open Data cloud in
particular, remains a read-only Web. In the near future, this Semantic
Web will evolve into a read-write Web, with a uniform protocol to not

vi

only read the data, but also write to the data. From then on, machine
agents will be able to correct data, or insert newly discovered links.
Provenance information will then become a means of managing your
data. It will show who did what to your data, so you can authorise the
updates or not. At this point, trust evaluation will become even more
important than now with the mash-ups of data.

In the first chapter, we introduce provenance information. Provenance
is a very generic concept and knows many different definitions, and
applications in different domains. Research on provenance can be
categorised into four domains: provenance modeling, provenance gen-
eration, provenance publication, and finally, provenance consumption.
Despite all the different uses and views of provenance, a general core
data model can be presented to describe provenance information. At
its core, provenance describes the use and production of entities by
activities, which may be influenced in various ways by agents. The
first chapter not only introduces provenance information, but also the
basic Semantic Web foundations. These foundations are important
to understand the remainder of the dissertation. These foundations
are explained using the Semantic Web stack, i.e., a set of architectural
building blocks or layers for establishing the Semantic Web.

In the second chapter, we focus on the modeling and representation
of provenance information in the domain of long-term preservation
for cultural heritage information and present PREMIS OWL. PREMIS
OWL is a semantic formalisation of the PREMIS 3.0 data dictionary of
the Library of Congress (LOC). PREMIS 3.0 are metadata implemen-
tation guidelines for digitally archiving information for the long term.
PREMIS OWL is in fact a semantic long-term preservation schema.
Preservation metadata are a mixture of provenance information, struc-
tural metadata, technical information on the digital objects to be pre-
served and rights information to support the long-term preservation of
digital resources. PREMIS OWL is an OWL schema, that can be used
as data model for your digital archive. At the same time, it can also be
used for dissemination of the preservation metadata as Linked Open
Data on the Web. This OWL model allows to easily integrate external
information, a feature of data described in RDF, which allows to link to,
e.g., technical file format information from an external registry. A last
benefit of providing a semantic formalisation of PREMIS is that it can
easily be extended to suit your archiveś infrastructure and preservation
processes. The PREMIS OWL ontology is closely related to 25 preserva-

vii

tion vocabularies of the Library of Congress. These vocabularies are
formalised as SKOS vocabularies. Via these vocabularies, the ontology
remains interoperable, while offering sufficient extensibility options to
reflect the institutions preservation policies. Every archive can use its
own vocabularies to describe their preservation processes as long as
these vocabularies are linked to the preservation vocabularies of the
LOC.

The third chapter describes a digital long-term preservation infrastruc-
ture. The infrastructure has in fact two main goals: preserving the
offered content for the long term; and disseminating that content as
Linked Open Data, including the preservation metadata. This infras-
tructure relies on PREMIS OWL to model its preservation metadata.
This ontology is supplemented with a semantic Dublin Core layer in our
layered semantic metadata model. This enables the archive to deal with
the very diverse metadata it has to accept for preservation. This Dublin
Core layer is not only used as a common ground for managing the
content, but also for the Linked Open Data publication of the records.
To guarantee the long-term preservation of the harvested content, our
platform has the necessary processes in place to keep the information
intact and interpretable, in line with the Open Archival Information
System (OAIS) reference model. For building our distributed, digital
long-term preservation platform, an integration server was used to
orchestrate the different processes, based on SOA technology. The
preservation services reside on the archiving server. This server actu-
ally has a direct connection to the triple store for the descriptive and
preservation metadata and the distributed storage for the referenced
multimedia files. The LOD server is used for the dissemination of the
content and the provenance information, with a triple store as a storage
back-end. This way, our distributed infrastructure is able to satisfy its
two main requirements.

The long-term preservation infrastructure produces many different
versions of the content to be preserved and their preservation metadata.
In the fourth chapter, we introduce a way of publishing this dynamic
data, together with all its versions and their provenance information as
Linked Open Data, while using persistent identifiers for this dynamic
content. The W3C Provenance standard already provides a way of
disseminating provenance information. This provenance information
actually relates all the different versions of the data. Memento already
provides a way for datetime content negotiation. Our framework

viii

actually combines both techniques to publish versioned linked data on
the Web. This way, our framework allows to publish the information
of a resource as Linked Open Data, including all its previous versions
and their provenance information, in a web-accessible manner using
persistent identifiers.

Now that we have a way of producing and disseminating provenance
information, we can focus on the consumption of provenance informa-
tion. In the fifth chapter, we show how provenance information can be
applied to support query distribution. Prior knowledge is required to
federate the queries to the appropriate datasets: each dataset provides
its own SPARQL endpoint to query that dataset, and each dataset uses
its own vocabulary to describe their information. In this chapter, we
propose a federated SPARQL framework to query the global data space,
relying on query federation and vocabulary mappings. Our query
federation will traverse the owl:sameAs links. Our framework exploits
the fact that owl:sameAs relationships are symmetrical and transitive.
This means that such linked resources are interchangeable and form
the basis for the query rewriting. The provenance of the generated
owl:sameAs links is processed to resolve the SPARQL endpoints of
linked datasets and their vocabulary mappings to support the query
rewriting.

The last two chapters have no direct link to provenance, but are rather
extensions to previous chapters. In the sixth chapter, we propose a
novel workflow engine. The proposed workflow engine would per-
fectly replace the workflow engine used in the long-term preservation
infrastructure, because it is able to orchestrate and steer its workflows
based on external information, e.g., information coming from a techni-
cal registry telling which file formats are obsolete and which are not.
The workflow engine follows a three-step reasoning process. First, it
determines for all the resources in its knowledge base the functionality
they need to progress in the workflow. This uses a phase-functionality
rule file which binds phases of the workflow to functionalities. During
a second phase, the functionalities are mapped to REST service calls
using RESTdesc/’s functional descriptions. During the third step, the
engine executes the generated service calls and pushes the resource it
acted on to the next phase in the workflow using a phase-transition
rule file. During each reasoning cycle, external information from Web
services or external knowledge bases can be included to steer the
workflow composition. At the same time, the split up between func-

ix

tionalities and functional services in the workflow composition benefits
the maintenance of the services and the workflows.

The seventh chapter is an extension to the distributed querying frame-
work to become a distributed reasoning framework. In this chapter,
we propose an extension to the SPARQL query language to support
remote reasoning. Until now, the sparql query language was restricted
to simple entailment. Now sparql is being extended with more expres-
sive entailment regimes. This allows to query over inferred, implicit
knowledge. However, in this case the sparql endpoint provider de-
cides which inference rules are used for its entailment regimes. In
this chapter, we propose an extension to the sparql query language to
support remote reasoning, in which the data consumer can define the
inference rules. It will supplement the supported entailment regimes of
the sparql endpoint provider with an additional reasoning step using
the inference rules defined by the data consumer.

The final chapter focuses on the conclusions of this dissertation. The
topic of the dissertation is provenance information and provenance
has been researched from its different dimensions, i.e., representa-
tion, generation, dissemination and consumption. Each chapter in
this dissertation tackles one of these areas of research for provenance
information. For each of the areas, we show in this final chapter what
are the innovations, and contributions.

x

Samenvatting

De gegevens op het Web groeien exponentieel en het beheer van al deze
gegevens wordt steeds problematischer. Het Semantich Web tracht dit
probleem op te lossen door de data machine-interpreteerbaar te maken
zodanig dat de machines de data kunnen beheren. Met de opkomst
van het Semantisch Web werd ook de nood aan herkomstinformatie
belangrijker. Deze informatie beschrijft alle processen en actoren die be-
trokken waren in het creëren van een stukje informatie. Deze dissertatie
richt zich op deze herkomstinformatie van data, binnen de context van
het Semantisch Web. Dit wil zeggen dat we zullen onderzoeken hoe
de herkomstinformatie machine-leesbaar kan worden gerepresenteerd,
hoe deze herkomstinformatie automatisch kan worden gegenereerd,
hoe de herkomstinformatie moet worden gedissemineerd zodanig dat
ze gemakkelijk kan ontdekt worden, ook door machines en tot slot hoe
deze herkomstinformatie kan worden aangewend.

Om de informatie machine-interpreteerbaar te maken, beschijft men
de informatie in het Semantisch Web door middel van RDF. RDF
transformeert de data in feite in een grafe. Hierdoor wordt het ook
gemakkelijker om data met elkaar in verband te brengen en data dus te
gaan herbruiken. Herbruik wordt dan gewoon grafen met elkaar linken.
Het doel hiervan is dat de data op het Web met elkaar in verband wordt
gebracht, zoals hyperlinks web paginaś met elkaar verbindt, om op deze
manier de informatie op het Web toegankelijk te maken als één grote
grafe of kennisbron. Het gevolg hiervan is dat het steeds gemakklijker
wordt om informatie op het Web te herbruiken, te manipuleren, te
transformeren en te combineren, om zo nieuwe kennis te genereren.
De herkomstinformatie van deze nieuwe genereerde kennis is heel
belangrijk. Het zal je vertellen waar de verschillende stukjes data
vandaan komen, hoe ze gecombineerd werden, welke processen en
actoren hierbij betrokken waren, etc. De herkomstinformatie geeft een
beeld van de hele geschiedenis van de data. In het Semantisch Web

xii

is deze herkomstinformaties machine-interpreteerbaar, zodanig dat
machines kunnen inschatten hoe betrouwbaar de data is op basis van
deze herkomstinformatie.

In de toekomst zal de behoefte naar herkomstinformatie alleen maar
groeien. Op dit moment is het Semantisch Web voornamelijk een
Web waarbij de data enkel in machine-interpreteerbare vorm wordt
aangeboden. Dit wil zeggen dat machines enkel leesrechten hebben
op deze data. In de toekomst zullen de machines deze data gaan
manipuleren en corrigeren en dus schrijfrechten verwerven op deze
data. Herkomstinformatie wordt dan een middel om je data te beheren,
want deze herkomstinformatie zal je vertellen wie wat met je data heeft
gedaan en waarom. Sommige actoren zal je vertrouwen, andere weer
niet en hun veranderingen zal je teniet doen. Het inschatten van de
betrouwbaarheid van gepubliceerde informatie op het Web zal dus ook
steeds belangrijker worden. Een eerste stap richting deze inschatting is
het modelleren, genereren en publiceren van de herkomstinformatie,
op basis waarvan een vetrouwensinschatting kan gebeuren.

In een eerste hoofdstuk, introduceren we herkomstinformatie. Her-
komstinformatie is een zeer generiek concept en kent veel verschillende
definities en toepassingen in verschillende domeinen. Onderzoek naar
herkomstinformatie kan worden onderverdeeld in vier domeinen: re-
presentatie, generatie, publicatie, en ten slotte, consumptie. Ondanks
alle verschillende toepassingen en de standpunten omtrent herkomst-
informatie, kan een algemeen toepasbaar datamodel voor herkomst-
informatie worden vooropgeschoven. Dit data model wordt in het
eerste hoofdstuk besproken. Het eerste hoofdstuk introduceert niet
alleen herkomstinformatie, maar ook de basistechnologieën van het
Semantisch Web. Deze technologische basisblokken zijn belangrijk om
de rest van de dissertatie te begrijpen.

In het tweede hoofdstuk, richten we ons op de modellering en re-
presentatie van herkomstinformatie op het domein van de lange-
termijnpreservatie van cultureel erfgoed informatie: PREMIS OWL.
PREMIS OWL is een semantische formalisering van de PREMIS 3.0
data woordenboek van de Library of Congress (LOC). PREMIS 3.0 zijn
metadata implementatie richtlijnen voor het digitaal archiveren van
informatie voor de lange termijn. PREMIS OWL is in feite een seman-
tisch preservatieschema. Preservatiemetadata zijn een verzameling van
herkomstinformatie, structurele metadata, technische metadata over
de digitale objecten die moeten worden bewaard en rechteninforma-

xiii

tie. PREMIS OWL is een schema, dat kan worden gebruikt als data
model voor een digitaal archief. Op hetzelfde moment, kan het ook
worden gebruikt voor de disseminatie van de preservatiemetadata als
Linked Open Data op het Web. Dit OWL model maakt het mogelijk
om gemakkelijk externe informatie te integreren in de preservatieme-
tadata, bijvoorbeeld gegevens van een extern technisch register met
informatie over bestandsformaten. Een laatste voordeel van seman-
tisch metadatamodel is dat het gemakkelijk kan worden uitgebreid
en aangepast aan de technische architectuur van het archief met zijn
bijhorende preservatieprocessen. De PREMIS OWL ontologie is gelinkt
aan 25 preservatiewoordenlijsten van de Library of Congress. Deze
woordenlijsten worden geformaliseerd als SKOS woordenlijsten. Via
deze woordenlijsten blijft de ontologie interoperabel over de grenzen
van de archieven heen. Tegelijkertijd kan ieder archief zijn eigen beleid
en preservatieprocessen beschrijven door middel van archief-specifieke
woordenlijsten te gebruiken in de ontologie, zolang deze woordenlijsten
maar gelinkt zijn aan de preservatiewoordenlijsten van het LOC.

Het derde hoofdstuk beschrijft een infrastructuur voor de digitale be-
waring op lange termijn van digitale informatie. De infrastructuur
heeft in feite twee hoofddoelen: het behoud van de aangeboden infor-
matie voor de lange termijn, en het dissemineren van die informatie
als Linked Open Data, waaronder ook de preservatie metadata. Deze
infrastructuur is gebaseerd op PREMIS OWL om de preservatiemeta-
data te modelleren. Deze ontologie wordt aangevuld met een Dublin
Core-laag in onze gelaagd semantisch metadatamodel. Dit laat het
archief toe informatie te bewaren die beschreven is in zeer uiteenlo-
pende metadatamodellen. De Dublin Core-laag wordt gebruikt als een
gemeenschappelijke basis voor het beheer van de inhoud, en voor de
publicatie van de records als Linked Open Data. Om de bewaring van
de aangeleverde informatie op lange termijn te garanderen, bezit het
platform over de nodige processen om de gegevens intact en interpre-
teerbaar te houden, in lijn met het Open Archival Information System
(OAIS) referentiemodel. Voor het bouwen van onze gedistribueerd
preservatie platform werd een integratieserver gebruikt om de verschil-
lende preservatieprocessen te orkestreren. De preservatieprocessen
zelf zijn ingebouwd in de archiveringsserver. Deze server heeft een
directe verbinding met de triplestore voor de beschrijvende metadata
en preservatiemetadata en heeft een directe verbinding met de gedistri-
bueerde opslag voor de bestandsgebaseerde opslag van alle te bewaren
informatie. De LOD-server wordt gebruikt voor de dissminatie van alle

xiv

metadata. Deze server gebruikt de triplestore als backend. Zo kan de
gedistribueerde infastructuur aan de twee eisen voldoen: preservatie
en disseminatie.

De preservatie-infrastructuur produceert veel verschillende versies van
de te bewaren informatie. In het vierde hoofdstuk introduceren we
een manier voor het publiceren van deze dynamische gegevens als
Linked Open Data. Dit wil zeggen dat we alle versies van de data
publiceren als Linked Open Data, alsook de preservatiemetadata die
de versies verbinden met elkaar, in combinatie met het gebruik van
persistente identifiers voor de bewaarde, geversioneerde data. De W3C
Provenance standaard biedt reeds een manier aan voor de disseminatie
van herkomstinformatie. De preservatiemetadata vervult in feite de rol
van herkomstmetadata. Memento, daarentegen, voorziet een manier
voor datetime content negotiatie, wat toelaat verschillende versies onder
één persistent identifier te publiceren. Ons raamwerk combineert in
feite beide technieken om de verschillende versies van informatie op het
web te publiceren als Linked Open Data, tesamen met hun herkomst
informatie, gebruik makend van persistente identifiers.

Nu we een manier hebben voor het modelleren, produceren en disse-
mineren van herkomstinformatie, kunnen we ons richten op de con-
sumptie van herkomstinformatie. In het vijfde hoofdstuk, laten we zien
hoe herkomstinformatie kan worden aangewend om query-distributie
te ondersteunen. Bij query-distributie kan een client vragen afvuren
op een server/eindpunt die de vragen opsplitst in kleinere deelvragen
en deze verspreid naar verschillende databronnen. De antwoorden
op deze verschillende deelvragen worden dan gecombineerd om een
algemeen antwoord voor de binnenkomende vraag te formuleren. Hier-
voor is voorkennis nodig. Ten eerste moet men weten waar men de
deelvragen naartoe kan sturen (de vraagpunten). Ten tweede moet men
voor elk vraagpunt weten in welke woordenschat de data is beschreven
zodat de deelvragen zich kunnen aanpassen aan de woordenschat. In
dit hoofdstuk stellen we een query-distributie raammwerk voor, ge-
baseerd op de SPARQL querytaal en queryprotocol. Dit raamwerk
maakt gebruik van het feit dat informatie die is gepubliceerd als Lin-
ked Open Data links bevatten naar andere gelijkaardige concepten op
het Web. Voor het linken van deze gelijkaardige concepten wordt de
owl:sameAs relatie gebruikt. Ons query-distributie raamwerk volgt
deze owl:sameAs links en gebruikt de herkomstinformatie van deze
links om de deelvragen te distribueren. Ons raamwerk verwerkt de her-

xv

komstinformatie van deze links en extraheert hieruit de vraagpunten
waar het zijn deelvragen naartoe kan sturen en tevens de woordenschat
waarin die data van de vraagpunten is beschreven. Met die informatie
kan elke binnenkomende vraag worden opgesplitst in deelvragen, wor-
den de deelvragen aangepast aan de woordenschat van elk vraaagpunt,
worden de deelvragen doorgestuurd naar deze vraagpunten en worden
uiteindelijk alle antwoorden gecombineerd to een eenduidig antwoord
op de binnenkomende vraag. En dit door enkel gebruik te maken van
de herkomstinformatie van de gelegde links in de grafe.

De laatste twee hoofdstukken hebben geen directe link naar herkomst-
informatie, maar zijn eerder uitbreidingen op vorige hoofdstukken. In
het zesde hoofdstuk, stellen we een nieuwe workflow engine voor. De
voorgestelde workflow engine zou perfect de workflow engine kunnen
vervangen die wordt gebruikt in de preservatie infrastructuur, om-
dat het in staat is om haar workflows te orkestreren en te sturen op
basis van externe informatie, bijvoorbeeld informatie afkomstig van
een technisch register met informatie over welke bestandsformaten
verouderd zijn en welke niet. De workflow engine volgt een drie-
stappen redeneringsstrategie. Allereerst worden voor alle concepten in
haar kennisbbank de functionaliteiten beredeneerd die de concepten
nodig hebben om vooruitgang te boeken in de workflow. Het rede-
neerproces in deze fase wordt bepaald door regels beschreven in een
fase-functionaliteitenbestand. De regels bepalen voor elke fase welke
functionaliteit ze nodig hebben om die fase te vervolledigen. Tijdens een
tweede fase worden de functionaliteiten gemapt op service beschrijvin-
gen. Deze mapping gebeurt tevens door een redeneerstap en de regels
hiervoor zijn de service beschrijvingen die met behulp van RESTdesc
zijn beschreven. Tijdens de derde stap worden de beredeneerde service
calls uitgevoerd. Indien de uitvoering succesvol is, volgt in deze een
laatste redeneerstap, nl. een fasetransitie. De fasetransities koppelen
in feite alle fases uit een workflow aan elkaar. De fasetransities wor-
den ook met behulp van regels beschreven in het fase-transitiebestand.
Na deze laatste fase zijn alle concepten uit de kennisbank één stap
opgeschoven in hun workflow. Het hele redeneercyclus wordt nadien
herhaald. Tijdens elke redeneercyclus kan externe informatie van web-
services of externe kennisbanken worden opgenomen om de workflow
compositie sturen. Ook zorgt de opsplitsing tussen functionaliteiten
en functionele webservices voor een gemakkelijker beheer van deze
services en de workflows waarin ze zijn opgenomen.

xvi

Het zevende hoofdstuk is een uitbreiding van het query distributie
raamwerk, voorgesteld in het vijfde hoofdstuk. De voorgestelde uit-
breiding kan van het query distributie raamwerk een gedistribueerd
redeneringsraamwerk maken. Hiervoor stellen we een uitbreiding van
de SPARQL querytaal voor om redeneringsprocessen aan de serverkant
te ondersteunen. Tot nu toe werd het SPARQL querytaal beperkt tot
het meest eenvoudige redeneerproces: grafe matching. SPARQL werd
laatst uitgebreid met expressievere redeneringsprocessen. Dit maakt het
mogelijk om impliciet afgeleide kennis te bevragen via SPARQL. In dit
geval bepaalt de data-aanbieder de inferentieregels die gevolgd moeten
worden tijdens het redeneerproces. In dit hoofdstuk stellen we een
uitbreiding van de SPARQL querytaal voor waarbij de dataconcument
de inferentieregels bepaalt. De inferentieregels van de dataconsument
zullen de inferentieregels van de data-aanbieder aanvullen. Op deze
manier kan langs de serverkant over de aangeboden data worden
geredeneerd en kan de afgeleide kennis onmiddellijk worden bevraagd.

Het laatste hoofdstuk richt zich op de conclusies van deze disserta-
tie. Het onderwerp van de dissertatie is herkomstinformatie en deze
herkomstinformatie wordt onderzocht vanuit al haar verschillende
dimensies, dat wil zeggen, representatie, generatie, verspreiding en
consumptie. Elk hoofdstuk in dit proefschrift behandelt één van deze
onderzoeksgebieden. Voor elk van de gebieden, tonen we in dit laatste
hoofdstuk wat de innovaties en bijdragen zijn.

Contents

1 Semantic Web and Provenance - An Introduction 1
1.1 Introduction . 1
1.2 Provenance . 3
1.3 The Semantic Web . 6
1.4 The Semantic Web Foundations 8

1.4.1 The Web Platform: URI 9
1.4.2 Knowledge Representation Structure: RDF 9
1.4.3 Syntax: Serialisation of RDF 10
1.4.4 Semantics: RDFS, OWL, and OWL2 12
1.4.5 Query: SPARQL 21
1.4.6 Applications: Linked Data 23

1.5 Provenance and the Future of the Semantic Web 24
1.5.1 Management . 25
1.5.2 Trust . 26
1.5.3 Versioning . 26

1.6 Research Questions and Outline 27

2 PREMIS OWL - A Semantic Long-Term Preservation Model 37
2.1 Introduction . 37
2.2 Preservation Information 38
2.3 PREMIS 3.0 . 42
2.4 PREMIS OWL . 43

2.4.1 PREMIS OWL: Core 45
2.4.2 PREMIS OWL: Structural Information 47
2.4.3 Object . 48
2.4.4 Event . 54
2.4.5 Agent . 54
2.4.6 Rights . 55

2.5 Validation . 57
2.6 Conclusions . 58

xviii

3 Archipel - A Distributed, Digital Long-term Preservation In-
frastructure 61
3.1 Introduction . 61
3.2 Related Work . 63
3.3 OAIS . 65
3.4 Requirements of the Archive 68
3.5 Information Packages . 69

3.5.1 Packaging Format 69
3.5.2 Package Content 70

3.6 Architecture . 73
3.6.1 Integration Server 74
3.6.2 Harvest Services 77
3.6.3 Preservation Services 78
3.6.4 Dissemination Services 81

3.7 Conclusions . 83

4 Versioned Data on the Web - Memento datetime Content Ne-
gotiation and Provenance Publication 87
4.1 Introduction . 87
4.2 Related Work . 89
4.3 Layered Metadata Model 91
4.4 Architecture . 92
4.5 Publication . 95

4.5.1 Memento Datetime Content Negotiation 96
4.5.2 Publishing Provenance 98
4.5.3 Implementation . 101

4.6 Conclusions . 102

5 Querying Distributed Linked Data - Query Federation using
the Provenance of owl:sameAs Links 105
5.1 Introduction . 106
5.2 Related Work . 108
5.3 Solution . 109
5.4 Index Builder . 111

5.4.1 Index Builder Algorithm 113
5.5 Query Distributor . 114

5.5.1 Transform BGPs Algorithm 115
5.5.2 Merge BGP Algorithm 118

5.6 Optimisations . 120
5.7 Evaluation . 122

CONTENTS xix

5.8 Conclusion . 123

6 Self-Sustaining Platforms - A Distributed Reasoning Frame-
work to implement a Semantic Workflow Engine 125
6.1 Introduction . 126
6.2 Related Work . 127
6.3 Concept and Architecture 128
6.4 Functionality Generation Phase 131
6.5 Service Generation Phase 132
6.6 Service Execution and Transition Phase 135
6.7 Advanced Features . 136

6.7.1 Feedback Loops . 137
6.7.2 Nesting . 138
6.7.3 Authority . 139
6.7.4 Service Selection 141

6.8 Conclusions . 142

7 Remote Reasoning over SPARQL - From Query Federation to
Distributed, Remote Reasoning 145
7.1 Introduction . 145
7.2 Related work . 147
7.3 Remote reasoning . 148
7.4 Extending SPARQL . 149

7.4.1 The REASON query 150
7.4.2 Ontology classification 152
7.4.3 Handling triple selection validation for reasoning 153

7.5 A SPARQL reasoning endpoint 154
7.6 Use cases . 154

7.6.1 Ontology interoperability 154
7.6.2 Distributed reasoning 155

7.7 Future Work . 156
7.8 Conclusion . 157

8 Conclusions 159
8.1 Provenance Representation: PREMIS OWL 160
8.2 Provenance Generation: Archipel 160
8.3 Provenance Dissemination: Memento and Provenance . 161
8.4 Provenance Consumption: Query Federation 162
8.5 Self-Sustaining Platforms: Semantic Workflow Engine . 162
8.6 Remote Reasoning over SPARQL 163

xx

A Example RDFS Model 165

B OWL Model 167

C OWL Example Ontology 169

Publications 173

References 181

Chapter 1

Semantic Web and
Provenance - An

Introduction

In this dissertation, I investigate provenance information for the Semantic
Web, an extension of the current Web in which machines can interpret data
and entail new information. Provenance information describes the history of a
certain Web resource in terms of processes, which act on different entities, and
triggered or influenced by agents. Provenance is of interest for many domains,
e.g., eScience, information retrieval, workflows, etc. In this dissertation, the
provenance information supports long-term preservation and dissemination of
cultural heritage information. For this dissertation, I will model provenance
information as data model for a digital archive. Next, I will present a framework
for the long-term preservation of cultural heritage information, producing
provenance information. I will then investigate and propose a way of publishing
this provenance information on the Web. Finally, I will show how provenance
information published on the Web can be used to support federated querying
on the Linked Open Data cloud.

1.1 Introduction

Provenance refers to the sources of information: who did what with
which piece of information. It refers to the history of data, in which en-
tities, processes, and agents were involved. The entities, processes, and
agents being described in the provenance, and their level of granularity
are domain-specific and application-specific.

2 Semantic Web and Provenance - An Introduction

In scientific research, the main purpose of provenance information is
reproducibility of scientific experiments to reproduce new scientific
results. Thus, the provenance information here will include information
on a sample and the experiments applied to the sample. In a digital
archive, on the other hand, provenance information must support and
guarantee its long-term preservation. This means provenance informa-
tion will focus on describing the preservation processes involved in
keeping the digital information intact and representable. In a business
context, provenance may include information about financial and le-
gal processes (e.g., in contracts) as well as the electronic (e.g., online
ordering) and physical (e.g., shipping) processes that have occurred.
On the Web, provenance will give information on the creation of the
Web resource, but also information on the processes involved for its
publication. Next to this, provenance of a Web resource can also include
information of its reuse, digital signatures, linking, etc. Provenance of
the Web will initially support trust assessment. Or as Tim Berners-Lee
stated it in his vision of the Web[2]:

At the toolbar (menu, whatever) associated with a document
there is a button marked "Oh, yeah?". You press it when
you lose that feeling of trust. It says to the Web, ’so how
do I know I can trust this information?’. The software then
goes directly or indirectly back to meta information about
the document, which suggests a number of reasons.

The information on the Web is growing exponentially. The management
of all this information is becoming problematic. It cannot just be
managed by humans anymore. This was the incentive to build an
extension to the current Web, i.e., the Semantic Web, a Web where
information is not only shared for consumption by humans, but also
by machines.

Provenance is one of the elementary building blocks of the Semantic
Web. On the Web, information is being reused, copied, and modified
a lot by different data providers. Checking if a piece of information
is trustworthy or not, is becoming an impossible task on the Web.
Provenance information will enable trust assessment on the Web, but
at the same time it will support the read-write Semantic Web, as will
be discussed in Section 1.5. With the arrival of massive amounts
of Semantic Web data (e.g., via the Linked Open Data community)
information about the origin of that data, i.e., provenance, becomes
an important factor in developing new Semantic Web applications.

1.2. Provenance 3

Therefore, a crucial enabler of Semantic Web deployment is the explicit
representation of provenance information that is accessible to machine
agents, not just to humans.

In this dissertation, I will research provenance information, how one
can benefit from integrating it into the Semantic Web. Provenance
will be approached from the domain of the publication and long-term
preservation of cultural heritage information. All facets of provenance
will be covered in this dissertation: from modeling provenance infor-
mation to the generation of provenance information, its dissemination,
and finally, the use of the published provenance information.

In this Chapter, I will discuss some important concepts that will return
in the other chapters of this dissertation. First, I will give a more
detailed view on provenance information and its representation. Then,
I will introduce the Semantic Web and its foundations. Afterwards, I
have a look at the future of the Semantic Web, as I believe provenance
information will become a first class citizen on the Web. Finally, this
chapter concludes with an outline for the rest of this dissertation.

1.2 Provenance

Provenance serves many purposes. Various domains are approaching
provenance from their own perspective. For this reason, the W3C
Provenance Incubator Group has developed a working definition of
provenance on the Web:

Provenance Definition: Provenance of a resource is a record
that describes entities and processes involved in producing
and delivering or otherwise influencing that resource. Prove-
nance provides a critical foundation for assessing authen-
ticity, enabling trust, and allowing reproducibility. Prove-
nance assertions are a form of contextual metadata and
can themselves become important records with their own
provenance.

Provenance has already been the subject for many research and develop-
ment. In workflow systems for eScience, provenance has been studied
to support automatic generation of new scientific results. Licensing
standards bodies take into account the attribution of information as
it is reused in new contexts. Information retrieval communities have

4 Semantic Web and Provenance - An Introduction

studied how to deal with contradictory and complementary query
results. In digital archives, the management of the preserved data relies
on the provenance information of the data. Database communities have
investigated provenance to support data restorations and to provide
low-level provenance at metadata level. Research for provenance covers
a broad domain. For provenance on the Web, there are in general four
research areas, as shown in Figure 1.1 :

• Representation: Here, the modeling of provenance is the focus.
Questions here are, e.g., how to describe the objects and the
processes, or how to describe versioned data, etc.

• Generation: This area is interested in the generation of prove-
nance information and embedding provenance into systems. For
instance, how can provenance support database restoration, or
how to integrate provenance in workflow engines, etc.

• Dissemination: Once you hold provenance information, you still
need to publish it and make it accessible on the Web. These are
the main questions of this research area.

• Consumption: In this area, the research focuses on consuming
provenance information for a certain purpose. For instance, how
to make different provenance representation interoperable, or
how to allow trust assessment, based on provenance information
are research topics in this area.

Figure 1.1: Provenance research areas.

1.2. Provenance 5

Because provenance is used in many different domains, many different
data models for provenance have been developed. Each data model was
designed to support a certain domain or application. There are very
generic provenance models, covering a very broad domain, such as the
Open Provenance Model (OPM, [3]). Models to represent provenance
for the eScience domain, e.g., the Provenir Ontology [4], provenance for
neuromedicine, e.g., the Semantic Web Applications in Neuromedicine
Ontology [5], or provenance for Linked Data, e.g., the Provenance Vo-
cabulary [6]. There are also provenance models with a specific goal,
such as supporting long-term preservation, e.g., PREMIS [7], describing
digital signatures to support trust, e.g., the Semantic Publishing Vocab-
ulary [8], or supporting versioning, e.g., the Changeset Vocabulary [9].
Among the relevant technologies implementing provenance, regardless
of their rendering technology, they all share a basic understanding of
provenance and a common basis for modeling provenance.

At its core, provenance describes the use and production of entities by
activities, which may be influenced in various ways by agents. An entity
is a physical, digital, conceptual, or other kind of thing with some fixed
aspects; entities may be real or imaginary. An activity is something
that occurs over a period of time and acts upon or with entities; it may
include consuming, processing, transforming, modifying, relocating,
using, or generating entities. An agent is something that bears some
form of responsibility for an activity taking place, for the existence of
an entity, or for another agent’s activity. These three components and
their relations constitute the core of most of the provenance models, as
depicted by Figure 1.2

Figure 1.2: Basic components for modeling provenance

6 Semantic Web and Provenance - An Introduction

Throughout the diversity of provenance models, there are many com-
mon threads underpinning the representation, the dissemination and,
hence, the use of provenance to enable a new generation of Semantic
Web applications that takes provenance into account. For this reason,
the W3C has developed a standardised provenance specification in the
Provenance Working Group [10]. The aim of this working group is to
come up with a common provenance data model, different representa-
tions of a provenance data model (e.g., XML, OWL, Dublin Core, etc.)
and standardised protocols for discovering, accessing, and querying
provenance information on the Web. This specification will give data
publishers the tools to publish provenance information on the Web, i.e.,
a standardised representation for publishing provenance on the Web
and a standardised protocol for discovering and accessing provenance
information on the Web.

1.3 The Semantic Web

The World Wide Web has been evolving towards the vision of the Se-
mantic Web, an extension of the existing Web through which machines
are able to understand the data on the Web and, as a consequence, man-
age all these data. It promises to infuse the Internet with a combination
of metadata, structure, and various technologies so that machine agents
can derive meaning from information, make more intelligent choices,
and complete tasks with reduced human intervention.
The Semantic Web is an extension on the Web. This means it builds
upon the existing Web architecture. Before the Semantic Web, the Web
was a web of documents, e.g., Web sites, which were exchanged between
two computers (a Web server and a Web browser). Through hyperlinks
these documents were interconnected. Enabling technologies for this
Web were URIs [11], HTTP [12] and HTML [13]. The first version of
the Web, i.e., Web 1.0, was a read-only Web. People could look up
information, but could not interact with the information. This was
the era of the static Web sites. Later on, this read-only Web became a
read-write Web. This stage was characterised by user interaction and
collaboration in the form of user generated content, e.g., Youtube1, and
social networks, e.g., Facebook2 or Twitter3. At the moment, the Web
is transforming into a Semantic Web, i.e., Web 3.0, where machines

1http://www.youtube.com
2http://www.facebook.com
3http://www.twitter.com

1.3. The Semantic Web 7

Figure 1.3: Schematic overview of the web evolution

can read and understand the underlying data. In this Semantic Web,
we don‘t describe documents anymore, but things, e.g., a painting of
Rubens, Rubens himself, Antwerp, etc. When describing these things,
this information can of course come from different sources on the Web,
e.g., documents, or services. As such, the Semantic Web becomes a web
of interconnected Web resources.

One of the main applications of the Semantic Web is Linked Data (LD,
[14]). The goal of Linked Data is to let people share structured data on
the Web as easily as they share documents today. It actually refers to a
style of publishing and interlinking structured data on the Web. The
main recipe for LD is the Resource Description Framework (RDF, [15]).
In the Semantic Web, structured data is published as RDF data and RDF
links are used to link data from different data sources. Linked Open
Data (LOD) is Linked Data that is published openly, freely available.
LOD is defined by its 5-star deployment scheme4 of Tim Berners-Lee.
This star scheme for Linked Data indicates how easily the LD can be
reused and integrated with other data sources. LOD on the Web creates
a giant global graph, where all the published data is freely available
and connected to each other, also called the Web of Data. In this Web
of Data, clients can easily discover and consume data.

4http://www.w3.org/DesignIssues/LinkedData.html

http://www.w3.org/DesignIssues/LinkedData.html

8 Semantic Web and Provenance - An Introduction

1.4 The Semantic Web Foundations

The architecture of the Semantic Web can be illustrated by its technology
stack, shown in Figure 1.4. The Semantic Web Stack is an illustration
of the hierarchy of languages, where each layer exploits and uses
capabilities of the layers below. It shows how technologies that are
standardized for Semantic Web are organized to make the Semantic
Web possible. It also shows how Semantic Web is an extension (not a
replacement) of classical Hypertext Web.

Figure 1.4: Semantic Web Technology Stack

The stack shown in Figure 1.4 is a 3 dimensional visualisation of the
layered Semantic Web technology stack, first published by Tim Berners-
Lee. Below, I give an overview of some specifications for the layers:

• The Web Platform: URI, HTTP, HTML
• Syntax: N3 [16], Turtle [17], RDFa [18], XML [19], JSON [20]
• Knowledge Representation Structure: RDF
• Semantics: RDFS [21], OWL [22], OWL2 [23]
• Rules: RIF [24]
• Query: SPARQL [25]
• Security: WebID [26]
• Proof: Named Graphs [27]
• Trust: WebID, Web of Trust (WOT)
• Applications: Social Web5, Linked Open Data

5http://www.w3.org/2005/Incubator/socialweb/

1.4. The Semantic Web Foundations 9

1.4.1 The Web Platform: URI

A Uniform Resource Identifier (URI) is a string of characters used to
uniquely identify a resource. Such identification enables interaction
with representations of the resource over a network (typically the World
Wide Web) using specific protocols, e.g., HTTP, or FTP[28]. Anyone can
create a URI, and the ownership of them is clearly delegated, so they
form an ideal base technology with which to build a global Web on top.
The syntax of URIs is carefully governed by the IETF, who published
RFC 2396 as the general URI specification. The W3C maintains a list of
URI schemes.

URIs can be classified as URLs, as URNs, or as both. A uniform
resource name (URN) identifies a resource, e.g., an ISBN number. A
uniform resource locator (URL) provides a method for finding this
resource, e.g., an HTTP URI. Since 2005, URIs can be used to designate
things, not explicitly bound to a document. This allows to identify any
thing you want to describe with a URI.

1.4.2 Knowledge Representation Structure: RDF

The underlying structure of Resource Description Framework (RDF)
data is a collection of triples. Every triple consists of a subject (S),
predicate or property (P) and object (O) respectively. A set of such
triples is called an RDF graph.

Figure 1.5: Triple having a resource as its object

Note that the object of a triple can also be a literal instead of a URI.
However, literals cannot appear as the subject or predicate of a triple.
By convention, a literal is represented using a box instead of an ellipse.

Figure 1.6: Triple having a literal as its object.

All literals have a lexical form being a Unicode string. A literal can also
be provided with a language tag. Alternatively, a datatype URI can be
provided to a literal, forming a typed literal. If we take the example
of Damien Hirst’s ’For the Love of God’ record and put it in RDF, the
record becomes a graph, represented below.

10 Semantic Web and Provenance - An Introduction

Figure 1.7: Description of artwork of Damien Hirst

1.4.3 Syntax: Serialisation of RDF

RDF transforms data into a data graph. This graph can be serialised
for data exchange. As explained earlier, the Semantic Web builds upon
the Web of documents, wherein the exchange of documents is the main
foundation. When RDF can get serialised into a document, the existing
Web architecture can be exploited.

W3C have developed an XML serialization of RDF in the RDF Model
and Syntax recommendation. RDF/XML is considered to be the stan-
dard interchange format for RDF on the Semantic Web. The example,
shown in RDF Fragment 1.1, serialises the example RDF graph of
Figure 1.7 to RDF/XML.

1.4. The Semantic Web Foundations 11

RDF Fragment 1.1: Example RDF serialisation in RDF/XML
<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:voc ="http://example.org/voc/vocabulary#">

<rdf:Description rdf:about="http://example.org/resource/
For_The_Love_Of_God">

<voc:title>For the Love of God</voc:title>
<voc:description>For the Love of God is a sculpture by

artist Damien Hirst produced in 2007. It consists of a
platinum cast of a human skull encrusted with 8,601
flawless diamonds, including a pear-shaped pink diamond
located in the forehead.</voc:description>

<voc:date>2007-06-01T00:00:00</voc:date>
<voc:creator rdf:resource="http://example.org/resource/

Damien_Hirst"/>
</rdf:Description>

</rdf:RDF>

RDF/XML is not the only serialisation of RDF to a document. There
exist several other serialisations. For example, Notation3 (N3) is an ex-
cellent plain text alternative serialization. N3 is a shorthand, non-XML
serialization of Resource Description Framework models, designed with
human-readability in mind. N3 is much more compact and readable
than an RDF/XML serialisation. RDF Fragment 1.2 shows the RDF
graph of Figure 1.7 serialised in N3. N3 has several features that go
beyond a serialization for RDF models, such as support for RDF-based
rules.

RDF Fragment 1.2: Example RDF serialisation in N3
@prefix voc: <http://example.org/voc/vocabulary#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
<http://example.org/resource/For_The_Love_Of_God>
voc:creator <http://example.org/resource/Damien_Hirst>
voc:date "2007-06-01T00:00:00";
voc:description "For the Love of God is a sculpture by \n

artist Damien Hirst produced in 2007. It \n
consists of a platinum cast of a human \n
skull encrusted with 8,601 flawless \n
diamonds, including a pear-shaped pink \n
diamond located in the forehead.";

voc:title "For the Love of God".

12 Semantic Web and Provenance - An Introduction

N-Triples is another way of serialising RDF graphs. It just enumerates
all the triples of the RDF graph. It was designed to be a simpler format
than Notation 3, and therefore easier for software to parse and generate,
but not faster. From now, lots of RDF fragments will be shown. I won’t
be repeating the namespace declaration for every RDF fragment. The
used namespaces throughout this dissertation will be declared once in
the text, and will be listed in the namespace list at the beginning of the
dissertation.

1.4.4 Semantics: RDFS, OWL, and OWL2

So far, I have introduced RDF, or how data can be modeled as a graph
representation using RDF. RDF provides a way to state facts or make
assertions about resources, using named properties and values. Users
also need to be able to define a vocabulary to use in these statements.
RDF properties may be thought of as attributes of resources and in this
sense correspond to traditional attribute-value pairs. RDF properties
also represent relationships between resources. RDF however, provides
no mechanisms for describing these properties, nor does it provide any
mechanisms for describing the relationships between these properties
and other resources. Thus, RDF does not add semantics to the data.

Semantic models are used to attribute RDF data models with semantics.
These models define how your data is described. RDF data can be
encoded with semantic metadata using two syntaxes: RDFS and OWL.
While RDF is a graph-based model, RDFS (RDF Schema) and OWL are
object-oriented. Both RDFS and OWL are W3C specifications.

A. RDFS

RDF’s vocabulary description language, RDF Schema, is a semantic
extension of RDF. RDFS is defined in the form of an RDF vocabulary.
Thus, RDFS descriptions are written in RDF. It is meant to be a simple
datatyping model for RDF. RDFS defines classes and properties that
may be used to describe classes, properties and other resources. It
provides mechanisms for describing groups of related resources and
the relationships between these resources. These resources are used
to determine characteristics of other resources, such as the domains
and ranges of properties, subclasses and subproperties. The names-
pace of RDFS is <http://www.w3.org/2000/01/rdf-schema#>. The
namespace for RDF elements is <http://www.w3.org/1999/02/22-rdf-
syntax-ns#>.

1.4. The Semantic Web Foundations 13

The most important classes RDFS introduces are rdfs:Resource,
rdfs:Class and rdf:Property. Next to these classes, RDFS defines some
classes for datatyping, e.g., rdfs:Literal and constructs for representing
containers, e.g., rdfs:Container, and RDF statements, e.g., rdf:subject.

Taking back the example of Figure 1.7, one could define a class of artists
and a class of artworks. These classes can then be used for datatyping
your RDF model.

RDF Fragment 1.3: Example RDFS class declaration in RDFS model

voc:Artist rdf:type rdfs:Class;
voc:Artwork rdf:type rdfs:Class;

One could state, e.g., that the resource
<http://example.org/resource/Damien_Hirst> is an individ-
ual belonging to this class. For this, RDFS introduces the property
rdf:type. This property denotes to which class a resource belongs. You
can add extra triples to your RDF graph to denote which resource
belongs to which class. RDF Fragment 1.4 shows which triples
are added to our RDF graph shown in Figure 1.7 to datatype the
following resources: <http://example.org/resource/Damien_Hirst>
and <http://example.org/resource/For_The_Love_Of_God>.

RDF Fragment 1.4: Example RDFS datatyping in RDF

<http://example.org/resource/Damien_Hirst> rdf:type voc:
Artist.

<http://example.org/resource/For_The_Love_Of_God> rdf:type voc:
Artwork.

For properties, RDFS allows to define their domain and range. The
domain must always be a certain class, the range can be a certain class,
e.g., voc:Artist, or datatype, e.g., xsd:dateTime. The namespace xsd
stands for <http://www.w3.org/2001/XMLSchema#>. In case the
range of the property is a datatype, the property is called a datatype
property. In case the range is a class, the property is called an object
property. In our example RDF model, shown in Figure 1.7, one could
define the domain and range of the object property voc:creator, and the
datatype property voc:date.

14 Semantic Web and Provenance - An Introduction

RDF Fragment 1.5: Example RDFS properties
voc:date rdf:type rdf:Property;

rdfs:domain voc:Artwork;
rdfs:range xsd:dateTime.

voc:creator rdf:type rdf:Property;
rdfs:domain voc:Artwork;
rdfs:range voc:Artist.

Next to this, RDFS also allows to define subclasses and subproper-
ties. In our example, we can define a class voc:ContemporaryArtist
as a subclass of voc:Artist and a class voc:ContemporaryArtwork as
a subclass of voc:Artwork. Because the property voc:creator is de-
fined to have a voc:Artwork as domain and a voc:Artist as range,
this property is still usable for linking a voc:ContemporaryArtwork
to a voc:ContemporaryArtist. Thus, instead of defining ex-
ample:Damien_Hirst and example:For_The_Love_Of_God as resp.
voc:Artist and voc:Artwork, one could define them as resp.
voc:ContemporaryArtist and voc:ContemporaryArtwork. The RDF
example shown in RDF Fragment 1.6 shows how to achieve this sub-
classing.

RDF Fragment 1.6: Example Subclasses
voc:ContemporaryArtwork rdf:type rdf:Class;

rdfs:subClassOf voc:Artwork.
voc:ContemporaryArtist rdf:type rdf:Class;

rdfs:subClassOf voc:Artist.

If we put everything together, we get our first RDFS model, shown in
Appendix A. It is good practice to always add labels and comments to
your class definitions and property definitions, because they contribute
to the human-readable semantics of the class or property. It is important
to make a distinction between this RDFS model and the RDF model as
both can be expressed using triples. This allows to join the RDF triples
with the RDFS triples to entail some extra information. This is called
reasoning, as will be explained in Section C.

1.4. The Semantic Web Foundations 15

B. OWL

OWL can be used to explicitly represent the meaning of terms in vocab-
ularies and the relationships between those terms. This representation
of terms and their interrelationships is called an ontology. OWL has
more facilities for expressing meaning and semantics than RDF, and
RDFS, and thus OWL goes beyond these languages in its ability to
represent machine-interpretable content on the Web. OWL builds fur-
ther on RDFS and, as a consequence, is compatible with RDFS, but
it allows more expressivity to describe things and to add semantics
to descriptions. At the moment, there are two specifications of OWL:
OWL1 and OWL2. OWL2 depreciates OWL1, but is compatible with
OWL1. To explain the concepts of OWL, I will start from OWL1. Later
on, I will expand on OWL2.

OWL1 foresees a number of constructs (classes and properties) to model
your data with more expressivity than RDFS. There exist several kinds
of constructs. On top of the RDFS constructs (rdfs:Class, rdfs:Property,
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range, and indi-
viduals), OWL1 provides constructs for expressing equality of classes,
properties and individuals, characteristics of properties, restrictions on
properties, cardinalities, class intersections, and class enumerations.

OWL1 provides three increasingly expressive sublanguages designed
for use by specific communities of implementers and users. Each
sublanguage has its own restrictions on the introduced constructs of
OWL, sacrificing expressiveness for reasoning performance.

OWL Lite has the lowest complexity and supports primarily classifica-
tion and simple constraints. For example, while it supports cardinality
constraints, it only permits cardinality values of 0 or 1. OWL Lite
uses only some of the OWL language features and has more limita-
tions on the use of the features than OWL DL or OWL Full. OWL
Lite does not use the following features: owl:oneOf, owl:disjointWith,
owl:unionOf, owl:complementOf, and owl:hasValue. Furthermore, in
OWL Lite classes can only be defined in terms of named superclasses
(superclasses cannot be arbitrary expressions), and only certain kinds
of class restrictions can be used. E.g., equivalence between classes
and subclass relationships between classes are also only allowed be-
tween named classes, and not between arbitrary class expressions. The
same holds true for owl:intersectionOf. The properties for denoting the
cardinality in OWL, are in OWL Lite also restricted to 0 and 1.

16 Semantic Web and Provenance - An Introduction

Figure 1.8: Constructs introduced by OWL1

OWL DL includes all OWL language constructs, but they can be used
only under certain restrictions (for example, while a class may be a
subclass of many classes, a class cannot be an instance of another class).
OWL DL is so named due to its correspondence with description logics,
a field of research that has studied the logics that form the formal
foundation of OWL. Both OWL DL and OWL Full use the same vo-
cabulary (thus, including owl:oneOf, owl:disjointWith, owl:unionOf,
owl:complementOf, and owl:hasValue, which OWL LITE does not use)
although OWL DL is subject to some restrictions. Roughly, OWL DL
requires type separation, .e.g., a class can not also be an individual or
property, and a property can not also be an individual or class. This
implies that restrictions cannot be applied to the language elements of
OWL itself (something that is allowed in OWL Full). Furthermore, OWL
DL requires that properties are either ObjectProperties or DatatypeProp-
erties, i.e., DatatypeProperties are relations between instances of classes
and RDF literals and XML Schema datatypes, while ObjectProperties
are relations between instances of two classes.

1.4. The Semantic Web Foundations 17

OWL Full includes also all OWL language constructs and allows an
ontology to augment the meaning of the pre-defined (RDFS or OWL)
vocabulary. It is unlikely that any reasoning software will be able to
support complete reasoning for every feature of OWL Full.

OWL2 adds new functionality with respect to OWL1. Some of the new
features are syntactic sugar (e.g., disjoint union of classes) while others
offer new expressivity, including:

• keys
• property chains
• richer datatypes, data ranges
• qualified cardinality restrictions
• asymmetric, reflexive, and disjoint properties
• enhanced annotation capabilities

In addition, some of the restrictions applicable to OWL DL have been
relaxed; as a result, the set of RDF Graphs that can be handled by
Description Logics reasoners is slightly larger in OWL2. OWL2 also
defines three new profiles, instead of OWL Lite, OWL DL, and OWL
Full:

OWL2 EL is particularly useful in applications employing ontologies
that contain very large numbers of properties and/or classes. This
profile captures the expressive power used by many such ontologies
and is a subset of OWL 2. Dedicated reasoning algorithms for this
profile are available and have been demonstrated to be implementable
in a highly scalable way. The EL acronym reflects the profile’s basis
in the EL family of description logics [EL++], logics that provide only
Existential quantification.

OWL2 QL is designed so that the data that is stored in a standard
relational database system can be queried through an ontology via
a simple rewriting mechanism, i.e., by rewriting the query into an
SQL query that is then answered by the RDBMS system, without
any changes to the data. Thus, reasoning on these ontologies can be
performed by rewriting the incoming queries. The QL acronym reflects
the fact that query answering in this profile can be implemented by
rewriting queries into a standard relational Query Language.

OWL2 RL is aimed at applications that require scalable reasoning
without sacrificing too much expressive power. OWL 2 RL reasoning
systems can be implemented using rule-based reasoning engines, hence
the RL acronym.

18 Semantic Web and Provenance - An Introduction

Assume we want to build an ontology for the RDF graph shown in
Figure 1.7. With OWL one can express, for instance, that an artwork
created after 1945 is a contemporary artwork. An artwork is created by
an artist and if the artwork is a contemporary artwork, the artist is a
contemporary artist. This can be expressed by the following statements.
The full ontology is available in Appendix C. The first thing we do is
declaring the classes.

RDF Fragment 1.7: Example OWL class creation
:Artwork rdf:type owl:Class .
:ContemporaryArtwork rdf:type owl:Class .
:Artist rdf:type owl:Class .
:ContemporaryArtist rdf:type owl:Class .

Next, we define the properties:

RDF Fragment 1.8: Example OWL property declaration
:created rdf:type owl:ObjectProperty ;

rdfs:domain :Artist ;
rdfs:range :Artwork ;
owl:inverseOf :creator .

:creator rdf:type owl:ObjectProperty ;
rdfs:range :Artist ;
rdfs:domain :Artwork .

:date rdf:type owl:DatatypeProperty ;
rdfs:domain :Artwork ;
rdfs:range xsd:dateTime .

A contemporary artwork is a subclass of artworks in general. It also
inherits its restrictions (exactly one creation date, etc.), but has the extra
restriction that its creation date must be after 1945.

1.4. The Semantic Web Foundations 19

RDF Fragment 1.9: ContemporaryArtwork class declaration

:ContemporaryArtwork
rdf:type owl:Class ;
rdfs:subClassOf :Artwork ,

[rdf:type owl:Restriction ;
owl:onProperty :date ;
owl:someValuesFrom

[rdf:type rdfs:Datatype ;
owl:onDatatype xsd:dateTime ;
owl:withRestrictions
([xsd:minExclusive "1945-01-01

T00:00:00"])
]

] .

A contemporary artist is defined by having created at least one contem-
porary artwork.

RDF Fragment 1.10: ContemporaryArtist class declaration

:ContemporaryArtist
rdf:type owl:Class ;
rdfs:subClassOf :Artist ,

[rdf:type owl:Restriction ;
owl:onProperty :created ;
owl:onClass :ContemporaryArtwork ;
owl:minQualifiedCardinality "1"^^xsd:

nonNegativeInteger
] .

C. Reasoning

Reasoning is the process of inferring logical consequences from a set
of assertions or axioms. It is used to gain extra knowledge from a
graph which is not explicitly stated. This is done by applying some
domain knowledge over the data. This domain knowledge can be
represented as a set of inference rules, which are commonly specified
by an ontology, e.g., RDFS or OWL, or a set of rules, e.g., N3 rules.
Many reasoners use first-order logic to perform reasoning. When
inferencing, a set of assertions, often referred to as the A-Box, e.g., the
assertions shown in Figure 1.7, is evaluated against a set of inference
rules, often referred to as the T-Box, e.g., the ontology designed in
Section B. If we take back the example shown in Figure 1.7, we have
the following assertions, forming the A-Box:

20 Semantic Web and Provenance - An Introduction

RDF Fragment 1.11: Example assertions
@prefix voc: <http://example.org/voc/vocabulary#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
<http://example.org/resource/For_The_Love_Of_God>
voc:creator <http://example.org/resource/Damien_Hirst>
voc:date "2007-06-01T00:00:00";
voc:description "For the Love of God is a sculpture by \n

artist Damien Hirst produced in 2007. It \n
consists of a platinum cast of a human \n
skull encrusted with 8,601 flawless \n
diamonds, including a pear-shaped pink \n
diamond located in the forehead.";

voc:title "For the Love of God".

Let‘s reason over this A-Box with the ontology designed in Section B.
as the T-Box. In this ontology we defined the domain and the range
of the property voc:creator to be resp. voc:Artwork, and voc:Artist.
Thus, from the assertion

RDF Fragment 1.12: Example assertions
<http://example.org/resource/For_The_Love_Of_God> voc:creator <

http://example.org/resource/Damien_Hirst>

a reasoner can infer the following two triples:

RDF Fragment 1.13: Inferred Triples
<http://example.org/resource/For_The_Love_Of_God> rdf:type voc:

Artwork.
<http://example.org/resource/Damien_Hirst> rdf:type voc:Artist.

I also defined in the ontology the range of the xsd:dateTime, thus the
reasoner can infer "2007-06-01T00:00:00" as xsd:dateTime. Because
I defined a voc:ContemporaryArtwork to have a creation date younger
than 1945, and voc:ContemporayArtist to have created at least one voc

:ContemporaryArtwork, the reasoner will also infer also the following
two triples:

RDF Fragment 1.14: Inferred Triples
<http://example.org/resource/For_The_Love_Of_God> rdf:type voc:

ContemporaryArtwork.
<http://example.org/resource/Damien_Hirst> rdf:type voc:

ContemporaryArtist.

1.4. The Semantic Web Foundations 21

1.4.5 Query: SPARQL

To make sure the content can be queried, SPARQL [25] was designed.
SPARQL is a query language and data access protocol for the Semantic
Web. SPARQL is defined in terms of the W3C’s RDF data model and
will work for any data source that can be mapped into RDF.

Providing a SPARQL endpoint is very important. It opens up your data
and lets other data sources use your data to enrich theirs. SPARQL
follows a well-trodden path, offering a simple, reasonably familiar (to
SQL users) SELECT query form. The SPARQL query below returns all
titles and descriptions of every artwork known by the system. Notice
the similarity with SQL, except for the WHERE clauses, which are
formulated using RDF.

RDF Fragment 1.15: Example SPARQL query 1
PREFIX voc: <http://example.org/voc/vocabulary#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?title ?description
WHERE
{
?artwork a voc:Artwork.
?artwork voc:title ?title.
?artwork voc:description ?description.
}

The query can also contain constant values as shown by the query
below. In this query I ask for all artworks known by the system of
Damien Hirst.

RDF Fragment 1.16: Example SPARQL query 2
PREFIX voc: <http://example.org/voc/vocabulary#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?artwork
WHERE
{
?artwork a voc:Artwork.
?artwork voc:creator <http://example.org/resource/

Damien_Hirst>.
}

22 Semantic Web and Provenance - An Introduction

SPARQL queries can also handle FILTER expressions on query variables.
In the following query, I ask all the artworks of Damien Hirst, made
after 2005.

RDF Fragment 1.17: Example SPARQL query 3

PREFIX voc: <http://example.org/voc/vocabulary#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?artwork
WHERE
{
?artwork a voc:Artwork.
?artwork voc:creator <http://example.org/resource/

Damien_Hirst>.
?artwork voc:date ?date.
FILTER (?date > "2005-01-01T00:00:00" ^^xsd:dateTime)
}

SPARQL allows also to do some join operations on the where clauses.
To demonstrate this, I will show a query which will ask for all the
artworks of Damien Hirst and Jean Michel Basquiat.

RDF Fragment 1.18: Example SPARQL query 4

PREFIX voc: <http://example.org/voc/vocabulary#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?artwork
WHERE
{
{
?artwork a voc:Artwork.
?artwork voc:creator <http://example.org/resource/

Damien_Hirst>.
}
UNION
{
?artwork a voc:Artwork.
?artwork voc:creator <http://example.org/resource/Jean-

Michel_Basquiat>.
}
}

1.4. The Semantic Web Foundations 23

1.4.6 Applications: Linked Data

As explained earlier, Linked Data (LD) is one of the main applications
of the Semantic Web. LD refers to a way of publishing data, such that
clients can easily discover and consume data. The idea behind LD is
to create a Web of Data, where all the published data is connected to
each other. For this, LOD relies on the following parts of the Semantic
Web’s technology stack: the Web platform layer (e.g., URI, HTTP), the
syntax layer (e.g., turtle, RDF/XML, JSON), knowledge representation
structure layer (RDF), the semantics layer (e.g., OWL, RDFS, OWL2),
and the query layer (e.g., SPARQL).

LOD stipulates four basic principles:

1. We first have to identify the items of interest in our domain. Those
items are the resources, which will be described in the data.

2. Those resources have to be identified by HTTP URIs.
3. Useful information needs to be provided when accessing an HTTP

URI.
4. Links have to be made to the outside world, i.e., to connect the

data with data from other datasets in the Web of Data. This
makes it possible to browse data from a certain server and receive
information from another server. In other words, by linking the
data with data from other datasets, the Web becomes one huge
database, called the Web of Data.

In practice, this means that all your resources should be identified by
HTTP URIs. When consumers visit this HTTP URI, the server should
provide the user with an appropriate data format. This means HTML
for browsers, RDF for other machine agents. This is done by content
negotiation [29] or by including RDFa [18] in HTML pages.

The enrichment of the data will actually interlink the data with data
from other sources. These enrichments will thus link your data graph
to the giant global data graph, as shown in Figure 1.9 6. The SPARQL
protocol plays an important role in link discovery. In this global data
graph data can easily be discovered and consumed. The figure below
shows what the global data graph looks like today. Every dot in the
graph is a dataset being published as LOD. The interconnections to the
LOD datasets are enrichments.

6http://lod-cloud.net/

24 Semantic Web and Provenance - An Introduction

Figure 1.9: Global Data Graph

1.5 Provenance and the Future of the Semantic
Web

In Section 1.4, I introduced some of the basic foundations of the Seman-
tic Web. In this section, I have a closer look at the current state and the
future of the Semantic Web and the future role of provenance. At the
moment, there are indications for an industrial uptake of a number of
Semantic Web technologies now that big players, such as Google, IBM
and Facebook, have adopted some of these technologies [30].

But it seems that we are still in the phase of publishing existing or
new data as structured data on the Web, so that it can be read by
machines. The current approaches for publishing structured data on
the Web usually just provide read-only interfaces to the underlying
data. This is also reflected in today’s Linked Data applications, which
are limited to smart search engines allowing more complex queries,
mashups integrating similar data, or classic search engines enhancing
their results.

The Web started as a read-only version (i.e., Web 1.0), evolved to a
read-write Web where humans can collaborate (i.e., Web 2.0), and is
currently a Web powered by semantic technologies so that machines
can read and understand the underlying data (i.e., Web 3.0). Given the
evolution of the Web, a logical next step towards Web 4.0 seems to be a
read-write Semantic Web, where machines can collaborate.

1.5. Provenance and the Future of the Semantic Web 25

Several proposals exist to enable machine-writable structured data. For
instance, Tim Berners-Lee himself proposed update protocols based on
WebDAV or SPARQL/Update [31] and implemented them in Tabulator.
Lanthaler et al. tried to obtain a read-write Web of Data by integrating
Web APIs into it (in the form of JSON services) [32]. In 2012, W3C
started a standardization activity to create a Linked Data Platform,
with as main goal to define a RESTful way to read and write Linked
Data [33]. The consequence of this is that published datasets will
become more dynamic.

The W3C Provenance Working Group has defined a data model for
provenance on the Web and provides guidelines to access information
about the provenance of resources on the Web [34]. This specification
is a necessary building block before moving towards a specification
for the read-write access to Linked Data. Provenance information is
not only important for trust assessment of data, it is also necessary
for the management of dynamic data, versioning, i.e., revision control,
and publishing of this dynamic information. In the future, provenance
information will have the potential to become a first class citizen on the
Web, however, one that stays behind the scenes, delivering input for
many purposes, of which trust, management and revision control are
just some examples.

1.5.1 Management

Today, datasets within the Semantic Web are mostly static dumps of
information (especially within the Linked Open Data cloud). More-
over, these datasets are not perfect: they contain errors, are not up to
date in some cases, and lack links to other datasets. Enabling write
access for machines on datasets implies that machines will be able to
correct, update, and extend these datasets. Note that, in an ideal world,
the human-readable Web is a possible view on the machine-readable
Web. This means that, when machines are able to keep the underlying
datasets up to date, the human-readable Web will be up to date as well.
This way, datasets and data in general on the Web will be driven by
machine updates. Indeed, lots of machine agents will, for their specific
needs, interpret data and add/correct information where necessary.

Nowadays, schemas (or ontologies) are even more static than datasets.
Domain experts carefully discuss each concept and relationship in such
a schema. This brings a number of problems such as the gap between
a domain expert and an ontology engineer, schema updating is not

26 Semantic Web and Provenance - An Introduction

trivial, and a lot of schemas are application-specific. In the future, I
believe that machines (who will become more and more intelligent and
autonomous) will be able to update and correct schemas according to
their needs.

Managing these datasets and updated ontologies will become a huge
task, certainly when machine agents start correcting your data. Tracking
provenance information of all the changes brought to your data will be
a requirement for keeping control of your data. Dynamic data will be
managed using its provenance information, while for static data some
administrative information is enough for its management.

1.5.2 Trust

As explained, currently, most machine-readable data sets are created
(scraped, transformed, etc.) from an existing source on the Web. There-
fore, today it is in most cases quite trivial to determine the provenance
of machine-readable data. With a fully enabled read-write Semantic
Web, determining the data provenance will be less trivial. In particular,
it should make trust measurements (using whatever metric) transparent
for machines (i.e., reproducible). This way, independent parties (i.e.,
so-called proof checkers or provenance checkers) can judge impartially
whether the given data is trustworthy.

As such, provenance information will be crucial for determining trust-
worthiness of the data. It will deliver the necessary input for the trust
measurements and, at the same time, the needed data for the indepen-
dent proof checking. Provenance is thus crucial for both the a priori,
and posteriori trust assessment.

1.5.3 Versioning

Publishing dynamic data on the Web will need extra attention and
is different from publishing static datasets. Versioning, or revision
control, of the data forms a solution for this. Provenance information
will support the versioning of data.

The fact that datasets become more dynamic also has its consequences
on reasoning over this data. Most reasoning tasks today are executed on
static data sets. With an enabled read-write Semantic Web, structural
data will be more and more dynamic. While for some people this
might be a reason to use non-monotonic logics to solve future Web
inferencing tasks, reasoning on the Web will remain monotonic [35].

1.6. Research Questions and Outline 27

In order to keep realizing the latter, changes in the data should be
carefully archived, including timestamps. This way, inferencing and
proof checking tasks will always be run on a ‘snapshot’ of the Semantic
Web, keeping the reasoning monotonic in a non-monotonic environ-
ment. Therefore, I believe that Semantic Web reasoners will be kept
monotonic, but will be optimized to deal with timestamp-based (i.e.,
versioned) data. Here, provenance information will be used for getting
the right ‘snapshot’ of the data.

1.6 Research Questions and Outline

In this chapter, I have introduced provenance information, the Semantic
Web, and some of its foundations. I ended with a look at the future of
the Semantic Web and the role of provenance information in this Web.
In the following chapters of this dissertation, I focus on all aspects of
provenance information, i.e., representation, generation, dissemination
and consumption, as shown in Figure 1.10

Figure 1.10: Outline of the dissertation

In Chapter 2, I discuss PREMIS OWL, an OWL ontology designed to
support long-term preservation. The research question being tackled in
this chapter is how we can model a provenance model, which supports
at the same time the long-term preservation of the information and the
publication of both the preserved information and their provenance
information as Linked Open Data on the Web. As I explain, long-term
preservation information is in fact provenance information together
with rights information and technical information. Thus, PREMIS
OWL goes further than merely modeling provenance information and
is also able to publish, in addition to provenance information, rights
information and technical information as LOD on the Web. An extra
requirement of the preservation ontology is that it must be able to
overcome interoperability issues of the preservation metadata across

28 Semantic Web and Provenance - An Introduction

archives. Each archive has its own specific processes in place to guar-
antee the long-term preservation. This diversity is also reflected on
their preservation metadata which makes the metadata not always
interoperable across the archives, even when they adhere to the same
preservation model.

In Chapter 3, I focus on the generation of provenance information in
the form of PREMIS OWL. The main problem being solved in this
chapter is how we can build a preservation platform which generates
the LOD provenance information automatically. Another research topic
of the chapter is how the platform can use the LOD cloud to support
its preservation processes. The presented digital archive not only relies
on PREMIS OWL for describing its preservation information, but also
for managing its objects to be stored, and publishing the generated
preservation information as provenance information on the Web.

Such a digital long-term preservation platform keeps track of all ver-
sions produced of its objects’ information on the Web. In Chapter 4, I
will explain how to publish these different versions and provenance
information on the Web, such that both the versioned information and
their provenance information becomes easily consumable and discov-
erable. Publishing different versions of the same data on the Web as
Linked Open Data poses several problems. Linked Open Data relies
on data interlinking. As such, versioning of the data can lead to bad
or broken links. In this chapter, I propose a way to publish versioned
data on the Web as LOD, that makes the links consistent. For this, I
rely on date-time content negotiation. I offer at the same time a pub-
lication mechanism for provenance information such that it becomes
discoverable on the Web. The provenance information will interlink the
different versions of the data and will allow to walk through them.

In Chapter 5, I will describe a distributed querying framework for
Linked Open Data. Here, I will show how the published provenance
information can be used to support query federation and vocabulary
mappings at the same time. This framework will divide an incoming
query into subqueries, which will be federated to various SPARQL
endpoints. Later, the answers of the subqueries are combined to form
an answer for the incoming query. This federated querying framework
will actually follow the owl:sameAs links of Linked Open Data for
retrieving information on the LOD cloud on the same resource in order
to answer an incoming query. The provenance of the owl:sameAs
links plays a crucial role in this framework for the federation of the

1.6. Research Questions and Outline 29

subqueries and for the vocabulary mappings in these subqueries.

Finally, I end this dissertation with two frameworks that are actually
an extension on the discussed work. First, I will propose a semantic
workflow engine. The research question here is how we can build a
workflow engine that is able to automatically compose and execute
workflows. At the same time, the engine needs to fully exploit RESTful
services, must be able to be deployed in a distributed network, and must
be easily manageable. The workflow engine works in three phases: first,
the workflows are composed in terms of functionalities. Later on, these
functionalities are fulfilled by REST services, relying on their functional
service descriptions. In the last phase, the composed service calls are
executed. The workflow engine is powered by semantic reasoning using
three rule files, one for each phase. This makes it easily manageable and
allows its deployment in the cloud, where each phase can be executed
on a different node of the cloud. The proposed workflow engine in this
chapter is actually a perfect fit for orchestrating the workflows for a
long-term preservation platform, described in Chapter 3.

The last chapter investigates how reasoning tasks of a client can be
brought to the server hosting the data. This way, the reasoning tasks are
performed where the data resides instead of bringing the data to the
reasoning client, which is the case in today’s semantic technology stack.
For this, I propose an extension to the SPARQL query language and
its protocol to support remote reasoning. In this extension to SPARQL,
the client is able to define the rules for reasoning over a remote dataset.
This extension does not mean SPARQL endpoints need to support the
reasoning, but leaves the option open. At the same time, this extension
would allow the development of SPARQL clients, which do the heavy
reasoning completely client-side or even at a third-party infrastructure.
This proposal for remote reasoning support via SPARQL fits current
query federation frameworks, as will be described in Chapter 5. These
are often based on the SPARQL and could hence be easily extended to
become federated, remote reasoning frameworks.

The research performed in this dissertation resulted in the following
publications:

30 Semantic Web and Provenance - An Introduction

Journal papers

• Sam Coppens, Ruben Verborgh, Erik Mannens, and Rik Van de
Walle. „PREMIS OWL - A Semantic Long-Term Preservation
Model”. In: International Journal on Digital Libraries (2014)

• Sam Coppens, Ruben Verborgh, Erik Mannens, and Rik Van
de Walle. „Self-Sustaining Platforms - Grid Reasoning”. In:
Transactions on Autonomous and Adaptive Systems (2014)

• Erik Mannens, Sam Coppens, Toon De Pessemier, Hendrik Dac-
quin, Davy Van Deursen, Robbie De Sutter, and Rik Van de Walle.
„Automatic news recommendations via aggregated profiling”. In:
Multimedia Tools and Applications (2013), pp. 1–19

• Sam Coppens, Erik Mannens, Toon De Pessemier, Kristof Geebe-
len, Hendrik Dacquin, Davy Van Deursen, and Rik Van de Walle.
„Unifying and targeting cultural activities via events modelling
and profiling”. In: Multimedia Tools and Applications 57.1 (2012),
pp. 199–236

• Toon De Pessemier, Sam Coppens, Kristof Geebelen, Chris
Vleugels, Stijn Bannier, Erik Mannens, Kris Vanhecke, and Luc
Martens. „Collaborative recommendations with content-based
filters for cultural activities via a scalable event distribution plat-
form”. In: Multimedia Tools and Applications 58.1 (2012), pp. 167–
213

• Erik Mannens, Ruben Verborgh, Seth Van Hooland, Laurence
Hauttekeete, Tom Evens, Sam Coppens, and Rik Van de Walle.
„On the Origin of Metadata”. In: Information 3.4 (2012), pp. 790–
808

• Sam Coppens, Jan Haspeslagh, Patrick Hochstenbach, Erik Man-
nens, Rik Van de Walle, and Inge Van Nieuwerburgh. „Metadatas-
tandaarden, Dublin Core en het gelaagd metadatamodel”. eng. In:
ed. by Stoffel Debuysere, Dries Moreels, Rik Van de Walle, Inge
Van Nieuwerburgh, and Jeroen Walterus. Bewaring en ontsluiting
van multimediale data in Vlaanderen : perspectieven op audio-
visueel erfgoed in het digitale tijdperk. Lannoo Campus, 2010,
pp. 46–62. isbn: 9789020989441

• Erik Mannens, Sam Coppens, and Rik Van de Walle. „Semantic
BRICKS for performing arts archives and disseminiation”. In:
IASA JOURNAL 35 (2010), pp. 40–49

• Sam Coppens, Erik Mannens, and Rik Van de Walle. „Disseminat-
ing heritage records as linked open data”. In: International Journal
of Virtual Reality 8.3 (2009), pp. 39–44

1.6. Research Questions and Outline 31

Books
• Paul Bastijns, Sam Coppens, Siska Corneillie, Patrick

Hochstenbach, Erik Mannens, and Liesbeth Van Melle.
„(Meta)datastandaarden voor digitale archieven”. dut. In:
(2009). Ed. by Rik Van de Walle and Sylvia Van Peteghem,
p. 199. url: http : / / www . archive . org / details /
metadatastandaardenVoorDigitaleArchieven

Book chapters
• Rik Van de Walle, Sam Coppens, and Erik Mannens. „Een gelaagd

semantisch metadatamodel voor langetermijnarchivering”. In:
BIBLIOTHEEK-EN ARCHIEFGIDS 84.5 (2009), pp. 17–22

• Sam Coppens, Erik Mannens, and Rik Van de Walle. „Semantic
BRICKS for performing arts archives and dissemination”. eng.
In: ed. by Tom Evens and Dries Moreels. Access to Archives
of Performing Arts Multimedia. Vlaams Theater Instituut (VTI),
2009, pp. 121–141. isbn: 9789074351386

• Stijn Notebaert, Jan De Cock, Sam Coppens, Erik Mannens, Rik
Van de Walle, Marc Jacobs, Joeri Barbarien, and Peter Schelkens.
„Digital recording of performing arts: formats and conversion”.
eng. In: ed. by Tom Evens and Dries Moreels. Access to Archives
of Performing Arts Multimedia. Vlaams Theater Instituut (VTI),
2009, pp. 95–119. isbn: 9789074351386

Standardisation activities
W3C

• Luc Moreau, Paolo Missier, Khalid Belhajjame, Reza B’Far, James
Cheney, Sam Coppens, Stephen Cresswell, Yolanda Gil, Paul
Groth, Graham Klyne, Timothy Lebo, Jim McCusker, Simon Miles,
James Myers, Satya Sahoo, and Curt Tilmes. PROV-DM: The
PROV Data Model. Tech. rep. url: http://www.w3.org/TR/
prov-dm/

• Sam Coppens and Tom De Nies. PROV-Dictionary: Modeling
Provenance for Dictionary Data Structures. Tech. rep. 2013. url:
http://www.w3.org/TR/prov-dictionary/

• Yolanda Gil, James Cheney, Paul Groth, Olaf Hartig, Simon Miles,
Luc Moreau, Paulo Pinheiro Da Silva, Sam Coppens, Daniel
Garijo, JM Gomez, et al. „Provenance XG Final Report”. In: (Dec.
2010). url: http://www.w3.org/2005/Incubator/prov/
XGR-prov/

http://www.archive.org/details/metadatastandaardenVoorDigitaleArchieven
http://www.archive.org/details/metadatastandaardenVoorDigitaleArchieven
http://www.w3.org/TR/prov-dm/
http://www.w3.org/TR/prov-dm/
http://www.w3.org/TR/prov-dictionary/
http://www.w3.org/2005/Incubator/prov/XGR-prov/
http://www.w3.org/2005/Incubator/prov/XGR-prov/

32 Semantic Web and Provenance - An Introduction

• Satya Sahoo, Paul Groth, Olaf Hartig, Simon Miles, Sam Cop-
pens, James Myers, Yolanda Gil, Luc Moreau, Jun Zhao, Michael
Panzer, et al. Provenance vocabulary mappings. Tech. rep. 2010.
url: http://www.w3.org/2005/Incubator/prov/wiki/
Provenance_Vocabulary_Mappings

Library of Congress

• Sam Coppens, Sebastien Peyrard, Rebecca Guenther, Keving
Ford, and Tom Creighton. PREMIS OWL ontology 2.2. Tech. rep.
2013. url: http://www.loc.gov/standards/premis/
ontology-announcement.html

• Sam Coppens, Sebastien Peyrard, Rebecca Guenther, Keving
Ford, and Tom Creighton. PREMIS OWL ontology 2.1. Tech. rep.
2011. url: http://www.loc.gov/standards/premis/
owlOntology-announcement.html

Papers in conference proceedings
2013

• Sam Coppens, Ruben Verborgh, Erik Mannens, and Rik Van de
Walle. „Querying the Linked Data Graph using owl: sameAs
Provenance”. In: Proceedings of the 16th International Conference on
Model Driven Engineering Languages and Systems (2013)

• Sam Coppens, Ruben Verborgh, Erik Mannens, and Rik Van de
Walle. „Self-Sustaining Platforms: a semantic workflow engine”.
In: Proceedings of the 4th International Workshop on Consuming Linked
Data (2013)

• Miel Vander Sande, Sam Coppens, Ruben Verborgh, Erik Man-
nens, and Rik Van de Walle. „Adding Time to Linked Data: A
Generic Memento proxy through PROV”. in: Poster and Demo
Proceedings of the 12th International Semantic Web Conference (2013)

• Tom De Nies, Sara Magliacane, Ruben Verborgh, Sam Coppens,
Paul Groth, Erik Mannens, and Rik Van de Walle. „Git2PROV:
Exposing Version Control System Content as W3C PROV”. in:
Poster and Demo Proceedings of the 12th International Semantic Web
Conference (2013)

• Sam Coppens, Miel Vander Sande, Ruben Verborgh, Erik Man-
nens, and Rik Van de Walle. „Remote Reasoning over SPARQL”.
in: Proceedings of the 6th Workshop on Linked Data on the Web (2013)

http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Vocabulary_Mappings
http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Vocabulary_Mappings
http://www.loc.gov/standards/premis/ontology-announcement.html
http://www.loc.gov/standards/premis/ontology-announcement.html
http://www.loc.gov/standards/premis/owlOntology-announcement.html
http://www.loc.gov/standards/premis/owlOntology-announcement.html

1.6. Research Questions and Outline 33

• Laurens De Vocht, Sam Coppens, Ruben Verborgh, Miel Van-
der Sande, Erik Mannens, and Rik Van de Walle. „Discovering
Meaningful Connections between Resources in the Web of Data”.
In: Proceedings of the 6th Workshop on Linked Data on the Web (2013)

• Miel Vander Sande, Pieter Colpaert, Ruben Verborgh, Sam Cop-
pens, Erik Mannens, and Rik Van de Walle. „R&Wbase: Git for
triples”. In: Proceedings of the 6th Workshop on Linked Data on the
Web (2013)

2012

• Sam Coppens, Ruben Verborgh, Miel Vander Sande, Davy Van
Deursen, Erik Mannens, and Rik Van de Walle. „A truly Read-
Write Web for machines as the next-generation Web?” In: Proceed-
ings of the SW2012 workshop: What will the Semantic Web look like
10years from now (2012)

• Miel Vander Sande, Sam Coppens, Davy Van Deursen, Erik Man-
nens, and Rik Van de Walle. „The Terminatorś origins or how the
Semantic Web could endanger Humanity”. In: ()

• Miel Vander Sande, Ruben Verborgh, Sam Coppens, Tom De Nies,
Pedro Debevere, Laurens De Vocht, Pieterjan De Potter, Davy
Van Deursen, Erik Mannens, and Rik Van de Walle. „Everything
is Connected: Using Linked Data for Multimedia Narration of
Connections between Concepts.” In: International Semantic Web
Conference (Posters & Demos). 2012

• Tom De Nies, Evelien Dh́eer, Sam Coppens, Davy Van Deursen,
Erik Mannens, and Rik Van de Walle. „Bringing Newsworthi-
ness into the 21st Century”. In: 11th International Semantic Web
Conference (ISWC-2012). 2012, pp. 106–117

• Ruben Verborgh, Sam Coppens, Thomas Steiner, Joaquim Gabarró
Vallés, Davy Van Deursen, and Rik Van de Walle. „Functional
descriptions as the bridge between hypermedia apis and the
semantic web”. In: Proceedings of the Third International Workshop
on RESTful Design. ACM. 2012, pp. 33–40

• Tom De Nies, Sam Coppens, Davy Van Deursen, Erik Mannens,
and Rik Van de Walle. „Automatic discovery of high-level prove-
nance using semantic similarity”. In: Provenance and Annotation of
Data and Processes. Springer Berlin Heidelberg, 2012, pp. 97–110

34 Semantic Web and Provenance - An Introduction

• Ruben Verborgh, Thomas Steiner, Davy Van Deursen, Sam Cop-
pens, Erik Mannens, Rik Van de Walle, and Joaquim Gabarró
Vallés. „RESTdescA FunctionalityCentered Approach to Semantic
Service Description and Composition”. In: Proceedings of the Ninth
Extended Semantic Web Conference (2012)

• Erik Mannens, Sam Coppens, Ruben Verborgh, Laurence Haut-
tekeete, Davy Van Deursen, and Rik Van de Walle. „Automated
Trust Estimation in Developing Open News Stories: Combining
Memento & Provenance”. In: Computer Software and Applications
Conference Workshops (COMPSACW), 2012 IEEE 36th Annual. IEEE.
2012, pp. 122–127

2011

• Sam Coppens, Erik Mannens, Davy Van Deursen, Patrick
Hochstenbach, Bart Janssens, and Rik Van de Walle. „Publishing
provenance information on the web using the Memento datetime
content negotiation”. In: WWW2011 workshop on Linked Data on
the Web (LDOW 2011). Vol. 813. 2011, pp. 6–15

• Sam Coppens, Erik Mannens, Raf Vandesande, and Rik Van de
Walle. „Digital long-term preservation, provenance and linked
open data”. In: 2011 European Library Automation Group conference
(ELAG 2011): It’s the context, stupid! 2011

• Sam Coppens, Erik Mannens, and Rik Van de Walle. „What
about the provenance of media archives: a tale of time-
contextualisation”. In: (2011)

• Ruben Verborgh, Thomas Steiner, Davy Van Deursen, Sam Cop-
pens, Erik Mannens, Rik Van de Walle, and Joaquim Gabarró
Vallés. „Integrating Data and Services through Functional Seman-
tic Service Descriptions”. In: Proceedings of the W3C Workshop on
Data and Services Integration (2011)

• Toon De Pessemier, Sam Coppens, Erik Mannens, Simon Dooms,
Luc Martens, and Kristof Geebelen. „An event distribution plat-
form for recommending cultural activities”. In: 7th International
Conference on Web Information Systems and Technologies (WEBIST-
2011). Ghent University, Department of Information technology.
2011, pp. 231–236

1.6. Research Questions and Outline 35

2010

• Sam Coppens, Erik Mannens, and Rik Van de Walle. „PREMIS
OWL binding to workflow engine for digital long-term preserva-
tion”. In: (2010)

• Erik Mannens, Sam Coppens, Rik Van de Walle, Laurence Haut-
tekeete, and Robbie De Sutter. „Cloud-computing approach to
sustainable media archives”. In: (2010)

• Erik Mannens, Sam Coppens, and Rik Van de Walle. „Network-
centric approach to sustainable digital archives”. In: (2010)

• Erik Mannens, Sam Coppens, Toon De Pessemier, Hendrik Dac-
quin, Davy Van Deursen, and Rik Van de Walle. „Automatic
news recommendations via profiling”. In: Proceedings of the 3rd
international workshop on Automated information extraction in media
production. ACM. 2010, pp. 45–50

2009

• Sam Coppens, Erik Mannens, Tom Evens, Laurence Hauttekeete,
and Rik Van de Walle. „Digital long-term preservation using a
layered semantic metadata schema of PREMIS 2.0”. In: Cultural
heritage on line, Florence, 15th-16th December (2009)

• Sam Coppens, Erik Mannens, and Rik Van de Walle. „Semantic
BRICKS for performing arts archives and dissemination”. eng.
In: ed. by Tom Evens and Dries Moreels. Access to Archives
of Performing Arts Multimedia. Vlaams Theater Instituut (VTI),
2009, pp. 121–141. isbn: 9789074351386

• Erik Mannens, Sam Coppens, Toon De Pessemier, Kristof Gee-
belen, Hendrik Dacquin, and Rik Van de Walle. „Unifying and
targeting cultural activities via events modelling and profiling”.
In: Proceedings of the 1st ACM international workshop on Events in
multimedia. ACM. 2009, pp. 33–40

36 Semantic Web and Provenance - An Introduction

Chapter 2

PREMIS OWL - A Semantic
Long-Term Preservation

Model

In this chapter, I present PREMIS OWL. This is a semantic formalisation of
the PREMIS 3.0 data dictionary of the Library of Congress (LOC). PREMIS
3.0 are metadata implementation guidelines for digitally archiving information
for the long term. Nowadays, the need for digital preservation is growing.
A lot of the digital information produced merely a decade ago is in danger
of getting lost as technologies are changing and getting obsolete. This also
threatens a lot of information from heritage institutions. PREMIS OWL is a
semantic long-term preservation schema. Preservation metadata is actually a
mixture of provenance information, technical information on the digital objects
to be preserved and rights information. PREMIS OWL is an OWL schema,
that can be used as data model for your digital archive. At the same time,
it can also be used for dissemination of the preservation metadata as Linked
Open Data on the Web. The schema is now also approved and managed by
the Library of Congress. The PREMIS OWL schema is now published at
http://www.loc.gov/premis/rdf/v1#.

2.1 Introduction

The need for digital long-term preservation is growing. A lot of material
is still stored on analogue carriers which are degrading rapidely. Not
only the material stored on analogue carriers is at danger, also a lot of
digital born material. In the digital world, the life cycle of file formats

38 PREMIS OWL - A Semantic Long-Term Preservation Model

is very short and many file formats from one or two decades ago
aren’t supported anymore by today’s operating systems and browsers.
A digital long-term preservation archive will have all the necessary
processes in place to make sure the information remains intact and
interpretable.

The heart of such a digital archive is its data model. This data model
needs to reflect and support all the preservation processes. Such a
data model is called preservation metadata. Preservation metadata
exists of provenance information, supplemented with technical infor-
mation on the digital bitstreams, file formats and representations, rights
information and structural information.

In this chapter PREMIS OWL is introduced. PREMIS OWL is a semantic
formalisation of the PREMIS 3.0 data dictionary[7]. The PREMIS 3.0
data dictionary defines a conceptual model (i.e. a list of terms) for
modeling the preservation information of a digital archive. PREMIS is
maintained by the Library of Congress. In fact, this model implements
some of the best practices, stipulated by various preservation bodies,
e.g, OAIS, the Open Archival Information System, and TDR, Trusted
Digital Repositories: Attributes and Responsibilities[81] by the OCLC1.

First, in Section 2.2, I give an overview of preservation information.
Next, in Section 2.3, I introduce more specifically the PREMIS 3.0 Data
Dictionary of the Library of Congress. This is a long-term preservation
standard, for which a semantic binding is designed. Then, in Section 2.4,
the ontology itself is discussed and explained into detail. The chapter
ends with a conclusion in Section 2.6.

2.2 Preservation Information

OAIS has defined the responsibilities of a digital archive as follows:

‘An Open Archival Information System (or OAIS) is an
archive, consisting of an organization of people and systems,
that has accepted the responsibility to preserve information
and make it available for a designated community.’

1http://www.oclc.org/

http://www.oclc.org/

2.2. Preservation Information 39

This means that a digital archive is responsible for i) storing the in-
formation for the long-term and keeping it in tact and ii) keeping the
information interpretable for its designated community, i.e., the primary
end-users of the digital archive. These two objectives are subjected to
many risks, which a digital archive needs to cover. A first step towards
covering these risks, is defining a preservation model that will support
tackling these risks. Later on (Chapter 3), the infrastructure can be
built to install the necessary processes to preserve the information for
the long-term. All the risks inherent to digital long-term preservation
can be grouped into five categories spanning a long period of time:
interpretation of the file format, bit errors and bugs, file format changes,
technology changes and finally, organizational changes.

It is the responsibility of the archive not only to keep the archived
information intact, but also interpretable over time. Today, there is a big
discrepancy between the short life-span of file formats and the need
for long-term preservation. File formats, and their different flavours,
e.g., TIFF, GeoTIFF, and pyramid TIFF, emerge rapidly. A first risk the
archive has to deal with, is the right interpretation of the file format.
Further in time, file formats can become obsolete. The archive has
then two solutions to present the stored information to the end user:
migration or emulation, each needing metadata to support them.

The archive also has to cope with bit errors, bit rot, and bugs. Bit rot
is the gradual and natural decay of digital information and storage
media over time, resulting in eventual unreadability. Bit rot affects
different storage formats at different rates depending on the format’s
durability. Magnetic storage and optical discs are especially subject
to varying forms of digital decay. For the time being, masked ROM
cartridges appear to be fairly durable while EPROMs are at greater risk.
This is why the risk of bit rot comes into play before the risks of file
format obsolescence. The archive will need to have processes, and hence
also the metadata, in place to correct these errors and to guarantee
authenticity of the data. Examples of these are binary metadata, e.g.,
file format information, fixity information, e.g., MD5 checksums, and
digital signatures.

As a next threat the digital preservation platform has to deal with
technology changes. Technology changes are less frequent than file
format obsolescence. Examples of these are for instance Commodore
64 games, operating system incompatibilities, or even changing tech-
nologies regarding information storage, like relational databases, graph

40 PREMIS OWL - A Semantic Long-Term Preservation Model

databases, etc. This puts specific demands on the architecture of the
archive: it has to organise its data in a platform independent manner.
The OAIS reference model, discussed in the next section, provides a
high level architecture to deal with this issue.

In the long run, both institution structures, terminologies, and the
intended audience for your information might change. In practice,
this means your descriptive metadata can change, and the metadata
format used for it. Other issues at the same level are the rights of an
archived object or institution, which can change over time too. To keep
the information interpretable, the archive needs: descriptive metadata,
for a general description of the object, e.g., MARC; rights metadata, for
describing copyright statements, licenses, and possible grants that are
given; and context metadata, for describing the relations of the content
information to information from external data sources.

When developing a long-term preservation archive, all these described
risks have to be taken into account. They have an impact on the
architecture used for the archive, the data model used for the archive,
and the processes it must have in place for keeping the information
meaningful for the end-user. The OAIS reference model is a basis
model for long-term archives. It assures platform-independent access
to all archived information. In general, it describes the digital archive
using three types of packages. Each package aggregates the needed
metadata, according to its function, and the digital files accompanying
the metadata. These packages are:

• Submission Information Package (SIP): This is the package the
archives accept for ingest. It consists of descriptive metadata,
digital multimedia files, referenced by the metadata and some
additional metadata, e.g., structural metadata or rights metadata.

• Archival Information Package (AIP): This is the package the
archives use for preservation. It is in fact the SIP supplemented
with preservation information.

• Dissemination Information Package (DIP): This is the package the
archives offer for dissemination, e.g., if the rights do not permit
to publish the archived digital files accompanying the metadata,
this package will only contain metadata.

2.2. Preservation Information 41

Figure 2.1: Conceptual Model of Preservation Metadata.

The data model for the archive will extend the SIP with preservation
information to become an AIP and support the preservation processes
of the archive. In general, this preservation information can be seen as
an aggregation of four types of metadata:

• Provenance Information: This information will allow to describe
the whole history of an object to be stored for the long-term.

• Technical information: The technical metadata will support pro-
cesses to guarantee the data remain intact and interpretable. One
of the processes will be the transcoding of file formats becoming
obsolete. Technical information will support these actions.

• Rights metadata: Rights information is needed for the archive to
know who can do which action on the stored information.

• Structural information: Objects to be stored can be supplied to
the archive as an aggregation of different entities (for instance
an HTML page or a book consisting of an ordered number of
scanned TIFF images). When preserving these aggregated objects,
its structure also needs to be preserved.

If I take back the generic provenance model, defined in Chapter 1, we
get the model shown in Figure 2.1. It consists of provenance informa-
tion, in the form of Entities, Activities and Agents being interlinked.
The Entities are actually the objects to be preserved. Their descriptions
need to be extended with technical metadata and structural metadata.
Finally, the provenance model is also extended with the Rights infor-
mation to form in its whole a basic preservation model.

42 PREMIS OWL - A Semantic Long-Term Preservation Model

2.3 PREMIS 3.0

PREMIS [7] is a preservation standard based on the OAIS reference
model. This standard was called the Data Dictionary for Preservation
Metadata: Final Report of the PREMIS working group2. Next to the data
dictionary, an XML schema that implements the data dictionary for
digital preservation, is also published. This preservation standard is
described by a data model, which consists of five semantic units or
classes important for digital preservation purposes:

• Intellectual Entity: a part of the content that can be considered as
an intellectual unit for the management and the description of the
content. This can be for example a book, a photo, or a database.

• Object: a discrete unit of information in digital form, typically
multimedia objects related to the intellectual entity.

• Event: An action that has an impact on an object or an agent.
• Agent: a person, institution, or software application that is related

to an event of an object or is associated to the rights of an object.
• Rights: description of one or more rights, permissions of an object

or an agent.

Intellectual entities, events, and rights are directly related to an object,
whereas an agent can only be related to an object through an event or
through rights, as can be seen on Figure 2.2. This way, not only the
changes to an object are stored, but the event involved in this change is
also described. These relationships offer the necessary tools to properly
store the provenance of an archived object. The rights metadata needed
for preservation are covered by the rights entity. Technical metadata and
structural metadata are encapsulated in the PREMIS data dictionary
via the description of the object entity.

Figure 2.2: Data Model of the Premis 3.0 Data Dictionary.

2http://www.loc.gov/standards/premis/v2/premis-2-1.pdf

http://www.loc.gov/standards/premis/v2/premis-2-1.pdf

2.4. PREMIS OWL 43

If I relate this back to the reference model of Figure 2.1, we notice
both figures are very similar. The only difference is that the Entities
to be preserved in Figure 2.1, are split in PREMIS into Intellectual
Entities and Objects. This is because a digital archive stores records
or aggregations (collections) of records. Such a record can be seen as
a package of descriptive metadata and files that are referenced in the
descriptive metadata, e.g. images or videos, as shown in Figure 2.3.
The Intellectual Entity of PREMIS is actually the descriptive metadata
of the record and the Objects of PREMIS are the referenced files. Now,
because the descriptive metadata (Intellectual Enties) can change also
over time, they have also an Object equivalent, submitted to Rights
and Events. Modeling the Intellectual Entity is not the purpose of
PREMIS. PREMIS is concerned in modeling preservation metadata.
The Intellectual Entity is descriptive metadata, for which every archive
can choose its own appropriate model, e.g., Dublin Core, MARC, EAD,
CDWA, ...

Figure 2.3: Data Model of the Premis 3.0 Data Dictionary.

2.4 PREMIS OWL

The PREMIS OWL ontology is published at
<http://id.loc.gov/ontologies/premis.rdf> and its documentation can
be found at <http://id.loc.gov/ontologies/premis.html>. The names-
pace for PREMIS OWL is <http://www.loc.gov/premis/rdf/v1#>
and is often shortened to ’premisowl’. For the remainder of this
chapter, this namespace will be considered the base URI. It needs to
be stressed that PREMIS is a data model for the management of the
archive, though on top of that, PREMIS can be used to disseminate

44 PREMIS OWL - A Semantic Long-Term Preservation Model

the preservation information for instance as Linked Open Data, albeit
it not being its primary concern. When designing the OWL ontology
of the PREMIS 3.0 the choice was hence made to stick as closely as
possible to the data dictionary of PREMIS 3.0, although it was not
always possible or appropriate to do so in OWL. The reason to stick
to the data dictionary is that the data dictionary of PREMIS 3.0 was
developed by experts in the domain of long-term preservation, and
every element has its own clearly defined semantics.

Looking at the data model, one can notice it is dynamically relating the
five entities to each other. Until now an XML schema3 was available
that implemented the PREMIS 3.0 data dictionary. Implementing the
data dictionary using the Web Ontology Language (OWL, [22]), allows
us to relate the entities to each other in a more harmonious way, be-
cause RDF is resource based (and, as a consequence, every subject is
identified by its URI). Another advantage of using OWL to implement
the PREMIS 3.0 data dictionary, is that the relations can be made bidi-
rectional using inverse properties. Using this semantic model of the
data dictionary helps to keep the whole archive more consistent and
to reuse information as much as possible. At the same time, this OWL
model allows to easily integrate external information, a feature of data
described in RDF, which allows to link to, e.g., technical file format
information from an external registry. A last benefit of providing a
semantic formalisation of PREMIS is that it can easily be extended to
suit your archive’s infrastructure and preservation processes.

The PREMIS OWL ontology is closely related to 24 preser-
vation vocabularies the Library of Congress published at
<http://id.loc.gov/preservationdescriptions/>. These vocabu-
laries are formalised as SKOS vocabularies. This way, the ontology
remains interoperable, while offering sufficient extensibility options to
reflect the institutions preservation policies. For the remainder of this
chapter, the namespace of the preservation vocabularies is shortened to
’idlc’.

3http://www.loc.gov/standards/premis/premis.xsd

http://www.loc.gov/standards/premis/premis.xsd

2.4. PREMIS OWL 45

In this section, the PREMIS OWL ontology is explained into detail and
some design decisions made, are discussed. For describing the PREMIS
OWL ontology, I give first an overview of core PREMIS OWL classes
and its structural information. Later on, I expand on each of the five
PREMIS entities, focusing on the ontology features. PREMIS OWL is
a huge ontology, so I won’t be able to describe all the formalisation
details. For this, I refer to the ontology itself.

2.4.1 PREMIS OWL: Core

For each of the five PREMIS entities, an OWL class was introduced,
forming the core of PREMIS OWL. Thus, we have the following classes:
IntellectualEntity, Object, Event, RightsStatement, and Agent. These classes
are related to each other using the object properties hasObject, hasEvent,
hasAgent, and hasRightsStatement. In Figure 2.4, this model is depicted.

Figure 2.4: Core Classes and Properties of PREMIS OWL.

The relating properties are very general. Sometimes, one needs more
specialised relationships to relate the entities, for instance to denote a
certain role of the relating entity. For this reason, specific subproperties
were created. These subproperties are then further detailed via idlc
preservation vocabularies, which are formalised as separate SKOS
vocabularies.

46 PREMIS OWL - A Semantic Long-Term Preservation Model

An Object can have several roles when linked to an event. For
this reason, the hasEventRelatedObject property is introduced. The
idlc:eventRelatedObjectRole vocabulary contains several subproperties
of the hasEventRelatedObject property. Possible values are source and
outcome.

Figure 2.5: Specialised Subproperties for hasEventRelatedObject.

The same holds true for an Agent related to an Event. The property
hasEventRelatedAgent has been defined as a subproperty of the hasAgent
property. The idlc:eventRelatedAgentRole vocabulary contains four
subproperties to hasEventRelatedAgent for denoting an Agent’s role in
an Event, i.e., authorizer, executing program, implementer, and validator.

Figure 2.6: Specialised Subproperties for hasEventRelatedAgent.

2.4. PREMIS OWL 47

Finally, an Agent can also have different roles when linked to a
RightsStatement. The property hasRightsRelatedAgent is introduced as a
subproperty to the hasAgent property. The idlc:rightsRelatedAgentRole
vocabulary contains three subproperties to hasRightsRelatedAgent denot-
ing the Agent’s role, i.e., contact, grantor, and rightsholder.

Figure 2.7: Specialised Subproperties for hasRightsRelatedAgent.

2.4.2 PREMIS OWL: Structural Information

The Object instances can have simple to complext relationships between
them. For this PREMIS OWL has the hasRelationship property. This is
of course too general. The hasRelationship has also some subproperties
for a finer-grained notion of the relation between two Objects. There
is a vocabulary for this: idlc:relationshipSubtype. This vocabulary has
eight members, e.g., hasPart, hasSource, or includes.

Figure 2.8: Specialised Subproperties for hasRelationship.

48 PREMIS OWL - A Semantic Long-Term Preservation Model

Sometimes, relationships are more complex and include a certain se-
quence. For these cases, the class RelatedObjectIdentification is introduced.
It is related through the same property, i.e., hasRelationship, to an ob-
ject, but at the same time, the class RelatedObjectIdentification allows
to describe its sequence via the hasRelatedObjectSequence property, as
depicted in Figure 2.9

Figure 2.9: Describing Sequences via the RelatedObjectIdentification Class.

All the instances of these core classes of PREMIS OWL can have, in
addition to a URI, other identifiers. For this, PREMIS OWL foresees an
Identifier class for describing these identifiers. This class is defined by
two mandatory properties, i.e., hasIdentiferType and hasIdentifierValue.
Both properties have a string as range. To link a PREMIS OWL core
class instance to the Identifier instance, the object property hasIdentifier
is used.

2.4.3 Object

As explained in Figure 2.1, the Object class will contain a lot of technical
metadata. This is because of the responsibilities of the digital archive,
i.e., keep the information intact, and keep the information interpretable.
In order to fulfil these requirements, the archived objects are described
carefully with information such that it can check and take the necessary
precautions to keep the archived object intact and interpretable. Intact
mainly means assuring the integrity of the stored digital information.
Interpretable means assuring the stored digital information remains
render-able.

The Object class has three subclasses: Bitstream, File and Representation,
as shown in Figure 2.10. Thus, the objects related to a record to be
preserved, can be described at different levels. This is needed, because
at every level there are preservation risks involved. On the lowest level

2.4. PREMIS OWL 49

the data inside a file can be described using Bitstream. At a higher level,
the file itself, of course, can be described using the File class. Finally,
an object can also be described at representation level. For this, we
have the Representation class. Typically, a representation is a set of files
with some structural metadata relating the files, e.g., a book as a set of
ordered TIFF images. Actually the Object class has another subclass:
IntellectualEntity. The IntellectualEntity is a class holding the descriptive
metadata of a record to be preserved. The descriptive metadata of a
record can change over time too, and even the descriptive metadata
rights can also be declared. By making the IntellectualEntity a subclass of
Object, one can describe the events related to the descriptive metadata,
e.g., reconcilliation, and the rights related to the descriptive metadata.

Figure 2.10: Subclasses of the Object Class.

Every archive can have different preservation policies. Even within an
archive, there can exist several preservation policies. Via the Preser-
vationLevel class, as depicted in Figure 2.11, one can assign a certain
level of preservation, e.g., some objects may need dissemination on-
line, others don’t. This can impact certain transcoding strategies for
these objects. Next to the actual preservation level value, one can also
describe the rationale behind the preservation level and the role of
the preservation level via a member of the preservation vocabulary
idlc:preservationLevelRole. Example values of this vocabulary are ‘re-
quirement’ for denoting what the archive is required to archive, or
’intention’ for what is intended to be preserved. The preservation level
can only be described for Representations and Files, because Bitstreams
are always contained in a file, which has the preservation level attached.
Sometimes, an object has certain characteristics that need to be pre-
served. This can be done by the class SignificantProperties. Via this class,
these characteristics that need to be preserved, can be described via the
hasSignificantPropertiesValue and hasSignificantPropertiesType properties,
as depicted in Figure 2.12

50 PREMIS OWL - A Semantic Long-Term Preservation Model

Figure 2.11: Overview of the PreservationLevel Class.

Once preserved, instances of Objects can be digitally signed to guarantee
their authenticity. These digital signatures can be described using the
Signature class, shown in Figure 2.13. This class lets you describe the
signature value, the signature’s method and encoding, the validation
rules, key information and some of its properties. For the encoding and

Figure 2.12: Overview of the SignificantProperties Class.

2.4. PREMIS OWL 51

the method, the ontology relies on the resp. preservation vocabularies
idlc:signatureMethod and idlc:signatureEncoding. Of course, this class
is only foreseen for the Bitstream and the File class, as a Representation
consists of Files and maybe even Bitstreams.

Figure 2.13: Overview of the Signature Class.

All the digital objects that need to be preserved, need to be stored,
of course. Some archiving policies will prescribe storage on tape,
while other may prescribe storage on hard disks. The storage of a
preserved object can be described via the Storage class, as depicted in
Figure 2.14. The Storage class makes it possible to describe the storage
medium, for which the values are taken from the preservation vocabu-
lary idlc:storageMedium. and the content location. A content location
is characterised by a value and a type, taken from the preservation
vocabulary idlc:contentLocationType, e.g., ’Handle’ or ’URI’. For the
same reason signatures can only be described for bitstreams and files,
the storage can also only be described for bitstreams and files.

52 PREMIS OWL - A Semantic Long-Term Preservation Model

Figure 2.14: Overview of the Storage Class.

Of course, the file format information also needs to be described in an
Object class. This is done through the ObjectCharacteristics class. This
class aggregates some bit-level information, such as the file format
using the Format class, the creating application via the CreatingAppli-
cation class, fixity information through the Fixity class, and inhibitor
information when encryption is used.

The Format class, as shown in Figure 2.15, is equivalent to the ud-
frs:AbstractFormat class and the pronom:File-Format class. Thus, these
classes are interchangeable. The Format class is described either by
a format designation, which allows describing the format name and
format version, or by an identifier from a format registry. Next to the
registry key, the role of the registry can also be described using the
preservation vocabulary idlc:formatRegistryRole, e.g., ’specification’ or
’validation profile’.
A creating application is further detailed by a name of the creat-
ing application and a version. Fixity information is described fur-
ther by its message digest, its message digest originator, and a
message digest algorithm, for which the preservation vocabulary

2.4. PREMIS OWL 53

Figure 2.15: Overview of the Format Class.

idlc:cryptographicHashFunctions is used. The inhibitors, when en-
cryption is used on an object, are characterised by a key, a target
and a type. For the last two, the resp. preservation vocabularies
idlc:inhibitorTarget and idlc:inhibitorType are used. An example value
from the idlc:inhibitorTarget vocabulary is ’print function’, from the
idlc:inhibitorType vocabulary is ’PGP’. This information is depicted in
Figure 2.16.

Finally, in addition to the file format information, information on
the rendering environment needs to be stored. To keep information
interpretable, there are basically two options: transcoding or emulation.
The file format information will support transcoding, the rendering
environment information will support the emulation. For this, the
Environment class exists, as shown in Figure 2.17. This class basically
allows to detail the rendering hardware and the rendering software, via
the resp. classes Hardware and Software. Next to this, the Environment
class also allows describing some environment characteristics, using
the preservation vocabulary idlc:environmentCharacteristic, and the
environment purpose, via values from the preservation vocabulary
idlc:environmentPurpose.

54 PREMIS OWL - A Semantic Long-Term Preservation Model

Figure 2.16: Overview of the CreatingApplication, Fixity, and Inhibitor Classes.

2.4.4 Event

An event aggregates all the information about an action that involves
one or more objects. This metadata is stored separately from the object
metadata. Actions that modify objects should always be recorded as
events.

The Event class, shown in Figure 2.18, is described at least by an event-
Type and an eventDateTime. The eventType values are taken from the
preservation vocabulary idlc:eventType. This information can be ex-
tended using the eventDetail property, which gives a more detailed
description of the event, and the eventOutcomeInformation, which de-
scribes the outcome of the event, in terms of success, failure, partial
success, etc.

2.4.5 Agent

This class aggregates information about attributes or characteristics of
agents. Agents can be persons, organisations or software. This class
provides the necessary tools to identify unambiguously an agent. The
minimum property needed to describe the Agent class is hasAgentType.

2.4. PREMIS OWL 55

Figure 2.17: Overview of the Environment Classes.

Figure 2.18: Schematic description of the Event Class.

The values of this property are taken from the preservation vocabu-
lary idlc:agentType. Optionally, an agent can also be described using
the hasAgentName and hasAgentNote. The Agent class is a subclass of
foaf:Agent and dcterms:Agent. In Figure 2.19, a schematic overview of
the Agent class is depicted.

2.4.6 Rights

PREMIS also foresees to describe rights. The minimum core rights
information that a preservation repository must know, however, is what
rights or permissions a repository has to carry out actions related to ob-
jects within the repository. The rights or permissions of certain agents

56 PREMIS OWL - A Semantic Long-Term Preservation Model

Figure 2.19: Schematic Description of the Agent Class.

may generally be granted by copyright law, by statute, or by a license
agreement with the rightsholder. For this, the RightsStatement class
knows three subclasses, denoting the rights basis for the rights state-
ment: CopyrightInformation, LicenseInformation, and StatuteInformation, as
depicted in Figure 2.20. In some situations the basis for the rights is for
other reasons, for instance institutional policy. If the basis for the rights
is different, one can introduce its own subclass to RightsStatement. The
RightsStatement class on itself is a subclass of dcterms:RightsStatement.

Figure 2.20: Subclasses of the RightsStatement Class.

Documentation of the rights can be attached to a RightsStatement in-
stance using the RightsDocumentation class. A RightsStatement instance
can be further characterised by the dates it is applicable using the
ApplicableDates class. And, it allows describing the granted rights using
the RightsGranted class. This RightsGranted class is able to denote the

2.5. Validation 57

period the actions that are granted using the hasAct property. The
values for this property are taken from the preservation vocabulary
idlc:actionsGranted. In Figure 2.21 these details on the RightsStatement
class are shown.

Figure 2.21: Details of the RightsStatement Class.

2.5 Validation

The validation of PREMIS OWL follows the a workflow which is also
used at W3C. PREMIS OWL is designed by a restricted group of do-
main experts from the LOC, BNF, Familysearch and iMinds. During
weekly meetings PREMIS OWL has been designed. After this design
process, the ontology and its design decisions were documented and
published on a public wiki, for which PBWorks4 is used. This wiki
allowed to interact with domain experts and to take their comments
into consideration to refine the ontology. This way, two PREMIS OWL
revisions have been created so far. Meanwhile the LOC has assembled
a working group around PREMIS OWL to keep the ontology aligned
with the PREMIS Data Dictionary, which is still evolving. This working
group consists of members of the PREMIS Editorial Committee, mem-
bers of LOC, BNF and is open for other interested domain experts to
maintain the ontology.

4http://premisontologypublic.pbworks.com/w/page/45987067/
FrontPage

http://premisontologypublic.pbworks.com/w/page/45987067/FrontPage
http://premisontologypublic.pbworks.com/w/page/45987067/FrontPage

58 PREMIS OWL - A Semantic Long-Term Preservation Model

2.6 Conclusions
In this chapter, I have presented PREMIS OWL, an ontology based on
the PREMIS Data Dictionary for Preservation Metadata version 3.0, a
digital preservation standard based on the OAIS reference model. The
ontology was first designed within the project Archipel, initiating the
long-term preservation archivation in Flanders. Later on, this ontology
was picked up by the Library of Congress. After several years of
cooperation with the Library of Congress, the Bibliothèque nationale
de France (BNF), and Family Search in refining the ontology, it is now
supported by the Library of Congress. At the moment, the ontology is
published, and maintained by the Library of Congress, as their official
semantic binding of the PREMIS.

The ontology tries to stick as closely as possible to the PREMIS Data
Dictionary semantic unit definitions. The ontology is ideal for creating,
validating and storing the preservation metadata of a particular digital
asset. Before, the PREMIS Data Dictionary was only implemented as
an XML schema. This semantic binding of PREMIS does not replace
the XML schema, it is complementary to it.

The main difference of the ontology to the data dictionary is the intro-
duction of 24 preservation vocabularies, formalised as SKOS vocabu-
laries, also published by the Library of Congress. This feature greatly
enhances the interoperability of PREMIS OWL instances coming from
different institutions. Because every archiving institution has its own
preservation policy and preservation services, the ontology needs to be
extensible to reflect these institutional differences. In the XML version
of the data dictionary, every institution could use their own controlled
vocabularies. This feature prohibited interoperability between different
archiving institutions. In the ontology, the use of proprietary vocab-
ularies is still possible, but they must be linked to the preservation
vocabularies to guarantee interoperability.

This OWL ontology allows one to provide a Linked Data-friendly,
PREMIS-endorsed serialization of the PREMIS Data Dictionary version
2.2. This can be leveraged to have a Linked Data-friendly data man-
agement function for a preservation repository, allowing for SPARQL
querying. It integrates PREMIS information with other Linked Data
compliant datasets, especially format registries, which are now ref-
erenced from the PREMIS ontology (for instance, the Unified Digital
Format Registry and PRONOM). Thus information can be more easily
interconnected, especially between different repository databases.

2.6. Conclusions 59

The author’s work on the design and formalisation of this ontology,
and in general around the modelling and representation of provenance
information led to the following publications:

• Erik Mannens, Ruben Verborgh, Seth Van Hooland, Laurence
Hauttekeete, Tom Evens, Sam Coppens, and Rik Van de Walle.
„On the Origin of Metadata”. In: Information 3.4 (2012), pp. 790–
808

• Sam Coppens, Jan Haspeslagh, Patrick Hochstenbach, Erik Man-
nens, Rik Van de Walle, and Inge Van Nieuwerburgh. „Metadatas-
tandaarden, Dublin Core en het gelaagd metadatamodel”. eng. In:
ed. by Stoffel Debuysere, Dries Moreels, Rik Van de Walle, Inge
Van Nieuwerburgh, and Jeroen Walterus. Bewaring en ontsluiting
van multimediale data in Vlaanderen : perspectieven op audio-
visueel erfgoed in het digitale tijdperk. Lannoo Campus, 2010,
pp. 46–62. isbn: 9789020989441

• Erik Mannens, Sam Coppens, and Rik Van de Walle. „Semantic
BRICKS for performing arts archives and disseminiation”. In:
IASA JOURNAL 35 (2010), pp. 40–49

• Sam Coppens, Erik Mannens, and Rik Van de Walle. „Disseminat-
ing heritage records as linked open data”. In: International Journal
of Virtual Reality 8.3 (2009), pp. 39–44

• Luc Moreau, Paolo Missier, Khalid Belhajjame, Reza B’Far, James
Cheney, Sam Coppens, Stephen Cresswell, Yolanda Gil, Paul
Groth, Graham Klyne, Timothy Lebo, Jim McCusker, Simon Miles,
James Myers, Satya Sahoo, and Curt Tilmes. PROV-DM: The
PROV Data Model. Tech. rep. url: http://www.w3.org/TR/
prov-dm/

• Sam Coppens and Tom De Nies. PROV-Dictionary: Modeling
Provenance for Dictionary Data Structures. Tech. rep. 2013. url:
http://www.w3.org/TR/prov-dictionary/

• Yolanda Gil, James Cheney, Paul Groth, Olaf Hartig, Simon Miles,
Luc Moreau, Paulo Pinheiro Da Silva, Sam Coppens, Daniel
Garijo, JM Gomez, et al. „Provenance XG Final Report”. In: (Dec.
2010). url: http://www.w3.org/2005/Incubator/prov/
XGR-prov/

• Satya Sahoo, Paul Groth, Olaf Hartig, Simon Miles, Sam Cop-
pens, James Myers, Yolanda Gil, Luc Moreau, Jun Zhao, Michael
Panzer, et al. Provenance vocabulary mappings. Tech. rep. 2010.
url: http://www.w3.org/2005/Incubator/prov/wiki/
Provenance_Vocabulary_Mappings

http://www.w3.org/TR/prov-dm/
http://www.w3.org/TR/prov-dm/
http://www.w3.org/TR/prov-dictionary/
http://www.w3.org/2005/Incubator/prov/XGR-prov/
http://www.w3.org/2005/Incubator/prov/XGR-prov/
http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Vocabulary_Mappings
http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Vocabulary_Mappings

60 Digital Long-term Preservation - A Provenance Story

• Sam Coppens, Sebastien Peyrard, Rebecca Guenther, Keving
Ford, and Tom Creighton. PREMIS OWL ontology 2.2. Tech. rep.
2013. url: http://www.loc.gov/standards/premis/
ontology-announcement.html

• Sam Coppens, Sebastien Peyrard, Rebecca Guenther, Keving
Ford, and Tom Creighton. PREMIS OWL ontology 2.1. Tech. rep.
2011. url: http://www.loc.gov/standards/premis/
owlOntology-announcement.html

• Tom De Nies, Sara Magliacane, Ruben Verborgh, Sam Coppens,
Paul Groth, Erik Mannens, and Rik Van de Walle. „Git2PROV:
Exposing Version Control System Content as W3C PROV”. in:
Poster and Demo Proceedings of the 12th International Semantic Web
Conference (2013)

• Sam Coppens, Erik Mannens, Raf Vandesande, and Rik Van de
Walle. „Digital long-term preservation, provenance and linked
open data”. In: 2011 European Library Automation Group conference
(ELAG 2011): It’s the context, stupid! 2011

• Sam Coppens, Erik Mannens, and Rik Van de Walle. „What
about the provenance of media archives: a tale of time-
contextualisation”. In: (2011)

• Sam Coppens, Erik Mannens, and Rik Van de Walle. „PREMIS
OWL binding to workflow engine for digital long-term preserva-
tion”. In: (2010)

• Sam Coppens, Erik Mannens, Tom Evens, Laurence Hauttekeete,
and Rik Van de Walle. „Digital long-term preservation using a
layered semantic metadata schema of PREMIS 2.0”. In: Cultural
heritage on line, Florence, 15th-16th December (2009)

http://www.loc.gov/standards/premis/ontology-announcement.html
http://www.loc.gov/standards/premis/ontology-announcement.html
http://www.loc.gov/standards/premis/owlOntology-announcement.html
http://www.loc.gov/standards/premis/owlOntology-announcement.html

Chapter 3

Archipel - A Distributed,
Digital Long-term

Preservation Infrastructure

Nowadays, the need for digital preservation is growing, since a lot of the
digital information produced merely a decade ago is in danger of getting lost as
technologies are changing. This also threatens a lot of information from heritage
institutions. The research project Archipel investigates how to overcome the
threat of information loss for cultural heritage institutions in Belgium, due to
the lack of a proper archiving strategy. In this project, we developed a platform
that harvests the information from the institutions, preserves the information
for the long-term and disseminates the information as Linked Open Data. Our
platform has all the necessary processes to guarantee the long-term preservation
of the incoming data. For the platform, we used a service-oriented architecture,
where all the preservation services are implemented as services on an enterprise
service bus. The built-in workflow engine will orchestrate all the services to
fulfill the two objectives of the platform, i.e., the LOD dissemination and the
long-term preservation. This service oriented architecture allows to build a
distributed long-term preservation platform supporting cloud storage in its
back-end.

3.1 Introduction

Many organisations and private persons still possess a lot of material
which is stored on analogue carriers. This material is mostly part of
important cultural heritage anywhere. At this moment, the analogue

62
Archipel - A Distributed, Digital Long-term Preservation

Infrastructure

carriers are degrading and continuously losing quality, making the data
inaccessible. While we are still able to see wall paintings from millennia
ago, many documents from merely a decade or two decades ago have
become inaccessible, e.g., WordPerfect files. Some refer to this situation
as the Digital Dark Age[82]. Digital long-term preservation forms the
solution to this issue. A digital long-term archive has the necessary
processes in place to withstand many long-term preservation risks, e.g.,
bitrot, file formats becoming obsolete, etc. These preservation processes
make sure the content remains intact and accessible over time.

The project Archipel1 initiates the dissemination and digital long-term
preservation of the cultural heritage in Flanders, Belgium. For this, we
developed a platform that harvests data coming from various institu-
tions (libraries, archival institutions, the art sector, i.e., museums, and
the broadcasters), preserves the data for the long-term and disseminates
the data as LOD. Our developed platform has thus two main objectives:

• Dissemination of content and its provenance as LOD
• Digital long-term preservation of content

To guarantee the long-term preservation of the harvested content, our
platform has the necessary processes in place to keep the information
intact and interpretable, in line with the Open Archival Information
System (OAIS) reference model [83] for the long-term preservation of
information. These processes rely heavily on the provenance informa-
tion of the harvested data, but at the same time produce also a lot
of provenance information. This provenance information is modeled
using a semantic implementation of the PREMIS 3.0 data dictionary [7],
i.e., PREMIS OWL2. This ontology is supplemented with a semantic
Dublin Core3 layer in our layered semantic metadata model. This en-
ables the archive to deal with the very diverse metadata it has to accept
for preservation. This Dublin Core layer is not only used as a common
ground for managing the content, but also for the Linked Open Data
[14] (LOD) publication of the records.

In this chapter, we present our digital long-term preservation platform.
First, we describe some related work on the topic in Section 3.2. Then,
in Section 3.3 we introduce the OAIS reference model for long-term
preservation. This reference model forms the basis for our deep archive
and describes the necessary processes and functions of our archive to

1http://www.archipelproject.be
2http://www.loc.gov/premis/rdf/v1#
3http://dublincore.org/

http://www.archipelproject.be
http://www.loc.gov/premis/rdf/v1#
http://dublincore.org/

3.2. Related Work 63

deal with the preservation risks, described in Section 2.2. Next, we
discuss the requirements of the archive in Section 3.4. In Section 3.5,
we discuss the format and the content of our information packages, our
archive has to deal with. Section 3.6 will describe the distributed
architecture of the archive and its processes. We end with a conclusion
in Section 3.7.

3.2 Related Work
Interest in digital preservation can be seen by the multitude of projects
in this area. Planets (Preservation and Long-term Access through
Networked Services)4 was especially aimed at defining guidelines for
preservation planning. However, it did not tackle the integration of
different existing metadata formats, or the dissemination of the meta-
data as LOD. Likewise, the Prestospace (Preservation towards storage
and access) project’s objective was to provide technical solutions and
integrated systems for a complete digital preservation of all kinds of
audio-visual collections 5. The project was especially focused on the
underlying technologies, e.g., automated generation of metadata or
detection of errors in content [84], but without using a standardised,
semantic preservation model to support the archiving, nor do they
tackle the problem of publishing the generated provenance information
to the Web. The CRiB system [85] delivers a set of services that client
applications will be able to invoke in order to perform complex for-
mat migrations, evaluate the outcome of those migrations according to
multiple criteria (e.g., data loss and performance), and obtain detailed
migration reports for documenting the preservation intervention. It is
aimed at supporting the migrations of the archived content, but it does
not tackle problems like the LOD publication the archived content and
their provenance information. PANIC [86], An Integrated Approach
to the Preservation of Composite Digital Objects using Semantic Web
Services, is an integrated, flexible system, which leverages existing
tools and services and assists organizations to dynamically discover the
optimum preservation strategy for compound objects. The system has
a service-oriented architecture and the Web services are semantically
described, allowing to discover the most appropriate preservation strat-
egy for the compound object or its aggregated objects. But, as the CRiB
system, it does not focus on the publication of the content nor on the
publication of the provenance information.

4http://www.planets-project.eu/
5http://prestospace.org/project/index.nl.html

http://www.planets-project.eu/
http://prestospace.org/project/index.nl.html

64
Archipel - A Distributed, Digital Long-term Preservation

Infrastructure

The CASPAR project (Cultural Artistic and Scientific knowledge for
Preservation, Access, and Retrieval) presented technologies for digital
preservation 6. The OAIS Reference Model was chosen as the base plat-
form, and the project was focused on implementing the different steps
in the preservation workflow. They focus more on preservation services
than on describing the preservation information. BOM Vlaanderen 7, a
national research project, aimed at preservation and disclosure of audio-
visual content in Flanders. Additionally, it looked at ways to unify
different metadata standards currently used for describing audio-visual
content. Current trends are on integrating different media archives.
PrestoPRIME has investigated and developed practical solutions for
the long-term preservation of digital media objects, programmes and
collections, and finds ways to increase access by integrating the media
archives with European on-line digital libraries in a digital preservation
framework8.

The previous discussed related work were focusing on the digital long-
term preservation, not on the more general problem of enabling their
provenance information on the Web. For the work done in this area, the
work of the W3C Provenance Incubator Group9 is the major reference.
This incubator group produced working definitions for provenance
information, provided a state-of-the-art understanding and developed
a roadmap for development and possible standardisation of provenance
on the Web. This work included defining key dimensions for prove-
nance, collecting use cases, designing three flagship scenarios from the
use cases, creating mappings between existing provenance vocabularies,
looking how provenance could fit in the Web architecture and providing
a state-of-the-art report on the current provenance activities. Their work
is summarised in a final report [87]. The first flagship scenario describes
a news aggregator site that assembles news items from a variety of data
sources, e.g., news sites, blogs and tweets. The provenance records of
these data providers can help with verification, credit and licensing.
This flagship scenario could be covered by publishing the provenance
information using our framework. What still forms a problem is the
lack of a standardised metadata model for publishing provenance on
the Web. In our framework, we publish the provenance information

6http://www.casparpreserves.eu/
7https://projects.ibbt.be/bom-vl
8http://www.prestoprime.org/
9http://www.w3.org/2005/Incubator/prov/wiki/W3C_Provenance_

Incubator_Group_Wiki

http://www.casparpreserves.eu/
https://projects.ibbt.be/bom-vl
http://www.prestoprime.org/
http://www.w3.org/2005/Incubator/prov/wiki/W3C_Provenance_Incubator_Group_Wiki
http://www.w3.org/2005/Incubator/prov/wiki/W3C_Provenance_Incubator_Group_Wiki

3.3. OAIS 65

as Linked Open Data using PREMIS OWL. This information is only
interoperable in the long-term preservation context, where PREMIS is
well known, not in a Web context. This standardised provenance model
for the Web is still a major research area. The work of the W3C Prove-
nance Incubator Group was a first step into that direction. The W3C
Provenance Working Group finalised a specification for provenance on
the Web. In both groups I was a major contributor, representing the
archiving domain.

Another interesting work done in the area of publishing provenance for
linked data is the paper of Olaf Hartig and Jun Zhao published at IPAW
[88]. In that paper they describe the Provenance Vocabulary10 used for
describing the provenance information as Linked Open Data. Next to
this, they also offer ways of publishing this provenance information for
Linked Data. They discuss how provenance can be added to Linked
Data objects, how provenance can be included into RDF dumps and how
the provenance information can be queried using SPARQL endpoints.
This work enables provenance for Linked Data, but it does not offer
solutions for automatic discovery of the provenance information or
ways for publishing provenance on the Web beyond using semantic
web technologies. Future work could involve publishing the provenance
information using this vocabulary, which is more suited for publication
on the Web than PREMIS OWL, which is intended to be a data model
for digital long-term archives. The mapping table, relating various
provenance vocabularies, produced by the W3C Incubator Group11 will
be the reference for this work.

3.3 OAIS

The Open Archival Information System (OAIS) is an archive that pre-
serves the information and makes it available to a designated commu-
nity. This designated community is the identified group of potential
consumers of the archived information. They should always be able to
understand the information. These consumers may consist of multiple
communities and may change over time. Next to the consumer, or des-
ignated community, we also have the producers, from which the data
comes that has to be preserved. These actors are depicted in Figure 3.1.
The OAIS reference model, depicted in Figure 3.2, is a basis model

10http://purl.org/net/provenance/
11http://www.w3.org/2005/Incubator/prov/wiki/Provenance_

Vocabulary_Mappings

http://purl.org/net/provenance/
http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Vocabulary_Mappings
http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Vocabulary_Mappings

66
Archipel - A Distributed, Digital Long-term Preservation

Infrastructure

Figure 3.1: Actors of an Archive.

Figure 3.2: OAIS Reference Model.

for long-term archives. It assures platform-independent access to all
archived information. The reference model (ISO 14721:2003) includes
the following responsibilities that an OAIS archive must abide by:

• Negotiate for and accept appropriate information from informa-
tion Producers.

• Obtain sufficient control of the information provided to ensure
Long-Term Preservation.

• Define your designated community.
• Ensure that the information to be preserved is independently un-

derstandable to the designated community. Thus, the community
should be able to understand the information without needing
the assistance of the experts who produced the information.

• Follow documented policies and procedures which ensure that the
information is preserved against all reasonable contingencies, and
which enable the information to be disseminated as authenticated
copies of the original, or as traceable to the original.

• Make the preserved information available to the designated com-
munity.

3.3. OAIS 67

Figure 3.3: Archival Information Package of OAIS.

In general, it describes the digital archive using three types of packages.
Each package aggregates the needed metadata, according to its function,
and the digital files accompanying the metadata, shown in Figure 3.3.
As depicted in Figure 3.2, these packages are:

• Submission Information Package (SIP): This is the package the
archives accept for ingest. It consists of descriptive metadata,
digital multimedia files, referenced by the metadata and some
additional metadata, e.g., structural metadata or rights metadata.

• Archival Information Package (AIP): This is the package the
archives use for preservation. It is in fact the SIP supplemented
with preservation information.

• Dissemination Information Package (DIP): This is the package
the archives offer for dissemination, e.g., if the rights do not
permit to publish the archived digital files accompanying the
metadata, this package will only contain metadata.

Using these packages in the operational mode of the archive, makes
sure the content can always be pulled out of the content management
system and put into a new content management system. For the man-
agement of these packages, the reference model uses the descriptive
metadata of the object, denoted as DI, i.e., descriptive information, in
our Figure 3.3. Basically, this should be the default architecture of every
digital repository. What makes a digital repository a long-term preser-
vation platform are the preservation plans. These preservation plans
implement the needed processes/workflows to keep the information
intact and accessible. They are based on the policies of the archive.

68
Archipel - A Distributed, Digital Long-term Preservation

Infrastructure

3.4 Requirements of the Archive
First, we need to define the form of our information packages, i.e., SIP,
AIP and DIP. These packages consist of descriptive information on the
object to be preserved, the referenced multimedia files, preservation
information, and packaging information. For this, we need to know
who the producers of the data are and the designated community.
The producers will define the descriptive metadata model for the SIPs
and the AIPs. The designated community will define the descriptive
metadata model of our DIPs.

Next, we need to know the policies of the archive to be designed.
These policies will define the preservation planning. The preservation
planning will eventually define the services and the workflows, based
on these services, to guarantee the information remains intact and
interpretable by the designated community. Thus, the actors of the
long-term preservation platform will define the data model, and the
preservation plan will define the architecture of the archive. Both are
discussed in detail in the next sections.

To end, we give a short overview of the requirements of our archive.
The producers are in fact institutions from the heritage sector. This
sector includes broadcasters, libraries, archives, and museums. The
designated community that will be targeted consist of different dissem-
ination modules:

• Performing Arts: Toneelstof is a dissemination module that will
put up a website around the history of performing arts.

• Media Education: Another dissemination module will focus on
media education. For this, Ambrosio’s Tafel has developed a plat-
form to build up the know-how and expertise on media. The
platform will tap into the long-term preservation archive to dig
up its content.

• Artistic Reuse: Constant VZW has developed a video wiki, based
on the archive’s content, to promote artistic reuse of the archived
content. The wiki is called Active Archives Video Wiki.

• Resource Sharing: Klascement, a Belgian educational platform,
will take the archive’s content to promote resource sharing on
their educational platform between teachers.

• Research: The Boekentoren, university library of the Ghent univer-
sity, has developed a platform to foster research in the archived
content. For this, they developed an image bank, public for the
researchers.

3.5. Information Packages 69

Looking at the preservation policies or the preservation plan, the fol-
lowing requirements can be listed:

• Content needs to remain intact: for this, we will need integrity
checks on the files that are preserved.

• Content needs to remain interpretable by the designated commu-
nity: to this end, we need to define the metadata model of the
descriptive metadata disseminated by our archive, and the file
formats that are accepted by our archive and the file formats in
which the referenced multimedia files will be disseminated so
they remain interpretable.

• Dissemination as Linked Open Data
• Distributed Architecture, supporting cloud storage.

What needs to be defined before moving on to the implementation
of our platform is the form and content of the information packages,
and the preservation processes that will fulfil the requirements of the
platform.

3.5 Information Packages

First, the information packages need to be modeled. This means speci-
fying the packaging format and the contents of these packages.

3.5.1 Packaging Format

As a packaging format for our SIPs and DIPs, BagIt is used. These
packages keep the metadata and the referenced files together in a
package. They provide an explicit link between the metadata and their
multimedia files. BagIt allows storing the metadata together with the
files referenced by the metadata, and putting these data in a ZIP archive
for transportation to and from our preservation platform. This package
also allows storing some fixity information in it, e.g., MD5 checksums
for validation. In our case, the SIP will consist of references to the
multimedia files, together with the original metadata offered by the
cultural institution. Thus, our SIP has the following payload files in its
package:

• The original metadata record, e.g., MARC or CDWA.
• The files accompanying the metadata.

The resulting BagIt ZIP package contains the following tag files and a
directory containing the payload files:

70
Archipel - A Distributed, Digital Long-term Preservation

Infrastructure

• bagit.txt: this file contains general information regarding the BagIt
version used and the character encoding.

• bagit-info.txt: This file contains general information regarding the
BagIt size, the date the BagIt package was made, the octetstream
sum, etc.

• manifest-[algorithm].txt: this file lists the payload files and cor-
responding checksums generated using a particular algorithm,
denoted in the file name of this tag file.

• tagmanifest-[algorithm].txt: this file lists the Bagit files, not the
payload files, and their corresponding checksums.

• data: this is the folder containing the payload files.
The DIP will consist of references to the multimedia files, together with
the original metadata offered by the cultural institution, the mapped
metadata, and the transcoded multimedia files.

Thus, our DIP has the following payload files in its package:
• The original metadata record, e.g., MARC or CDWA.
• The mapped metadata record.
• The multimedia files accompanying the metadata.
• The transcoded multimedia files.

3.5.2 Package Content

The packages’ content refers to the metadata models used for the
packages, i.e., the metadata models for the descriptive metadata of the
SIPs, AIPs, and DIPs, and the metadata model for the preservation
metadata. The packages’ content also refers to the file formats of the
multimedia files of our packages. The file formats the archive accepts
and the ones they use for disseminating the preserved content to their
designated community.

A. Metadata Models

Descriptive metadata schemes describe the content of the data: subject,
author, date of creation, file format, etc. This metadata makes it possible
to manage and search the digital archive as a whole, cfr. Section 3.3.
When archiving data coming from different sectors like the broadcast
sector, the libraries, the cultural sector, and the archival sector, a prob-
lem arises concerning descriptive metadata. Many of the institutions
already have descriptive metadata. Are these descriptive metadata
stored as metadata or as data? When archiving these descriptions as

3.5. Information Packages 71

metadata, the archive has to provide a metadata schema. The choice of
this schema is a non-trivial task, as the metadata schemes used for the
descriptions are very domain-specific. To store the descriptive meta-
data lossless, the descriptive metadata schema should be some kind
of smallest common multiple of all the descriptive metadata schemes
offered by the different institutions. This would be a huge metadata
schema, impossible to maintain. That is why the descriptive metadata
is archived along with the data in their original metadata format, e.g.,
MARC , so there is no information loss. On top of this domain-specific
metadata, the archive offers a broadly accepted descriptive metadata
schema. This gives the archive the necessary tools to search the whole
archive. When finding the data of interest, the original metadata that is
stored as data can still be presented to the users.

For the demonstration of our platform, we currently accept the follow-
ing descriptive metadata formats, which are the metadata models we
accepts in the offered SIPs:

• Dublin Core: mostly used metadata model, supported by many
repositories.

• MARC21: this metadata format is mainly used by the libraries.
• EAD and EAC: these metadata formats are designed to be used

in the archiving sector.
• P/META: this metadata format is geared to support the broadcast-

ers.
• CDWALite: this descriptive metadata format is a domain ontology

for the arts sector (museums, etc.).

This design choice also facilitates the preservation of the metadata.
As described in Section 2.4, PREMIS is only capable of describing the
preservation information of digital multimedia objects. The events in
PREMIS only take place on objects, not on intellectual entities, which en-
capsulate the descriptive metadata. By storing the descriptive metadata
apart like any other data stream, such a description of the intellectual
entity also becomes a separate object, for which PREMIS can describe
the preservation information.

DC RDF [89] was chosen as format for the descriptive metadata to
use internally (AIP) and for its dissemination (DIP), as it is a broadly
accepted descriptive schema. The power of this schema is its simplicity
and generality. It only consists of fifteen fields among which creator,
subject, coverage, description, and date. It can answer to the basic
questions: Who, What, Where, and When. All the fields in DC are

72
Archipel - A Distributed, Digital Long-term Preservation

Infrastructure

Figure 3.4: Layered data model for the long-term archive.

optional and repeatable. This makes it possible to map relatively
easily almost all the descriptive metadata schemes to DC RDF as many
institutions already support DC. This leads to a layered, semantic
metadata model, which the archive uses for management, dissemination
and preservation purposes, as depicted in Figure 3.4. Similar work is
described in [90], where a core ontology was developed to harmonise
the knowledge perspectives of the libraries and the cultural heritage
institutions, resulting in a core ontology.

B. File Formats

Next, we need to define the file formats the archive will handle. Our
archive will handle any file format delivered to it (SIP), without any
restriction. The file formats we are going to use internally (AIP) and
for the dissemination (DIP) can be different. The file formats for the
dissemination will be determined by its support in modern browsers.
The choice for the file formats internally is based on two factors: it
must be lossless or near lossless and we have to keep into account the
available storage space.

3.6. Architecture 73

For demonstration purposes, the following file formats are agreed:
• One dissemination migration service for transforming text docu-

ments to PDF documents.
• One master copy migration service for transforming images to

JPEG2000 images.
• One master copy migration service for transforming sound to AAC

files.
• One dissemination migration service for migrating video to MP4

files.

3.6 Architecture

In this Section, our architecture of the digital long-term preservation
archive is described. In this networked world, various resources are
linked to each other. We do not want to build yet another central
e-depot, but a distributed network of storage components. For this
reason, the platform will have a service oriented architecture12 (SOA).
This SOA will make use of a central service hub, which will offer the
needed services for the platform. The objectives of our platform are
twofold:

• Disseminate the archived content and their provenance as LOD.
• Enable long-term preservation.

Our architecture is depicted in Figure 3.5. The vertical arrow indicates
the dissemination path, the horizontal arrow stipulates the preservation
path. The basic components of our architecture are:

• Repositories: these are the repositories of the diverse institutions,
which have their content published on-line, using the OAI-PMH
protocol [91].

• Shared Repositories: for those institutions, which do not have pub-
lished their content on-line, our Archipel project foresees several
shared repositories, using Omeka13 or MediaMosa14, which will
publish their content on-line using the OAI-PMH protocol.

• Integration Server: this server provides an integration layer for
orchestrating all the needed processes, which are all implemented
as web services, e.g., transcoding services.

12http://opengroup.org/projects/soa/
13http://omeka.org/
14http://www.mediamosa.org/

http://opengroup.org/projects/soa/
http://omeka.org/
http://www.mediamosa.org/

74
Archipel - A Distributed, Digital Long-term Preservation

Infrastructure

Figure 3.5: Architecture of the long-term preservation platform.

• Archiving Server: This server actually has a direct connection to
the triple store for the descriptive and preservation metadata and
the distributed storage for the referenced multimedia files. The
services are actually hosted here, close to the data they act on.
The services are orchestrated by the integration server.

• LOD server: this server is used for the dissemination of the content
and the provenance information, with a triple store as a storage
back-end.

• Identity Service: with this distributed architecture an identity
server is needed for authentication across the different systems.

3.6.1 Integration Server
For building our distributed, digital long-term preservation platform,
we need an integration server to orchestrate the different processes,
based on SOA technology. This service-oriented approach consists of
flexible granular functional components that expose service behaviours
to other applications via loosely coupled standards-based interfaces.
Our architecture needs to handle many different preservation and dis-
semination processes, which change over time as technologies change.
As such, the situation demands for a service-oriented approach, which
allows to expand and modify the current setup of our processes.

3.6. Architecture 75

An Enterprise Service Bus (ESB, [92]) provides the open, standards-
based connectivity infrastructure for the service oriented architecture
and allows these services to exchange data with one another as they
participate in our processes. Orchestration between services is handled
by a workflow engine. This engine is integrated in the service bus
architecture and supports the execution of the preservation processes.
For the communication, the ’Simple Object Access Protocol’ (SOAP) [93]
is used, a protocol specification for exchanging structured information
between services. This integration server is built using the Porthus15

.NET Integration server, as Porthus was a project partner. A better
choice for the integration would have been a BPEL engine, which is
more suited for long-running and complex business processes, but the
use of the Porthus integration server was a requirement of the project.

The whole preservation / dissemination cycle, starts with a harvesting
process, which will harvest the metadata, and the referenced files. The
harvested metadata are described using several descriptive metadata
formats, e.g., MARC21, DC, or CDWALite. For management and
dissemination purposes this metadata needs to be mapped to DC RDF.
For this, we rely on a mapping service, which will map the incoming
metadata to DC descriptions.

Next, the original metadata record, the mapped DC RDF record and
the referenced files get packed into a SIP. For this SIP, the BagIt package
format is used. This SIP package is then ingested into the platform, us-
ing the SIP ingest service. Next to the harvesting (pull), the producers
can also directly push SIP packages to the archiving server. This data
enters immediately the workflow using the SIP ingest service.

At ingest the SIP packages need to be extended with provenance infor-
mation to form AIPs. This is done by the characterisation service. It
identifies the file formats of the files packaged in the SIP and models
these files as PREMIS Object instances. The SIPs get extended with their
PREMIS Object instances to become AIPs. Every action performed on
such a PREMIS Object, will be modelled as a PREMIS Event and will
get related to that Object.

15http://www.porthus.be

http://www.porthus.be

76
Archipel - A Distributed, Digital Long-term Preservation

Infrastructure

Figure 3.6: Schematic Overview of the Service Bus and its Connected Services.

The next thing within the workflow is the migration of the stored,
related multimedia files. These files get migrated to a file format,
defined by the archives preservation plans. Such a preservation plan
can stipulate, e.g., that all image files must be migrated to the JPEG2000
file format to keep the image information accessible. For this, we
need transcoding services, which can then transform various incoming
image file formats to the JPEG2000 file format. This migration will
extend the AIP package with the extra migrated data stream. This data
stream is then passed to the characterisation service to get a PREMIS
Object description of the generated data stream. The preservation
information is also extended with a description of the migration service
as a PREMIS Event relating the source object to the migrated object.

During the last phase, the descriptive DC RDF metadata will get rec-
onciled and cleaned by the reconciliation service and enriched by the
enrichment service. This service will interlink the data with internal
and external data sources.

If the harvested content does not need to be preserved, but only needs
to be published as LOD, it is directly routed from the mapping service
to a reconciliation service, and then to our enrichment service. These
enriched DC descriptions then get ingested into our triple store. This
is done by the LOD ingest service. Our LOD server automatically
publishes these enriched DC records as LOD. This whole preservation
/ dissemination path is described in Figure 3.6. The individual services
will be discussed in more detail during the next sections.

3.6. Architecture 77

3.6.2 Harvest Services

The harvest services play a role in harvesting the data from the insti-
tutions’ repository or from the shared repositories, used by smaller
institutions, who have not published their content on-line yet. They
will pull in the content for both dissemination and preservation.

A. OAI-PMH Harvest Service

This service will harvest the content from the cultural institutions. The
protocol used for harvesting the data is OAI-PMH, a wide-spread
protocol for exchanging metadata, particularly popular in the domain
of digital libraries. The OAI-PMH protocol disseminates the metadata
about the items of a repository. These items describe digital or non-
digital resources, and are identified by a URI [11]. Each item can have
multiple metadata records, each of which is described by a certain
metadata schema. These schemes are chosen by the data provider
to suit their domain-specific demands. To guarantee a basic level of
interoperability one of those metadata schemes must be unqualified
DC. Figure 3.7 shows the basic concepts of the protocol.

The OAI-PMH protocol is based on HTTP [12]. It supports six request
types (verbs). The request arguments are issued as GET or POST
parameters. The responses are encoded in XML syntax. The Identify
request retrieves administrative metadata about the repository, e.g.,
the name or owner of the repository; GetRecord retrieves metadata
about an item in a certain metadataformat; ListRecords harvests all
metadata records in a certain metadata format for all items in the
repository; ListIdentifiers lists all the identifiers of the available items;
ListMetadataFormats returns the available metadata formats used in the
repository; and finally the sixth verb, ListSets gives the available sets in
the OAI-PMH repository.

B. Mapping Service

The harvesting service has to be able to deal with multiple metadata
formats. For this, we need a common ground for the metadata for
search and retrieval purposes. This common ground is DC RDF, the top
layer of our layered metadata model. The mapping will be done using
a central mapping service, which is able to accept certain metadata
records and convert them to DC RDF using XSLT [94] transformations.

78
Archipel - A Distributed, Digital Long-term Preservation

Infrastructure

Figure 3.7: Basic Concepts of the OAI-PMH Protocol.

3.6.3 Preservation Services

A. Characterisation Service

Before ingesting the SIPs into the archive, the characterisation service
is called for identifying the file formats of the linked multimedia files.
This is needed for automatically generating PREMIS Object descriptions
of those files. These PREMIS Object descriptions will support the
migrations in a later phase. Every action performed on such a PREMIS
Object, will get related to that Object and will be modelled as a PREMIS
Event. This way, the platform is able to store and track the provenance
of the descriptive metadata and the referenced multimedia files.

The reason this characterisation takes place before ingest into our
archiving platform, is that one of the data streams of the SIPs has
already undergone a mapping, i.e., the DC RDF records are the mapped
versions of the harvested original records. For this, the SIP needs to be
extended with the PREMIS Object instances of these metadata records.
A PREMIS Event instance will relate the original metadata record to the
mapped DC RDF record.

For this characterisation service, we employed DROID16. This tool is
designed to automatically identify and validate file formats and to

16http://droid.sourceforge.net/

http://droid.sourceforge.net/

3.6. Architecture 79

output preservation-related metadata from these files. This output is
transformed into a PREMIS Object description. This information gets
enriched with information from the Preserv2 format registry17. This
registry publishes the PRONOM database18 as LOD, enriched with
information from DBpedia. This enrichment gives extra information
on the needed environment to render or create such file formats. This
object description is also ingested into the SIPs, extending them to AIPs.

B. SIP Ingest Service

The SIPs delivered to the archive and extended to AIPs by our charac-
terisation service, now need to be ingested into the archive. This service
takes the SIP, packed in the BagIt[95] format, and transforms it so it
can be stored into our archive. In the archive, we work file-based. This
means the AIPs are actually folders on the file system of the archive.
The folder these AIPs are ingested to is actually a folder equipped
with distributed storage capabilities. For this Moosefs19 was chosen, as
distributed file system. This allows to work with traditional folders,
while in the backend Moose serves the distributed storage.

Such an object folder is our actual AIP of our long-term preservation
platform. RDF Fragment 3.1 gives an overview of the typical structure
of our AIP / folder. This means the original metadata file, the mapped
DC RDF description, the multimedia files referenced by the metadata,
the transcoded multimedia files, and the generated provenance informa-
tion are stored in this object folder. The mapped DC RDF description
and preservation metadata is ingested in our triple store later on in the
workflow. This way, our semantic preservation information (PREMIS
object instances of the data streams, their linked events, rights and the
related agents) will also be published as LOD.

RDF Fragment 3.1: A typical AIP in our archive: example of a object folder.

/[object-ID]
origin.xml
dc.rdf
stories.wma
stories.mp4
provenance.rdf

17http://p2-registry.ecs.soton.ac.uk/
18http://www.nationalarchives.gov.uk/PRONOM/Default.aspx
19http://www.moosefs.org/

http://p2-registry.ecs.soton.ac.uk/
http://www.nationalarchives.gov.uk/PRONOM/Default.aspx
http://www.moosefs.org/

80
Archipel - A Distributed, Digital Long-term Preservation

Infrastructure

C. Transcodings

After the SIP ingest service our AIP of the harvested data is complete.
It is ready to support preservation actions, e.g., validation services for
virus checking, MD5 checking, digital signature checking, etc. One of
these actions are thus migrations to keep the information accessible for
the end-user. For implementing the migration services, we used three
packages: ImageMagick20, FFmpeg21, and JODConverter22. ImageMagick
is a free software suite for creating, and editing bitmap images. It
supports over 100 image formats, e.g., JPEG, JPEG2000, TIFF, PDF, etc.
ImageMagick has several program interfaces. We used its java interface,
JMagick, for creating image migration services. FFmpeg is a free solution
for converting and streaming audio and video. It supports many file
formats, video, and audio codecs. It provides a command line interface,
which is used for implementing its audio and video migration services.
The JODConverter is an open source project providing a java library
for converting various text documents. This library was employed for
implementing the text migration services.

For demonstration purposes, we implemented two sorts of migrations:
one for dissemination, and one for preserving an interpretable master
copy. The first kind of migration can be lossy, but reaches greater
compression ratios. The latter must be lossless and analysed properly,
because the master copy is the highest quality, interpretable copy of
the original digital file. This can be indicated in the PREMIS Object
description by the datatype properties preservationLevel (’0’ for the
master copy, ’1’ for the dissemination copy) and preservationLevelRole
(’master copy’,’dissemination’). Other sorts of migration services could
also be implemented by an archive, e.g., making a copy for editing.
This distinction allows the archive to delete from time to time older
dissemination copies, which are not supported anymore. Master copies
will not get deleted for preservation purposes. These migration services
should be supported by the archives policies and preservation plans.
These must be thoroughly analysed not to lose any quality of the
master copy. These migration services also update the preservation
information (provenance.rdf) stored in our AIP / distributed object
folder with a PREMIS Event instance, describing the migration.

20http://www.imagemagick.org/script/index.php
21http://ffmpeg.org/
22http://www.artofsolving.com/opensource/jodconverter

http://www.imagemagick.org/script/index.php
http://ffmpeg.org/
http://www.artofsolving.com/opensource/jodconverter

3.6. Architecture 81

3.6.4 Dissemination Services

Now, we have the AIP and preservation services in place. The data still
needs to be disseminated if the rights allow it. For its dissemination,
we publish the records, together with their provenance information as
LOD. LOD refers to a style of publishing and interlinking structured
data on the Web and lets you use RDF data models to publish the
structured data on the Web and uses RDF links to interlink data from
different datasets. Before publishing these records, they are enriched
by our enrichment service. The publication of the archived content and
their provenance information is discussed in detail in the next Chapter.

A. Reconciliation Service

The incoming metadata is mapped using generic XSLT mappings for
the supported metadata models. Although they are standards and
well documented, the metadata models are always used differently in
the providing institutions. An example of this are the person names.
Some institutions will use ’first name last name’, while others will use
’last name, first name’. Other examples are date formats or specific
properties for referencing the multimedia files. To harmonise the
metadata before enriching it, a reconciliation step is performed. This
step is specific for a certain data provider. The reconciliation service
makes use of N3 rule files to do the providers specific reconciliation.
This way, the differences between the metadata delivered by different
institutions can be unified.

B. Enrichment Service

All the archived AIPs possess a DC RDF description. These descriptions,
together with the provenance information stored in the AIP, are ready
for dissemination. However, we advocate a further step aiming at
enriching the (meta)data semantically before ingesting it into the LOD
server following the Linked Data principle. With this enrichment step,
we want to identify named entities into our metadata descriptions
and link these named entities to other resources in the LOD cloud
describing the same named entity. This way, extra information on the
detected named entities can always be offered to the end user.

82
Archipel - A Distributed, Digital Long-term Preservation

Infrastructure

In our case, we apply linguistic processing on the plain text contained
into the 4 W-elements (what, where, who, and when) of the metadata
and the main description of the DC RDF records. The linguistic process-
ing consists in extracting named entities such as persons, organisations,
companies, brands, locations, and other events. We use the OpenCalais
infrastructure23 for extracting these named entities. For example, the
processing of the free text description field in the DC description of
an event “Tom Barman and his band dEUS opening their latest album
Vantage Point in Rock Werchter” will result in five named entities:
‘Tom Barman’,‘dEUS’, ‘Vantage Point’, ‘Rock Werchter’, and ’Werchter’
together with their type (i.e., Person, Music Group, Music Album,
Event, Location, etc.). These detected named entities become resources
in the triple store. In our triple store, we already have resources, i.e.,
the records themselves, the collections they belong to, the institutions
they belong to, the dates they happen, the places they take place, and
the involved persons. All these resources are enriched with formalised
knowledge on the Web available in GeoNames24 for the locations, in
DBPedia25 for the persons, organisations and events, in BibNet26 for
authors, singers and music bands, and in Toerisme Vlaanderen27 for
touristic information on locations. This way, our approach provides i)
unique identifiers for the resource and ii) formalised knowledge about
this person such as his biography, career, and genealogy in multiple
languages.

The main challenge in this semantic enrichment step is then to deal
with the ambiguity. For example, the GeoNames Web service tends
to return all the cities named ’Dublin’ on the planet when a single
string ’Dublin’ is passed as an argument, and no country is specified.
Fortunately, most records contain always information about the city
and the country yielding accurate recognition of the location mentioned
in the event. When no country is specified and the GeoNames service
returns several results, the editor chooses the right enrichment. This
ambiguity problem also comes into play for enriching persons.

23http://www.opencalais.com/
24http://www.geonames.org
25http://dbpedia.org
26http://www.bibnet.be/
27http://www.toerismevlaanderen.be

http://www.opencalais.com/
http://www.geonames.org
http://dbpedia.org
http://www.bibnet.be/
http://www.toerismevlaanderen.be

3.7. Conclusions 83

C. LOD Ingest Service

When our records are enriched by the enrichment service, these can
be published by our LOD server, if the rights permit it. This LOD
server publishes the content of our triple store. The institutions have
the choice to preserve and publish their records or to only publish
their records. If the latter is the case, the harvested, mapped and
enriched records are ingested into the triple store of the LOD server
using this LOD ingest service. For the triple store Openlink Virtuoso28

was used, a high-performance persistent triple store. The publication
of the harvested data and their provenance data is discussed in detail
in the next chapter.

The rights, described as PREMIS RightsStatements, are very concise. For
our platform, only two different rights statements are defined. One
for only disseminating the data, and one for both dissemination and
preservation of the data. These granted rights are described in the
rights statements. These instances will determine if a record can be
disseminated by our LOD server or not.

3.7 Conclusions

In this chapter, we have presented a distributed, digital long-term
archive relying on semantic technologies. Our platform is able to
harvest data, store it for the long-term, and disseminate it as LOD.
This data comes from very diverse institutions, each using domain-
specific metadata formats. For this, we have developed a layered,
semantic metadata model. The top layer lets the archive deal with
the diverse data coming from the institutions. For this layer, DC RDF
was chosen. The bottom layer will enable the long-term preservation
processes and consists of our semantic version of the PREMIS 3.0 data
dictionary, i.e., PREMIS OWL, another standardisation work carried
out in the light of this research. Using this ontology, it is possible to
store the metadata needed for the preservation services. It forms the
data model for the archive. A SOA was designed for this distributed
archive. This SOA in combination with an ESB allows to modify and
expand the current setup of processes and to communicate with all
the distributed preservation and dissemination services. These service
are implemented on top of the archiving server. This server has direct

28http://virtuoso.openlinksw.com/

http://virtuoso.openlinksw.com/

84
Archipel - A Distributed, Digital Long-term Preservation

Infrastructure

access to a distributed file system for storing the archived object file-
based and to the triple store, which stores the metadata (descriptive
and preservation metadata), apart from their file-based storage. This
triple store allows to provide SPARQL endpoints over the archived data
and supports publication of the RDF data as Linked Open Data.

The author’s work on the design and formalisation of this ontology,
and, more generally, the generation of provenance information led to
the following publications:

• Sam Coppens, Ruben Verborgh, Erik Mannens, and Rik Van de
Walle. „PREMIS OWL - A Semantic Long-Term Preservation
Model”. In: International Journal on Digital Libraries (2014)

• Paul Bastijns, Sam Coppens, Siska Corneillie, Patrick
Hochstenbach, Erik Mannens, and Liesbeth Van Melle.
„(Meta)datastandaarden voor digitale archieven”. dut. In:
(2009). Ed. by Rik Van de Walle and Sylvia Van Peteghem,
p. 199. url: http : / / www . archive . org / details /
metadatastandaardenVoorDigitaleArchieven

• Rik Van de Walle, Sam Coppens, and Erik Mannens. „Een gelaagd
semantisch metadatamodel voor langetermijnarchivering”. In:
BIBLIOTHEEK-EN ARCHIEFGIDS 84.5 (2009), pp. 17–22

• Sam Coppens, Erik Mannens, and Rik Van de Walle. „Semantic
BRICKS for performing arts archives and dissemination”. eng.
In: ed. by Tom Evens and Dries Moreels. Access to Archives
of Performing Arts Multimedia. Vlaams Theater Instituut (VTI),
2009, pp. 121–141. isbn: 9789074351386

• Stijn Notebaert, Jan De Cock, Sam Coppens, Erik Mannens, Rik
Van de Walle, Marc Jacobs, Joeri Barbarien, and Peter Schelkens.
„Digital recording of performing arts: formats and conversion”.
eng. In: ed. by Tom Evens and Dries Moreels. Access to Archives
of Performing Arts Multimedia. Vlaams Theater Instituut (VTI),
2009, pp. 95–119. isbn: 9789074351386

• Miel Vander Sande, Pieter Colpaert, Ruben Verborgh, Sam Cop-
pens, Erik Mannens, and Rik Van de Walle. „R&Wbase: Git for
triples”. In: Proceedings of the 6th Workshop on Linked Data on the
Web (2013)

• Tom De Nies, Evelien Dh́eer, Sam Coppens, Davy Van Deursen,
Erik Mannens, and Rik Van de Walle. „Bringing Newsworthi-
ness into the 21st Century”. In: 11th International Semantic Web
Conference (ISWC-2012). 2012, pp. 106–117

http://www.archive.org/details/metadatastandaardenVoorDigitaleArchieven
http://www.archive.org/details/metadatastandaardenVoorDigitaleArchieven

3.7. Conclusions 85

• Tom De Nies, Sam Coppens, Davy Van Deursen, Erik Mannens,
and Rik Van de Walle. „Automatic discovery of high-level prove-
nance using semantic similarity”. In: Provenance and Annotation of
Data and Processes. Springer Berlin Heidelberg, 2012, pp. 97–110

• Sam Coppens, Erik Mannens, Raf Vandesande, and Rik Van de
Walle. „Digital long-term preservation, provenance and linked
open data”. In: 2011 European Library Automation Group conference
(ELAG 2011): It’s the context, stupid! 2011

• Erik Mannens, Sam Coppens, Toon De Pessemier, Hendrik Dac-
quin, Davy Van Deursen, and Rik Van de Walle. „Automatic
news recommendations via profiling”. In: Proceedings of the 3rd
international workshop on Automated information extraction in media
production. ACM. 2010, pp. 45–50

86
Archipel - A Distributed, Digital Long-term Preservation

Infrastructure

Chapter 4

Versioned Data on the Web -
Memento datetime Content

Negotiation and Provenance
Publication

Publishing dynamically changing data, together with all its different versions,
remains problematic on the Web, because a standardised protocol for this is
missing. The more data becomes interlinked and dynamic, the more this issue
forms a problem. This also holds true for Linked Open Data. In this chapter,
we provide a way for publishing versioned data together with its provenance
information on the Web. The W3C Provenance standard already provides a
way of disseminating provenance information. This provenance information
actually relates all the different versions of the data. Memento already provides
a way for datetime content negotiation. Our framework actually combines
both techniques to publish versioned linked data on the Web. This way, our
framework allows to publish the information of a resource as Linked Open
Data, including all its previous versions and their provenance information, in
a web-accessible manner.

4.1 Introduction

At the moment a lot of the information in the Linked Open Data cloud
are static data dumps. Publishing static data as Linked Open Data
forms no problem. However, these datasets are becoming more and
more dynamic. This can be seen with the uprising Web of Things,

88
Versioned Data on the Web - Memento datetime Content

Negotiation and Provenance Publication

where even sensory data is being published on the Web. Recently, W3C
started a standardization activity to create a Linked Data Platform,
with as main goal to define a RESTful way to read and write Linked
Data [33]. The consequence of this is that published datasets will
become even more dynamic.

With this upcoming dynamic Linked Open Data a new problem arises
concerning the interlinking of these dynamic resources. For instance,
some enrichments of the data being published as LOD can become
invalid over time. To give an example: a record on the second Gulf
War is interlinked with a record of the president of the United States,
George W. Bush at that time. Today, this enrichment would refer to
the current president, i.e., Barack Obama, which makes the enrichment
invalid.

In this chapter, we introduce a way for publishing dynamic, i.e., ver-
sioned, data as Linked Open Data on the Web, such that even the
enrichments of the published data remain valid over time. At the same
time, we are able to publish the provenance information of the differ-
ent versions of the data too. Eventually, this provenance information
is relating all the different versions of a piece of data. Our way of
publishing this versioned linked data on the Web is, of course, com-
pletely compliant with the Provenance standard of W3C for publishing
provenance information on the Web.

Our idea is demonstrated using the long-term preservation platform,
explained in Chapter 3. Our developed platform generates many dif-
ferent versions of the harvested data, i.e., metadata and referenced
multimedia files, via its preservation processes. These resources, their
previous versions and their provenance information, relating the differ-
ent versions, will be published on the Web as LOD. When preserving
information for the long-term and publishing the information as LOD
at the same time, different problems arise. First of all, we need to have
persistent URIs for our resources, which will publish the information
of a certain version of the resource. Another problem involves the en-
richments that occur on the resources before publishing them as LOD.
These enrichments will not always remain valid over time. We need
a way for preserving the temporality of these enrichments. The last
problem being tackled in this paper is the publication of the provenance
information on the Web which will allow automatic discovery of the
provenance information.

4.2. Related Work 89

To solve these problems, our developed platform is extended with the
Memento1 [96] datetime content negotiation. This datetime content
negotiation will allow to select the appropriate version, called memento
in the Memento framework, of the archived information and to pub-
lish it on a persistent URI. This datetime content negotiation will also
solve the problem of preserving the temporality of the enrichments
of the archived information. The different versions of the archived
information are linked to each other via their provenance information.
To publish the provenance information of each version on the Web,
we extended the Memento framework to offer provenance links us-
ing a special Hypertext Transfer Protocol (HTTP)[12] link header for
automatic discovery of the provenance information.

In this chapter, we present how our digital long-term preservation
platform is able to publish the provenance information on the Web.
First, Section 4.2 describes some related work on this topic. Then, in
Section 4.3, we explain in short our semantic layered metadata model,
which allows the archive to deal with the diversity of metadata records
coming from diverse institutions and to track the provenance of the
harvested data. Section 4.4 describes the distributed architecture of the
archive and its processes and how they produce different versions of
the data. Section 4.5 explains the publication of the content and its
provenance information using the Memento framework, extended to
provide provenance information. We end with a conclusion in Section
4.6.

4.2 Related Work

Interest in digital preservation can be seen by the multitude of projects
in this area. Planets (Preservation and Long-term Access through
Networked Services)2 was especially aimed at defining guidelines
for preservation planning. However, it did not tackle the integration
of different existing metadata formats, or the dissemination of the
metadata as LOD. Likewise, the Prestospace (Preservation towards
storage and access) project’s objective was to provide technical solutions
and integrated systems for a complete digital preservation of all kinds
of audio-visual collections 3. The project was especially focussed on
the underlying technologies, e.g., automated generation of metadata or

1http://www.mementoweb.org
2http://www.planets-project.eu/
3http://prestospace.org/project/index.nl.html

http://www.mementoweb.org
http://www.planets-project.eu/
http://prestospace.org/project/index.nl.html

90
Versioned Data on the Web - Memento datetime Content

Negotiation and Provenance Publication

detection of errors in content [84], but without using a standardised,
semantic preservation model to support the archiving, nor did they
tackle the problem of publishing the generated provenance information
on the Web.

The CASPAR project (Cultural Artistic and Scientific knowledge for
Preservation, Access, and Retrieval) presented technologies for digital
preservation 4. The OAIS Reference Model was chosen as the base plat-
form, and the project was focused on implementing the different steps
in the preservation workflow. They focus more on preservation services
than on describing the preservation information. BOM Vlaanderen 5,
a national research project, was aimed at preservation and disclosure
of audio-visual content in Flanders. Additionally, it looked at ways
to unify different metadata standards currently used for describing
audio-visual content. Current trends are on integrating different media
archives. PrestoPRIME researches and develops practical solutions for
the long-term preservation of digital media objects, programmes and
collections, and finds ways to increase access by integrating the media
archives with European on-line digital libraries in a digital preservation
framework 6.

The previous discussed related work was focusing on the digital long-
term preservation, not on the more general problem of enabling their
provenance information on the Web. For the work done is this area, the
work of the W3C Provenance Working Group7 is the major reference.
This working group produced a data model for provenance information,
provided several formaisations of the data model, and foresees a way
for publishing this provenance information on the Web. In our frame-
work, we publish the provenance information as Linked Open Data
using PREMIS OWL, explained in Chapter 2. This information is only
interoperable in the long-term preservation context, where PREMIS
is well-known, not in a Web context, where PROV-O, the provenance
ontology, offered by the Provenance Working Group, should be used.
Future work could involve publishing the provenance information us-
ing this vocabulary, which is more suited for publication on the Web
than PREMIS OWL, which is intended to be a data model for digital
long-term archives.

4http://www.casparpreserves.eu/
5https://projects.ibbt.be/bom-vl
6http://www.prestoprime.org/
7http://www.w3.org/2011/prov/

http://www.casparpreserves.eu/
https://projects.ibbt.be/bom-vl
http://www.prestoprime.org/
http://www.w3.org/2011/prov/

4.3. Layered Metadata Model 91

Another interesting work done in the area of publishing provenance for
linked data is the paper of Olaf Hartig and Jun Zhao published at IPAW
[88]. In that paper they describe the Provenance Vocabulary8 used for
describing the provenance information as Linked Open Data. Next to
this, they also offer ways of publishing this provenance information for
Linked Data. They discuss how provenance can be added to Linked
Data objects, how provenance can be included into RDF dumps and how
the provenance information can be queried using SPARQL endpoints.
This work enables provenance for Linked Data, but it does not offer
solutions for automatic discovery of the provenance information or
ways for publishing provenance on the Web beyond using semantic
web technologies.

4.3 Layered Metadata Model
In this section, I will re-introduce shortly the layered metadata model of
our long-term preservation infrastructure, as explained in the previous
chapter. When publishing different versions of a resource, this resource
needs a persistent identifier. The different versions of a resource will
get a URI of their own, linked to the persistent identifier. The layered
data model will define which resources get a persistent identifier.

Inside a digital archive, the unit of information the archive works with
is packaged into a SIP, i.e., the Submission Information Package. The
SIP contains descriptive metadata together with the preservation meta-
data. The descriptive metadata serves to support the management of
the resources to be preserved. The preservation metadata is responsible
for supporting the preservation services for that given resource. For the
descriptive metadata layer, Dublin Core RDF [89] is used. The preser-
vation metadata layer is described using PREMIS OWL, as discussed in
Chapter 2.

If we take back Figure 2.3, we showed how a record is actually conceived
in PREMIS OWL. This model will define our persistent identifier for
our dynamic records, as shown in Figure 4.1. Thus, a record is actually
aggregated into a SIP package. This package contains the metadata
and the referenced multimedia files. As explained by Figure 2.3, such a
SIP package is in PREMIS OWL actually a premisowl:IntellectualEntity
instance, with its related premisowl:Object instances. The persistent
identifier of our SIP package (or record) is in fact the identifier of this
premisowl:IntellectualEntity instance.

8http://purl.org/net/provenance/

http://purl.org/net/provenance/

92
Versioned Data on the Web - Memento datetime Content

Negotiation and Provenance Publication

Figure 4.1: Schematic Overview of the Record and its different Versions.

The different versions of the record are in PREMIS OWL reflected by the
different premisowl:Object instances of the metadata record. Changes to
the record leading to a new version can be descriptive metadata changes,
e.g., mappings or reconciliations, and changes in the referenced files
in the descriptive metadata, e.g., video files which are transcoded for
dissemination on the Web. Whenever a referenced file changes, its
descriptive metadata will, of course, change accordingly to refer to
the newly created file. Hence, the premisowl:Object instances of the
descriptive metadata reflect all the versions of the archived record.

4.4 Architecture

In this section, our architecture of the digital long-term preservation
archive is briefly described. This architecture will give insight in the
different versions that are created and their provenance information.
For an in-depth description of the architecture, we refer to Chapter 3.
Our platform has a service oriented architecture9 (SOA). This SOA will
make use of a central service hub, which will offer the needed services
for the platform.

9http://opengroup.org/projects/soa/

http://opengroup.org/projects/soa/

4.4. Architecture 93

The objectives of our platform are twofold:

• Disseminate the content and provenance information as LOD.
• Enable long-term preservation.

Figure 4.2: Schematic Overview of the Service Bus and its Connected Services.

To support these two functionalities, we have designed two workflows,
i.e., a dissemination workflow and a preservation workflow, as depicted
by Figure 4.2. The whole preservation/dissemination cycle starts with
a harvesting process, which will harvest the metadata, and the refer-
enced files. This will typically form the first version of the record to
be preserved, namely its original content. The metadata harvested, is
described using several descriptive metadata formats, e.g., MARC, DC,
or CDWA. For management and dissemination purposes this metadata
needs to be mapped to DC RDF. For this, we rely on a mapping ser-
vice, which will map the incoming metadata to DC descriptions. This
mapping service will create our second version of the record.

If the content also needs to be preserved, the original metadata record,
the mapped DC RDF record and the referenced files get packed into a
Submission Information Package (SIP), according to the OAIS specifi-
cations by the SIP creator service. For this SIP, the BagIt [95] package
format is used. This SIP package is then ingested into the archive, using
the SIP ingest service.

94
Versioned Data on the Web - Memento datetime Content

Negotiation and Provenance Publication

When ingesting this BagIt package into the archive, it has to be supple-
mented with the preservation information to form an Archival Informa-
tion Package (AIP) in the OAIS terminology. This package holds all the
different versions of the metadata and the multimedia files, referenced
by the metadata files. For this preservation information, we will use
our PREMIS OWL ontology. During this ingest process, all files in
the package get a PREMIS Object description, related to the mapped
DC RDF description, thus becoming the PREMIS intellectual entity. For
this we rely on a characterisation service, which will identify the file
format of the files and model the files as PREMIS Objects. Every action
performed on such a PREMIS Object, will get related to that Object and
will be modeled as a PREMIS Event. This way, the platform is able
to store and track the provenance of the descriptive metadata and the
referenced multimedia files.

The next thing within the workflow is the migration of the stored,
related multimedia files. These files get migrated to a certain file for-
mat, defined by the archives’ preservation plans. Such a preservation
plan can stipulate, e.g., that all image files must be migrated to the
TIFF file format to keep the image information accessible for long-term
preservation purposes, or, e.g., that all image files must be migrated
to the JPEG file format to keep the image information accessible for
dissemination purposes. For this, we need transcoding services, which
can then migrate various incoming file formats to the appropriate file
format according the preservation plans. This migration will extend
the AIP package with the extra migrated data stream. This data stream
is then passed to the characterisation service to get a PREMIS Object
description of the generated data stream and the preservation informa-
tion is also extended with a description of the migration service as a
PREMIS Event relating the source object to the migrated object. This
transcoding service will create new versions of the referenced multime-
dia files. These newly created multimedia files will be referenced by the
descriptive metadata. Thus, this service creates actually a new version
of the record to be preserved, and this for each referenced multimedia
file, until all multimedia files are transcoded to the file formats, defined
by the preservation plan.

During the last phase, the archived information is moved to the LOD
server for dissemination of the information. For this, the descriptive DC
RDF metadata will get reconciled by the reconciliation service, and
then enriched by the enrichment service before it gets ingested into

4.5. Publication 95

the LOD server’s triple store by the LOD ingest service. Both services
create new versions of the descriptive metadata. The reconciliation is
different for each data provider and is defined by a rule file. This will,
for instance, give all names the same format, e.g., first name last name,
to support the enrichment. For the enrichment service, the platform
relies on data sources like the OpenCalais infrastructure10 for extracting
these named entities, GeoNames11 for enriching the locations, DBPedia12

for enriching the persons, organisations and events, BibNet13 for au-
thors, singers and music bands enrichment, and Toerisme Vlaanderen14

for touristic information enrichment on locations. This way, our ap-
proach provides i) unique identifiers for the resource and ii) formalised
knowledge about this resource.We will not only disseminate the intel-
lectual entity, i.e., the descriptive metadata, but also the preservation
information, so the end-user has access to all the information available
about that object.

If the harvested content does not need to be preserved, it is directly
routed to our enrichment service, which will interlink the data with
external data sources after harvesting and mapping the metadata. This
enriched DC description then gets ingested into the triple store of the
LOD server, which automatically publishes the enriched DC records as
LOD.

4.5 Publication

Our architecture, described in the previous section, ingests all the har-
vested and generated information into our triple store. This information,
including the provenance information, needs to be disseminated as
Linked Open Data. For this dissemination, we want to have stable
URIs [11], e.g., http://../record/PresidentOfTheUSA for the harvested
original resources. These resources change over time via the preser-
vation processes. As such, every version of the resource has another
URI, e.g., http://../record/PresidentOfTheUSA_V3. To link from the
original resource with a stable URI to the appropriate version URI, we
extended our Linked Open Data server with the Memento datetime
content negotiation15, besides the mediatype content negotiation. This

10http://www.opencalais.com/
11http://www.geonames.org
12http://dbpedia.org
13http://www.bibnet.be/
14http://www.toerismevlaanderen.be
15http://datatracker.ietf.org/doc/draft-vandesompel-memento/

http://www.opencalais.com/
http://www.geonames.org
http://dbpedia.org
http://www.bibnet.be/
http://www.toerismevlaanderen.be
http://datatracker.ietf.org/doc/draft-vandesompel-memento/

96
Versioned Data on the Web - Memento datetime Content

Negotiation and Provenance Publication

mechanism allows the platform to publish the information on persis-
tent URIs. Based on the Memento datetime content negotiation the
right version of that resource is selected and published as LOD. This
mechanism is depicted in Figure 4.3 and explained in publication [97].

Figure 4.3: Schematic Overview of the Content Negotiation.

4.5.1 Memento Datetime Content Negotiation

The Memento framework is based on HTTP and HTTPS URIs and
introduces several concepts:

• Original Resource (URI-R): This resource is archived for the long-
term and has several versions.

• Memento (URI-Mj): This resource refers to one of the versions of
an original resource.

• TimeGate (URI-G): The TimeGate for an original resource is a
resource that supports the datetime content negotiation.

• TimeMap (URI-T): A TimeMap for an original resource lists the
URIs of all the mementos of that original resource.

The Memento framework is based on HTTP request and response
headers. The framework introduces two new headers: Accept-Datetime
and Memento-Datetime. The Accept-Datetime header is used to ask
for the version of the original resource valid on that time. If a user
agent requests an original resource for a specific datetime, the server
responds with a link to the timegate, which can do the datetime content
negotiation for that original resource. The timegate redirects the user

4.5. Publication 97

agent to the appropriate memento, which responds with a memento-
datetime. This memento-datetime gives the datetime the resource was
created. This datetime of a memento is retrieved using the provenance
information of that memento. The provenance of every memento is
modeled as a PREMIS OWL Object instance relating to Event instances.
Such an Object instance has always a creation event. The datetime of this
creation event is used for the Memento datetime content negotiation.
RDF Fragment 4.1 gives an example of such an HTTP interaction.

1: UA −−−− HTTP GET/HEAD; Accept−Datetime : Tj−−−−−−−−−> URI−R
2: UA <−−− HTTP 200; L ink : URI−G−−−−−−−−−−−−−−−−−−−−−−− URI−R
3: UA −−−− HTTP GET/HEAD; Accept−Datetime : Tj−−−−−−−−−> URI−G
4: UA <−−− HTTP 302; Locat ion : URI−Mj ; Vary ;

L ink : URI−R, URI−T , URI−Mj−−−−−−−−−− URI−G
5: UA −−−− HTTP GET URI−Mj ; Accept−Datetime : Tj−−−−−−−> URI−Mj
6: UA <−−− HTTP 200; Memento−Datetime : T j ;

L ink : URI−R, URI−T , URI−G, URI−Mj−−−− URI−Mj

RDF Fragment 4.1: Typical Memento HTTP Interaction

Next to the two new headers, Memento also introduces some new
values for the existing HTTP headers: Vary and Link. The value for
the VARY header in our case will be negotiate, accept-datetime, accept.
This VARY header informs that the content negotiation was performed
in two dimensions, i.e., the datetime content negotiation and the me-
dia type content negotiation. The relation types for the Link header
Memento introduced are original, for referencing the original resource,
timegate, for indicating the timegate, timemap for linking to the timemap,
and memento for referencing to various mementos for an original re-
source. These Link headers allow automatic discovery of the timegate,
the timemap, the original resource and several other mementos.

Introducing this Memento datetime content negotiation is justified from
our digital long-term preservation perspective. A problem we were
facing publishing information as Linked Open Data and preserving
it at the same time, involved the enrichments. These enrichments do
not always remain valid over time. That is why these enrichments
are mostly left out of the metadata to be stored for the long-term.
If the data providers of the enrichments also support the datetime
content negotiation, a memento with enrichments would reference that
memento of the enrichment when it was valid. In other words, the
Memento datetime content negotiation also preserves the temporality
of the information. This also justifies storing the enrichments of the
metadata records for the long-term.

98
Versioned Data on the Web - Memento datetime Content

Negotiation and Provenance Publication

4.5.2 Publishing Provenance

In our platform, every version (memento) of a harvested resource
(original resource) has a PREMIS OWL Object description. This Ob-
ject description describes the provenance of that object and is related
through events to object descriptions of other versions/mementos of
that original resource. This allows our platform to include in the re-
sponse of the request for a memento a provenance link header which
includes the link to the LOD published PREMIS OWL Object descrip-
tion (URI-Pj) of that memento. This provenance link header will allow
automatic discovery of the provenance information. We extended the
Memento framework with a new concept:

• Provenance (URI-Pj): This resource refers to the provenance of
the selected version/memento of the original resource.

To allow this resource to be automatically discovered, we ex-
tended the Memento framework with a special value for the ex-
isting HTTP header Link referencing the provenance information.
As HTTP header Link, the standardised HTTP header link for
provenance is used [98]. The relation type for this Link header
is <http://www.w3.org/ns/prov#has_provenance> for the current
provenance record (URI-Pj). The anchor of the HTTP header Link refers
to the resource the provenance is given for in this header Link. If no
anchor parameter is given, then the current URI is assumed to be the
resource provenance is provided for. This way, our extended Memento
framework is completely inline with the provenance standard of W3C.
A typical HTTP interaction, requesting a certain memento, is shown in
RDF Fragment 4.2.

The provenance records are themselves also datetime content negotiable.
So they become mementos of an original provenance resource. Doing
this, gives some extra benefits. The Memento framework defined some
extra relation types for the HTTP Link header referencing a memento.
When applied to a provenance record of a memento of an original
resource, they get the following definitions:

• first memento (URI-M0): This resource refers to the provenance
of the first version/memento of the original resource.

• last memento (URI-Mn): This resource refers to the provenance
of the last version/memento of the original resource.

• memento (URI-Mj): This resource refers to the provenance of the
selected version/memento of the original resource.

4.5. Publication 99

• previous memento (URI-Mi): This resource refers to the prove-
nance of the previous version/memento of the selected ver-
sion/memento of the original resource.

• next memento (URI-Mk): This resource refers to the provenance
of the next version/memento of the selected version/memento of
the original resource.

• timemap (URI-T): A TimeMap for a provenance record of an
original resource lists the URIs of the provenance records of all
mementos of that original resource.

The response for a memento request will include a provenance header
link, referencing the provenance information of that memento. This
provenance record is on itself also a memento. The response of this
memento includes a timemap link header pointing to a URI (URI-T)
listing the URIs of the provenance records of all mementos of that
original resource. This way, an agent can immediately have an overall
view on the provenance of an original resource.

These extra links could be very helpful in processing the provenance
information. Our PREMIS OWL model allows describing digital sig-
natures, signing the versions/mementos of that original resource. A
quality checker could investigate the quality and trustworthiness of
the published information. This quality checker could investigate the
digital signature of the last version. If this was signed by a trusted
party and the digital signature is still valid, the quality checker could
immediately move on to the provenance of the first memento to check
where the signed information came from. The quality checker can then
check if that data provider is also a trusted party to make an overall
judgement regarding the quality and trustworthiness of the information.
The PREMIS OWL model also allows describing the rights information
in the provenance of a resource, such as licenses, copyrights, rights
granted, etc. A license checker could use these additional links to
browse through the provenance records of the mementos of an original
resource and check if none of them violates the rights information of
another memento.

A shortcoming of making provenance records also datetime content
negotiable, is that all events happening on a preserved resource more
recent than the datetime asked for, will be left out of the provenance
description. Hence, the provenance information would then only con-
tain links to older versions/mementos of the preserved resource and
the links to the more recent versions are lost.

100
Versioned Data on the Web - Memento datetime Content

Negotiation and Provenance Publication

1 : UA −−− HTTP GET/HEAD; Accept−Datet ime: T j −−−−> URI−R
2 : UA <−− HTTP 200; L i n k : URI−G −−−−−−−−−−−−−−−−−− URI−R
3 : UA −−− HTTP GET/HEAD; Accept−Datet ime: T j −−−−> URI−G
4 : UA <−− HTTP 302; Loca t i on : URI−Mj ; Vary ; L i n k :

URI−R, URI−T , URI−Mj ,−−−−−−−−−−−−−−−−−−−−−−−−− URI−G
5 : UA −−− HTTP GET URI−Mj ; Accept−Datet ime: T j −−> URI−Mj
6 : UA <−− HTTP 200; Memento−Datet ime: T j ; L i n k :

URI−R, URI−T , URI−G, URI−Mj , URI−Pj −−−−−−−−−−−− URI−Mj

RDF Fragment 4.2: Extended Memento HTTP Interaction with Provenance
Information

To improve the automatic discovery of the provenance information
of a memento, our platform will inject the provenance link of the
memento also in the HTML and RDF descriptions of that memento.
This will enhance the provenance discovery, because not all clients
will be able to intercept the new provenance link header. For the
HTML representation of the memento, our framework includes a
HTML link tag in the head of the HTML document. This link has
a relation type of http://www.w3.org/ns/prov#has_provenance,
e.g., <link rel="http://www.w3.org/ns/prov#has_provenance"
href="http://../object/PresidentOfUSA_V3"/>. The re-
source’s provenance is provided by a second link el-
ement, i.e., http://www.w3.org/ns/prov#has_anchor,
e.g., <link rel="http://www.w3.org/ns/prov#has_anchor"
href="http://../record/PresidentOfUSA_V3"/>. These HTML
head links are actually recommended by the provenance access
and query specification of the W3C provenance working group,
keeping our extension compatible with that provenance specification.
For the RDF representation, our platform injects a triple denoting
the provenance information of that memento. For linking this
provenance record (PREMIS OWL Object instance), the PREMIS
OWL object property hasLinkingObject is used. An example of
such an injected triple in the RDF description of a memento is:
<http://../record/PresidentOfUSA_V3> premis:hasLinkingObject
<http://../object/PresidentOfUSA_V3>. This property is equivalent
to the standardised property for referencing provenance by Prov-O
[99], the OWL formalisation of the provenance data model, provided
by the W3C provenance working group.

In some cases, it might be convenient to store the provenance of the
provenance information. An example of this in our framework is
the characterisation process. This process identifies a memento of an

4.5. Publication 101

original resource and creates a PREMIS OWL Object instance of it.
This can be the metadata record or a multimedia file referenced in
a metadata record. In case of a file, the Object description is being
enriched with information from the Preserv2 format registry16. This
is an enrichment event occurring on provenance information. This
could be described in the provenance of the provenance information.
Another example of this are digital signatures. Our PREMIS OWL
model allows describing these digital signatures applied to a stored
memento, but digital signatures can also be used to sign provenance
information. When including a provenance Link header in the response
to a provenance record, the provenance of the provenance information
can be discovered.

Looking at the 5-star deployment scheme17 of Tim Berners-Lee, this
framework could add two more stars for indicating the rating of a
Linked Open Data provider. A sixth star could go to Linked Open Data
providers that support the Memento datetime content negotiation. This
sixth star will indicate to, e.g., a long-term preservation archive, that
the enrichments coming from that provider could be stored also for the
long-term, as discussed earlier. A seventh star could go to Linked Open
Data providers not only supporting the Memento datetime content
negotiation, but also using this framework to publish their provenance
records as Linked Open Data. This seventh star will indicate that
the data provider publishes provenance information and, hence, it is
possible to make trust judgments over that data using quality checkers
or license checkers, as mentioned above.

4.5.3 Implementation

For implementing this framework, we used Jena TDB as triplestore for
the back-end. This is a large-scale persistent triplestore which supports
SPARQL. On top of this triplestore, the LOD server was built using
Apache Tomcat as HTTP web server. This LOD server has a servlet
which will do the datetime and the mediatype content negotiation and
will redirect from the original resource, published on a persistent URI,
to the appropriate version/memento of that original resource. This
servlet will form the timegate. Next to this, we have servlets to serve the
appropriate mediatype of the information (HTML and RDF) and insert
the provenance information. The resources that will be published with

16http://p2-registry.ecs.soton.ac.uk/
17http://www.w3.org/DesignIssues/LinkedData.html

http://p2-registry.ecs.soton.ac.uk/
http://www.w3.org/DesignIssues/LinkedData.html

102
Versioned Data on the Web - Memento datetime Content

Negotiation and Provenance Publication

this timegate are the harvested collections and records. As explained in
the previous section, we do not offer datetime content negotiation for
the provenance information. For this information, we have a separate
servlet only supporting media type content negotiation.

Next to the LOD server supporting the datetime content negotiation, we
have an integration server which will provide the needed preservation
processes. These preservation processes will generate the different
versions of the harvested information. For the integration server we
used the Porthus .NET Integration server, as discussed in Chapter 3.

4.6 Conclusions

In this chapter, we have tackled the problem of publishing different
versions of linked data resource on the Web to a persistent identifier
using datetime content negotiation. Linked data is enriched with
external information. These enrichments are often timely, because both
the enriched resource description as the enrichments can change over
time. The presented publication mechanism for versioned linked data
solves this issue. At the same time, we present a way of publishing
provenance on the Web, conforming the W3C provenance standard.

To publish these different versions of a preserved resource and their
provenance information, our platform relies on the Memento datetime
content negotiation. We extended this framework to also include HTTP
provenance header links for automated discovery of the provenance
information. This approach allows us to disseminate the versioned
information of the preserved resources on persistent URIs, depending
on the datetime content negotiation to redirect to the appropriate ver-
sion/memento of the original stored resource. Combining datetime
content negotiation with the publication of the provenance informa-
tion, links the provenance information to the datetime dimension of
a certain stored resource. Finally, the framework allows discovering
the provenance information of the other existing versions of an original
resource bringing provenance information to the Web.

The publication mechanism is implemented on top of our long-term
preservation platform, discussed in Chapter 3. This platform harvests
data, stores it for the long term, and disseminates all its generated
versions of the harvested resources as LOD. The basic steps supporting
the dissemination in our platform are: harvesting (storing the original
metadata), mapping to a common metadata representation using DC

4.6. Conclusions 103

RDF (generating a first version of the original metadata), reconciliation
and cleaning up the mapped metadata (generating a second version),
and enrichment of the reconciled metadata (generating a third version).
Thus, this platform produces lots of different versions of the stored in-
formation and also produces provenance information, which will relate
the different versions of the stored information. In our platform all the
generated versions are linked to each other via provenance information,
described using PREMIS OWL. With this publication mechanism we
can publish all generated versions as LOD to persistent identifiers,
publish its provenance information. This publication mechanism allows
to even store the enrichments of the LOD published and preserved re-
sources, because the temporality of these enrichments is also preserved
during publication.

The author’s work on disseminating provenance information using
datetime content negotiation, and, more generally, the publication of
provenance information led to the following publications:

• Yolanda Gil, James Cheney, Paul Groth, Olaf Hartig, Simon Miles,
Luc Moreau, Paulo Pinheiro Da Silva, Sam Coppens, Daniel
Garijo, JM Gomez, et al. „Provenance XG Final Report”. In: (Dec.
2010). url: http://www.w3.org/2005/Incubator/prov/
XGR-prov/

• Miel Vander Sande, Sam Coppens, Ruben Verborgh, Erik Man-
nens, and Rik Van de Walle. „Adding Time to Linked Data: A
Generic Memento proxy through PROV”. in: Poster and Demo
Proceedings of the 12th International Semantic Web Conference (2013)

• Tom De Nies, Sara Magliacane, Ruben Verborgh, Sam Coppens,
Paul Groth, Erik Mannens, and Rik Van de Walle. „Git2PROV:
Exposing Version Control System Content as W3C PROV”. in:
Poster and Demo Proceedings of the 12th International Semantic Web
Conference (2013)

• Miel Vander Sande, Pieter Colpaert, Ruben Verborgh, Sam Cop-
pens, Erik Mannens, and Rik Van de Walle. „R&Wbase: Git for
triples”. In: Proceedings of the 6th Workshop on Linked Data on the
Web (2013)

• Sam Coppens, Ruben Verborgh, Miel Vander Sande, Davy Van
Deursen, Erik Mannens, and Rik Van de Walle. „A truly Read-
Write Web for machines as the next-generation Web?” In: Proceed-
ings of the SW2012 workshop: What will the Semantic Web look like
10years from now (2012)

http://www.w3.org/2005/Incubator/prov/XGR-prov/
http://www.w3.org/2005/Incubator/prov/XGR-prov/

104
Versioned Data on the Web - Memento datetime Content

Negotiation and Provenance Publication

• Tom De Nies, Evelien Dh́eer, Sam Coppens, Davy Van Deursen,
Erik Mannens, and Rik Van de Walle. „Bringing Newsworthi-
ness into the 21st Century”. In: 11th International Semantic Web
Conference (ISWC-2012). 2012, pp. 106–117

• Sam Coppens, Erik Mannens, Davy Van Deursen, Patrick
Hochstenbach, Bart Janssens, and Rik Van de Walle. „Publishing
provenance information on the web using the Memento datetime
content negotiation”. In: WWW2011 workshop on Linked Data on
the Web (LDOW 2011). Vol. 813. 2011, pp. 6–15

• Sam Coppens, Erik Mannens, Raf Vandesande, and Rik Van de
Walle. „Digital long-term preservation, provenance and linked
open data”. In: 2011 European Library Automation Group conference
(ELAG 2011): It’s the context, stupid! 2011

Chapter 5

Querying Distributed Linked
Data - Query Federation
using the Provenance of

owl:sameAs Links

In this chapter, we focus on the use of provenance information, more specifically
the use of provenance information to support query federation. Linked Open
Data envisioned to create a global data space, where information is easily
accessed and queried. Querying the Linked Open Data cloud as a whole still
remains problematic. Prior knowledge is required to federate the queries to
the appropriate datasets: each dataset provides its own SPARQL endpoint
to query that dataset, and each dataset uses its own vocabulary to describe
their information. In this chapter, we propose a federated SPARQL framework
to query the global data space, relying on query federation and vocabulary
mappings. Our query federation will traverse the owl:sameAs links. Our
framework exploits the fact that owl:sameAs relationships are symmetrical and
transitive. This means that such linked resources are interchangeable and form
the basis for the query rewriting. The provenance of the generated owl:sameAs
links is processed to resolve the SPARQL endpoints of linked datasets and their
vocabulary mappings to support the query rewriting.

106
Querying Distributed Linked Data - Query Federation using the

Provenance of owl:sameAs Links

5.1 Introduction

The main goal of Linked Open Data is to create a global data space, the
Linked Open Data cloud1 [14], where end users can easily discover and
consume data. A first key ingredient for Linked Open Data is to publish
machine-readable, structured data on the Web. This allows machines to
discover the data, interpret the data and act upon the data. Another key
ingredient for Linked Open Data is link generation. Link generation
will discover relationships between the resources being published and
the resources already being described in the Linked Open Data cloud
using the SPARQL protocol[25] . This step will link the data being
published with information of other data sources, turning the disparate
set of data sources into one global data space. Bizer et al. [100] explain
very clearly the concept and technical principles of Linked Data and
why link discovery between datasets is crucial in creating a global data
space.

Many of these generated links will relate resources that describe the
same thing. The resources describing the same thing will be linked
using the owl:sameAs link. This link generation can be done automati-
cally. Link generation, or enrichment, has been investigated a lot and
resulted in various lookup services, e.g., DBpedia [101], GeoNames2, or
Sindice [102], and link discovery frameworks, e.g., SILK [103].

At the moment, querying this global data space as a whole remains
a challenge. If we want to get results from a query that ranges over
multiple data sources, accessible through different SPARQL endpoints,
we will have to split up the query into sub-queries for each SPARQL
endpoint and combine the results or we will have to fetch firstly all
the different data sources into one data source and then query this
aggregated data source. Both approaches have some limitations though:

• In the first approach, we will have to know which part of the
query is meant for which SPARQL endpoint and we will need to
know for each SPARQL endpoint which vocabulary it uses, so
that appropriate mappings to the query can be applied.

• In the second approach, we do not need to know which SPARQL
endpoints must be queried for receiving an appropriate answer,
but we still need to know which vocabulary to use in the query so

1http://linkeddata.org/
2http://www.geonames.org/

http://linkeddata.org/
http://www.geonames.org/

5.1. Introduction 107

that the aggregated data sources can understand the query. This
approach has the danger that in a highly interlinked environment,
a lot of information has to be indexed first.

This needed information for query federation, i.e., the SPARQL end-
points and vocabulary mappings, can be extracted from the provenance
information of the generated links. As we will discuss later, the prove-
nance information of these generated owl:sameAs links can be expressed
as queries or rules. This rule gives us information on which SPARQL
endpoint was contacted to find a resource describing the same thing
and which vocabularies were used for querying that SPARQL endpoint.
When link discovery frameworks are used for the link generation, this
provenance information can be extracted from the framework‘s con-
figuration. If the interlinking is done without such a framework, the
queries fired for the link generation can be used as provenance of the
results they generate, which are in fact the owl:sameAs links too.

This chapter proposes a solution to the problem of querying distributed
data sources. In our approach, we will traverse the owl:sameAs links of
the resources combined with the provenance of these owl:sameAs links
so we know how to distribute the query to find more information on
resources. The basic principle of our query federation framework is
that owl:sameAs is a symmetrical and transitive property. This means
that resources linked via owl:sameAs are interchangeable. This forms the
basis for the query distribution algorithm, such that all the information
of a resource and all its owl:sameAs equivalents, distributed on the
Web, becomes available at a single SPARQL endpoint and creates the
impression that all the information of the owl:sameAs equivalents is also
present in the local dataset. At the same time, mappings will be applied
to the query distributions to support the external dataset’s vocabulary.
This mapping information is retrieved implicitly by processing the
provenance of the owl:sameAs links, as will be shown in Section 3.
Because of this feature, the mappings are always defined in terms of the
local vocabulary. Thus, the local vocabulary forms the universal data
model for information federation. In the end, this mapping strategy is
something in between a point-to-point mapping strategy and a strategy
using a universal data model.

Following these owl:sameAs links from the Linked Open Data cloud
has several benefits. First of all, Following the owl:sameAs links creates
your own view on the Linked Open Data cloud. When publishing
your information as Linked Open Data, you will only link with those

108
Querying Distributed Linked Data - Query Federation using the

Provenance of owl:sameAs Links

resources from datasets you trust. By following the owl:sameAs links
for query federation, our query distribution framework only takes into
account those datasets you trust and linked with. A second major
advantage of following the owl:sameAs links is that they provide an easy
mechanism to do distributed joins. In RDF all resources are identified
by a URI. The owl:sameAs links will link two related resources to each
other by means of interrelating their URIs through owl:sameAs. This
means, the identifier of the remote resource, linked to the local resource
is known and can be used to perform the distributed join operation.

The Chapter is structured as follows: in the next section, we give an
overview of existing related work. Section 5.3 will elaborate on our so-
lution, where we also discuss in detail the two main components of our
framework, i.e., the index builder in Section 5.4, and the query distributor
in Section 5.5. In Section 5.6, we give an overview of the optimisations
that are applied to enhance the query execution performance. We end
the Chapter with an evaluation and a conclusion.

5.2 Related Work

At this moment, there are several approaches to distributed querying.
Some approaches rely on prior crawling and caching of the data, e.g.,
Sindice [102], which crawls Web pages embedding RDF and micro-
formats and makes the crawled data available through a SPARQL
endpoint and through an API. Actually, this is not distributed querying,
but querying a Semantic Web index, built from crawling and caching.
Another approach to distributed querying is relying on run-time link
traversal to answer queries. This approach is followed by SQUIN [104].
Here, the index is built at query run-time, which avoids syncing prob-
lems. A third approach being used, is based on query federation, which
is followed by frameworks like FedX: a federation layer for distributed
query processing on Linked Open Data[105] and DARQ [106]. FedX
provides a query distribution layer on top of the Sesame3 framework.
It executes query federation and query optimisation. DARQ federates
the queries using the predicates to decide where to send triple patterns
to as an optimisation technique. Just like FedX, Splendid [107] is an ex-
tension to Sesame, which employs VoID [108] to distribute its incoming
queries. Splendid will start firing SPARQL ASK queries to each dataset
for verification and later on statistical information is used to optimise
these federated queries.

3http://www.openrdf.org/

http://www.openrdf.org/

5.3. Solution 109

Our framework is a combination of the link traversal approach and the
query federation approach to solve queries ranging multiple, disparate
datasets. It is similar to what is being done in ‘Data summaries for
on-demand queries over linked data [109]. This latter will use an index
structure for optimising the query distribution and then queries the
data real-time, so no synchronisation problems occur. Our framework
will federate queries such that they follow the owl:sameAs links. Our ap-
proach actually exploits the fact that resources linked via an owl:sameAs
link, are interchangeable, which automatically brings in the distributed
information of these resources. At the same time, we will introduce
property mappings and class mappings to solve our incoming queries
and overcome interoperability issues between the linked datasets. The
benefit of this approach is that a data provider gets more control over
his data. He decides which datasets are used to enrich his data and, as
a consequence, he controls the SPARQL endpoints to which incoming
queries are distributed to.

Our framework is integrated into ARQ4. ARQ is a query engine for
Jena5 that supports the SPARQL RDF Query language. Many SPARQL
endpoint implementations are based on ARQ. This allows for any
SPARQL endpoint service provider relying on the ARQ library to easily
put up its own distributed SPARQL endpoint. They just have to replace
the ARQ library with our extended ARQ library and feed ARQ with
the SPARQL construct queries, used for enriching their dataset, or
with SILK configuration files, if they used SILK to enrich their dataset.
Thus, it becomes very easy for a data publisher to set-up a distributed
SPARQL endpoint, which federates queries to those datasets it is linked
with.

5.3 Solution
Our distribution framework will only follow owl:sameAs links. The
reason for this is threefold:

• The combination of all information pointed to by owl:sameAs
links creates the data provider’s view on the Linked Data cloud.
The data provider will only link its resources to resources from
data providers it trusts. By following the owl:sameAs links our
query federation framework takes this view on the LOD cloud
into account when distributing the queries.

4http://jena.apache.org/documentation/query/
5http://jena.apache.org/

http://jena.apache.org/documentation/query/
http://jena.apache.org/

110
Querying Distributed Linked Data - Query Federation using the

Provenance of owl:sameAs Links

• The provenance of these owl:sameAs links provide useful informa-
tion for distributing queries. The data providers actually have
this information as they are also responsible for the link gener-
ation, even when frameworks like SILK were used for the link
generation.

• These owl:sameAs links are a way for performing distributed
joins over disparate datasets. Without these links, the query
distribution framework should do the link generation during the
query execution in order to allow distributed joins.

Our distribution framework will rely on query rewriting. This way,
we do not need to index external information locally and avoid data
synchronization problems, and we can apply vocabulary mappings
to match the remote datasets’ vocabularies to overcome vocabulary
interoperability issues. Thus, we are able to tackle two problems at
once. The main idea behind our distribution framework is to rewrite
incoming queries in such a way that the symmetry and transitivity of
owl:sameAs is exploited. To achieve this, our framework traverses the
owl:sameAs links of the resources using SPARQL. Incoming queries are
split in sub-queries, which can be evaluated independently. For each
sub-query, we look for possible owl:sameAs linked resources. These
sub-queries are refactored to also target the remote SPARQL endpoints
of these owl:sameAs linked resources. At the same time, we apply
vocabulary mappings to the refactored sub-queries to match the remote
datasets’ vocabularies. Thus, to distribute the queries, some prior
knowledge is needed:

• SPARQL endpoints: for each discovered related resource, we
have to know the SPARQL endpoint we can consult for retrieving
information on the related resource.

• Vocabulary mappings: we cannot just distribute the same sub-
query to the different SPARQL endpoints, because every endpoint
uses its own vocabulary to describe things, thus we need appro-
priate mappings for disparate classes and properties of the remote
data sources. Some datasets use, e.g., rdfs:label for denoting the
name of a person, other datasets use, e.g., foaf:name.

This prior knowledge can be retrieved from the provenance of the
owl:sameAs links. The provenance of these owl:sameAs links can be
expressed as rules in the form of SPARQL construct queries, which will
be explained in detail in Section 5.4. This allows us to build a lookup
table, called distribution index which stores the service endpoints and for

5.4. Index Builder 111

each service endpoint the property mappings and the class mappings.
This information can be extracted from the SPARQL construct queries,
representing the owl:sameAs links’ provenance. This index building
process takes place prior to the queries and not during the queries. It is a
pre-processing step. This lookup table is part of the distributed SPARQL
processor, which will use this information to answer its incoming
queries and to distribute the sub-queries accordingly.

Our distribution framework is implemented as an extension to ARQ. It
has two main building blocks. The index builder processes the owl:sameAs
links’ provenance to build up the distribution index. This is explained
in Section 5.4. The query distributor is the second main building block,
responsible for federating and mapping the incoming queries, using
the distribution index. This block is explained in Section 5.5. This is
schematically shown in Section 5.3.

Figure 5.1: Schematic Overview of the Federation Architecture

5.4 Index Builder

The Index Builder is responsible for building the distribution index. This
index must be built before any queries are being fired. The index builder
will take provenance information of the owl:sameAs links to extract
the services to which it will distribute incoming queries and for each
service it will extract possible mappings.

112
Querying Distributed Linked Data - Query Federation using the

Provenance of owl:sameAs Links

Many owl:sameAs links are generated based on some rule, representing
the provenance of a owl:sameAs link. RDF Fragment 5.1 shows how a
owl:sameAs link, relating two persons, can be represented as a SPARQL
CONSTRUCT query. The index builder actually processes such rules to
feed the distribution index. Our framework implements two instances of
this index builder as an extension to ARQ. There are, thus, two ways of
feeding the distribution index:

• A SPARQL index builder that is fed with SPARQL construct queries,
representing the provenance of the owl:sameAs links present in
the dataset. In fact, these rules (SPARQL CONSTRUCT queries)
are the queries used for interlinking the dataset. The SPARQL
queries are compiled into SPARQL algebra and the index builder
algorithm, described below, is implemented such that it operates
on SPARQL algebraic expressions.

• A SILK index builder that takes as input a configuration file of SILK
[103], the link discovery framework6. This configuration file has
all the information available to represent the provenance of the
discovered links as SPARQL construct queries. Hence, an index
builder was also implemented for this sort of input. This SILK
index builder just parses the SILK configuration file and directly
fills up the index, because the SPARQL endpoint, class mappings
and property mappings for this SPARQL endpoint are directly
available from this configuration file.

RDF Fragment 5.1: Example owl:sameAs Provenance

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX lons: <http://foo.org/localontologynamespace#>
CONSTRUCT {?resource owl:sameAs ?remoteresource}
WHERE {
?resource a owl:Thing.
?resource lons:type "person".
?resource lons:name ?concept.
?concept skos:prefLabel ?name.
SERVICE <http://dbpedia.org/sparql>
{ ?remoteresource a foaf:Person.
?remoteresource foaf:name ?remotename.
FILTER (str(?remotename) = ?name } }

6http://www4.wiwiss.fu-berlin.de/bizer/silk/

http://www4.wiwiss.fu-berlin.de/bizer/silk/

5.4. Index Builder 113

5.4.1 Index Builder Algorithm

As explained, the provenance information of all the owl:sameAs links of
a dataset can be expressed as a number of SPARQL queries. The index
builder iterates through all these queries and for each query it does the
following:

1. Extract the remote SPARQL endpoint from the SERVICE ele-
ment and store it in the distribution index. In our example this is
<http://dbpedia.org/sparql>.

2. Extract the query variables from the CONSTRUCT clause, ex-
pressing the local resource (e.g., ?resource) and remote resource
(e.g., ?remoteresource).

3. Extract the triple pattern for the local resource and the triple
pattern for the remote resource.

Local triple pattern: ?resource a owl:Thing.
?resource lons:type "person".
?resource lons:name ?concept.
?concept skos:prefLabel ?name

Remote triple pattern: ?remoteresource a foaf:Person.
?remoteresource foaf:name ?remotename.

4. Extract possible FILTER expressions for the local resource and the
possible FILTER expressions for the remote resource.

FILTER (str(?remotename) = ?name)

5. Extract all different paths from both the local and remote triple
patterns. These paths can include FILTER expressions, thus for
building the paths also the extracted FILTER expressions are taken
into account.

Local path 1: ?resource a owl:Thing.
Local path 2: ?resource lons:type "person".
Local path 3: ?resource lons:name ?concept.

?concept skos:prefLabel ?name

Remote path 1: ?remoteresource a foaf:Person.
Remote path 2: ?remoteresource foaf:name ?remotename.

FILTER (str(?remotename) = ?name)

114
Querying Distributed Linked Data - Query Federation using the

Provenance of owl:sameAs Links

6. For every path, extracted from the remote triple pattern and
FILTER expressions, that ends in a query variable, find the corre-
sponding path, extracted from the local triple pattern and FILTER
expressions, that ends with the same query variable. The part
of the remote path, starting from the remote query variable to
the query variable, and the part of the local path, starting from
the local query variable, are property mappings of each other,
as shown in the example below. This mapping is stored in the
distribution index for this SPARQL endpoint.

Property mapping 1:
?resource lons:name ?concept.
?concept skos:prefLabel ?name
=
?remoteresource foaf:name ?remotename.
FILTER (str(?remotename) = ?name)

7. The remaining paths from the remote and local triple patterns
and FILTER expressions, make up the class mapping. This is also
stored in the distribution index for this SPARQL endpoint.

Class mapping 1:
?resource a owl:Thing.
?resource lons:type "person"
=
?remoteresource a foaf:Person.

To summarise, we list here the information to be stored in the distribu-
tion index using our index builder algorithm:

1. SPARQL endpoint: http://dbpedia.org/sparql
2. Class mapping: ?resource lons:type "person". ?resource lons:name

?concept. = ?remoteresource a foaf:Person.
3. Property mapping: ?resource lons:name ?concept. ?concept

skos:prefLabel ?name = ?remoteresource foaf:name ?remotename.
FILTER (str(?remotename) = ?name)

5.5 Query Distributor

The query distributor refactors the incoming query to become a dis-
tributed query using the information of the distribution index built by
our index builder. The query will be transformed in such a way that

5.5. Query Distributor 115

all linked resources via owl:sameAs become interchangeable, which ag-
gregates all the information that directly or indirectly is available on
these resources. Thus, our framework actually makes use of the fact
that owl:sameAs is symmetrical and transitive.

This distribution of the incoming query is done during the query
optimisation in ARQ, thus after the incoming query has been compiled
to a SPARQL algebraic expression. The query distributor is implemented
as a query transformation that uses the distribution index to perform its
transformations. It will search for triple patterns that are not part of
a SPARQL SERVICE element. Triple patterns belonging to a SPARQL
SERVICE operator are not altered, only the part of the incoming query
that is meant to be evaluated against the local data is affected by the
query distributor. The query distribution algorithm will distribute incoming
queries in two phases. First, the basic graph patterns (BGPs) of the
query are being distributed during the Transform BGP phase. Later on,
these distributed BGPs will be merged appropriately during the Merge
BGP phase. The details of the query distribution algorithm are discussed
hereafter.

RDF Fragment 5.2: Example Query Distribution

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX dbpediaont: <http://dbpedia.org/ontology/>
SELECT DISTINCT ?author ?booktitle ?producer ?comment
WHERE {
{
?book dbpediaont:writer ?author. | BGP 1
?book rdfs:label ?booktitle. |
?book rdfs:comment ?comment. |

} OPTIONAL
{
?book dbpediaont:producer ?producer. | BGP 2

}
}

5.5.1 Transform BGPs Algorithm

This algorithm operates on a SPARQL algebraic expression and will, as
explained, transform first the BGPs individually. This distribution is
illustrated with an example. In this example, the index is built from the
query rule, shown in RDF Fragment 5.1, which was discussed in detail

116
Querying Distributed Linked Data - Query Federation using the

Provenance of owl:sameAs Links

in Section 5.4. The incoming query, this algorithm is illustrated with, is
shown in RDF Fragment 5.2. The query distribution algorithm does for
every BGP of the incoming query the following:

1. Extract the triples of the BGP to be evaluated to the local data
(i.e., triples from triple patterns not part of a SPARQL SERVICE
element).

BGP 1 triple pattern: ?book dbpediaont:writer ?author.
?book rdfs:label ?booktitle.
?book rdfs:comment ?comment.

BGP 2 triple pattern: ?book dbpediaont:producer ?producer
.

2. Extract possible FILTER expressions affecting these extracted
triple patterns.

3. Extract all nodes from the BGP. These nodes can be URIs or query
variables (e.g., ?book, ?booktitle, ?author, and ?comment for BGP
1 from our example depicted in RDF Fragment 5.2).

BGP 1 nodes: ?book, ?author, ?booktitle, ?comment.

BGP 2 nodes: ?book, producer.

4. For every node, extract all possible paths (i.e., query paths) from
the extracted triples and FILTER expressions. Thus, these query
paths can include FILTER expressions, apart from the triples. They
can be seen as property paths, extended with FILTER expressions.

Query paths extracted with starting node ?book from BGP 1:
Query path 1: ?book dbpediaont:writer ?author.
Query path 2: ?book rdfs:label ?booktitle.
Query path 3: ?book rdfs:comment ?comment.

Query paths extracted with starting node ?book from BGP 2:
Query path 1: ?book dbpediaont:producer ?producer.

5. Every extracted path from the previous step has a local
variant (e.g., ?book dbpediaont:writer ?author) and a re-
mote variant (e.g. ?book owl:sameAs ?DQV0. SERVICE
<http://dbpedia.org/sparql> ?DQV0 dbpediaont:writer ?au-
thor), which are tied together using the UNION operator, as

5.5. Query Distributor 117

RDF Fragment 5.3: Part of the Outcome from step 5 of the Transform BGPs
Algorithm
Distributed query paths extracted with starting node ?book from

BGP 1:
(sequence
(union
(bgp (triple ?book dbpediaont:writer ?author)) |Local QP1
(sequence
(bgp (triple ?book owl:sameAs ?DQV0)) |Remote QP1
(service <http://dbpedia.org/sparql> |
(bgp (triple ?DQV0 dbpediaont:writer ?author)))))|

(union
(bgp (triple ?book rdfs:label ?booktitle)) |Local QP2
(sequence
(bgp (triple ?book owl:sameAs ?DQV1)) |Remote QP2
(service <http://dbpedia.org/sparql> |
(bgp (triple ?DQV1 rdfs:label ?booktitle))))) |

(union
(bgp (triple ?book rdfs:comment ?comment)) |Local QP3
(sequence
(bgp (triple ?book owl:sameAs ?DQV2)) |Remote QP3
(service <http://dbpedia.org/sparql> |
(bgp (triple ?DQV2 rdfs:comment ?comment)))))) |

shown in RDF Fragment 5.3. For the remote variant of the query
path, the start node of that query path is decoupled into the
owl:sameAs equivalent. The owl:sameAs equivalent is distributed
to the SPARQL endpoints from the distribution index and at the
same time mappings from the distribution index for that SPARQL
endpoint are applied. The example depicted in RDF Fragment 5.3
shows the query paths extracted from node ?book for the example
query depicted in RDF Fragment 5.2.

6. The outcome of the previous step are only the distributed query
paths starting from a certain node (e.g., ?book in our example).
These blocks (i.e., sequence operators) still need to be tied together.
This is done during this last step using the UNION operator. This
way, a BGP is split up in all possible query paths. Figure 5.2 gives
a schematic overview of how a BGP 1 from the example depicted
in RDF Fragment 5.2 is distributed. Each of the four right blocks
represent the outcome from the previous step, but each using a
different starting node.

118
Querying Distributed Linked Data - Query Federation using the

Provenance of owl:sameAs Links

Figure 5.2: Schematic Overview of the Distributed BGP 1

5.5.2 Merge BGP Algorithm

The previous phase only distributed the BGPs. These distributed BGPs
cannot be merged as such. If we take back the example depicted in RDF
Fragment 5.2 and consider BGP 2, the nodes extracted from this BGP
are only ?book and ?producer. If the local dataset only has information
on authors (which are linked to their DBpedia owl:sameAs equivalent)
and we want to have the producer of a book, there needs to be a query
path from ?author to ?producer. This query path is not extracted from
BGP 1, nor from BGP 2. For this, we need a special merging algorithm.
The result of such a merge is shown in Figure 5.3. This example only
shows the merged operator with query path starting with node ?book.
The result is an extra query path, merged using a LeftJOIN operator.
To achieve this, our merging algorithm works as follows:

1. The triples from BGP 1 and BGP 2 are merged.
2. From the merged triples all nodes are extracted (e.g. ?book,

?booktitle, ?comment, ?author and ?producer).
3. For every node, all query paths are extracted.
4. If a query path from a certain node is not yet present in the

distributed BGP 1, then the query path is merged with the already
extracted query paths for that node in the distributed BGP 1. This
merge is done using the operator that binds BGP 1 and BGP 2, i.e.,
LeftJOIN operator in this case, which is the algebraic equivalent
of an OPTIONAL operator in SPARQL, as shown in Figure 5.3.

5.5. Query Distributor 119

Figure 5.3: Schematic overview of the merged BGPs

RDF Fragment 5.4: Merging of Distributed BGP 1 and BGP 2 - only that part
with query paths starting with ?book node
Merged (BGP 1 and BGP 2), distributed query paths extracted

with starting node ?book:
(leftjoin
(sequence operator shown in step 5 of the transform BGP

algorithm)
(union

(bgp (triple ?book dbpediaont:producer ?producer))
(sequence
(bgp (triple ?book owl:sameAs ?DQV0))
(service <http://dbpedia.org/sparql>
(bgp (triple ?DQV0 dbpediaont:producer ?producer))))))

120
Querying Distributed Linked Data - Query Federation using the

Provenance of owl:sameAs Links

RDF Fragment 5.5: Merging of distributed BGP 1 and BGP 2 - only that part
with query paths starting with ?author node

Merged (BGP 1 and BGP 2), distributed query paths extracted
with starting node ?outhor:

(leftjoin
(sequence operator for the node ?outhor)
(union

(bgp (triple ?book dbpediaont:writer ?author)
(triple ?book dbpediaont:producer ?producer))

(sequence
(bgp (triple ?author owl:sameAs ?DQV0))
(service <http://dbpedia.org/sparql>
(bgp (triple ?book dbpediaont:writer ?DQV0)

(triple ?book dbpediaont:producer ?producer))))))

5.6 Optimisations

So far, the basic federation algorithm has been discussed. It is aimed
at distributing the incoming query to the fullest, in order to find an
answer. A feature of this query distribution framework is that it does
not narrow down its search space. Thus, if an answer is out there, it
will be returned. This feature comes at the cost of query execution
performance. Optimisations should be focused on increasing the query
execution performance, without narrowing down the search space, in
contrary to many other query federation frameworks which optimise
by narrowing down the search space, e.g., FedX. Practically, this means
limiting the SERVICE operations when distributing the query paths
and increasing their execution. First we will discuss two optimisations
that are already in place. Next we discuss some future optimisations.

A. Query Paths

The basic entity our distribution algorithm operates on is a query
path. A query path is actually a property path extended with FILTER
expressions and GRAPH expressions. These query paths are distributed
to the remote SPARQL endpoints and, hence, FILTER and GRAPH
expressions are evaluated at the remote SPARQL endpoint. At the same
time these query paths, which are fired repeatedly, better exploit the
Web caching of the SPARQL queries.

5.6. Optimisations 121

B. Mappings

To the query path that is being federated, mappings are applied to refac-
tor the query path to the vocabularies the remote dataset supports. This
enhances interoperability of the query federation framework and makes
our framework more robust. The mappings are retrieved implicitly, by
processing the provenance of the owl:sameAs links. As a consequence,
the mappings are always expressed in terms of the local vocabularies
used. It can be seen either as a point-to-point mapping strategy or as a
strategy using a universal data model, where the universal data model
is always the local data model from which the distributions start.

C. Minimising SERVICE Operations, optimising the query execu-
tion

Minimising the number of SERVICE operations is a future goal of our
framework. This means we need to filter out the unnecessary query
paths, which do not contribute to an answer. First of all, we could group
the queries for the same endpoint to already minimise the number of
service calls. Another optimisation will be the introduction of VoID
descriptions to filter out the unnecessary service calls. Considering
the optimisation of the query execution, one could look at the VoID
descriptions to optimise the query planning of the incoming queries.
Another contribution to the query planning could be the analysis of the
remote SPARQL endpoints. Some COUNT queries on the properties
and classes that are represented in the distribution index, can optimise
the query planning and, hence, the query execution. Another possible
optimisation is a concurrent execution of the query processing, espe-
cially the service operations. Until now, SPARQL query processing in
ARQ is synchronous, but non-blocking. This means that the result of a
query is already available during query execution and communication
with the client can thus be made concurrent, but this is only effective
if the processing of the federated query also happens concurrently.
By introducing a SPARQL SERVICE operator, which is processed con-
currently, the SPARQL processing becomes concurrently. By doing
this, results become available as soon as the SPARQL processor has
found some answers, but there are also some benefits regarding the
performance of the SPARQL processing. Looking at the schematic
overview of a distributed query, shown in Figure 5.2, a query is split
up in different versions of the query from the perspective of a node
that needs to be decoupled into its owl:sameAs equivalents (UNION

122
Querying Distributed Linked Data - Query Federation using the

Provenance of owl:sameAs Links

operator in Figure 5.2). All these different query versions, of which
two are depicted in RDF Fragment 5.4 and RDF Fragment 5.5, need to
be joined. This join can be replaced by our concurrent operator, which
will evaluate all the different versions of the query concurrently. Our
operator, is in fact a thread-pooled UNION operator, merging all its
incoming results, and the SERVICE operator.

5.7 Evaluation

For evaluating our distribution framework, we make use of the Berlin
SPARQL Benchmark. The dataset of this benchmark, consisting of
10.000 product descriptions, is published over two SPARQL endpoints,
i.e., a local and a remote SPARQL endpoint. We have set up a local
SPARQL endpoint, whose dataset only contains product URIs, linked
via owl:sameAs with the product resources of the remote BSBM dataset.
The BSBM query-mix is fired at the local SPARQL endpoint, which
distributes the queries using our distribution framework to solve the
queries. For this, it contacts the remote SPARQL endpoint. The exe-
cution times of the results are used for evaluation. These result times
are evaluated against the result times of the ’perfect’ distributed query,
see Table 5.1. This ’perfect’ distributed query just forwards the whole
query of the BSBM query-mix to the remote SPARQL endpoint using
the SERVICE operator. This way, we evaluate the result times of a
query once using our distribution algorithm against the result times
of a query using a ’perfect’ query distribution. By doing this kind
of evaluation, our evaluation is also independent of the used hard-
ware/software and the size of the BSBM dataset and thus evaluates
the distribution algorithm itself. Table 5.1 shows the results for only
a part of the queries of the BSBM query-mix. The other query results
showed similar performance. These results were obtained by running
the queries 100 times and calculating their average response times. We
did not opt to run the queries 10.000 times as is usual in these cases,
because then our results would be influenced too much by the web
caching, and we want to evaluate our algorithm. The results for query
7 show a large deviation, which is due to the fact that a large number
of intermediate results were transmitted during its evaluation. This
shows our algorithm has still some room for optimisation.

5.8. Conclusion 123

’perfect’ distribu-
tion algorithm

Result time first result Result time last result

Query 1 780 ms 3763 ms
Query 3 2701 ms 4076 ms
Query 7 517 ms 603 ms
our distribution
algorithm

Result time first result Result time last result

Query 1 967 ms (+23%) 4480 ms (+19%)
Query 3 3594 ms (+22%) 4929 ms (+21%)
Query 7 631 ms (+22%) 862 ms (+42%)

Table 5.1: Performance Results of our Query Federation Framework

5.8 Conclusion

In this chapter, we described our framework for distributing queries
relying on the symmetry, transitivity, and the provenance information of
owl:sameAs. This way, our framework acts like a window on the Linked
Open Data cloud, where all information is available on resources that
are directly (via owl:sameAs links) linked to one of your resources, or
indirectly (via a owl:sameAs links of a linked resource). For this, the
framework relies on the provenance of the owl:sameAs links, which can
be expressed by a rule or SPARQL construct query. The rules or queries
give information on the SPARQL endpoint to use for querying that
linked dataset and some vocabulary mappings to use for querying that
dataset.

Our framework is implemented as an extension of ARQ and consists
of two main components: the index builder, and the query distributor.
The index builder will build an index based on the provenance of the
owl:sameAs links. It supports building an index based on SPARQL
construct queries or rules, which express the provenance of the gen-
erated owl:sameAs links, and it supports also building an index based
on a configuration file for the SILK enrichment framework. The query
distributor will re-factor the incoming queries to distributed sub-queries,
targeting the SPARQL endpoints of the linked datasets, during the
query optimisation phase. During this re-factoring the appropriate
mappings are applied on the triple patterns, mapping the triple pat-
terns to vocabularies the remote dataset supports. This approach gives
data providers more control. They can easily set-up their own dis-
tributed SPARQL endpoint, which will distribute incoming queries to

124
Querying Distributed Linked Data - Query Federation using the

Provenance of owl:sameAs Links

those datasets they trust, because these are the datasets they use for in-
terlinking. We evaluated our platform using the BSBM benchmark, but
in a distributed environment. For this the queries from the benchmark
had to be distributed to answer the queries.

The author’s work on query federation led to the following publications:
• Sam Coppens, Ruben Verborgh, Erik Mannens, and Rik Van de

Walle. „Querying the Linked Data Graph using owl: sameAs
Provenance”. In: Proceedings of the 16th International Conference on
Model Driven Engineering Languages and Systems (2013)

• Sam Coppens, Miel Vander Sande, Ruben Verborgh, Erik Man-
nens, and Rik Van de Walle. „Remote Reasoning over SPARQL”.
in: Proceedings of the 6th Workshop on Linked Data on the Web (2013)

Chapter 6

Self-Sustaining Platforms - A
Distributed Reasoning

Framework to implement a
Semantic Workflow Engine

In this chapter, we provide a novel semantic workflow system, based on
semantic functional service descriptions and a rule file. The idea for this
workflow engine came from the long-term preservation archive, which could
benefit greatly from such a semantic workflow engine. The workflow engine
follows a three-step process. First, it determines for all the resources in its
knowledge base the functionality they need to progress in the workflow. This
uses a phase-functionality rule file which binds phases of the workflow to
functionalities. During a second phase, the functionalities are mapped to
REST service calls using RESTdesc’s functional descriptions. During the third
step, the engine executes the generated service calls and pushes the resource it
acted on to the next phase in the workflow using a phase-transition rule file.
The main advantage of this approach is that each step can be influenced by
external information from the Linked Open Data cloud. It exploits the fact
that Linked Open Data and RESTful Web services and APIs are all resource-
oriented. Moreover, the workflow rule file makes the system easily adaptable
and extensible to achieve new functionalities or to obey changing company
policies. Finally, the separation between functional descriptions and service
descriptions supports easy management over the fast-changing services.

126
Self-Sustaining Platforms - A Distributed Reasoning Framework

to implement a Semantic Workflow Engine

6.1 Introduction

Today, applications on the Web increasingly rely on Linked Open
Data [100] and RESTful services [110]. Both have a resource-oriented
architecture that exploit links between resources. The increasing speed
at which Linked Open Data, Web services and APIs are being deployed,
demands an intelligent, expandable workflow engine that can be used
in various domains, such as factories and Smart Cities. Process control in
factories is often hard-coded into the control software of the production
machines. Whenever they want to introduce a new sensor to steer the
process, software needs to be adapted, recompiled, and re-deployed on
every machine. An even bigger problem arises for Smart Cities, which
use millions of wireless sensors. Existing workflow engines try to make
this manageable, yet they are mostly manually created. Moreover, the
intelligence of a platform is often distributed over the software code
and the workflow engine, making the management of such a system
a huge burden. Novel workflow engines should be able to integrate
resources of any kind, i.e., Linked Open Data and RESTful Web services,
to even become resource-agnostic. The only difference is that resources
describing RESTful Web services and APIs get a functionality attached
to them.

In the solution we envision, the software intelligence and the workflow
engine are unified into one system. Its first cornerstone is that workflows
do not require manual composition anymore, since they are composed
automatically using semantic service descriptions and workflow descrip-
tion files that captures the intelligence of the platform. By relying on
functional service descriptions, services offering similar functionality
become interchangeable. The declarative workflow rule files steer the
reasoning engine by describing the whole process in terms of function-
alities. This way, services become interchangeable and the platform
becomes a loosely coupled system. Adaptations in the services or the
workflow rule files are straightforward, without the need to adapt
software code.

The second cornerstone of the envisioned platform is the automated exe-
cution of generated workflows. Together with the automatic workflow
composition, the whole system becomes self-sustaining, easily adapt-
able and extensible, and highly portable. Workflows are dynamically
recomposed when needed and automatically triggered when needed.

6.2. Related Work 127

This unique combination enables our system to form the backend
platform for a broad spectrum of applications, ranging from home
domotic systems, long-term preservation platforms, process control
software for factories to large Smart Cities. The only assets that need to
be managed are the service descriptions and the worfklow description
rule files. At any moment new services can be described, which will
automatically be incorporated into the newly generated workflows.
Even the whole process can be changed, by making alterations to the
workflow description rule files. All this happens in a declarative way,
eliminating the need to redesign, recompile, and redeploy the software,
keeping the system more manageable. These two characteristics, i.e.,
manageability of the services and speed-up of the development process
or extensibility of the system, are key to our solution and distinguish it
from traditional workflow engines.

The Chapter is structured as follows: in the next section, we give an
overview of existing related work. Section 6.3 will elaborate on our
solution and architecture. Next, we discuss all operational phases
of the workflow engine. In Section 6.4, we detail the Functionality
Generation Phase. In Section 6.5, the Service Generation Phase is discussed
in detail. Section 6.6 describes the Service Execution and Transition Phase
of our workflow engine. Finally, we discuss some advanced features
of the workflow engine in Section 6.7, and we end the Chapter with a
conclusion.

6.2 Related Work

Our self-sustaining platform relies on two basic technologies: semantic
service descriptions and automatic workflow composition. “Semantic
Web Services: a RESTful approach” [111] has a RESTful grounding
ontology that maps OWL-S [112] and WADL [113]. OWL-S is a W3C
submission for Semantic Web service descriptions. Web Application
Description Language (WADL) is a W3C submission for describing
REST over HTTP Web services. WADL is to REST what WSDL is
to SOAP.

Next to these, the Linked Data API is also a related technology. Their
scope is to provide simple RESTful APIs over RDF graphs to bridge the
gap between Linked Data and SPARQL. This specification aims to fill
that gap by defining an easy to use and easy to deploy API layer that
can act as a proxy for any SPARQL endpoint.

128
Self-Sustaining Platforms - A Distributed Reasoning Framework

to implement a Semantic Workflow Engine

When it comes to automatic workflow composition, Data-Fu, a language
and interpreter for interaction with read/write Linked Data, is related
to our research. Data-Fu is a declarative rule language for specifying
interactions between web resources. Another platform, supporting
automatic workflow composition is the work of Krummenacher [114].
In this work, he investigates the composition of RESTful resources in
a process space. The work is based on resources described by graph
patterns. Similar work is carried out by Speiser and Harth [115], which
also relies on graph patterns for RESTful Linked Data Services. For
our workflow composition, we rely on rule-based reasoning. All the
intelligence of an application is gathered by three rule files. This
centralisation of the application’s intelligence allows easy management
of the services, because services become interchangeable if they provide
the same functionality. This is already a major contribution, comparing
to the other three automatic workflow composition frameworks. At the
same time, it allows easy adaptation and extensibility of the application
through the adaptation of the three rule files. There is no need anymore
to recompile, and redeploy the software. Because of the three-phase
operation of our semantic workflow engine, this engine can easily work
completely distributed to meet scalability issues.

6.3 Concept and Architecture

When composing a workflow, our platform basically needs the follow-
ing information, as shown in Figure 6.1:

Knowledge Base The knowledge base contains actually the informa-
tion to be acted on. This is Linked Open Data, coming from a
local triple store or optionally the Linked Open Data cloud itself.

Phase-Functionality rule file A phase-functionality rule file is a declar-
ative file, stating how the different phases of a workflow are
mapped to functionalities to move the resource to the next phase
in the workflow. Rules are described in N3 [16], as will be dis-
cussed in Section 6.4.

Phase-Transition rule file This file is actually responsible for routing
the different phases (read functionalities) of a workflow such that
it complies to a certain overall functionality or company policy.

Functional service descriptions These service descriptions describe
the individual services the workflow engine can make use of to
compose its workflows. RESTdesc [116] describes services, as will
be detailed in Section 6.5.

6.3. Concept and Architecture 129

Figure 6.1: Basic building blocks of the self-sustaining platform.

The phase-functionality rule file, the phase-transition rule file, and
the service descriptions in combination with the knowledge base, and
optionally even external knowledge bases from the LOD cloud will
generate the needed service calls by means of reasoning. This happens
by the workflow generator. Because we rely on monotonic rule rea-
soning, this is a single threaded process. The generated service calls
will be executed by the workflow executor. Of course, this can be a
multi-threaded process.

The operation behind the self-sustaining platform actually consists of
three phases, as illustrated in Figure 6.2:

1. In the functionality generation phase, the phase-functionality
rule file will tell for each resource which functionality it needs to
get to the following phase of the workflow. This will happen by
reasoning with the rule file over the knowledge base. This will
entail triples describing a functionality the resource needs to get
to the following phase of the workflow.

2. In the service call generation phase, these functionalities are
mapped to service calls using the service descriptions. This is
also done by reasoning over the entailed triples of the previous
phase. The entailed triples of this reasoning cycle will describe
service calls to be executed during the following phase. Splitting
up the functionalities of service calls has a great advantage for the
management of the services and generated workflows, because
now workflow management and service management are split
up. This split up decouples workflows from the services used in
them, which is great benefit, certainly when hosting millions of
services as service providers do.

130
Self-Sustaining Platforms - A Distributed Reasoning Framework

to implement a Semantic Workflow Engine

Figure 6.2: Schematic operation of the self-sustaining platform.

3. In the service call execution phase, the generated service call is
being executed. If the service executed successfully, the phase-
transition rule file is used to move to the next phase within the
workflow.

Determining the needed transition is performed by means of reasoning
over the entailed triples from the previous phase. The entailed triples
of this phase will be stored to the knowledge base and a whole new
reasoning cycle from the first phase is started. The next sections, will
discuss the different steps in detail.

To demonstrate our idea, we will focus on the use case of publishing
Linked Open Data. Publishing Linked Open Data typically consists of
four steps: harvesting the data, mapping the harvested data, reconciling
the mapped data, enriching the reconciled data, and finally, publishing
the enriched data.

6.4. Functionality Generation Phase 131

Figure 6.3: Example workflow for publishing LOD.

6.4 Functionality Generation Phase

This phase-functionality rule file will split up the workflow into dif-
ferent phases and it will list the functionality it needs for each phase
to get to the following phase. If we take back the example of pub-
lishing Linked Open Data, then its workflow consists of the following
ordered list of functionalities: harvesting, mapping, reconciliation and
publication. Each of the functionalities give rise to a new phase, as
schematically shown in Figure 6.3. The nodes denote the phase, the
edges the functionality it needs to transition to a following phase.

The phases, and the functionalities connecting them, form a functional
workflow description. This is a composition of functionalities that need
to be performed in order to fulfil a certain policy or achieve a certain
goal. Such a goal or policy can be described using a rule file and a
rule-based reasoner. In this rule file, the phases and functionalities
need to be denoted with URIs. Taking back our example of our LOD
publisher, the rule file looks like the following:

@prefix wf: <http://example.org/workflow#>.
@prefix fn: <http://example.org/functionalities#>.

{?object0 wf:hasStarted wf:phase_0} =>
{?object0 fn:harvestRecord ?object1.
?object1 wf:hasCompleted wf:phase_0}.

{?object1 wf:hasStarted wf:phase_1} =>
{?object1 fn:map ?object2.
?object2 wf:hasCompleted wf:phase_1}.

{?object2 wf:hasStarted wf:phase_2} =>
{?object2 fn:reconcile ?object3.
?object3 wf:hasCompleted wf:phase_2}.

{?object3 wf:hasStarted wf:phase_3} =>
{?object3 fn:enrich ?object4.
?object4 wf:hasCompleted wf:phase_3}.

{?object4 wf:hasStarted wf:phase_4} =>
{?object4 fn:publish ?object5.
?object5 wf:hasCompleted wf:phase_4}.

132
Self-Sustaining Platforms - A Distributed Reasoning Framework

to implement a Semantic Workflow Engine

This phase-functionality rule file actually describes the different phases
of a resource in a workflow and for each phase its functionality. It does
not tell how the different phases should be coupled in order to achieve a
certain workflow. These transitions are described in the phase-transition
rule file, discussed in Section 6.6. During the second step, this functional
workflow, actually described as entailed triples, is being materialised
to explicit service calls. Assume we have an URL of a resource we
want to publish as LOD, e.g., <http://foo.org/resource/1234>. If we
add the following triple to our triple store/knowledge base, we get the
publishing procedure starting:

<http://foo.org/resource/1234> wf:hasStarted wf:phase_0.

Reasoning over this triple with our example rule file yields the following
triples:

<http://foo.org/resource/1234> fn:harvestRecord ?object1.
?object1 wf:hasCompleted wf:phase_0.

These triples are passed to the next step, where functionalities are
translated into REST service calls by means of reasoning over these
entailed triples with the service descriptions. Once, the service calls are
entailed, they are passed to the execution phase. After the successful
execution, all the entailed triples are added to the knowledge base,
which finishes a first reasoning cycle of the platform. After this step, a
new reasoning cycle is fired. Another reasoning cycle over these triples
would yield the following triples, which in turn are passed to the next
step:

?object1 fn:map ?mappedResult.
?mappedResult wf:hasCompleted wf:phase_1.

Eventually, after several reasoning cycles, the entire workflow will be
executed.

6.5 Service Generation Phase

As explained above, this step is going to turn the result of the func-
tionality generation phase into a service call description, which will
be fed to the service execution and transition phase. The result of the

6.5. Service Generation Phase 133

functionality generation phase is actually a set of entailed triples, as
shown in the previous section. For each phase in the workflow, we have
a triple denoting the functionality it needs for the next phase. These
triples should actually result in a description of a REST service, which
serves the functionality.

For the service description, we rely on RESTdesc [116]. RESTdesc
is both a description and a discovery method targeting restful Web
services, with an explicit focus on functionality. It consists of well-
established technologies such as HTTP and RDF/Notation3 and is
built upon the concepts of hyperlinks and Linked Data. Its goal is to
complement the Linked Data vision, which focuses on static data, with
an extension towards Web services that focus on dynamic data. All
RESTdesc descriptions are:

• self-describing: using Notation3 semantics;
• functional: explaining exactly what the operation does;
• simple: descriptions are expressed directly using domain vocabu-

laries.

Since RESTdesc entails the operational semantics of Notation3, it allows
for versatile discovery methods. We can indeed use the power of
Notation3 reasoners to determine whether a service satisfies at set of
conditions. Even more advanced reasoning is possible to decide on
service matching, and/or to create complex compositions of different
services. We see this as an important prerequisite for services in
order for them to contribute to the future Web of Agents, since new
functionality can only be obtained by on-demand compositions tailored
to a specific problem. Such a RESTdesc description of a service that
harvests a record, looks like this:

@prefix fn: <http://example.org/functionalities#>.
@prefix http: <http://www.w3.org/2011/http#>.

{ ?url fn:harvestRecord ?record. }
=>
{
_:request http:methodName "GET";

http:requestURI ?url;
http:resp [http:body ?record].

}.

134
Self-Sustaining Platforms - A Distributed Reasoning Framework

to implement a Semantic Workflow Engine

It actually says: If you have a URL from which you want to harvest
a metadata record, then you can do this by an HTTP GET request on
the URL and the response will contain the record in its body. POST
requests are also described in this way. The following mapping service
is a good example of a POST request.

{
?record fn:map ?mappedRecord.

}
=>
{
_:request http:methodName "POST";

http:requestURI "http://example.org/service/map/";
http:body ?record;
http:resp [http:body ?mappedRecord].

}.

Thus, during this second step, we only need to reason with the REST-
desc service descriptions over the entailed triples of the first step in
order to get the service call descriptions that need to be executed during
the next step. If we take back the example of Section 6.4, the entailed
triples from the first reasoning cycle being fed to this step are:

<http://foo.org/resource/1234> fn:harvestRecord ?result.
?result wf:hasCompleted wf:phase_0.

Reasoning over these triples with the service description of the harvest
service, inferences the following triples that are fed to the workflow
execution step:

_:request http:methodName "GET";
http:requestURI <http://foo.org/resource/1234>;
http:resp [http:body ?record].

If you have multiple services covering the same functionality in your
repository with RESTdesc service descriptions , this phase would yield
multiple REST service calls being described. Not all these service
descriptions need to be fed to the service execution phase, only one
needs to. For this reason, this phase stops after the first RESTdesc
service description that entails a service call description. This separation
of functionalities and services that cover these functionalities greatly
enhances the management of the services and the workflows. It makes

6.6. Service Execution and Transition Phase 135

services with the same functionality interchangeable. Of course, this
service selection step can also be influenced, as will be discussed in
Section 6.7.4.

6.6 Service Execution and Transition Phase

In this step, the entailed triples of the previous step are processed.
The entailed triples of the previous step actually describe a REST
service call, explaining the HTTP GET request can be done on the URL
http://foo.org/resource/1234 and the record’s metadata will
be returned into the response’s body. Thus, an execution agent can
process these entailed triples, describing a service call. If the agent
executes the service call successfully, the phase transition rule file
is used to progress to the next phase of the workflow. This phase-
transition file actually routes all the different phases of the workflow.
This is done by reasoning over the entailed triples of the previous steps.
For our LOD publication example, this phase transition file looks like
this:

@prefix wf: <http://example.org/workflow#>.
@prefix fn: <http://example.org/functionalities#>.

{?object wf:hasCompleted wf:phase_0} =>
{?object0 wf:hasStarted wf:phase_1}.

{?object wf:hasCompleted wf:phase_1} =>
{?object0 wf:hasStarted wf:phase_2}.

{?object wf:hasCompleted wf:phase_2} =>
{?object0 wf:hasStarted wf:phase_3}.

{?object wf:hasCompleted wf:phase_3} =>
{?object0 wf:hasStarted wf:phase_4}.

For our example, the entailed triples fed to this step are:

<http://foo.org/resource/1234> wf:hasCompleted wf:phase_0.
_:request http:methodName "GET";

http:requestURI <http://foo.org/resource/1234>;
http:resp [http:body ?record].

136
Self-Sustaining Platforms - A Distributed Reasoning Framework

to implement a Semantic Workflow Engine

The service-executing agent detects the service call description and
executes it. If the execution was successful, the reasoning with the
phase-transition file is started, yielding the following triples:

<http://foo.org/resource/1234> wf:hasStarted wf:phase_1.

After this last reasoning cycle, all the entailed triples of the three steps
are being ingested into the knowledge base and a new functionality
generation phase is started, as shown in Figure 6.2. If the execution
of the service call was unsuccessful, the operation breaks up, storing
nothing to the knowledge base, because you cannot state the phase has
already been finished. Thus, the triples being added to the knowledge
base are:

<http://foo.org/resource/1234> wf:hasCompleted wf:phase_0.
_:request http:methodName "GET";

http:requestURI <http://foo.org/resource/1234>;
http:resp [http:body ?record].

<http://foo.org/resource/1234> wf:hasStarted wf:phase_1.

6.7 Advanced Features

In this section, we are going to discuss some advanced features of
the workflow engine. Until now, only the basic operations have been
discussed. By adapting the phase-transition file, and the service de-
scriptions, some more advanced features are possible in this framework.
The advanced features discussed in this section are: how to integrate
feedback loops, cron jobs, and nested functionalities. The advanced
features are not limited to these ones. Other features are, e.g., the
possibility to include Linked Open Data into the workflow, such that
workflows are adapted or triggered by external data from the Linked
Open Data cloud. SPARQL endpoint results can also be integrated
into the workflows. For this, SPARQL requests are modeled as REST-
ful service calls. The results from these endpoints can then be used
within the rule files making the workflows adapt to this external data.
Another feature that can be integrated into the workflow engine is
basic workload balancing. For this, we can include counters attached to
service endpoints. A service selection can then take into account these
counters and select the one with the least load. This would already

6.7. Advanced Features 137

Figure 6.4: Example timed feedback loop for publishing LOD.

fulfil a basic workload balancing. In the remainder of this section, we
will discuss in detail the following advanced features: feedback loops
with a cronjob (time-based, repeating task), nested functionalities, how
to include authority, and how to influence the service selection.

6.7.1 Feedback Loops

Feedback loops can be built into the workflow. In our example, we can
introduce an update process by introducing a recurring reharvest of
the record, as depicted in Figure 6.4 This is achieved by adapting the
first rule and adding a rule to the phase-functionality rule file:

@prefix dc: <http://purl.org/dc/elements/1.1/>.
@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix time: <http://www.w3.org/2000/10/swap/time#>.

{?object0 wf:hasStarted wf:phase_0} =>
{?object0 fn:harvestRecord ?object1.
?object1 wf:hasCompleted wf:phase_0.
?object1 dc:source ?object0.
?object1 dcterms:modified time:localTime.}.

{?object5 wf:hasStarted wf:phase_5.} =>
{?object5 dc:source ?url.
?url fn:reHarvestRecord ?object6.
?object6 wf:hasCompleted wf:phase_5.}.

With these rules, we define an extra phase for the work-
flow, i.e., wf:phase:5, which is coupled to the functionality
fn:reHarvestRecord. Next, this phase needs to be integrated into
the phase-transition rule file. The phase-transition file will get the
following extra rule:

138
Self-Sustaining Platforms - A Distributed Reasoning Framework

to implement a Semantic Workflow Engine

Figure 6.5: Example of a nested loop for publishing LOD.

@prefix func: <http://www.w3.org/2007/rif-builtin-function#>
@prefix pred: <http://www.w3.org/2007/rif-builtin-predicate#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

{?object wf:hasCompleted wf:phase_4;
dcterms:modified ?lastHarvest.

(time:localTime ?lastHarvest) func:subtract-dateTimes ?
difference.

(?difference "P14D"^^xsd:dayTimeDuration)
pred:dayTimeDuration-greater-than true.} =>

{?object wf:hasStarted wf:phase_5}.

{?object wf:hasCompleted wf:phase_4} =>
{?object wf:hasStarted wf:phase_1}.

6.7.2 Nesting

The functionalities can be nested using multiple rules, as shown in
Figure 6.5. In our previous example, the reharvest functionality consists
actually of a new delete and an already existing harvest functional-
ity. The following rules for the phase-functionality rule file shows
reharvesting:

{?object fn:reHarvestRecord ?result} =>
{?object wf:hasStarted wf:phase_6.}.

{?object wf:hasStarted wf:phase_6} =>
{?object fn:delete ?delete.
?object wf:hasCompleted wf:phase_6}

6.7. Advanced Features 139

And the following rules are added to the phase-transition file:

{?object wf:hasCompleted wf:phase_6} =>
{?object wf:hasStarted wf:phase_0.
?object wf:isReharvest true.}

{?object wf:hasCompleted wf:phase_0} =>
{?object wf:hasStarted wf:phase_1.}

{?object wf:isReharvest true.
?object wf:hasCompleted wf:phase_0} =>

{?object wf:hasCompleted wf:phase_5.}

This needs a little explanation. There is no service providing the
reharvest functionality, there are services for the delete and harvest
functionality. Whenever our semantic workflow engine cannot trigger
a rule with the entailed triples from the functionality generation phase
during the service generation phase, these entailed triples are taken to
the service execution and transition phase. This reasoning cycle, only
defines phase transitions without delivering a service call description.
During the subsequent reasoning cycle, our newly defined rules will
bring our object from the deadlocked reharvest state to the delete state
for which it has a service description. In turn, the delete phase will
eventually give rise to the harvest phase and this is how functionalities
can be nested in our platform. After this harvest, the nested loop needs
to be closed. This is done with the last rule from the phase-transition
file, which says that if the harvest is finished and is part of a reharvest
operation, the reharvest operation is finished.

6.7.3 Authority

It also becomes easy to integrate authorisation into the workflows.
To integrate this in the workflows, a new phase must be integrated
into the workflow, e.g., in our example, for validating the generated
enrichments. The transition from this phase (i.e., its completion) is then
actually steered by an external REST service, acting as the authority and
validating the enrichments manually. In our example we can decide
to publish the record after the reconciliation and do the enrichment in
a separate track. Once these enrichments are validated, they are also
published.

140
Self-Sustaining Platforms - A Distributed Reasoning Framework

to implement a Semantic Workflow Engine

Figure 6.6: Example of a authorised validation step in a workflow.

First of all, we need to introduce a new phase for the validation of the
enrichments. This new phase will actually be coupled to functionality,
which will validate the generated enrichments:

{?object wf:hasStarted wf:phase_7} =>
{?object fn:validateEnrichments ?result.
?result wf:hasCompleted wf:phase_7}.

After introducing this new phase and functionality, considering we
have a service fulfilling the functionality, we need some adaptation
to the transitions. Thus, after the reconciliation, the record is pub-
lished immediately, and the record is sent to generate enrichments and
to validate them before publication of the validated enrichments, as
depicted in Figure 6.6 This leads to the following adaptations of the
phase-transition file:

{?object wf:hasCompleted wf:phase_2} =>
{?object0 wf:hasStarted wf:phase_4.
?object0 wf:started wf:phase_3}.

{?object wf:hasCompleted wf:phase_3} =>
{?object0 wf:hasStarted wf:phase_7}.

{?object wf:hasCompleted wf:phase_7} =>
{?object0 wf:hasStarted wf:phase_4}.

6.7. Advanced Features 141

6.7.4 Service Selection

In Section 6.5, we described what happens if several service descriptions
fulfil the same needed functionality. Via the workflow rule file this
service generation phase can be influenced to obey certain rules for
selecting the appropriate service. A use case for this would the selection
of the right mapping service. One can imagine having several mapping
services in place, each covering other mapping formats as input and
output. Then one can have the following rules in the workflow rule file
to select the appropriate mapping service during this service generation
phase:

{?object wf:hasStarted wf:phase_0} =>
{?object fn:harvestRecord ?result.
?result wf:hasCompleted wf:phase_0.
?result ex:vocabulary <http://www.loc.gov/MARC21/slim>}.

{?object wf:hasStarted wf:phase_1} =>
{?object fn:map ?result.
?result wf:hasCompleted wf:phase_1.
?result ex:vocabulary <http://purl.org/dc/terms/>}.

In this workflow rule file, we specified in the first rule the vocabulary
used to describe the record harvested, i.e., MARC XML. In the second
rule, we specify that everything needs to be mapped to the vocabulary
dcterms. In combination with specifying the mapping vocabularies, you
can steer the selection of the services used for a functionality too:

{ ?record ex:vocabulary <http://www.loc.gov/MARC21/slim>.
?record fn:map ?mappedRecord.
?mappedRecord ex:vocabulary <http://purl.org/dc/terms/>.}

=>
{ _:request http:methodName "POST";

http:requestURI "http://example.org/service/map";
http:body ?record;
http:resp [http:body ?mappedRecord].}.

This way service descriptions can be manipulated to also include, e.g.,
a trust rating or a quality rating. The workflow rule file can then
be adapted to always take the most trustworthy service or the most
qualitative one.

142
Self-Sustaining Platforms - A Distributed Reasoning Framework

to implement a Semantic Workflow Engine

6.8 Conclusions
In this chapter, we presented a novel workflow engine, based on Linked
Data, RESTful Web services and rule-based reasoning. Our platform
will generate workflows described in terms of connected functionali-
ties. In a later phase, these functionalities are mapped into service call
descriptions, which are finally executed. A main feature of our plat-
form is that it is easily adaptable and expandable. The whole system
captures the application intelligence through three N3 rule files: one
for describing the different phases of a workflow and per phase the
functionality it needs, another one describing the phase transitions, and
finally one describing the RESTful Web services the platform relies on.
These files can be adapted at run-time, and at the same time aggregate
the platform’s intelligence.

Another main feature is the explicit separation between functionalities
and services. By this, services serving the same functionality become
interchangeable. This makes both the management of the workflows
and the services a lot easier. Our generated workflows can be steered
by external Linked Data, so that the platform can act on this external
data. A last feature of the platform is its ability for error handling.
These features together make the platform self-sustaining.

The author’s work on Self-sustaining platforms and semantic workflows
led to the following publications.

• Sam Coppens, Ruben Verborgh, Erik Mannens, and Rik Van
de Walle. „Self-Sustaining Platforms - Grid Reasoning”. In:
Transactions on Autonomous and Adaptive Systems (2014)

• Sam Coppens, Ruben Verborgh, Erik Mannens, and Rik Van de
Walle. „Self-Sustaining Platforms: a semantic workflow engine”.
In: Proceedings of the 4th International Workshop on Consuming Linked
Data (2013)

• Ruben Verborgh, Sam Coppens, Thomas Steiner, Joaquim Gabarró
Vallés, Davy Van Deursen, and Rik Van de Walle. „Functional
descriptions as the bridge between hypermedia apis and the
semantic web”. In: Proceedings of the Third International Workshop
on RESTful Design. ACM. 2012, pp. 33–40

• Ruben Verborgh, Thomas Steiner, Davy Van Deursen, Sam Cop-
pens, Erik Mannens, Rik Van de Walle, and Joaquim Gabarró
Vallés. „RESTdescA FunctionalityCentered Approach to Semantic
Service Description and Composition”. In: Proceedings of the Ninth
Extended Semantic Web Conference (2012)

6.8. Conclusions 143

• Ruben Verborgh, Thomas Steiner, Davy Van Deursen, Sam Cop-
pens, Erik Mannens, Rik Van de Walle, and Joaquim Gabarró
Vallés. „Integrating Data and Services through Functional Seman-
tic Service Descriptions”. In: Proceedings of the W3C Workshop on
Data and Services Integration (2011)

144
Self-Sustaining Platforms - A Distributed Reasoning Framework

to implement a Semantic Workflow Engine

Chapter 7

Remote Reasoning over
SPARQL - From Query

Federation to Distributed,
Remote Reasoning

Until now, the SPARQL query language was restricted to simple entailment.
Now SPARQL is being extended with more expressive entailment regimes.
This allows to query over inferred, implicit knowledge. However, in this case
the SPARQL endpoint provider decides which inference rules are used for its
entailment regimes. In this chapter, we propose an extension to the SPARQL
query language to support remote reasoning, in which the data consumer
can define the inference rules. It will supplement the supported entailment
regimes of the SPARQL endpoint provider with an additional reasoning step
using the inference rules defined by the data consumer. At the same time,
this solution offers possibilities to solve interoperability issues when querying
remote SPARQL endpoints, which can support federated querying frameworks.
These frameworks can then be extended to provide distributed, remote reasoning
. This Chapter is thus an extension on top of Chapter 6

7.1 Introduction

Reasoning is one of main strengths of the Semantic Web. It infers logi-
cal consequences from graph structured rdf data based on inference
rules. These inference rules are included in ontology languages (e.g.,
owl2 [23]) or rule languages (e.g., n3 rules [16]). In order to produce

146
Remote Reasoning over SPARQL - From Query Federation to

Distributed, Remote Reasoning

inferred triples, reasoners require, of course, access over the data. In a
distributed environment as the Linked Open Data [14] cloud, this raises
several concerns: First, all the data needs to be collected from different
data sources and stored locally, before one can reason over the data.
Second, when dealing with large distributed datasets, as is common in
modern web applications, this centralisation of triples becomes prob-
lematic, since processor and memory consumption increase with the
amount of triples. Third, in this Chapter, we argue that reasoning over
large distributed datasets can be done more effectively if performed in
a distributed, atomic way.

On the Semantic Web, rdf data can be accessed through a SPARQL end-
point [117]. Typically, triples can be retrieved by executing a SPARQL
query. This process shows some strong similarities with reasoning,
which are the following:

• both require the presence of the whole set of triples.
• both benefit from setting conditions and performing filters, to

make the operation as precise as possible.
• both return a set of triples. In case of querying, this is the selected

subset. In case of reasoning, these are the inferred triples.

We exploit the fact that the SPARQL infrastructure is already well de-
ployed by extending the endpoint’s functionality to support reasoning
operations. With a single query, inference rules are sent to the endpoint
and the inferred triples are returned.

In this Chapter, we introduce a novel approach to deal with the issues
of reasoning over centralised triples, by allowing custom inference
rules being executed over data stored on remote systems. We build
on existing Semantic Web technology, by adding an extra layer to the
SPARQL query language and reusing its endpoint infrastructure. We do
not force SPARQL endpoints to support heavy reasoning tasks, but we
leave open the possibility. They can decide to not support any reasoning.
In this case, the reasoning could be performed by the SPARQL client.
But by integrating this reasoning mechanism in the SPARQL protocol
and syntax, SPARQL clients can be developed supporting the reasoning,
e.g., a SPARQL client that relies on query rewriting for the inference
rules supported by the owl ql query language, and relying on client-
side, owl reasoning for the other inference rules. This kind of SPARQL
client would not even need any adaptation to the existing SPARQL
endpoints. Another example are SPARQL clients with a MapReduce-
infrastructure to support the reasoning. In this Chapter, we only focus

7.2. Related work 147

on the extension for the SPARQL syntax and protocol. The SPARQL
endpoints are free to decide what reasoning support they give, and
SPARQL clients are free to decide how to schedule the reasoning (client
vs. server) .

This Chapter is structured as follows. In Section 7.2, we start by
discussing some related work.. Next, in Section 7.3, we motivate the
benefits of remote reasoning and in Section 7.4 we discuss how we
reused SPARQL to support it. Then, we describe two future use cases
as a proof of concept in Section 7.6. Finally, in Section 7.7, we conclude
with some future work and a final conclusion in Section 7.8.

7.2 Related work
Currently, the w3c SPARQL working group has proposed a recom-
mendation for supporting entailment regimes [118] in SPARQL. The
SPARQL 1.1 Query specification defines the evaluation of basic graph
patterns by means of subgraph matching. This form of basic graph pat-
tern matching is also called simple entailment. The proposed support of
the entailment regimes will allow for retrieving solutions that implicitly
follow from the queries graph. The proposed recommendation regimes
are: rdf entailment, rdfs entailment, D-entailment, owl2 rdf-based
semantics entailment, owl2 direct semantics entailment, and owl ql

core entailment. This way, a data provider can adapt its basic graph
pattern matching algorithm to support one of the entailment regimes to
support querying over entailed triples. This recommendation will allow
data providers to publish SPARQL endpoints which support one of the
proposed entailment regimes. In this solution, the data providers offer
the ontology or rule-set used for reasoning and the reasoning actually
happens on the level of basic graph pattern matching. In our solution,
the end-user defines the ontology or rule-set used to reason over the
queries graph. The reasoning in our solution happens after the basic
graph pattern matching. Thus, we have a post-reasoning step, which
supplements the pre-reasoning step offered by the entailment regime.

Related to our solution is stream reasoning. Event processing is con-
cerned in timely detecting compound events in streams. Event process-
ing is already capable of doing run-time analysis of the event streams.
Stream reasoning on the other hand will allow event processors to
combine background knowledge to entail extra knowledge. Event Pro-
cessing SPARQL (EPSPARQL, [119]) is a new language for complex
event and stream reasoning. Next to the new language for querying

148
Remote Reasoning over SPARQL - From Query Federation to

Distributed, Remote Reasoning

streams of events, they also provide an execution model which derives
information from streamed rdf events in real-time. The framework
is extended based on event-driven backward chaining rules. These
are logic rules that can thus be mixed with other background knowl-
edge. Further investigation is needed here to support more expressive
formalisms for stream reasoning, such as owl [23] and its different
profiles.

Distributed reasoning is also closely related to our framework. In such
frameworks, reasoning is happening with multiple ontologies interre-
lated with semantic mappings on distributed data. larkc (Large Knowl-
edge Collider, [120]) and drago (Distributed Reasoning Architecture
for a Galaxy of Ontology, [121]) are such distributed reasoning frame-
works. larkc performs massive, distributed, and necessarily incomplete
reasoning over web-scale knowledge sources. Massive inference is
achieved by distributing problems across heterogeneous computing
resources. larkc is based on a pluggable architecture in which it is
possible to exploit techniques and heuristics from diverse areas such
as databases, machine learning, cognitive science, Semantic Web, and
others. In drago, reasoning is the result of a combination of seman-
tic mappings of local reasoning chunks performed in a single owl

ontology. It provides reasoning services for multiple owl ontologies,
interconnected via C-OWL mappings. Future work for drago involves
extending the drago framework to cope with distributed T-boxes and
to support more expressive ontology mappings.

7.3 Remote reasoning
Remote Reasoning resides in the classic client-server architecture. It
is a service allowing users to reason over its accessible data with a
supplied rule set or owl ontology. The reasoning can happen on three
places: at the server, at the client or third party. This is demonstrated
in Figure 7.1.

The benefits are three-fold. First, users can benefit from delegating
some of the effort of reasoning to the server. Those reasoning tasks
performed within the owl ql space, can easily be performed by the
server by query rewriting. This does not only result in faster reasoning
times, but is also cost-efficient. Actually, in the case of query rewrit-
ing, the reasoning is done by query rewriting, typically at the client,
followed by basic graph pattern matching at the server. Second, in
many cases, a client only requires the reasoning results, i.e., the in-

7.4. Extending SPARQL 149

Figure 7.1: Client-Server Architectures for Remote Reasoning

ferred triples. Therefore, eliminating the harvesting and storing of data
locally, drastically reduces overhead in terms of time and storage con-
sumption. Also, data is not duplicated and synchronizing versions is
therefore avoided. Third, the used inference rules are flexible, dynamic
and defined by the client, not the server. At the moment SPARQL
endpoints can already support some entailment regimes, but here the
SPARQL endpoint providers decides which inference rules are used for
reasoning. In many cases, the data consumer itself wants to define the
inference rules to support its application.

In order to integrate remote reasoning on the Web, there are a few re-
quirements. First, reasoning happens within the constraints of the server.
Second, a syntax and communication protocol need to be defined to as-
sure interoperability. In this Chapter we focus on this last requirement,
which is discussed in the next Sections.

7.4 Extending SPARQL
In general, a reasoning cycle can be divided into five steps, as shown
by LarKC:

1. Identification
2. Selection
3. Transformation
4. Reasoning
5. Decision

150
Remote Reasoning over SPARQL - From Query Federation to

Distributed, Remote Reasoning

RDF Fragment 7.1: A reason Query for executing n3 Rules declared in an
external File over all triples
REASON <http://test.com/rules.n3>
OVER {
?s ?p ?o

} WHERE {
?s ?p ?o

}

SPARQL already covers the first three steps (construct queries can
be considered as transformations). By extending the SPARQL query
language, the fourth step can also be covered by SPARQL, allowing for
remote reasoning.

7.4.1 The REASON query

Reasoning can be performed by executing a SPARQL query. Therefore,
we introduce a new query form reason equivalent to select, con-
struct, ask, and describe. The syntax consists of three main parts (as
illustrated in RDF Fragment 7.1):

• the reason keyword
• a rule set in an ontology or declarative language. This can either

be a URL to a rule file, supplied between <>, or inline n3 rules
between {}.

• the over and where keyword combination which defines the
triples to reason over. It is equivalent to the construct key-
word in combination with its where clause. Its content is placed
between {}.

A reason query returns a valid rdf graph, equivalent to the construct

query. This graph includes only the inferred triples. We chose for the
new SPARQL query form because:

• The structure of the reason query form supports a selection
step, as discussed in the context of larkc [120] and Section 7.4.
This way, we can do remote reasoning on a snapshot of the
data. By doing this, the server keeps control over the memory
consumption a certain reasoning task might require. The SPARQL
endpoint provider can, e.g., require the selection step to trim
down the graph to reason over 10.000 triples or to stop reasoning
the moment it has inferred 10.000 triples, although the results can
be incomplete.

7.4. Extending SPARQL 151

• SPARQL allows for subqueries. Subqueries are a way to embed
SPARQL queries within other queries, normally to achieve results
which cannot otherwise be achieved, such as limiting the number
of results from some sub-expression within the query. Thus,
implementing the remote reasoning over SPARQL via a new
query form allows to query the returned entailed triples, as will
be shown in the next Section A.

• The combination of the reason query form with a service ex-
tension of SPARQL provides a way to balance workload with
federated querying, as explained in Section B.

A. Precise reasoning with nested queries

The SPARQL 1.1 specification allows subqueries and nesting of queries.
This can be fully exploited to allow queries on the entailed triples. This
enables fine-grained reasoning, which enables optimization of results
and execution time. Examples of nested queries are given in RDF
Fragment 7.2 and RDF Fragment 7.3.

RDF Fragment 7.2: Only the inferred Child Relationship of Jenna is selected.
SELECT ?child
WHERE {
:Jenna :child ?child .
{
REASON {
{ ?x :parent ?y } => { ?y :child ?x } .

}
OVER {

?s :parent ?o .
}
WHERE {
?s a :Person; :parent ?o .
}

}
}

B. Balancing workload with Federated Querying

Federated querying is another possibility in SPARQL. It allows triples
to be fetched from another endpoint, and include them in your query
using the service element. When we include this into a reason query,
we can reason with one endpoint, over data from another. This is very

152
Remote Reasoning over SPARQL - From Query Federation to

Distributed, Remote Reasoning

RDF Fragment 7.3: The worksWith Relationship is inferred only for Persons
working at the University of Ghent
REASON {
{ ?x :knows ?y } => { ?y :knows ?x } .

}
OVER {?s :knows ?o}
WHERE
{
CONSTRUCT {?s :workedWith ?o}
WHERE {
?s :worksAt :UnivGhent.
?s :participatedInProject ?project.
?o :worksAt :UnivGhent.
?o :participatedInProject ?project.

}
}

powerful, because it allows a high performance server to reason over
remote data with a single query. Therefore, the biggest workload can
be performed on the machine best suited for it. An example query is
shown in RDF Fragment 7.4.

7.4.2 Ontology classification

The inference rules used for reasoning can come from owl ontologies
or declarative rules. Classification of the used inference rules will allow
to select the appropriate reasoner for doing the inferencing. Today,
highly optimised reasoners such as EYE[122], Pellet [123], FaCT++ [124],
RacerPro [125] and HermiT [126] are able to classify many ontologies
used in applications. The optimisations employed by these reasoners
aim not only to improve performance on individual subsumption tests,
but also to reduce the number of tests performed when classifying a
given ontology. Such an ontology classification can also be a means to
enforce a constraint of the server. The server can decide to only support
owl ql inference rules, because in this case the query can be rewritten
and SPARQL can be exploited to the fullest, without actual generating
inferred triples.

7.4. Extending SPARQL 153

RDF Fragment 7.4: Example query showing how the data is first fetched from
two endpoints and then used for reasoning
REASON {
{ ?x foaf:knows ?y } => { ?y foaf:knows ?x } .

}
OVER {
:Jenna foaf:knows ?person .

}
WHERE{
{
SERVICE <http://example.org/sparql> {
:Jenna foaf:knows ?person .

} } UNION {
SERVICE <http://example2.org/sparql> {
:Jenna foaf:knows ?person .

} }
}

7.4.3 Handling triple selection validation for reasoning

When executing a reason query, the triples to reason over are selected
in the over clause. This principle holds a potential pitfall. When the
selection lacks the necessary triples for the given inference rule set,
the result will be empty. An example is given in RDF Fragment 7.5.
Although this can not be considered an error, it needs to be discussed in
the query specification. In the end, the user is made responsible for the
triple selection in the over clause. When a result set turns up empty, it
can have two reasons: (i) the inference rules lead to no inferred triples,
or (ii) the selection of the triples to reason over was incomplete. Auto-
matic validation is also possible using the aforementioned reasoners,
but in combination with the entailment regimes, this becomes hard. A
query can, at first sight, lead to no results and thus invalidation, but can
also rely on the supported entailment regime of the SPARQL endpoint
provider to provide the results.

154
Remote Reasoning over SPARQL - From Query Federation to

Distributed, Remote Reasoning

RDF Fragment 7.5: Example Triple Selection in the OVER clause.
REASON {
{ ?x foaf:knows ?y }
=> { ?y foaf:knows ?x } .

}
OVER {
:Jenna a foaf:Person .

}
WHERE {
:Jenna ?p ?o .

}

7.5 A SPARQL reasoning endpoint

For the proof-of-concept, we have extended the Apache Jena arq
1 query

engine to support remote reasoning. This engine is very popular and
is often used for implementing SPARQL endpoints. By extending the
arq library to support remote reasoning, existing SPARQL endpoints
can easily be extended to support this remote reasoning. As explained
in Section 7.4, we introduced a new SPARQL query form: the reason

query form. In our first prototype, this new SPARQL query form
supports n3 rules. This way, we are already able to offer reasoning
on top of SPARQL. For the future, special attention will go to owl ql

inference rules, because these can be rewritten. This way, the server
impact can remain minimal. owl ql seems to be the right fit for
empowering SPARQL with reasoning capabilities.

7.6 Use cases

In this section, we discuss two possible use cases for remote reasoning:
ontology interoperability and distributed reasoning. In both cases, the
remote reasoning on top of SPARQL offers some possibilities, discussed
in the next sections.

7.6.1 Ontology interoperability

Interoperability between different ontologies can be simplified by sup-
plying mapping rules at query time similar to the approach followed
by [127]. This allows a user to use a custom vocabulary in a SPARQL

1http://jena.apache.org/documentation/query/index.html

7.6. Use cases 155

RDF Fragment 7.6: A query overcoming interoperability issues
SELECT ?name
WHERE {
?s a :Artist .
{
REASON {
{ ?x :role ’artist’ } => { ?x a :Artist} .

}
OVER {
?s :role ?o

}
WHERE {
?s a foaf:Person; :role ?o

}
}

query that differs from the one used in the endpoint. This is typ-
ically a problem for query federation frameworks, where different
parts of a query are evaluated by different SPARQL endpoints. These
SPARQL endpoints often use different vocabularies to describe their
data. By including mapping rules, interoperability issues are avoided
when querying. An example of a federated query, supporting ontology
interoperability is shown in RDF Fragment 7.6.

7.6.2 Distributed reasoning

Many federated query frameworks rely on SPARQL to federate sub-
queries (parts of the incoming query) to the appropriate SPARQL
endpoints and to aggregate all the results. These frameworks can al-
ready benefit from remote reasoning to solve interoperability issues
between the contacted SPARQL endpoints. These federated query-
ing frameworks could be extended with this SPARQL extension to
become federated reasoning frameworks. The example shown in RDF
Fragment 7.7 shows how this could work.

156
Remote Reasoning over SPARQL - From Query Federation to

Distributed, Remote Reasoning

RDF Fragment 7.7: A subset from the reason results can be extracted using
SPARQL features
SELECT ?artist
WHERE {
?artist a :Artist.
{ REASON {

{?y dbpprop:artist ?x.}
=>
{?x a :Artist} .

}
OVER {

?artwork dbpprop:artist ?person .
}

WHERE {
SERVICE <http://example.org/sparql> {
?person a foaf:Person.
?artwork dbpprop:artist ?person .

}
}

}

7.7 Future Work

Future work will first focus on the following things:
• We want to add support for other rule languages besides n3.

Special focus will go to inference rules belonging to the owl ql

profile.
• For the owl ql inference rules, reasoning can be replaced by query

rewriting. These conversions will be investigated for integration
into our solution.

• For other inference rules, dedicated reasoners can be selected.
Here, the classification comes into play. Dedicated reasoners
perform much faster then general purpose reasoners. Thus a good
classification can increase performance by selecting dedicated
reasoners or a combination of dedicated reasoners. In order
to exploit this feature, we will need to be able to split up an
ontology into different parts, each part being able of taking care
of a specific dedicated reasoner. After that, we need to plan how
these dedicated reasoners will exchange their results, to form
the overall result of the ontology. Thus research here will focus

7.8. Conclusion 157

on three areas: classification of the ontology’s inference rules,
split up of the ontology, according to the classification of the
inference rules, and finally planning of the reasoning cycle over
the dedicated reasoners to infer the overall result of reasoning
with data over the whole ontology.

A second objective for the future will be the integration of remote
reasoning via SPARQL into federated querying frameworks to build
a distributed reasoner, as shown in Section 7.6. If we can distribute
incoming queries over disparate SPARQL endpoints and we can dis-
tribute the reasoning at the same time to the external endpoints, we
achieve the goal of remote reasoning over distributed data.

7.8 Conclusion

Distributed reasoning is becoming more important nowadays, because
of the distributed characteristic of Linked Open Data. In this chapter,
we have proposed an extension to the SPARQL query language to
support remote reasoning. This extension will support two use cases:
ontology interoperability, e.g., when federating queries, and distributed
reasoning. In the future, reasoning on distributed data sources will
become more important and this extension to SPARQL can be a build-
ing block to facilitate distributed reasoning. By extending SPARQL,
the selection of data to reason over is incorporated into the remote
reasoning framework we propose. This is a very important feature to
restrict the amount of data to reason over, because it allows to reason
on certain snapshots of distributed data, e.g., versions.

The author’s work on federated and distributed reasoning, and in
general federated querying led to the following publications.

• Sam Coppens, Miel Vander Sande, Ruben Verborgh, Erik Man-
nens, and Rik Van de Walle. „Remote Reasoning over SPARQL”.
in: Proceedings of the 6th Workshop on Linked Data on the Web (2013)

• Sam Coppens, Ruben Verborgh, Erik Mannens, and Rik Van de
Walle. „Querying Distributed Linked Data - Query Federation
using the Provenance of owl:sameAs Links”. In: Journal of Data
and Information Quality (2014)

• Sam Coppens, Ruben Verborgh, Erik Mannens, and Rik Van de
Walle. „Querying the Linked Data Graph using owl: sameAs
Provenance”. In: Proceedings of the 16th International Conference on
Model Driven Engineering Languages and Systems (2013)

158
Remote Reasoning over SPARQL - From Query Federation to

Distributed, Remote Reasoning

Chapter 8

Conclusions

The topic of the dissertation is provenance information for the Semantic
Web. Provenance has been researched from its different dimensions,
i.e., representation, generation, dissemination and consumption. Each
chapter in this dissertation tackled one of these areas of research for
provenance information. In Chapter 1, we introduced provenance
information, and its different application in different domains, and a
core data model for representing provenance information. Next, we also
gave an overview of the foundations of the Semantic Web. The main
research topics of provenance information can be divided into four
categories: provenance modeling, provenance generation, provenance
dissemination and provenance consumption. The remainder of the
dissertation touches every domain of the provenance research. In
Chapter 2, we focus on the modeling and representation of provenance
information. In Chapter 3, we propose a framework for the generation
of provenance information. Chapter 4 proposes a way of disseminating
provenance information on the Web, and in Chapter 5, we show how
provenance information can be used. In the last two chapters, Chapter 6
and Chapter 7, we introduce some extensions on the previous chapters.
Chapter 6 proposes a semantic workflow engine that could generate
provenance information and that could serve as back-end for the long-
term preservation infrastructure, described in Chapter 3. The last
chapter, Chapter 7, describes an extension to the SPARQL protocol that
could extend the distributed querying framework, detailed in Chapter 5,
to become a distributed, remote reasoning framework. In what follows,
we show for each of our handled topics what the novel contributions
are that were introduced.

160 Conclusions

8.1 Provenance Representation: PREMIS OWL

In the domain of provenance representation, we described PREMIS
OWL in Chapter 2. PREMIS OWL is a semantic data model for preserva-
tion metadata. Preservation metadata is a domain-specific provenance
model that extends provenance information with structural metadata,
technical metadata and rights metadata to support the long-term preser-
vation of resources. The main contribution of PREMIS OWL is that
is not only describes the structure of the preservation metadata, but
also its semantics. At the same time, this model can be used to dis-
seminate the preservation metadata as Linked Open Data on the Web.
PREMIS OWL also introduces 24 preservation vocabularies that were
developed by the Library of Congress. This feature makes the preserva-
tion metadata interoperable amongst the archives. Each archive has its
specific preservation processes in place to fulfill its tasks. These specific
processes need to be described in the preservation metadata. Each
archive can describe its preservation processes using its own SKOS
vocabularies. To be conform to PREMIS OWL, these SKOS vocabularies
need to be linked to the 24 preservation vocabularies introduced in
PREMIS OWL. This will make the preservation metadata interoperable.
This feature is needed as archived objects are more and more being
exchanged among archives across the world.

8.2 Provenance Generation: Archipel

Considering the provenance generation, we introduced Archipel, de-
scribed in Chapter 3. Archipel is a distributed, long-term preservation
infrastructure. This is an infrastructure that will keep all the preserved
data intact and interpretable over time. Our platform has all the neces-
sary processes to guarantee the long-term preservation of the incoming
data. For the platform, we used a service-oriented architecture, where
all the preservation services are implemented as services on an enter-
prise service bus.
All the stored data are stored inside packages, to obey the OAIS guide-
lines. These packages contain descriptive metadata, referenced multi-
media files and preservation metadata. This way, a package contains all
the necessary information for its preservation purposes. These packages
(BagIt packages) are stored in the cloud. This means they are replicated
among different storage devices in a cloud environment. The metadata
of the packages are also stored in a triple store for dissemination as

8.3. Provenance Dissemination: Memento and Provenance 161

Linked Open Data. The infrastructure uses PREMIS OWL to describe
its preservation metadata and disseminates all its resources as Linked
Open Data, not only the descriptive metadata, but also the preservation
metadata. The preservation metadata allows an end-user to browse
to previous versions of the data. The infrastructure provides all the
preservation metadata autonomously, including the technical metadata.
For this technical metadata, the system relies on technical registries,
published as Linked Open Data. Essential technical information, such
as file format information, is also stored locally, such that the long-term
preservation infrastructure can stand on its own at all times.

8.3 Provenance Dissemination: Memento and
Provenance

When preserving information for the long-term and publishing it as
Linked Open Data at the same time using persistent identifiers some
problems arise, which are tackled in Chapter 4. First of all, using
the persistent identifiers, we want to provide also all the different
versions over time of a certain resource. A system as Memento, using
datetime content negotiation, offers a solution for this. At the same
time, it solves also the issue of the temporarlity of the enrichments
when publishing Linked Open Data and using persistent identifiers.
For instance, if a record of the Gulf War refers to a record of the
president of the US, it must refer to the record of George W. Bush,
not the current president. Datetime content negotiation solves this
issue. Next we extended the Memmento datetime content negotiation
to include also HTTP link headers for the provenance information of the
different versions of the published data. The provenance information
forms the glue between the different versions of the data and this
offers another mechanism to browse the different versions of the data.
Thus, not only via the datetime content negotiation, but also via the
provenance information. In this framework, provenance information is
also considered versionable or datetime content negotiable. Thus, this
allows even to publish the provenance information using a persistent
URI.

162 Conclusions

8.4 Provenance Consumption: Query Federation

In Chapter 5, we show how provenance information can even help in
query distribution. The provenance of the owl:sameAs links provide all
the information for query distribution. The provenance information of
an owl:sameAs link can be represented as an interlinking rule. From
this rule, we can extract the used SPARQL endpoint and even vocabu-
lary mappings used for querying the remote dataset. This information
is being reused for distributing the incoming queries. For this, we
developed an extension to ARQ. ARQ is a popular SPARQL query
processing library. Our extension can implicitly extract all the needed
information to support its query federation. The ARQ extension can
be fed with the interlinking rules you used as a dataset provider for
publishing your dataset as Linked Open Data. The extension can also
be fed with SILK configuration files from which the needed information
can be extracted. SILK is a popular interlinking framework. With our
extended ARQ library, every SPARQL endpoint can be turned into a
query federation endpoint with minimal effort.

8.5 Self-Sustaining Platforms: Semantic Workflow
Engine

Chapter 6 describes a semantic workflow engine. In fact, it is a dis-
tributed reasoning framework on top of which a semantic workflow
engine is implemented. Nowadays, the intelligence of a systems is often
scattered among the software, the services it uses, and the workflows
in which the services are used. With this system, we want to provide a
system that aggregates as much of intelligence as possible. For this our
system relies on a three-step rule-reasoning cycle. During each step, a
reasoning task is performed, described in a rule file. By doing this, we
aggregate as much as possible the intelligence in the three rule files. At
the same time, these rule files can be changed at run-time with a direct
effect. This means we can easily extend the workflow engine with new
services, or even new workflows at run-time, e.g., the inclusion of a
new sensor that steers the workflow in process control systems. A third
benefit of the workflow engine is that workflows are first composed in
terms of functionalities. Later on these functionalities are replaced by
services providing these functionalities. This benefits the management
of the services and the workflows that used these services.Services can

8.6. Remote Reasoning over SPARQL 163

be updated with new functionalities or new services can be developed
providing the same functionality of an existing service. Our workflow
engine can handle all these changes, because it first composes a work-
flow in terms of functionalities. A last benefit of this workflow engine
is that the three steps of the reasoning cycle can be scheduled on a grid,
making the workflow engine very scalable and suitable for smart city
solutions.

8.6 Remote Reasoning over SPARQL

In the last chapter, Chapter 7, we proposed an extension to the SPARQL
query language and protocol to support remote reasoning. Before the
SPARQL 1.1 specification, the SPARQL query language was restricted
to simple entailment. In the new SPARQL 1.1 specification, SPARQL is
being extended with more expressive entailment regimes. This allows
to query over inferred, implicit knowledge. However, in this case the
SPARQL endpoint provider decides which inference rules are used for
its entailment regimes. In the solution provided in Chapter 7 the client
of the SPARQL endpoint can decide which inference rules it want to
use for its entailment regimes. Before this solution, the client had to
fetch the remote knowledge base first locally in order to reason over
that knowledge base. Now, it can reason over that knowledge base
remotely at query execution time. At the same time, this solution offers
possibilities to solve interoperability issues when querying remote
SPARQL endpoints, which can support federated querying frameworks,
as the one described in Chapter 6. These frameworks can then be
extended to provide distributed, remote reasoning capabilities.

164 Conclusions

Appendix A

Example RDFS Model

RDF Fragment A.1: Example RDFS model
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix voc: <http://example.org/voc/vocabulary#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

voc:Artist rdf:type rdfs:Class;
rdfs:label "artist";
rdfs:comment ""’"’This class

is used for declaring
artists in your

RDF model.""’
"’.

voc:Artwork rdf:type rdfs:Class;
rdfs:label "artwork";
rdfs:comment ""’"’This class

is used for declaring
artworks in your

RDF model.""’
"’.

voc:ContemporaryArtwork rdf:type rdf:Class;
rdfs:label ""’"’contemporary

artwork"’"’";
rdfs:comment ""’"’This class

describes a
contemporary

artwork""’"’;
rdfs:subClassOf voc:Artwork.

voc:ContemporaryArtist rdf:type rdf:Class;

166 Example RDFS Model

rdfs:label ""’"’contemporary
artist""’"’";

rdfs:comment ""’"’This class
describes a

contemporary
artist"’"’".

rdfs:subClassOf voc:Artist.

voc:title rdf:type rdf:Property;
rdfs:label "title";
rdfs:comment ""’"’This

property gives the title of
an artwork""’"’;

rdfs:domain voc:Artwork;
rdfs:range rdfs:Literal.

voc:description rdf:type rdf:Property;
rdfs:label "description";
rdfs:comment ""’"’This

property gives the
description

of an artwork"’"’
";

rdfs:domain voc:Artwork;
rdfs:range rdfs:Literal.

voc:date rdf:type rdf:Property;
rdfs:label "date";
rdfs:comment ""’"’This

property gives the date
the artwork was

created""’"’;
rdfs:domain voc:Artwork;
rdfs:range xsd:dateTime.

voc:creator rdf:type rdf:Property;
rdfs:label "creator";
rdfs:comment "‘"’"This

property links an artist
to the artwork as

a creator"’"
’";

rdfs:domain voc:Artwork;
rdfs:range voc:Artist.

Appendix B

OWL Model

Equality:
• owl:equivalentClass: to denote that a certain class is the same as another class
• owl:equivalentProperty: to denote a certain property means the same as another

property
• owl:sameAs: to denote certain individuals are actually the same
• owl:differentFrom: to express two individuals are different
• owl:AllDifferent: which denotes that a number of individuals are mutually

distinct.
• owl:disjointWith: Classes may be stated to be disjoint from each other.

Property Characteristics:
• owl:inverseOf: expresses two properties are the inverse of each other
• owl:TransivityProperty: a class for transitive properties), owl:SymmetricProperty

(a class for symmetrical properties
• owl:FunctionalProperty: if a property is a owl:FunctionalProperty, then it has

no more than one value for each individual
• owl:InverseFunctionalProperty: If a property is inverse functional, then the

inverse of the property is functional.
Property Restrictions:

• owl:allValuesFrom: means that this property on this particular class has a local
range restriction associated with it.

• owl:someValuesFrom: a restriction on a property that at least one of its values
is of a certain type.

• owl:hasValue: a property can be required to have a certain individual as a value.
Restricted Cardinality:

• owl:minCardinality: denotes the number of different values a certain property
may have with respect to a certain class, e.g., an artwork has at least one creator

• owl:maxCardinality: expresses the maximum number of different values a
certain property may have with respect to a certain class.

• owl:cardinality: combines the two previous cardinality restrictions.
Class Intersection:

• owl:intersectionOf: defines a class as the intersection of two classes, e.g., one
can define the class of employed persons as the intersection of a person class
and a employed things class.

168 Example RDFS Model

• owl:unionOf: defines a class as the union of two classes.
• owl:complementOf: define a class as the complement of another class. e.g.,

females and males.
Class Enumeration:

• owl:oneOf: Classes can be described by enumeration of the individuals that
make up the class. The members of the class are exactly the set of enumerated
individuals; no more, no less.

Appendix C

OWL Example Ontology

RDF Fragment C.1: Example OWL model
@prefix : <http://example.org/voc/vocabulary#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix voc: <http://example.org/voc/vocabulary#> .
@prefix xml: <http://www.w3.org/XML/1998/namespace> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@base <http://example.org/voc/vocabulary#> .

<http://example.org/voc/vocabulary#> rdf:type owl:Ontology .

:Artwork rdf:type owl:Class ;
rdfs:subClassOf [rdf:type owl:Restriction ;

owl:onProperty :date ;
owl:qualifiedCardinality "1"^^xsd:

nonNegativeInteger ;
owl:onDataRange xsd:string

] ,
[rdf:type owl:Restriction ;
owl:onProperty :creator ;
owl:onClass :Artist ;
owl:minQualifiedCardinality "1"^^xsd:

nonNegativeInteger
] ,
[rdf:type owl:Restriction ;
owl:onProperty :title ;
owl:minQualifiedCardinality "1"^^xsd:

nonNegativeInteger ;
owl:onDataRange xsd:string

170 OWL Example Model

] .

:Artist rdf:type owl:Class ;
rdfs:subClassOf foaf:Person ,

[rdf:type owl:Restriction ;
owl:onProperty :created ;
owl:onClass :Artwork ;
owl:minQualifiedCardinality "1"^^xsd:

nonNegativeInteger
] .

:ContemporaryArtwork rdf:type owl:Class ;
rdfs:subClassOf :Artwork ,

[rdf:type owl:Restriction ;
owl:onProperty :date ;
owl:someValuesFrom

[rdf:type rdfs:Datatype ;
owl:onDatatype xsd:dateTime ;
owl:withRestrictions ([xsd:

minExclusive "1945-01-01
T00:00:00"])

]
] .

:ContemporaryArtist rdf:type owl:Class ;
rdfs:subClassOf :Artist ,

[rdf:type owl:Restriction ;
owl:onProperty :created ;
owl:onClass :ContemporaryArtwork ;
owl:minQualifiedCardinality "1"^^xsd:

nonNegativeInteger
] .

:created rdf:type owl:ObjectProperty ;
rdfs:domain :Artist ;
rdfs:range :Artwork ;
owl:inverseOf :creator .

:creator rdf:type owl:ObjectProperty ;
rdfs:subPropertyOf dc:creator;
rdfs:range :Artist ;
rdfs:domain :Artwork .

:date rdf:type owl:DatatypeProperty ;
rdfs:subPropertyOf dc:date;
rdfs:domain :Artwork ;
rdfs:range xsd:dateTime .

:description rdf:type owl:DatatypeProperty ;

171

rdfs:subPropertyOf dc:description;
rdfs:domain :Artwork ;
rdfs:range xsd:string .

:title rdf:type owl:DatatypeProperty ;
rdfs:subPropertyOf dc:title;
rdfs:domain :Artwork ;
rdfs:range xsd:string .

172 OWL Example Model

Publications

Journal papers

• Sam Coppens, Ruben Verborgh, Erik Mannens, and Rik Van de
Walle. „PREMIS OWL - A Semantic Long-Term Preservation
Model”. In: International Journal on Digital Libraries (2014)

• Sam Coppens, Ruben Verborgh, Erik Mannens, and Rik Van
de Walle. „Self-Sustaining Platforms - Grid Reasoning”. In:
Transactions on Autonomous and Adaptive Systems (2014)

• Erik Mannens, Sam Coppens, Toon De Pessemier, Hendrik Dac-
quin, Davy Van Deursen, Robbie De Sutter, and Rik Van de Walle.
„Automatic news recommendations via aggregated profiling”. In:
Multimedia Tools and Applications (2013), pp. 1–19

• Sam Coppens, Erik Mannens, Toon De Pessemier, Kristof Geebe-
len, Hendrik Dacquin, Davy Van Deursen, and Rik Van de Walle.
„Unifying and targeting cultural activities via events modelling
and profiling”. In: Multimedia Tools and Applications 57.1 (2012),
pp. 199–236

• Toon De Pessemier, Sam Coppens, Kristof Geebelen, Chris
Vleugels, Stijn Bannier, Erik Mannens, Kris Vanhecke, and Luc
Martens. „Collaborative recommendations with content-based
filters for cultural activities via a scalable event distribution plat-
form”. In: Multimedia Tools and Applications 58.1 (2012), pp. 167–
213

• Erik Mannens, Ruben Verborgh, Seth Van Hooland, Laurence
Hauttekeete, Tom Evens, Sam Coppens, and Rik Van de Walle.
„On the Origin of Metadata”. In: Information 3.4 (2012), pp. 790–
808

• Sam Coppens, Jan Haspeslagh, Patrick Hochstenbach, Erik Man-
nens, Rik Van de Walle, and Inge Van Nieuwerburgh. „Metadatas-
tandaarden, Dublin Core en het gelaagd metadatamodel”. eng. In:

174 Publications

ed. by Stoffel Debuysere, Dries Moreels, Rik Van de Walle, Inge
Van Nieuwerburgh, and Jeroen Walterus. Bewaring en ontsluiting
van multimediale data in Vlaanderen : perspectieven op audio-
visueel erfgoed in het digitale tijdperk. Lannoo Campus, 2010,
pp. 46–62. isbn: 9789020989441

• Erik Mannens, Sam Coppens, and Rik Van de Walle. „Semantic
BRICKS for performing arts archives and disseminiation”. In:
IASA JOURNAL 35 (2010), pp. 40–49

• Sam Coppens, Erik Mannens, and Rik Van de Walle. „Disseminat-
ing heritage records as linked open data”. In: International Journal
of Virtual Reality 8.3 (2009), pp. 39–44

Books

• Paul Bastijns, Sam Coppens, Siska Corneillie, Patrick
Hochstenbach, Erik Mannens, and Liesbeth Van Melle.
„(Meta)datastandaarden voor digitale archieven”. dut. In:
(2009). Ed. by Rik Van de Walle and Sylvia Van Peteghem,
p. 199. url: http : / / www . archive . org / details /
metadatastandaardenVoorDigitaleArchieven

Book chapters

• Rik Van de Walle, Sam Coppens, and Erik Mannens. „Een gelaagd
semantisch metadatamodel voor langetermijnarchivering”. In:
BIBLIOTHEEK-EN ARCHIEFGIDS 84.5 (2009), pp. 17–22

• Sam Coppens, Erik Mannens, and Rik Van de Walle. „Semantic
BRICKS for performing arts archives and dissemination”. eng.
In: ed. by Tom Evens and Dries Moreels. Access to Archives
of Performing Arts Multimedia. Vlaams Theater Instituut (VTI),
2009, pp. 121–141. isbn: 9789074351386

• Stijn Notebaert, Jan De Cock, Sam Coppens, Erik Mannens, Rik
Van de Walle, Marc Jacobs, Joeri Barbarien, and Peter Schelkens.
„Digital recording of performing arts: formats and conversion”.
eng. In: ed. by Tom Evens and Dries Moreels. Access to Archives
of Performing Arts Multimedia. Vlaams Theater Instituut (VTI),
2009, pp. 95–119. isbn: 9789074351386

http://www.archive.org/details/metadatastandaardenVoorDigitaleArchieven
http://www.archive.org/details/metadatastandaardenVoorDigitaleArchieven

175

Standardisation activities

W3C

• Luc Moreau, Paolo Missier, Khalid Belhajjame, Reza B’Far, James
Cheney, Sam Coppens, Stephen Cresswell, Yolanda Gil, Paul
Groth, Graham Klyne, Timothy Lebo, Jim McCusker, Simon Miles,
James Myers, Satya Sahoo, and Curt Tilmes. PROV-DM: The
PROV Data Model. Tech. rep. url: http://www.w3.org/TR/
prov-dm/

• Sam Coppens and Tom De Nies. PROV-Dictionary: Modeling
Provenance for Dictionary Data Structures. Tech. rep. 2013. url:
http://www.w3.org/TR/prov-dictionary/

• Yolanda Gil, James Cheney, Paul Groth, Olaf Hartig, Simon Miles,
Luc Moreau, Paulo Pinheiro Da Silva, Sam Coppens, Daniel
Garijo, JM Gomez, et al. „Provenance XG Final Report”. In: (Dec.
2010). url: http://www.w3.org/2005/Incubator/prov/
XGR-prov/

• Satya Sahoo, Paul Groth, Olaf Hartig, Simon Miles, Sam Cop-
pens, James Myers, Yolanda Gil, Luc Moreau, Jun Zhao, Michael
Panzer, et al. Provenance vocabulary mappings. Tech. rep. 2010.
url: http://www.w3.org/2005/Incubator/prov/wiki/
Provenance_Vocabulary_Mappings

Library of Congress

• Sam Coppens, Sebastien Peyrard, Rebecca Guenther, Keving
Ford, and Tom Creighton. PREMIS OWL ontology 2.2. Tech. rep.
2013. url: http://www.loc.gov/standards/premis/
ontology-announcement.html

• Sam Coppens, Sebastien Peyrard, Rebecca Guenther, Keving
Ford, and Tom Creighton. PREMIS OWL ontology 2.1. Tech. rep.
2011. url: http://www.loc.gov/standards/premis/
owlOntology-announcement.html

http://www.w3.org/TR/prov-dm/
http://www.w3.org/TR/prov-dm/
http://www.w3.org/TR/prov-dictionary/
http://www.w3.org/2005/Incubator/prov/XGR-prov/
http://www.w3.org/2005/Incubator/prov/XGR-prov/
http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Vocabulary_Mappings
http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Vocabulary_Mappings
http://www.loc.gov/standards/premis/ontology-announcement.html
http://www.loc.gov/standards/premis/ontology-announcement.html
http://www.loc.gov/standards/premis/owlOntology-announcement.html
http://www.loc.gov/standards/premis/owlOntology-announcement.html

176 Publications

Papers in conference proceedings

2013

• Sam Coppens, Ruben Verborgh, Erik Mannens, and Rik Van de
Walle. „Querying the Linked Data Graph using owl: sameAs
Provenance”. In: Proceedings of the 16th International Conference on
Model Driven Engineering Languages and Systems (2013)

• Sam Coppens, Ruben Verborgh, Erik Mannens, and Rik Van de
Walle. „Self-Sustaining Platforms: a semantic workflow engine”.
In: Proceedings of the 4th International Workshop on Consuming Linked
Data (2013)

• Miel Vander Sande, Sam Coppens, Ruben Verborgh, Erik Man-
nens, and Rik Van de Walle. „Adding Time to Linked Data: A
Generic Memento proxy through PROV”. in: Poster and Demo
Proceedings of the 12th International Semantic Web Conference (2013)

• Tom De Nies, Sara Magliacane, Ruben Verborgh, Sam Coppens,
Paul Groth, Erik Mannens, and Rik Van de Walle. „Git2PROV:
Exposing Version Control System Content as W3C PROV”. in:
Poster and Demo Proceedings of the 12th International Semantic Web
Conference (2013)

• Sam Coppens, Miel Vander Sande, Ruben Verborgh, Erik Man-
nens, and Rik Van de Walle. „Remote Reasoning over SPARQL”.
in: Proceedings of the 6th Workshop on Linked Data on the Web (2013)

• Laurens De Vocht, Sam Coppens, Ruben Verborgh, Miel Van-
der Sande, Erik Mannens, and Rik Van de Walle. „Discovering
Meaningful Connections between Resources in the Web of Data”.
In: Proceedings of the 6th Workshop on Linked Data on the Web (2013)

• Miel Vander Sande, Pieter Colpaert, Ruben Verborgh, Sam Cop-
pens, Erik Mannens, and Rik Van de Walle. „R&Wbase: Git for
triples”. In: Proceedings of the 6th Workshop on Linked Data on the
Web (2013)

2012

• Sam Coppens, Ruben Verborgh, Miel Vander Sande, Davy Van
Deursen, Erik Mannens, and Rik Van de Walle. „A truly Read-
Write Web for machines as the next-generation Web?” In: Proceed-
ings of the SW2012 workshop: What will the Semantic Web look like
10years from now (2012)

177

• Miel Vander Sande, Sam Coppens, Davy Van Deursen, Erik Man-
nens, and Rik Van de Walle. „The Terminatorś origins or how the
Semantic Web could endanger Humanity”. In: ()

• Miel Vander Sande, Ruben Verborgh, Sam Coppens, Tom De Nies,
Pedro Debevere, Laurens De Vocht, Pieterjan De Potter, Davy
Van Deursen, Erik Mannens, and Rik Van de Walle. „Everything
is Connected: Using Linked Data for Multimedia Narration of
Connections between Concepts.” In: International Semantic Web
Conference (Posters & Demos). 2012

• Tom De Nies, Evelien Dh́eer, Sam Coppens, Davy Van Deursen,
Erik Mannens, and Rik Van de Walle. „Bringing Newsworthi-
ness into the 21st Century”. In: 11th International Semantic Web
Conference (ISWC-2012). 2012, pp. 106–117

• Ruben Verborgh, Sam Coppens, Thomas Steiner, Joaquim Gabarró
Vallés, Davy Van Deursen, and Rik Van de Walle. „Functional
descriptions as the bridge between hypermedia apis and the
semantic web”. In: Proceedings of the Third International Workshop
on RESTful Design. ACM. 2012, pp. 33–40

• Tom De Nies, Sam Coppens, Davy Van Deursen, Erik Mannens,
and Rik Van de Walle. „Automatic discovery of high-level prove-
nance using semantic similarity”. In: Provenance and Annotation of
Data and Processes. Springer Berlin Heidelberg, 2012, pp. 97–110

• Ruben Verborgh, Thomas Steiner, Davy Van Deursen, Sam Cop-
pens, Erik Mannens, Rik Van de Walle, and Joaquim Gabarró
Vallés. „RESTdescA FunctionalityCentered Approach to Semantic
Service Description and Composition”. In: Proceedings of the Ninth
Extended Semantic Web Conference (2012)

• Erik Mannens, Sam Coppens, Ruben Verborgh, Laurence Haut-
tekeete, Davy Van Deursen, and Rik Van de Walle. „Automated
Trust Estimation in Developing Open News Stories: Combining
Memento & Provenance”. In: Computer Software and Applications
Conference Workshops (COMPSACW), 2012 IEEE 36th Annual. IEEE.
2012, pp. 122–127

2011

• Sam Coppens, Erik Mannens, Davy Van Deursen, Patrick
Hochstenbach, Bart Janssens, and Rik Van de Walle. „Publishing
provenance information on the web using the Memento datetime
content negotiation”. In: WWW2011 workshop on Linked Data on

178 Publications

the Web (LDOW 2011). Vol. 813. 2011, pp. 6–15
• Sam Coppens, Erik Mannens, Raf Vandesande, and Rik Van de

Walle. „Digital long-term preservation, provenance and linked
open data”. In: 2011 European Library Automation Group conference
(ELAG 2011): It’s the context, stupid! 2011

• Sam Coppens, Erik Mannens, and Rik Van de Walle. „What
about the provenance of media archives: a tale of time-
contextualisation”. In: (2011)

• Ruben Verborgh, Thomas Steiner, Davy Van Deursen, Sam Cop-
pens, Erik Mannens, Rik Van de Walle, and Joaquim Gabarró
Vallés. „Integrating Data and Services through Functional Seman-
tic Service Descriptions”. In: Proceedings of the W3C Workshop on
Data and Services Integration (2011)

• Toon De Pessemier, Sam Coppens, Erik Mannens, Simon Dooms,
Luc Martens, and Kristof Geebelen. „An event distribution plat-
form for recommending cultural activities”. In: 7th International
Conference on Web Information Systems and Technologies (WEBIST-
2011). Ghent University, Department of Information technology.
2011, pp. 231–236

2010

• Sam Coppens, Erik Mannens, and Rik Van de Walle. „PREMIS
OWL binding to workflow engine for digital long-term preserva-
tion”. In: (2010)

• Erik Mannens, Sam Coppens, Rik Van de Walle, Laurence Haut-
tekeete, and Robbie De Sutter. „Cloud-computing approach to
sustainable media archives”. In: (2010)

• Erik Mannens, Sam Coppens, and Rik Van de Walle. „Network-
centric approach to sustainable digital archives”. In: (2010)

• Erik Mannens, Sam Coppens, Toon De Pessemier, Hendrik Dac-
quin, Davy Van Deursen, and Rik Van de Walle. „Automatic
news recommendations via profiling”. In: Proceedings of the 3rd
international workshop on Automated information extraction in media
production. ACM. 2010, pp. 45–50

179

2009

• Sam Coppens, Erik Mannens, Tom Evens, Laurence Hauttekeete,
and Rik Van de Walle. „Digital long-term preservation using a
layered semantic metadata schema of PREMIS 2.0”. In: Cultural
heritage on line, Florence, 15th-16th December (2009)

• Sam Coppens, Erik Mannens, and Rik Van de Walle. „Semantic
BRICKS for performing arts archives and dissemination”. eng.
In: ed. by Tom Evens and Dries Moreels. Access to Archives
of Performing Arts Multimedia. Vlaams Theater Instituut (VTI),
2009, pp. 121–141. isbn: 9789074351386

• Erik Mannens, Sam Coppens, Toon De Pessemier, Kristof Gee-
belen, Hendrik Dacquin, and Rik Van de Walle. „Unifying and
targeting cultural activities via events modelling and profiling”.
In: Proceedings of the 1st ACM international workshop on Events in
multimedia. ACM. 2009, pp. 33–40

180 Publications

References

References

[1] The Semantic Web: Research and Applications - 8th Extended Semantic
Web Conference, ESWC 2011, Heraklion, Crete, Greece, May 29-June
2, 2011, Proceedings, Part I. Vol. 6643. Lecture Notes in Computer
Science. Springer, 2011. isbn: 978-3-642-21033-4.

[2] Berners-Lee, T. „Oh Yeah Button.” In: W3C Design Issues (2006).
url: http://www.w3.org/DesignIssues/UI.html#
ohyeah.

[3] Moreau, L.; Clifford, B.; Freire, J.; Futrelle, J.; Gil, Yo.; Groth,
P.; Kwasnikowska, N.; Miles, S.; Missier, P.; Myers, J.; Plale,
B.; Simmhan, Y.; Stephan, E. and Van den Bussche, J. „The
Open Provenance Model core specification (v1.1)”. In: Future
Gener. Comput. Syst. 27.6 (June 2011), pp. 743–756. issn: 0167-
739X. doi: 10.1016/j.future.2010.07.005. url: http:
//dx.doi.org/10.1016/j.future.2010.07.005.

[4] Sahoo, S. S.; Weatherly, D. B.; Mutharaju, R.; Anantharam, P.;
Sheth, A. and Tarleton, R. L. „Ontology-Driven Provenance
Management in eScience: An Application in Parasite Research”.
In: Proceedings of the Confederated International Conferences, CoopIS,
DOA, IS, and ODBASE 2009 on On the Move to Meaningful Internet
Systems: Part II. OTM ’09. Vilamoura, Portugal: Springer-Verlag,
2009, pp. 992–1009. isbn: 978-3-642-05150-0. doi: 10.1007/978-
3-642-05151-7_18. url: http://dx.doi.org/10.1007/
978-3-642-05151-7_18.

[5] Ciccarese, P.; Wu, E.; Wong, G.; Ocana, M.; Kinoshita, J.; Rutten-
berg, A. and Clark, T. „The SWAN biomedical discourse ontol-
ogy”. In: J. of Biomedical Informatics 41.5 (Oct. 2008), pp. 739–751.

http://www.w3.org/DesignIssues/UI.html#ohyeah
http://www.w3.org/DesignIssues/UI.html#ohyeah
http://dx.doi.org/10.1016/j.future.2010.07.005
http://dx.doi.org/10.1016/j.future.2010.07.005
http://dx.doi.org/10.1016/j.future.2010.07.005
http://dx.doi.org/10.1007/978-3-642-05151-7_18
http://dx.doi.org/10.1007/978-3-642-05151-7_18
http://dx.doi.org/10.1007/978-3-642-05151-7_18
http://dx.doi.org/10.1007/978-3-642-05151-7_18

182 References

issn: 1532-0464. doi: 10.1016/j.jbi.2008.04.010. url:
http://dx.doi.org/10.1016/j.jbi.2008.04.010.

[6] Hartig, O. and Zhao, J. „Publishing and Consuming Provenance
Metadata on the Web of Linked Data”. In: Provenance and An-
notation of Data and Processes - Third International Provenance and
Annotation Workshop, IPAW 2010, Troy, NY, USA, June 15-16, 2010.
Revised Selected Papers. Ed. by McGuinness, D. L.; Michaelis,
J. and Moreau, L. Vol. 6378. Lecture Notes in Computer Science.
Springer, 2010, pp. 78–90. isbn: 978-3-642-17818-4. doi: http:
//dx.doi.org/10.1007/978-3-642-17819-1_10.

[7] PREMIS working group. PREMIS Data Dictionary for Preservation
Metadata - version 2.0. Available at http://www.loc.gov/
standards/premis/v2/premis-2-0.pdf. Mar. 2008.

[8] Carroll, J. J.; Bizer, C.; Hayes, P. and Stickler, P. Semantic Web
Publishing Vocabulary. http://www.w3.org/2004/03/trix/
swp-2/. Nov. 4, 2004.

[9] Tunnicliffe, S. and Davis, I. Changeset. http://vocab.org/
changeset/schema.html. May 18, 2009.

[10] Gil, Y.; Miles, S.; Belhajjame, K.; Deus, H.; Garijo, D.; Klyne, G.;
Missier, P.; Soiland-Reyes, S. and Zednik, S. PROV Model Primer.
Tech. rep. W3C, 2012. url: http://www.w3.org/TR/prov-
primer/.

[11] Internet Engineering Task Force. RFC 3986: Uniform Resource
Identifier (URI) – Generic Syntax. Available at http://tools.
ietf.org/html/rfc3986. 2005.

[12] Internet Engineering Task Force. RFC 2616: HyperText Transfer
Protocol – HTTP/1.1. Available at http://www.ietf.org/
rfc/rfc2616.txt. 1999.

[13] Pemberton, S., ed. XHTML 1.0 The Extensible HyperText Markup
Language (Second Edition). W3C Recommendation. Available at
http://www.w3.org/TR/xhtml1/. World Wide Web Con-
sortium, Aug. 2002.

[14] Bizer, C.; Heath, T.; Idehen, K. and Berners-Lee, T. „Linked Data
on the Web”. In: Proceedings of the 17th International World Wide
Web Conference – LDOW Workshop. Beijing, China, Apr. 2008,
pp. 1265–1266.

http://dx.doi.org/10.1016/j.jbi.2008.04.010
http://dx.doi.org/10.1016/j.jbi.2008.04.010
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-17819-1_10
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-17819-1_10
http://www.loc.gov/standards/premis/v2/premis-2-0.pdf
http://www.loc.gov/standards/premis/v2/premis-2-0.pdf
http://www.w3.org/2004/03/trix/swp-2/
http://www.w3.org/2004/03/trix/swp-2/
http://vocab.org/changeset/schema.html
http://vocab.org/changeset/schema.html
http://www.w3.org/TR/prov-primer/
http://www.w3.org/TR/prov-primer/
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/xhtml1/

REFERENCES 183

[15] Beckett, D., ed. RDF/XML Syntax Specification (Revised). W3C
Recommendation. Available at http://www.w3.org/TR/
rdf-syntax-grammar/. World Wide Web Consortium, Feb.
2004.

[16] Berners-Lee, T. and Connolly, D. Notation 3. Available at http:
//www.w3.org/DesignIssues/Notation3. 2006.

[17] Beckett, D. and Berners-Lee, T. Turtle - Terse
RDF Triple Language, W3C Team Submission. See:
http://www.w3.org/TeamSubmission/turtle/. 2008. url:
http://www.w3.org/TeamSubmission/turtle/.

[18] Adida, B.; Herman, I.; Sporny, M. and Birbeck, M. RDFa 1.1
Primer. en. other Working Group Note-. World Wide Web Con-
sortium, June 2012.

[19] Bray, T.; Paoli, J.; Sperberg-McQueen, C.M.; Maler, E. and
Yergeau, F., ed. Extensible Markup Language (XML) 1.0 (Fourth
Edition). W3C Recommendation. Available at http://www.
w3.org/TR/2006/REC-xml-20060816/. World Wide Web
Consortium, Aug. 2006.

[20] Crockford, D. The application/json Media Type for JavaScript Object
Notation (JSON). RFC 4627. IETF, July 2006.

[21] Brickley, D., ed. RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation. Available at http://www.w3.
org/TR/rdf-schema/. World Wide Web Consortium, Feb.
2004.

[22] McGuinness, D. and van Harmelen, F., ed. OWL Web Ontology
Language: Overview. W3C Recommendation. Available at http:
//www.w3.org/TR/owl- features/. World Wide Web
Consortium, Feb. 2004.

[23] Motik, B.; Patel-Schneider, P. F.; Parsia, B.; Bock, C.; Fokoue,
A.; Haase, P.; Hoekstra, R.; Horrocks, I.; Ruttenberg, A.; Sattler,
U. and Smith, M. OWL 2 Web Ontology Language: Structural
Specification and Functional-Style Syntax. Last Call Working Draft.
(to be published, may be superseded). W3C, 2008. url: http:
//www.w3.org/2007/OWL/draft/owl2-syntax/.

[24] Boley, H.; Hallmark, G.; Kifer, M.; Paschke, A.; Polleres, A. and
Reynolds, D. RIF Core Design. World Wide Web Consortium,
Working Draft WD-rif-core-20081218. Dec. 2008.

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.w3.org/2007/OWL/draft/owl2-syntax/
http://www.w3.org/2007/OWL/draft/owl2-syntax/

184 References

[25] Prud’hommeaux, E. and Seaborne, A., ed. SPARQL Query Lan-
guage for RDF. W3C Recommendation. Available at http://
www.w3.org/TR/rdf-sparql-query/. World Wide Web
Consortium, Nov. 2007.

[26] Sporny, M.; Inkster, T.; Story, H.; Harbulot, B. and Bachmann-
Gmür, R. WebID 1.0 - Web Identification and Discovery (Draft).
W3C Specification. W3C, Feb. 2011. url: http://www.w3.
org/2005/Incubator/webid/spec/.

[27] Carroll, J. J.; Bizer, C.; Hayes, P. J. and Stickler, P. „Named
graphs”. In: J. Web Sem. 3.4 (2005), pp. 247–267.

[28] Postel, J. and Reynolds, J. K. RFC 959: File Transfer Protocol. Oct.
1985. url: ftp://ftp.internic.net/rfc/rfc959.txt.

[29] Holtman, K. and Mutz, Andrew H. Transparent Content Negotia-
tion in HTTP. Internet RFC 2295. Mar. 1998.

[30] Sequeda, J. The Semantic Web Has Gone Mainstream! Wanna Bet?
http://semanticweb.com/the-semantic-web-has-
gone-mainstream-wanna-bet_b27329. Mar. 13, 2012.

[31] Berners-Lee, T. Read-Write Linked Data. http://www.w3.org/
DesignIssues/ReadWriteLinkedData.html. Oct. 8, 2011.

[32] Lanthaler, M. and Gutl, C. „Aligning Web Services with the
Semantic Web to Create a Global Read-Write Graph of Data”.
In: Proceedings of the 2011 IEEE 9th European Conference on Web
Services (ECOWS 2011). Lugano, Switzerland, Sept. 2011, pp. 15–
22.

[33] Bertails, A.; Hawke, S. and Herman, I. Linked Data Platform
(LDP) Working Group Charter. http://www.w3.org/2012/
ldp/charter.html. May 2012.

[34] Gil, Y.; Cheney, J.; Groth, P.; Hartig, O.; Miles, S.; Moreau, L. and
Pinheiro da Silva, P. Provenance Interchange Working Group Charter.
http://www.w3.org/2011/01/prov-wg-charter. Apr.
2011.

[35] Hayes, P. and Franconi, E. Why must the web be monotonic? W3C
www-rdf-logic mailing list thread, starting at http://lists.
w3.org/Archives/Public/www-rdf-logic/2001Jul/
0065.html. July 2001.

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/2005/Incubator/webid/spec/
http://www.w3.org/2005/Incubator/webid/spec/
ftp://ftp.internic.net/rfc/rfc959.txt
http://semanticweb.com/the-semantic-web-has-gone-mainstream-wanna-bet_b27329
http://semanticweb.com/the-semantic-web-has-gone-mainstream-wanna-bet_b27329
http://www.w3.org/DesignIssues/ReadWriteLinkedData.html
http://www.w3.org/DesignIssues/ReadWriteLinkedData.html
http://www.w3.org/2012/ldp/charter.html
http://www.w3.org/2012/ldp/charter.html
http://www.w3.org/2011/01/prov-wg-charter
http://lists.w3.org/Archives/Public/www-rdf-logic/2001Jul/0065.html
http://lists.w3.org/Archives/Public/www-rdf-logic/2001Jul/0065.html
http://lists.w3.org/Archives/Public/www-rdf-logic/2001Jul/0065.html

REFERENCES 185

[81] RLG/OCLC Working Group on Digital Archive Attributes.
Trusted Digital Repositories: Attributes and Responsibilities. 2002.
url: http://www.oclc.org/programs/ourwork/past/
trustedrep/repositories.pdf.

[82] Brand, S. „Escaping The Digital Dark Age”. In: Library Journal
124, Issue 2 (Mar. 2003), pp. 46–49.

[83] Consultative Committee for Space Data Systems. Reference Model
for an Open Archival Information System (OAIS). Available at
http://public.ccsds.org/publications/archive/
650x0b1.pdf. Jan. 2002.

[84] Messina, A.; Boch, L.; Dimino, G.; Bailer, W.; Schallauer, P.;
Allasia, W. and Basili, R. „Creating rich Metadata in the TV
Broadcast Archives Environment: the PrestoSpace project”. In:
IEEE AXMEDIS06 Conference Second International Conference on
Automated Production of Cross Media Content for Multi-Channel
Distribution. 2006, pp. 193–200.

[85] Ferreira, M.; Baptista, A. A., and Ramalho, J. C. „An intelligent
decision support system for digital preservation”. In: Interna-
tional Journal on Digital Libraries 6(4) (2007), pp. 295–304.

[86] Hunter, J. and Choudhury, S. „PANIC: an integrated approach
to the preservation of composite digital objects using Semantic
Web services”. In: International Journal on Digital Libraries 6(2)
(2006), pp. 174–183.

[87] Gil, Y.; Cheney, J.; Groth, P.; Hartig, O.; Miles, S.; Moreau, L.;
da Silva, P. P.; Coppens, S.; Garijo, D.; Gomez, J. M.; Missier,
P.; Myers, J.; Sahoo, S. and Zhau, J. Provenance XG Final Report.
Available at http://www.w3.org/2005/Incubator/prov/
XGR-prov/. 2010.

[88] Hartig, O. and Zhao, J. „Publishing and Consuming Provenance
Metadata on the Web of Linked Data”. In: Proceedings of the 3rd
International Provenance and Annotation Workshop IPAW. Avail-
able at http://olafhartig.de/files/HartigZhao_
Provenance_IPAW2010_Preprint.pdf. 2010.

[89] Nilsson, M. and Powell, A. and Johnston, P. and Naeve, A.
Expressing Dublin Core metadata using the Resource Description
Framework (RDF). Available at http://dublincore.org/
documents/dc-rdf/. 2007.

http://www.oclc.org/programs/ourwork/past/trustedrep/repositories.pdf
http://www.oclc.org/programs/ourwork/past/trustedrep/repositories.pdf
http://public.ccsds.org/publications/archive/650x0b1.pdf
http://public.ccsds.org/publications/archive/650x0b1.pdf
http://www.w3.org/2005/Incubator/prov/XGR-prov/
http://www.w3.org/2005/Incubator/prov/XGR-prov/
http://olafhartig.de/files/HartigZhao_Provenance_IPAW2010_Preprint.pdf
http://olafhartig.de/files/HartigZhao_Provenance_IPAW2010_Preprint.pdf
http://dublincore.org/documents/dc-rdf/
http://dublincore.org/documents/dc-rdf/

186 References

[90] Doerr, M.; Hunter, J. and Lagoze C. „Towards a Core Ontology
for Information Integration ”. In: Journal of Digital information
(2003).

[91] Lagoze, C. and Van de Sompel ,H. The open archives initiative
protocol for metadata harvesting - version 2.0. Available at http://
www.openarchives.org/OAI/openarchivesprotocol.
html. 2002.

[92] Chappell, D. A. Enterprise Service Bus. O’Reilly Media, 2004,
pp. 1–288.

[93] Box, D.; Ehnebuske, D.; Kakivaya, G.; Mayman, A.; Mendelsohn,
N.; Frystyk Nielsen, H.; Thatte, S. and Winer, D. Simple Object
Access Protocol (SOAP) 1.1. Available at http://www.w3.org/
TR/soap/. 2000.

[94] Clark, J., ed. XSL Transformations (XSLT) – Version 1.0. W3C
Recommendation. Available at http://www.w3.org/TR/
xslt. World Wide Web Consortium, Nov. 1999.

[95] Boyko, A.; Kunze, J.; Littman, J.; Madden, L. and Vargas, B.
The BagIt File Packaging Format (V0.96). Available at https:
/ / confluence . ucop . edu / download / attachments /
16744580/BagItSpec.pdf?version=1. 2009.

[96] Van de Sompel, H; Sanderson, R.; Nelson, M.L.; Balakireva, L.;
Shankar, H. and Ainsworth, S. „Memento: Time Travel for the
Web”. In: CoRR abs/0911.1112 (2009).

[97] Van de Sompel, H; Sanderson, R.; Nelson, M.L.; Balakireva, L.;
Shankar, H. and Ainsworth, S. „An HTTP-Based Versioning
Mechanism for Linked Data”. In: CoRR abs/1003.3661 (2010).

[98] Moreau, L.; Hartig, O.; Simmhan, Y.; Myers, J.; Lebo, T.; Belhaj-
jame, K. and Miles, S. PROV-AQ: Provenance Access and Query.
Tech. rep. W3C, 2012. url: http://www.w3.org/TR/prov-
aq/.

[99] Belhajjame, K.; Cheney, J.; Corsar, D.; Garijo, D.; Soiland-Reyes,
S.; Zednik, S. and Zhao, J. PROV-O: The PROV Ontology. Tech.
rep. W3C, 2012. url: http://www.w3.org/TR/prov-o/.

[100] Bizer, C.;Heath, T. and Berners-Lee, T. „Linked Data – The Story
So Far”. In: Int. J. Semantic Web Inf. Syst. 5.3 (2009), pp. 1–22. url:
http://eprints.ecs.soton.ac.uk/21285/.

http://www.openarchives.org/OAI/openarchivesprotocol.html
http://www.openarchives.org/OAI/openarchivesprotocol.html
http://www.openarchives.org/OAI/openarchivesprotocol.html
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
https://confluence.ucop.edu/download/attachments/16744580/BagItSpec.pdf?version=1
https://confluence.ucop.edu/download/attachments/16744580/BagItSpec.pdf?version=1
https://confluence.ucop.edu/download/attachments/16744580/BagItSpec.pdf?version=1
http://www.w3.org/TR/prov-aq/
http://www.w3.org/TR/prov-aq/
http://www.w3.org/TR/prov-o/
http://eprints.ecs.soton.ac.uk/21285/

REFERENCES 187

[101] Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J. and Ives, Z. „DBpe-
dia: A Nucleus for a Web of Open Data”. In: In 6th International
Semantic Web Conference, Busan, Korea. Springer, 2007, pp. 11–15.

[102] Tummarello, G.; Delbru, R. and Oren, E. „Sindice.com: Weav-
ing the open linked data”. In: In Proceedings of the International
Semantic Web Conference (ISWC). 2007.

[103] Jentzsch, A.; Isele, R. and Bizer, C. „Silk - Generating RDF
Links while publishing or consuming Linked Data”. In: 9th
International Semantic Web Conference (ISWC2010). Nov. 2010. url:
http://data.semanticweb.org/conference/iswc/
2010/paper/519.

[104] Hartig, O.; Bizer, C. and Freytag, J. „Executing SPARQL Queries
over the Web of Linked Data”. In: In Proceedings of the 8th In-
ternational Semantic Web Conference (ISWC). 2009. url: %5Curl%
7Bhttp://www2.informatik.hu-berlin.de/~hartig/
files/HartigEtAl_QueryTheWeb_ISWC09_Preprint.
pdf%7D.

[105] Schwarte, A.; Haase, P.; Hose, K.; Schenkel, R. and Schmidt, M.
„FedX: A Federation Layer for Distributed Query Processing on
Linked Open Data”. In: ESWC (2). Vol. 6643. Lecture Notes in
Computer Science. Springer, 2011, pp. 481–486. isbn: 978-3-642-
21033-4.

[106] Quilitz, B. and Leser, U. „Querying Distributed RDF Data
Sources with SPARQL”. In: 5th European Semantic Web Confer-
ence (ESWC2008). June 2008, pp. 524–538. url: http://data.
semanticweb.org/conference/eswc/2008/paper/168.

[107] Görlitz, O. and Staab, S. „SPLENDID: SPARQL Endpoint Feder-
ation Exploiting VOID Descriptions”. In: COLD. Ed. by Hartig,
O.; Harth, A. and Sequeda, J. Vol. 782. CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2011.

[108] Alexander, K.; Cyganiak, R.; Hausenblas, M. and Zhao, J. „De-
scribing Linked Datasets On the Design and Usage of voiD ,
the Vocabulary Of Interlinked Datasets”. In: Design 19 (2009).
Ed. by Bizer, C.; Heath, T.; Berners-Lee, T. J. and Idehen, K. url:
http://events.linkeddata.org/ldow2009/papers/
ldow2009_paper17.pdf.

http://data.semanticweb.org/conference/iswc/2010/paper/519
http://data.semanticweb.org/conference/iswc/2010/paper/519
%5Curl%7Bhttp://www2.informatik.hu-berlin.de/~hartig/files/HartigEtAl_QueryTheWeb_ISWC09_Preprint.pdf%7D
%5Curl%7Bhttp://www2.informatik.hu-berlin.de/~hartig/files/HartigEtAl_QueryTheWeb_ISWC09_Preprint.pdf%7D
%5Curl%7Bhttp://www2.informatik.hu-berlin.de/~hartig/files/HartigEtAl_QueryTheWeb_ISWC09_Preprint.pdf%7D
%5Curl%7Bhttp://www2.informatik.hu-berlin.de/~hartig/files/HartigEtAl_QueryTheWeb_ISWC09_Preprint.pdf%7D
http://data.semanticweb.org/conference/eswc/2008/paper/168
http://data.semanticweb.org/conference/eswc/2008/paper/168
http://events.linkeddata.org/ldow2009/papers/ldow2009_paper17.pdf
http://events.linkeddata.org/ldow2009/papers/ldow2009_paper17.pdf

188 References

[109] Harth, A.; Hose, K.; Karnstedt, M.; Polleres, A.; Sattler, K. U. and
Umbrich, J. „Data summaries for on-demand queries over linked
data”. In: Proceedings of the 19th international conference on World
wide web. WWW ’10. Raleigh, North Carolina, USA: ACM, 2010,
pp. 411–420. isbn: 978-1-60558-799-8. doi: 10.1145/1772690.
1772733. url: http://dx.doi.org/10.1145/1772690.
1772733.

[110] Fielding, R. T. and Taylor, R. N. „Principled design of the mod-
ern Web architecture”. In: Proceedings of the 22nd international
conference on Software engineering. ICSE ’00. Limerick, Ireland:
ACM, 2000, pp. 407–416. isbn: 1-58113-206-9. doi: 10.1145/
337180.337228. url: http://doi.acm.org/10.1145/
337180.337228.

[111] Filho, O. F. F. and Ferreira, M. A. G. V. „Semantic Web Ser-
vices: A RESTful Approach”. In: IADIS International Conference
WWWInternet 2009. IADIS, 2009, pp. 169–180. url: http://
fullsemanticweb.com/paper/ICWI.pdf.

[112] Martin, D.; Burstein, M.; Hobbs, E.; Lassila, O.; Mcdermott,
D.; McIlraith, S.; Narayanan, S.; Parsia, B.; Payne, T.; Sirin, E.;
Srinivasan, N. and Sycara, K. OWL-S: Semantic Markup for Web
Services. Tech. rep. W3C, Nov. 22, 2004. url: http://www.w3.
org/Submission/OWL-S/.

[113] Hadley, M. J. Web application description language (WADL). Tech.
rep. Mountain View, CA, USA: Sun Microsystems, Inc., 2006.

[114] Krummenacher, R.; Norton, B. and Marte, A. „Towards Linked
Open Services and Processes”. In: FIS. Ed. by Berre, A.-J.; and
Gómez-Pérez, A.; Tutschku, K. and Fensel, D. Vol. 6369. Lecture
Notes in Computer Science. Springer, 2010, pp. 68–77. isbn:
978-3-642-15876-6.

[115] Speiser, S. and Harth, A. „Integrating Linked Data and Services
with Linked Data Services”. In: ESWC (1). Vol. 6643. Lecture
Notes in Computer Science. Springer, 2011, pp. 170–184. isbn:
978-3-642-21033-4.

[116] Verborgh, R.; Steiner, T.; Van Deursen, D.; De Roo, J.; Van de
Walle, R. and Gabarró Vallés, J. „Capturing the functionality
of Web services with functional descriptions”. In: Multimedia
Tools and Applications 2 (2013), pp. 365–387. doi: 10.1007/

http://dx.doi.org/10.1145/1772690.1772733
http://dx.doi.org/10.1145/1772690.1772733
http://dx.doi.org/10.1145/1772690.1772733
http://dx.doi.org/10.1145/1772690.1772733
http://dx.doi.org/10.1145/337180.337228
http://dx.doi.org/10.1145/337180.337228
http://doi.acm.org/10.1145/337180.337228
http://doi.acm.org/10.1145/337180.337228
http://fullsemanticweb.com/paper/ICWI.pdf
http://fullsemanticweb.com/paper/ICWI.pdf
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://dx.doi.org/10.1007/s11042-012-1004-5
http://dx.doi.org/10.1007/s11042-012-1004-5

REFERENCES 189

s11042-012-1004-5. url: http://link.springer.com/
article/10.1007/s11042-012-1004-5.

[117] Prud’hommeaux, E., ed. SPARQL 1.1 Query Language. W3C
Recommendation. Available at http://www.w3.org/TR/
sparql11-query/. World Wide Web Consortium, Nov. 2012.

[118] Glimm, B. and Ogbuji, C., ed. SPARQL 1.1 Entailment Regimes.
W3C Recommendation. Available at http://www.w3.org/
TR/sparql11-entailment/. World Wide Web Consortium,
Jan. 2013.

[119] Anicic, D.; Fodor, P.; Rudolph, S. and Stojanovic, N. „EP-
SPARQL: a unified language for event processing and stream rea-
soning”. In: Proceedings of the 20th international conference on World
wide web. WWW ’11. Hyderabad, India: ACM, 2011, pp. 635–644.
isbn: 978-1-4503-0632-4. doi: 10.1145/1963405.1963495.
url: http://doi.acm.org/10.1145/1963405.1963495.

[120] Ying, L. and Shujuan, J. „International Workshop on LarKC -
a Platform for Massive Distributed Incomplete Reasoning”. In:
Digital Library Forum, China Science and Technology Information
Institute, Beijing (Apr. 2011).

[121] Serafini, L. and Tamilin, A. „Drago: Distributed reasoning archi-
tecture for the semantic web”. In: ESWC. Springer, 2005, pp. 361–
376.

[122] De Roo, J. „EYE reasoner”. In: url: http://eulersharp.
sourceforge.net/.

[123] Sirin, E.; Parsia, B.; Cuenca Grau, B.; Kalyanpur, A. and Katz, Y.
„Pellet: A Practical OWL-DL Reasoner”. In: Web Semantics 5.2
(2007), pp. 51–53. issn: 1570-8268. doi: 10.1016/j.websem.
2007.03.004.

[124] Tsarkov, D. and Horrocks, I. „FaCT++ description logic reasoner:
System description”. In: In Proc. of the Int. Joint Conf. on Automated
Reasoning (IJCAR 2006. Springer, 2006, pp. 292–297.

[125] Haarslev, V.; Hidde, K.; Möller, R. and Wessel, M. „The RacerPro
knowledge representation and reasoning system”. In: Semantic
Web 3.3 (2012), pp. 267–277.

[126] Glimm, B.; Horrocks, I.; Motik, B.; Shearer, R. and Stoilos, G. „A
novel approach to ontology classification”. In: J. Web Sem. 14
(2012), pp. 84–101.

http://dx.doi.org/10.1007/s11042-012-1004-5
http://dx.doi.org/10.1007/s11042-012-1004-5
http://link.springer.com/article/10.1007/s11042-012-1004-5
http://link.springer.com/article/10.1007/s11042-012-1004-5
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-entailment/
http://www.w3.org/TR/sparql11-entailment/
http://dx.doi.org/10.1145/1963405.1963495
http://doi.acm.org/10.1145/1963405.1963495
http://eulersharp.sourceforge.net/
http://eulersharp.sourceforge.net/
http://dx.doi.org/10.1016/j.websem.2007.03.004
http://dx.doi.org/10.1016/j.websem.2007.03.004

190 References

[127] Polleres, A.;Scharffe, F. and Schindlauer, R. „SPARQL++ for
Mapping Between RDF Vocabularies”. In: OTM Conferences (1).
Ed. by Meersman, R. and Tari, Z. Vol. 4803. Lecture Notes in
Computer Science. Springer, 2007, pp. 878–896. isbn: 978-3-540-
76846-3.

My warm thanks to all the research partners
who participated in this study.

	Semantic Web and Provenance - An Introduction
	Introduction
	Provenance
	The Semantic Web
	The Semantic Web Foundations
	The Web Platform: URI
	Knowledge Representation Structure: RDF
	Syntax: Serialisation of RDF
	Semantics: RDFS, OWL, and OWL2
	Query: SPARQL
	Applications: Linked Data

	Provenance and the Future of the Semantic Web
	Management
	Trust
	Versioning

	Research Questions and Outline

	PREMIS OWL - A Semantic Long-Term Preservation Model
	Introduction
	Preservation Information
	PREMIS 3.0
	PREMIS OWL
	PREMIS OWL: Core
	PREMIS OWL: Structural Information
	Object
	Event
	Agent
	Rights

	Validation
	Conclusions

	Archipel - A Distributed, Digital Long-term Preservation Infrastructure
	Introduction
	Related Work
	OAIS
	Requirements of the Archive
	Information Packages
	Packaging Format
	Package Content

	Architecture
	Integration Server
	Harvest Services
	Preservation Services
	Dissemination Services

	Conclusions

	Versioned Data on the Web - Memento datetime Content Negotiation and Provenance Publication
	Introduction
	Related Work
	Layered Metadata Model
	Architecture
	Publication
	Memento Datetime Content Negotiation
	Publishing Provenance
	Implementation

	Conclusions

	Querying Distributed Linked Data - Query Federation using the Provenance of owl:sameAs Links
	Introduction
	Related Work
	Solution
	Index Builder
	Index Builder Algorithm

	Query Distributor
	Transform BGPs Algorithm
	Merge BGP Algorithm

	Optimisations
	Evaluation
	Conclusion

	Self-Sustaining Platforms - A Distributed Reasoning Framework to implement a Semantic Workflow Engine
	Introduction
	Related Work
	Concept and Architecture
	Functionality Generation Phase
	Service Generation Phase
	Service Execution and Transition Phase
	Advanced Features
	Feedback Loops
	Nesting
	Authority
	Service Selection

	Conclusions

	Remote Reasoning over SPARQL - From Query Federation to Distributed, Remote Reasoning
	Introduction
	Related work
	Remote reasoning
	Extending SPARQL
	The REASON query
	Ontology classification
	Handling triple selection validation for reasoning

	A SPARQL reasoning endpoint
	Use cases
	Ontology interoperability
	Distributed reasoning

	Future Work
	Conclusion

	Conclusions
	Provenance Representation: PREMIS OWL
	Provenance Generation: Archipel
	Provenance Dissemination: Memento and Provenance
	Provenance Consumption: Query Federation
	Self-Sustaining Platforms: Semantic Workflow Engine
	Remote Reasoning over SPARQL

	Example RDFS Model
	OWL Model
	OWL Example Ontology
	Publications
	References

