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Abstract
For Read-Write Linked Data, an environment of reasoning and RESTful interaction, we investigate the use of the Guard-
Stage-Milestone approach for specifying and executing user agents. We present an ontology to specify user agents. Moreover,
we give operational semantics to the ontology in a rule language that allows for executing user agents on Read-Write Linked
Data. We evaluate our approach formally and regarding performance. Our work shows that despite different assumptions of
this environment in contrast to the traditional environment of workflow management systems, the Guard-Stage-Milestone
approach can be transferred and successfully applied on the web of Read-Write Linked Data.

1 Introduction

The environment of the web is finally at a stage where hyper-
media agents could be applied [9]: We see that dynamic,
open, and long-lived systems are commonplace on the
web forming a highly distributed system. For example,
microservices [31] build on the web architecture and provide
fine-grained read-write access to business functions. More-
over, Internet of Things devices are increasingly equipped
with web interfaces, see, for example, the W3C’s Web of
Things effort.1 Furthermore, users’ awareness for privacy
issues leads to the decentralisation of social networks from
monolithic silos to community- or user-hosted systems like

1 https://www.w3.org/2016/07/wot-ig-charter.html.
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SoLiD,2 whichbuilds on thewebarchitecture. Thewebarchi-
tecture offers REST [14], or its implementation HTTP,3 as
a uniform way for system interaction, and RDF4 as uniform
way for knowledge representation, where we can employ
semantic reasoning to integrate data. To facilitate software
agents in this environment called Read-Write Linked Data
[4], we need to embrace the web architecture and find a suit-
able way to specify behaviour. As according to REST, the
exchange of state information is in the focus on the web,
we want to investigate a data-driven approach for specifying
behaviour. Moreover, data-driven approaches to workflow
modelling can be both intuitive and actionable, and hence
are suited to a wide range of audiences with different expe-
rience with information technologies [20]. Hence, we want
to tackle the research question of how to specify and execute
agent behaviour in the environment of Read-Write Linked
Data in a data-driven fashion?

Echoing the said application areas for web technologies,
we envision our approach to be useful to define software
agents that orchestrate services inmicroservice deployments,
act as assistance systems in Internet of Things or Cyber-
Physical Systems deployments, or manage the lifecycle of
personal data. Deployments in which REST, semantic tech-
nologies, and some notion of behaviour (e.g. flow-driven
workflows) play a role can be found in various industries,
for academic descriptions see, for example, [6]—automotive,

2 https://solid.mit.edu/.
3 http://tools.ietf.org/rfc/rfc7230.txt.
4 http://www.w3.org/TR/rdf11-concepts/.
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[25]—aviation, [10]—manufacturing, and [26]—Internet of
Things. Having been involved in the development of some
of these deployments, we see the need for an approach to
specify behaviour that embraces the data-driven nature of
the environment.

As the environment determines why different workflow
approaches are used in different circumstances [13], we need
to look at the particularities of Read-Write Linked Data,
whose basic assumptions are fundamentally different from
traditional environments where workflow technologies are
applied, e.g. databases:

The absence of events in HTTP Of the many HTTP
methods, there is no method to subscribe to events.
Hence, for ourRead-Write-Linked-Data native approach,
we rely on state data and resort to polling to get informed
about changes in the environment.
Reasoning and querying under the OWA While in
databases, typically the closed-world assumption is
made, i.e. we conclude from the absence of information
that it is false, reasoning in ontology languages for RDF
is typically based on the open-world assumption (OWA).
Hence, we have to explicitly model all options.

Mitigation strategies would introduce complexity or restrict
the generality of our approach:The absence of events could,
for example, be addressed by (1) generating events from dif-
ferences between state snapshots and to process these events,
which would add unnecessary complexity if we can do with-
out; (2) assuming server implementations that implement
change events using the WebSocket protocol, which would
restrict the generality of our approach and, for uniform pro-
cessing, would require clear message semantics, which, in
contrast toHTTP, event-based systemsdonot have [14]5.The
open-world assumption could, for example, be addressed
by introducing assumptions such as negation-as-failure once
a certain completeness class [18] has been reached, which
also would add complexity.

In contrast to previous work by Pautasso, who presented
an approach to retrofit REST into the BPEL approach to
workflow modelling in [32], our approach rather retrofits a
workflowmodelling approach into REST, here GSM. In pre-
vious work, we defined ASM4LD, a model of computation
for the environment of Read-Write Linked Data [23], which
allows for rule-based specification of agent behaviour. Based
on this model of computation, we provided an approach to
specify flow-driven workflows [24]. In contrast, we present
a data-driven approach in this paper. The Guard-Stage-

5 Note that a client’s (polling, state-based) application logic can, with-
out changes, benefit from HTTP/2 server push (events): such specific
events have been standardised to allow a server to update a client’s
cached state representations.

Milestone (GSM) approach, which serves as basis for our
work, has first been presented in [20]. While GSM builds on
events sent to a database, which holds the information model
consisting in status and data attributes, in our approach, dis-
tributed components with web interfaces that supply state
information hold the information model.

In [22], we described a previous version of this paper,
which we presented at the 3rd International Workshop in
Artificial Intelligence for Business Process Management
(AI4BPM) at the 17th International Conference on Busi-
ness ProcessManagement (BPM). In this paper, we extended
aforementioned work by providing a description on how we
process queries with a theoretical insight into the required
rule language, an extended formal evaluation from which
we derive modelling requirements, a performance evalua-
tion, updates to the operational semantics, and an extended
discussion of related work.

Our approach consists in two main parts:

GSMOntologyWe present an ontology to specify GSM
workflows and instances in the ontology language RDFS.
Using this ontology, we can specify, reason over, and
query workflow models and instances at run-time.
Operational Semantics We present ASM4LD rules to
execute workflow instances specified using our GSM
ontology. To this end, we build on a Linked Data Plat-
form container6, i.e. a writable RESTful RDF data store,
to store the status attributes, i.e. workflow instances in
our ontology.

The paper is structured as follows: In Sect. 2, we survey
related work. Next, in Sect. 3, we give basic definitions on
which we build our approach with the help of examples.
In Sect. 4, we present our main contributions: the ontology
and the operational semantics, together with the modelling
requirements. Then, in Sect. 5, we present how we pro-
cess queries on the information model using rules. Next, we
evaluate our approach in Sect. 6 regarding correctness and
performance. Last, in Sect. 7, we conclude.

2 RelatedWork

As we work in the intersection of data-driven workflow
management, knowledge representation using semantic tech-
nologies, and systems built using the web, we survey related
work in those fields and intersections.

6 http://www.w3.org/TR/ldp/.
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2.1 Data inWorkflowManagement

Execution of workflows is typically driven by either flow
or data. Flow-driven approaches include the popular BPMN
language7. If we want to make use of data during workflow
execution, we can either extend a flow-driven approach to
make it data-aware, or we use an approach where data are
a first-class citizen. In this paper, we want to investigate an
entirely data-driven approach, but we give a brief overview
on works in the former category first.

Semantics for the flow aspects in flow-based approaches
are typically given using Petri nets [36] in an event-driven
fashion. For instance, Dijkman et al. [12] provide such
semantics for BPMN. Thus, approaches that make flow-
based approaches more data-aware on a formal level are
often based on Petri nets: Such approaches include [30,37].
They take an extension of Petri nets for the dynamic part
of the system, and a formal view on data bases for the data
aspect. The gap between flow-based approaches and data-
based approaches becomes obvious in [38], which presents
an approach for deriving GSM models from Petri nets. In
the conversion, not all conditions in the GSM model can be
filled automatically: Those sentries that build on data require
additional sources for input, e.g. a human expert. We see
that here, the data aspects need to be added to the model
when talking about a flow-driven model from a data-centric
perspective, which provides additional motivation for us to
investigate entirely data-driven approaches.

Semantics for data-driven workflow languages are often
specified using Event-Condition-Action (ECA) rules to be
executed on databases, e.g. see GSM [20] for an artefact-
centric approach, and [8] for a flow-centric approach.
Another data-centric approach is RESEDA [39], whose
semantics have been given using the event-driven reactive
paradigm. Our approach is built for the environment of
REST, where there are no events that could inform the enact-
ment of the workflow instance. However, we make use of
the GSM workflow language and transfer it to the environ-
ment of Read-Write Linked Data by specifying semantics in
Condition-Action rules.

Other approaches assume processes to be given as
Condition-Action rules, noting that workflow languages can
be layered on top, i.e. the following three approaches do not
talk about the semantics of such languages. For instance, the
Daphne approach [7] provides actions as abstraction on a
SQL query or an external service call, both of which change
the contents of a relational data base. With its roots in the
formal investigations of data-centric dynamic systems [2],
Daphne is closely related to [3], where a similar approach
is investigated that works on a Description Logic knowl-
edge base instead of a data base, and also provides actions

7 http://www.omg.org/spec/BPMN/.

as abstractions for changes. In contrast, the knowledge base
in our approach is the web of Read-Write Linked Data, i.e.
our approach is built for a distributed hypermedia setting,
where REST calls are the means to enact change. In terms of
expressivity, we use an ontology language that is not based
on description logics but rather on RDFS, which is typi-
cally less expressive than members of the Description Logic
family of languages [19]. However, the transition systems in
those condition-action rule-based approaches can be related
to ASM4LD [23], the Abstract State Machine [16] based
model of computation we build our work on.

2.2 Workflows andWeb Services

Workflows applied to the web have been investigated under
the headline Web Services, which produced a set of WS-
* standards, most prominently SOAP8 and WSDL9, which
allow for composition of services, i.e. arbitrary functions
called via HTTP as transport protocol, using the flow-based
BPEL10 workflow language. Semantic descriptions, e.g. in
OWL-S [28] and WSMO [17] of those functions, should
allow for automated composition. In contrast, REST [14]
constrains this set of arbitrary functions and emphasises the
processing of state information instead of return values of
function calls [35,42]. Thus, extensions for BPEL have been
proposed to include RESTful services [32,33]. We built our
approach with the same aim in mind, i.e. to make use of
RESTful services in processes. However, as in REST, a web
is built around resources and data about their state, we want
to use a data-centric approach and exploit the semantics of
the constrained set of REST operations.

2.3 Ontologies for Processes on theWeb

Ontologies for processes have been proposed in numerous
occasions. For instance, OWL-S [29] contains a process
language, scientific workflows are often described using
an ontology [15,41], and publicly funded research projects
including Super11 and Adaptive Services Grid12 defined pro-
cess ontologies. In contrast to our approach, those approaches
have been built for flow-based processes, the function-
call style web service interaction, cannot describe process
instances, and do not come with operational semantics.

In previous work, we developed the WiLD ontology to
describe flow-based workflowmodels and instances together

8 http://www.w3.org/TR/soap12-part1/.
9 http://www.w3.org/TR/wsdl/.
10 http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.
11 http://ip-super.org/ is defunct, but the content is available at http://
projects.kmi.open.ac.uk/super/.
12 http://www.asg-platform.org/ is defunct, the page is available in the
Web Archive.
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with operational semantics in to specify and execute work-
flows on Read-Write Linked Data [24]. In contrast, in this
paper, we investigate data-centric behaviour descriptions.

2.4 Information and Processes in Information
Systems

In the broader scope of object-aware business process sys-
tems, [27] have developed 20 requirements around data,
activities, processes, user integration and monitoring. Based
on these requirements, they evaluate imperative, declarative,
and data-driven approaches to workflowmanagement. Aswe
work with Read-Write Linked Data, our approach can con-
tribute to filling the gaps left by other approaches: to fulfil
requirement R1 (data integration) and R2 (access to data).
As our approach is based on GSM, we of course inherit
their requirement fulfilment in other areas including R10
(object behaviour), R13 (flexible process execution), R14
(re-execution of activities) and R15 (explicit user decisions).

3 Preliminaries

In this section, we introduce the technologies on which we
build our approach.

3.1 Uniform Resource Identifier (URI)

On the web, we identify things (called resources on the web)
using URIs13. URIs are character strings consisting in a
scheme, and a scheme-specific part, separated by the colon
character. In this paper, we only consider the schemes of
HTTP. For instance, consider the following URI that identi-
fies the relation to assign a thing to a class:

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

In this URI, the URI scheme is “http”, which refers to the
HTTP protocol, which we discuss in the next section. Note
that we use the termURIs when we actually mean their inter-
nationalised form, IRIs.14 We do so, as the former is themore
popular term and the former RFC provides more information
about themeaning and the composition ofURIs/IRIs than the
RFC about the latter.

3.2 The Hypertext Transfer Protocol (HTTP)

HTTP3 is a stateless application-level protocol,where clients
and servers exchange request/response message pairs about

13 http://tools.ietf.org/rfc/rfc3986.txt.
14 http://tools.ietf.org/rfc/rfc3987.txt.

resources that are identified using URIs on the server.
Requests are typed, and the type (i.e. the HTTP method)
determines the semantics of both the request and the optional
message body. We make extensive use of the GET request
to request a representation of a resource, the PUT request
to overwrite the representation of a resource, and the POST
request to append to an existing collection resource. Notably,
the constrained set of HTTP methods does not include a way
to subscribe to events. Therefore, polling, i.e. the repeated
retrieval of state information, is theway to get informed about
changes to resource state.

3.3 The Resource Description Framework (RDF)

RDF4 is a graph-based data model for representing and
exchanging data based on logical knowledge representation.
In RDF, we represent data as triples that follow the form:

(subject, predicate, object)

Such a triple defines a relation of type predicate between
graph nodes subject and object. Multiple triples form an
RDF graph, and the triples can be regarded as defining
the edges that connect the vertices of the graph. Things in
RDF are identified globally using URIs, or document-locally
using so-called blank nodes. Literals can be used to express
values. RDF can be serialised in different formats. Those
include Turtle15, which is probably the easiest for humans
to read, RDF/XML16, which has been one of the first for-
mats specified and works well in XML-based environments,
and JSON-LD17, which works well in JSON-based environ-
ments. In this paper, we use the following notation for RDF:
As triples encode binary predicates, we write

rd f :t ype(:active, :State)

to mean the following triple in Turtle notation:

:active rdf:type :State .

Here, :active is the subject, rdf:type is the predicate,
and :State is the object. Triples are asserted conjunc-
tively. Note the use of URI abbreviations using the CURIE
syntax18, where a colon separates the abbreviating and
possibly empty prefix from the local name, here rdf is
short for http://www.w3.org/1999/02/22-rdf-

15 http://www.w3.org/TR/turtle/.
16 http://www.w3.org/TR/rdf-syntax-grammar/.
17 http://www.w3.org/TR/json-ld/.
18 http://www.w3.org/TR/curie/.
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syntax-ns#19. For the special case of class assignments,
we use unary predicates. That is, in our notation, above triple
becomes:

: State(: active)

For boolean constants, we use typewriter font, e.g. true.

3.4 The SPARQL Protocol and Query Language

SPARQL20 is a protocol and a query language for RDF.
SPARQL queries can have different forms,most prominently
SELECT queries.We useASK queries in this paper. The basic
construct is a SPARQL query is a so-called graph pattern,
where variables are allowed in all positions of a triple. For
instance, a query to select all states could look as follows
(assuming appropriate prefix definitions):

SELECT ?s WHERE { ?s rdf:type :State . }

The ASK query

ASK WHERE { ?s rdf:type :State . }

returns true if the SELECT query above has a non-empty
result.

3.5 Ontologies, Reasoning, and Rules

Besides encoding knowledge in a graph, RDF is the basis for
a set of Knowledge Representation technologies including
the languages RDFS21 and OWL22 to express ontologies.
By and large, RDFS is less expressive than most members of
the OWL family, which comes with computational benefits
[19]. For instance, RDFS entailment can be implemented
using monotonous deduction rules. A rule language in the
context of RDF is Notation323. For example, if we know
that:

:active a :NonFailureState .
:NonFailureState rdfs:subClassOf :State .

or in the notation of our paper:

:NonFailureState(:active)

∧rdfs:subClassOf(:NonFailureState, :State)

19 The example also uses the empty prefix, which shall denote http://
purl.org/gsm/vocab# in this paper.We refer to http://prefix.cc/ for other
abbreviations.
20 http://www.w3.org/TR/sparql11-query/.
21 http://www.w3.org/TR/rdf-schema/.
22 http://www.w3.org/TR/owl2-overview/.
23 http://www.w3.org/TeamSubmission/n3/.

the rule (with terms without colons being variables)

rdfs:subClassOf(x, y) ∧ x(z) → y(z)

allows us to entail the triple from the RDF example. We call
the part before the arrow antecedent or body and the part after
the arrow consequent or head.

In this paper, we additionally use a special kind of rules:
request rules, where the consequent is an HTTP request to
be executed. For instance:

:hasState(s, :active) → PUT(s, :hasState(s, :done))

would mean that a PUT request should be sent to all s that
have the state :active with the payload that this s shall have
the state :done.

3.6 Abstract State Machines for Linked Data
(ASM4LD)

ASM4LD is an Abstract State Machine-based operational
semantics given to Notation3 [23]. In ASM4LD, we can
encode two types of rules: derivation rules (to derive new
knowledge) and request rules (which cause HTTP requests).
Moreover, ASM4LD supports RDF assertions. In [23], we
derived the operational semantics based on the seman-
tics of HTTP requests, first-order logic, and Abstract State
Machines. The operational semantics can be summarised in
four steps to be executed in a loop, thus implementingpolling:

1. Initially, set the working memory to be empty.
2. Add the assertions to the working memory.
3. Until no further data can be retrieved from URIs and no

further data can be deducted, evaluate on the working
memory:

(a) Request rules from which HTTP-GET requests follow.
For the rules whose condition holds, make the HTTP
requests add the data from the responses to the working
memory.

(b) Derivation rules. Add the thus derived data to theworking
memory.
This way, we (a) obtain and (b) reason on data about the
world state.

4. Evaluate all other request rules on the working mem-
ory, i.e. those rules from which PUT/POST/DELETE
requests follow.Make the correspondingHTTP requests.
This way, we enact changes on the world’s state.

In this paper, we use ASM4LD as formal basis to give oper-
ational semantics to our Guard-Stage-Milestone ontology.
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Start fire alarm
Close doors

g1 m1 g2
m2a

m2b

Fig. 1 A small example of two stages with associated guards and mile-
stones

3.7 The Guard-Stage-Milestone Approach

The Guard-Stage-Milestone approach is an artefact-centric
workflow meta-model, presented in [20]. The key mod-
elling elements for Guard-Stage-Milestone workflows are
the following: The Information Model contains all relevant
information for a workflow instance: data attributes main-
tain information about the system controlled by theworkflow
instance, and status attributes maintain control information
such as how far the execution has already progressed. Stages
can contain a task (i.e. the actual activity, an unit of work
to be done by a human or machine) and may be nested.
Guards control whether a stage gets activated, i.e. the activ-
ity may execute. The conditions of a guard are given as
sentries. Sentries are boolean expressions in a condition lan-
guage. They come in the formEvent-Condition (on<event>
if <condition>). Here, events may be incoming from the
system, or be changes to status attributes. Milestones are
objectives that can be achieved during execution, and are
represented using boolean values.Milestones have achieving
and invalidating sentries associated: If an achieving sentry is
evaluated to true, the milestone is set to achieved. An inval-
idating sentry can set a milestone back to unachieved.

An example can be found in Fig. 1.
The example is set in an Internet of Things scenario and

shows two stages “Start Fire Alarm” and “Close doors”,
whose activation is controlled using guards. Those stages
have milestones associated that can be validated and invali-
dated. The informal definition of those guards andmilestones
can be found in Fig. 2.

To specify the operational semantics, Hull et al. [20]
provides a set of six PAC rules. PAC rules are a varia-
tion of Event-Condition-Action rules and are described by a
prerequisite, antecedent, and consequent, respectively. Both
prerequisite and antecedent range over the entire informa-
tion model, and the consequent is an update to the status
attributes. The rules can be subdivided into two categories:
explicit rules, which accomplish the actual progress in a
workflow instance, and invariant preserving rules, which
perform “housekeeping” by, e.g. deactivating child stages if
the parent has been deactivated. The operational semantics
of GSM are defined in an event-triggered fashion. There are
three types of Events: Outgoing Events for Task Invocation,
sent fromstages, IncomingEvents sent from the environment,
e.g. one-way messages and task terminations, and Status

Start fire alarm
Close doors

g1 m1 g2
m2a

m2b
g1:     Smoke detected 
          & Doors open
m1:    Alarm is on
!m1:   Door status: Closed

g2:     Alarm is on (m1)
          & Doors open
m2a:  Doors Ould not be closed
m2b:  Doors were closed
!m2b: Door status: open

Start fire alarm
Close doors

g1 m1 g2
m2a

m2b

Start fire alarm
Close doors 

g1 m1 g2
m2a

m2b

Start fire alarm
Close doors

g1 m1 g2
m2a

m2b

Start fire alarm
Close doors

g1 m1 g2
m2a

m2b

Start fire alarm
Close doors

g1 m1 g2
m2a

m2b

Door status: Open
Smoke : False

Door status: Closed
Smoke : True

Door status: Open
Smoke : True

Door status: Open
Smoke : True

Door status: Closed
Smoke : True

Door status: Open
Smoke : True

:  Environment Variables

: Active Stage

: Active Guard

: Active Milestone

:  Invalidated Milestone

Fig. 2 Example of a workflow execution. Time progresses from top to
bottom

changeswho fire when a milestone or stage changes its state.
If an event triggers the execution, all that follows from the
rules gets incorporated into the information model. This full
incorporation is called a Business Step (B-Step).

We illustrate the operational semantics using an exam-
ple. It demonstrates a workflow of a fire alarm process in a
public building. Figure 2 shows how the workflow execution
proceeds triggered by changes in the information model.

Every line represents a B-Step.

Line 2 Once smoke has been detected, the sentry of g1
becomes true, which leads to g1 being active and
thus the execution of the left stage.

Line 3 Guard g1 is still active. As the fire alarm has been
started, the achieving sentry of milestonem1 is true
and thus the milestone is set to achieved. In con-
sequence, guard g2 becomes active, which triggers
the execution of the right stage.

Line 4 As the invalidating sentry of m1 becomes true, i.e.
the fire alarm stops when all doors are closed, the
dependent guard g2 becomes inactive as well. This
does not affect the state of milestone m2b.

Line 5 After m1 has been invalidated, the smoke cannot
further circulate through open doors.

Line 6 At some point after all doors had already been
closed, somebody re-opens a door. This triggers the
invalidation of the correspondingmilestonem2b (all
doors are closed). As a consequence, the left stage
is re-triggered.

We see that changes in the information model trigger in more
changes in the information model.
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4 Proposed Approach

To transfer the GSM approach to the environment of Read-
Write Linked Data, we need to transfer both the modelling
and the operational semantics to this environment. Our
approach consists therefore in an ontology to model GSM
workflows and instances (the latter corresponding to the sta-
tus attributes), and in operational semantics in rules with
ASM4LD semantics, which interpret those workflows and
instances. The rules can be directly deployed on a corre-
sponding interpreter.

To put our approach into practice, a workflow model has
to be modelled using our ontology and to be made available
as Linked Data. A workflow instance has to be defined using
our ontology, with a link to a workflow model, and deployed
as Read-Write Linked Data in a Linked Data Platform Con-
tainer. Then, an interpreter—with the operational semantics
rules deployed– has to be pointed to the workflow instance
and can execute the instance according to the model. Neces-
sary instances for the elements within the workflow model
are created, also as Linked Data in the said container, by
the interpreter using specialised set-up rules. The interpreter
then changes the state of the instances according to the GSM
lifecycle. As the rule language supports both, derivation rules
and request rules, we can deploy derivation rules to imple-
ment the reasoning that is necessary to fulfil the semantics of
ontology languages (e.g. RDFS) next to the rules required for
the operational semantics. Thus, we can execute the work-
flow and perform semantic data integration at the same time.

We first present the ontology (Sect. 4.1) and then the oper-
ational semantics (Sect. 4.2). For the presentation of the
operational semantics, we use the rule syntax described in
Sect. 3. Last (Sect. 4.3), we present modelling requirements
that need to be fulfilled for a correct workflow execution.

4.1 Ontology for Modelling Entities

We built an ontology24 to describe the core modelling prim-
itives from [20]. We depict the ontology in Fig. 3. We
stay as closely as possible to their definitions and divert
only if demanded by the environment of Read-Write Linked
Data:Tasks are HTTP requests as atomic activities. Sentries
contain a SPARQL ASK query in SPIN notation.25 Corre-
spondingly, we use SPARQL’s true boolean query result
(we cannot use false, see Sect. 1) with sentries and guards.
We introduce the class State of all states to, e.g. model the
states of a stage: active and inactive.

In our approach, the information model is not contained
in a database, but is spread over Read-Write Linked Data
resources. Hence, we do not maintain the data attributes our-

24 http://purl.org/gsm/vocab.
25 http://spinrdf.org/.

selves: We do not store information about the system we
control, but instead, we retrieve the system state live in RDF
over HTTP from the system itself. However, we do main-
tain the status attributes, for uniform access in RDF over
HTTP. Thus, from now on we call all information regarding
the state of the workflow status information. All other infor-
mation about the system under control, and other relevant
information from the environment, e.g. external services, we
call environment information.

4.2 Operational Semantics

The following operational semantics are based on the PAC-
rule-based semantics from [11]. We distinguish between
set-up and flow conserving (FC) rules. Our rules can be found
online26 in N3 notation. For the sake of the example, we
assume all status information to reside in a fictitious collec-
tion resource at http://ldpc.example/. To improve
legibility, we sometimes use “· · · ” to denote when the values
of other predicates stay the same.

Instance Set-Up Rules

The basic condition for all setup rules is:

CS := :StageInstance(i) ∧ :isInstanceOf(i, s)

∧:hasState(i, :uninitialized)

Workflow The setup can be requested by publishing an
uninitialised instance:

CS −→ PUT(i, :ArtifactInstance(i)

∧ . . .

∧:hasState(i, :uninitialized))

Stage Then, resources are created for all the model’s sub-
stages, linked to their counterpart in themodel, andwith state
inactive.

CS ∧ :hasDescendantStage(s, schild)

−→ POST(http://ldpc.example/,

:isInstanceOf(new, schild) ∧ :inArtifactInstance(new, i)

∧:hasState(new, :inactive))

Milestone Also, resources are created for all the model’s
milestones, linked to their counterpart in the model, and with
state unachieved.

26 http://purl.org/gsm/semantics.
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Fig. 3 Our ontology as UML class diagram with the following cor-
respondence to RDF Schema: UML class depicts RDFS class; UML
associations depict domain and range of RDF properties. UML inheri-

tance depicts RDFS subclass. The core classes to describe models are
depicted in bold; the core classes during execution are depicted dashed

CS ∧ :hasDescendantStage(s, schild)

∧:hasMilestone(schild ,m)

−→ POST(http://ldpc.example/,

:isInstanceOf(new,m) ∧ :inArtifactInstance(new, i)

∧:isAchieved(new,false))

Flow-Conserving Rules

All FCRs share the following conditions, which we abbrevi-
ate with FC :

FC := :ArtifactInstance(SI ) ∧ :Stage(sM )

∧:StageInstance(s I ) ∧ :isInstanceOf(s I , sM )

∧:inArtifactInstance(s I , SI )
∧:hasState(SI , :active)

For better readability when writing about sentries, we define
the term :hasBooleanResult as abbreviation:

:hasBooleanResult(c,true)

:= :hasInstanceRelativeResult(c, r)

∧:hasArtifactInstance(c, SI )
∧sparql-results:boolean(r ,true)

FCR-1 For inactive stages, we check the guards. If a guard
holds, the state of the stage is set to active and the task of the
stage is executed.

FC ∧ :hasGuard(sM , g) ∧ :hasHttpRequest(sM , req)

∧:allAncestorsActive(s I ,true)

∧:hasState(s I , :inactive) ∧ :hasCondition(g, c)

∧:hasBooleanResult(c,true)

−→ PUT(s I , . . . :hasState(s I , :active))

−→ req(·, ·)
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FCR-2 If an active stage’s validating sentry holds, set the
stage and its children to inactive, and the stage’s milestone
to achieved.

FC ∧ :hasState(s I , active) ∧ :hasMilestone(sM ,mM )

∧:hasValidatingSentry(mM , ca) ∧ :isInstanceOf(mI ,mM )

∧:hasBooleanResult(c,true)

∧:hasDescendantStage(sM , dM ) ∧ :isInstanceOf(d I , dM )

−→ PUT(mI , . . . :isAchieved(mI ,true))

−→ PUT(s I , . . . :hasState(s I , :inactive))

−→ PUT(d I , . . . :hasState(d I , :inactive))

FCR-3When an achieved milestone’s invalidating sentry
of a completed stage becomes true, the milestone is set to
unachieved.

FC ∧ :hasMilestone(sM ,mM ) ∧ :isInstanceOf(mI ,mM )

∧:isAchieved(mI ,true) ∧ :hasInvalidatingSentry(mM , c)

∧:hasBooleanResult(c,true)

−→ PUT(mI , . . . :isAchieved(mI ,false))

FCR-4 Upon activation of a stage, set all of the stage’s
and its descendant stages’ milestones to unachieved.

FC ∧ :hasGuard(sM , g) ∧ :allAncestorsActive(s I ,true)

∧:hasState(s I , :inactive)
∧:hasCondition(g, c) ∧ :hasBooleanResult(c,true)

∧:hasMilestone(sM ,mM ) ∧ :isInstanceOf(mI ,mM )

∧:isAchieved(mI , true) ∧ :hasDescendantStage(sM , dM )

:hasMilestone(dM ,mM
d ) ∧ :isInstanceOf(mI

d ,m
M
d )

−→ PUT(mI , . . . :isAchieved(mI ,false))

−→ PUT(mI
d , . . . :isAchieved(m

I
d ,false))

4.3 Requirements toWorkflowModelling

We now add two conditions a workflow needs to fulfil. The
disjointness conditions specify sets of sentries that need to
be disjoint. If the workflow modeller violates one of them, a
correct workflow execution cannot be guaranteed. In the fol-
lowing, “¬” denotes the logical negation. The reader can find
the rationale behind those requirements in Section 6.2.1.5,
where we evaluate our approach regarding correctness.

4.3.1 Disjointness of Achieving and Invalidating Sentry

For each milestone, the invalidating and achieving sentry
must be disjoint. More formally:

FC ∧ :hasMilestone(sM ,mM )

∧:hasInvalidatingSentry(mM , cI )

∧:hasAchievingSentry(mM , cA)

the workflow modeller must ensure that ¬(cA ∧ cI ) always
holds.

4.3.2 Disjointness of Guards and Milestones

For each milestone, the guard of a stage and must be disjoint
with the achieving sentries of all milestones of its parent
stages. More formally:

FC ∧ :hasDescendantStage(sM , dM )

∧:hasMilestone(dM ,mM
d )

∧:hasAchievingSentry(mM
d , cA)

∧:hasGuard(sM , g)

∧:hasCondition(g, cg)

the workflow modeller must ensure that ¬(cA ∧ cg) always
holds.

5 Rule-Based Querying of Data and Status
Attributes

In our approach, we use SPARQL ASK queries for sentries.
As the rule language we employ does not have special fea-
tures to incorporate query results into conditions, we have to
use the rule language to do query processing. We build on
the SPIN27 notation to describe SPARQL queries in RDF.

For queries on the data attributes, SPARQL features are
sufficient. Consider the following query that could, e.g. be a
part of the sentry of g1 in Fig. 1:

PREFIX smarthome: <http://iot.example/vocab#> .
ASK
WHERE {
<http://iot-house.example/front#door>

a smarthome:Door ;
smarthome:isOpen true .

}

27 http://spinrdf.org/.
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If we identify the query using q, we can write (imagine
bxy as blank nodes):

sp:Ask(q) ∧ sp:where(q, bl1) ∧ rdf:first(bl1, bt1)

∧sp:subject(bt1, http://iot-house.example/front#door)
∧sp:predicate(bt1, rdf:type)
∧sp:object(bt1, smarthome:Door)
∧rdf:rest(bl1, bl2) ∧ rdf:first(bl2, bt2)

∧sp:subject(bt2, http://iot-house.example/front#door)
∧sp:predicate(bt3, smarthome:isOpen)
∧sp:object(bt3,true)

∧rdf:rest(bl2, rdf:nil)

SPIN makes use of reification, similar to RDF reification,28

but with own RDF terms, to describe the triple patterns in
the query. Using rules of the following form (with tp, s, p,
o being variables), we can annotate the triple patterns using
deductions that hold if a triple pattern is fulfilled:

sp:subject(tp, s) ∧ sp:predicate(tp, p) ∧ sp:object(tp, o)

∧p(s, o) → sparql-results:boolean(tp,true)

Using further deductions, we can checkwhether all triple pat-
terns in a query in SPIN notation are fulfilled, and eventually
yield triples that serve in the conditions of the operational
semantics, e.g. see the rule FCR-2 in Sect. 4.2.

For queries on the status attributes, this technique to anno-
tate existing resources of triple patterns is not sufficient:when
giving queries to be evaluated on the status attributes, we
need a notion of the current artefact instance, and thus, we
need new resources (and new terms in the vocabulary) using
which we can annotate the triple patterns with the artefact
instances in which they hold. For example, a guard g that
requires a milestone m1 to be achieved should, first, only
look in the same artefact instance to check whether m1 has
been achieved, and should second, be defined at workflow
design time, when the exact URI of the milestone instance
for m1 is not known yet. For the new resources, we need
to extend the expressivity of the rule language: For the con-
siderations so far, a rule language without existentials in the
head was sufficient. As we need to create new resources in
the deductions to annotate triple patterns relative to artefact
instances, we need existentials in the head.

To annotate sentries relative to artefact instances, we thus
deduce blank nodes for each sentry in each active artefact
instance (bn as blank node):

:ArtifactInstance(a) ∧ :hasState(a, :active)

28 https://www.w3.org/TR/rdf11-mt/#reification.

∧:inArtifactInstance(si, a) ∧ :isInstanceOf(si, sm)

∧:hasGuard(sm, g) ∧ :hasCondition(g, s)

→ :hasArtifactInstanceRelativeResult(s, bn)

∧:hasArtifactInstance(bn, a)

Now, we can follow the same pattern when annotating triple
patterns.

Last, we need a way to relate the SPARQL ASK query
to the artefact instance. To this end, we introduce special
triple patterns to be used in SPARQL ASK queries in SPIN
notation. Those triple patterns have the form:

:inArtifactInstance(bt1, :thisArtifactInstance)

∧:hasAchievedMilestone(bt1,m1)

where bt1 is a triple pattern, similar as in the presented
SPARQL query in SPIN notation, m1 is the URI of the
milestone that the sentry is supposed to consider, and
:thisArtifactInstance is a magic term that represents the cur-
rent artefact instance.

6 Evaluation

In this section, we evaluate our approach. We show the cor-
rectness of our approach using theoretical considerations and
proofs in 6.2 after introducing some notation 6.1. Then, we
briefly report on the applicability of our approach in Sect. 6.3.
Last, we provide a performance evaluation in Sect. 6.4.

6.1 Notation

To improve readability, we introduce a new notation and sim-
plify the concept of models and its instances. In the previous
chapter, we made a difference between stage instances (s I )
and stage models (sM ). The FCRs, however, only consider
one-stage instance of one-stage model; hence, we can sim-
plify the notation by conflating the two. Therefore, in the
new notation, we choose definitions that heavily build on the
instances only.We also compact the notation by defining sets
that contain all resources that fulfil certain conditions from
the rules in Sect. 4. Table 1 contains the relevant definitions
of sets and functions we use in the following.

On top of the sets and function that describe one instant
in time, we also need to define the progression of time. To
describe the progressing execution of a workflow, we look
at it as a series of snapshots of the workflow. A snapshot
contains the assignments of all status information variables
of a workflow. The sequential of snapshots then describes
the stepwise execution. To link a snapshot to its successor,
we define a state transition function. The set of all possible
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Table 1 Notation used in the proofs

Symbol Formal definition Explanation

S {s I |FC} The set of stages

G {g|FC ∧ :hasGuard(sM , g)} The set of guards

Gs {gs ∈ G|FC ∧ :hasGuard(sM , gs) ∧
:isInstanceOf (s, sM )}, s ∈ S

The guards of stage s

M {mI |FC ∧ :hasMilestone(sM ,mM ) ∧
:isInstanceOf (mI ,mM )}

The set of milestones

Ms {mI ∈ M|FC ∧
:hasMilestone(sM ,mM ) ∧
:isInstanceOf (mI ,mM )

The milestones of stage s

∧:isInstanceOf (s, sM )}, s ∈ S

Ds {sd ∈ S|FC ∧
:hasDescendantStage(sM , sMd ) ∧
:isInstanceOf (sd , sMd )

The descendants of stage s

∧:isInstanceOf (s, sM )}, s ∈ S

As {sa ∈ S|FC ∧
:hasAncestorStage(sM , sMa ) ∧
:isInstanceOf (sa, sMa )

The ancestors of stage s

∧:isInstanceOf (s, sM )}, s ∈ S

� {c|(FC ∧ :hasGuard(sM , g) ∧
:hasCondition(g, c))

The set of sentries

∨(FC ∧ :hasMilestoneModel(sM ,mM )

∧(:hasAchievingSentry(mM , c) ∨
:hasInvalidatingSentry(mM , c)))}

φ φ : M ∪ G → {true, false} The result of a guard’s (φ) or milestone’s achieving (φ+)
or invalidating (φ−) sentry in snapshot σ (φσ )

S {active, inactive, achieved, unachieved} The set of states

All definitions relate to an instance I of a model M

snapshots is �, and the state transition function is

f : � → �

Given a snapshot σ ∈ �, f (σ ) determines the subsequent
state of theworkflow, derived by applying the proposed rules.
We abbreviate f (σ ) with σ ′. σ(x) denotes the value of sta-
tus information variables (i.e. for a milestone or stage) x in
snapshot σ . Correspondingly, φσ determines the results of a
sentry in snapshot σ .

We now apply this notation to the FCRs. Table 2 lists the
FCRs using the new notation. Next, we shortly provide a
recap of the intuition behind each rule:

FCR-1 activates stages. It requires that a stage is inactive,
the stage’s ancestors are active, and the stage’s guard
is true.

FCR-2 sets milestones achieved and inactivates the corre-
sponding stages as well as its substages. It requires
a stage to be active and the achieving sentry of a
milestone of the stage to be true.

FCR-3 invalidates milestones. It requires a milestone to be
achieved and the milestone’s invalidating sentry to
be true.

FCR-4 invalidates all achievedmilestoneswhen a stage gets
activated again. It requires all parent stages to be
active, the stage itself to be inactive and the guard
of the stage to be true.

We also reformulate the two disjointness conditions using
the new notation:
Disjointness of Achieving and Invalidating Sentries. Awork-
flowmust bemodelled in a way that the guard of a child stage
is never satisfied at the same timewhen the stage’smilestones
are satisfied.

∀s ∈ S,ms ∈ Ms : ¬(φ+
σ (ms) ∧ φ−

σ (ms)) (1)

Disjointness of Guards andMilestones.The sentry of a guard
and the achieving milestones of its parent must be disjoint.

∀s, sd ∈ S,ms ∈ Ms, sd ∈ Ds, gsd ∈ Gsd :
¬(φσ (gsd ) ∧ φ+

σ (ms)
(2)
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Table 2 Flow-conserving rules: conditions and actions

Rule Condition Action

FCR-1 ∀s ∈ S, sa ∈ As , gs ∈ Gs : σ(s) = inactive ∧ σ(sa) = active ∧ φσ (gs) σ ′(s) = active

FCR-2 ∀s ∈ S, sd ∈ Ds ,ms ∈ Ms : σ(s) = active ∧ φ+
σ (ms) σ ′(ms) = achieved ∧ σ ′(s) = inactive

∧σ ′(sd ) = inactive

FCR-3 ∀s ∈ S,ms ∈ Ms : σ(ms) = achieved ∧ φ−
σ (ms) σ ′(ms) = unachieved

FCR-4 ∀s ∈ S, sd ∈ Ds , sa ∈ As ,ms ∈ Ms ,msd ∈ Msd , gs ∈ Gs : σ ′(ms) = unachieved ∧ σ ′(msd ) = unachieved

σ(sa) = active ∧ σ(s) = inactive ∧ φσ (gs) ∧ φ+
σ (ms)

6.2 Correctness

To show the correctness of our approach, we need to discuss
two aspects in the light of the environment of Read-Write
Linked Data: First, we need to have a look at the well-
formedness criterion of [11] for workflows, which is a
prerequisite for correct handling of workflows by their rules.
Second, we need to investigate whether the invariants of [11]
hold for our approach.

We therefore present in Sect. 6.2.1 the rationale behind
the well-formedness criterion and show why the well-
formedness criterion is not directly applicable to our approach.
Then, we discuss the well-formedness criterion’s implica-
tions and why they are valid in our approach nevertheless.
Next, in Sect. 6.2.2, we present and formalise the invariants
for our environment and show using mathematical induction
that our FCRs do not violate those invariants.

6.2.1 Well-Formedness

In this section, we discuss the well-formedness criterion of
[11]. The authors of said paper formulated this criterion to
address non-intuitive behaviour resulting from different lin-
earisations of the rules to be applied on incoming events. In
contrast, our approachworkswithout events andwith parallel
evaluation of rules. Therefore, we first explain the necessity
for the well-formedness criterion in case of event data. Next,
we show why we do not need to linearise the application of
our rules on the condition part, as we only work with state
data. However, new conflicts on the action part can arise from
our parallel processing, which we discuss subsequently. We
show that most conflicts cannot occur due to the nature of
the conditions, and provide a rationale why the remaining
conflicts are minor.

Well-formedness to Order M-Steps in B-Steps Remem-
ber that the execution in the GSM approach as described by
[11] is event-triggered. A business step (B-Step) is the full
incorporation of the implications of one event into the cur-
rent state, i.e. the variable assignment on the data and status
attributes. This incorporation includes the sequential evalu-
ation of all sentries. If upon an event, a sentry’s condition is

s1g1 s2g2

a)

g1

e 

g2

e 

b) e  ∧  σ(s2)=active e 

Fig. 4 Example for sensitivity to order of guard evaluation in a database
environment. Case a) is not sensitive, while b) is sensitive

met, its value is true. Corresponding updates to the variable
assignment are enacted immediately. Thus, variables change
over time and other sentry’s conditions who would have held
at the beginning of the incorporation, do not hold once it is
this sentry’s turn. This may lead to non-intuitive behaviour
of the workflow, which [21] address using a well-formedness
criterion.

We illustrate the non-intuitive behaviour with an example
in Fig. 4. Think of two guards g1 and g2 with corresponding
stages s1 and s2. Guards g1 and g2 only depend on event e.
Executing s1 before s2, or vice versa, leads to the same result.
This is not always the case though. Now, g1 depends on event
e and on s2 being active. Let event e fire. If g1 is evaluated
before g2, s1 does not become active, but s2 becomes active.
If g2 is evaluated first, both become active. Intuitively, only
s2 should become active. Without a fixed order of execution,
the incorporation of e is ambiguous.

To address this ambiguity, Hull et al. [21] introduce the
micro-step (M-Step), into which a B-Step can be subdi-
vided. Evaluating g1 and g2 each is M-Steps. A B-Step then
consists of multiple M-steps. To handle the ordering of exe-
cution of M-steps [21] introduce the dependency graph. The
dependency graph models dependencies between guards and
milestones. A guard or a milestone, say g1 or m1, depends
on another milestone m2, if the truth of the sentry of g1 or
m1 is dependent on m2 being achieved or not. The depen-
dency graph is a directed graph with sentries as nodes and
dependencies between them as edges. The graph induces a
topological sorting for execution that eliminates ambiguity
and maintains an “intuitive” order of execution. This order
requires the graph to be acyclic. Hence, Hull et al. [21] define
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that a GSMmodel is well-formed iff its dependency graph is
acyclic.

Parallel Processing of State Data In our approach, we
use time-triggered operational semantics. Instead of using
events, we query status of the workflow state and the
environment periodically to determine the current state. Cor-
respondingly, we apply updates in bulk instead of updating
the status information variables as we go. Each state in the
sequence is the result of the application of our entire rule-
set. Above, we define the function f to describe this state
transfer.

Therefore, the B-step concept is not directly applicable to
our approach. A B-step includes every action which depends
on an event e. If there are no events, we cannot associate
any actions with them. Looked at from the perspective of
the event-triggered GSM semantics, our approach rather per-
forms M-steps periodically and in parallel. Still, we need
to discuss the ramifications of non-intuitive behaviour and
updates applied in bulk.

As an illustration, consider again the example from Fig. 4,
which we treat using our notation. With the example’s stages
s1 and s2 and their guards g1 and g2, we define:

γ ∈ {true, false} a boolean variable

γσ the value of γ in state σ

g1 = true if s2 = active and γ, else false

g2 = true if γ, else false

If we now assume γσ = true, then

φσ (g1) = false ∧ φσ (g2) = true

and

σ ′(s1) = inactive ∧ σ ′(s2) = active

We observe that our approach does not reproduce the
“non-intuitive” behaviour. The reason is that each state σ

is immutable and σ ′ is constructed independently, but based
on σ . Therefore, there is no need to order the execution of
sentry evaluations and their corresponding consequences. In
other words, there are no conflicts between changing the state
of a status information or environmental variables before or
after observing it. There is also no need to order the M-Steps
using a dependency graph because σ stays the same for all
g.

Write Conflicts Above, we reason why an order for read-
ing and changing values of status information variables in
our approach is not necessary. We provide the immutabil-
ity of states as main reason. Still, there is a possibility that
we produce ambiguous state derivations. In this section, we
illustrate the issue of such ambiguity, where and if it occurs,
and its ramifications if it does occur.

Our approach consists of multiple rules, that, depending
on the truth of a condition, derive new values for a set of
status information variables as action. We do not know in
which order the rules are applied. In the previous section, we
show that the order of rules is not relevant, if one rule derives
a value for a status information variables and another rules
accesses it. If now two rules each derive a different value
for the same status information variables in the subsequent
state, the order becomes relevant. The value of this status
information variables is ambiguous. We call it a conflict in
the ambiguous variables. We identify all conflicts that may
occur and discuss each one in detail.

Recall that the function f constructs for a state σ its sub-
sequent state σ ′ and Table 2 specifies all rules and their
corresponding actions in f . We now list all combination of
rules that may derive ambiguous results. We skip derivations
that are equal, since they are not ambiguous. In the follow-
ing, we write FCR-1 → σ ′(m) = achieved, if from FCR-1
follows that milestone m is achieved in the next snapshot.

Conflicting Write by FCR-2 + FCR-3: We look at a pos-
sible conflict in σ ′ for a milestone’s state, σ ′(ms), with
FCR-2 → σ ′(ms) = achieved and FCR-3 → σ ′(ms) =
unachieved. This requires that the conditions of both rules
hold:

∀s ∈ S,ms ∈ Ms : σ(s) = active ∧ φ+
σ (ms)

∧σ(ms) = achieved ∧ φ−
σ (ms)

Besides the fact that an overlapping validating and invalidat-
ing sentry is semantically questionable, all logical operators
are conjunctions. Therefore, all operands must hold individ-
ually and all their combination. This requires:

∀s ∈ S,ms ∈ Ms : φ+
σ (ms) ∧ φ−

σ (ms)

Under the disjointness condition of achieving and invalidat-
ing sentries (Eq. 4.3.1), this is impossible. 	⇒ There is no
σ that leads to a conflict of FCR-2 and FCR-3 in ms .

Conflicting Write by FCR-1 + FCR-2 FCR-1 and FCR-
2 induce two possible conflicts in σ ′: The activation of a
stage by FCR-1 → σ ′(s) = active can conflict with both
consequences of FCR-2 → σ ′(s) = inactive ∧ σ ′(sd) =
inactive.

We discuss the first part of the conflict:FCR-1→ σ ′(s) =
active and FCR-2 → σ ′(s) = inactive ∧ σ ′(sd) =
inactive. By combining the conditions of both rules, we
get:

∀s ∈ S, sa ∈ As, gs ∈ Gs,ms ∈ Ms : σ(s) = inactive

∧ σ(sa) = active ∧ φσ (gs) ∧ σ(s) = active ∧ φ+
σ (ms)

Again, all operators are conjunctions and thus all com-
binations of operands must be satisfied. The following
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combination contains a contradiction:

∀s ∈ S : σ(s) = inactive ∧ σ(s) = active

	⇒ There is no σ that leads to a conflict of FCR-1 and
FCR-2 in s

Next, we consider the second part of the conflict of FCR-1
and FCR-2: The case of the descendant stage sd , to which
FCR-2 intends towrite.We thus assume thatFCR-1 applies to
stage sd . We start with FCR-1→ σ ′(sd) = active and FCR-
2 → σ ′(s) = inactive ∧ σ ′(sd) = inactive and construct
the conjunction. By combining the conditions of FCR-1 and
FCR-2, we get:

∀s ∈ S, sd ∈ Ds, sda ∈ Asd , gsd ∈ Gsd ,ms ∈ Ms :
σ(sd) = inactive ∧ σ(sda ) = active

∧ φσ (gsd ) ∧ σ(s) = active ∧ φ+
σ (ms)

Note that Asd is the set of all ancestors of sd , and therefore,
Asd ⊃ As holds. The contradiction we observe when apply-
ing FCR-1 to the first part of the consequent of FCR-2 does
not occur anymore.Given this,we cannot assure that there are
nowrite conflicts just by contradiction of conditions. Instead,
we have to avoid this conflict when modelling the workflow.
The disjointness condition of guards and milestones (Eq. 2)
prescribes that a guard and its parent’s milestones have dis-
joint sentries. That is, φ+

σ (ms) and φσ (gsd ) cannot be true
the same time. Hence, the equation above is never satisfied
if we impose the disjointness condition.

	⇒ There is no σ that leads to a conflict of FCR-1 and
FCR-2 in sd

We remark that the effects of the described ambiguitymay
be considered minor. The consequence of the ambiguity is
that a child stage sd is either triggered once again or not. To
put it in context, the stage sd is supposed to be deactivated
because its parent is deactivated. The consequence is that sd
may perform its task and it does not abort. After finishing, its
state changes to inactive and its milestone is set to achieved.
As soon as the parent stage becomes active again, the mile-
stone is set back to unachieved. Of course, this requires the
task of sd to finish. Other assumptions would require the
ability to abort tasks, which is beyond the scope of this work.
For the sake of completeness, we provide the disjointness
condition as a modelling constraint.

Conflicting Write by FCR-2 + FCR-4: Lastly, we discuss
a possible conflict in FCR-2 and FCR-4. There is a conflict in
the state of the milestone by FCR-2 → σ ′(ms) = achieved
and FCR-4 → σ ′(ms) = unachieved ∧ σ ′(msd ) =

unachieved. Again, we combine the conditions:

∀s ∈ S, sa ∈ As, sd ∈ Ds,ms ∈ Ms, gs ∈ Gs :
σ(s) = active ∧ φ+

σ (ms) ∧ σ(sa) = active

∧ σ(s) = inactive ∧ φσ (gs) ∧ φ+
σ (ms)

Since σ(s) = active contradicts to σ(s) = inactive, this
conflict cannot occur for the same stage s.

	⇒ There is no σ that leads to a conflict of FCR-2 and
FCR-4 in s

As in the previous rule combination with FCR-2, we also
examine the case where FCR-2 applies to the descendant
stage sd . Then,

∀s ∈ S, sd ∈ Ds, sa ∈ As,ms ∈ Ms,msd ∈ Msd ,

gs ∈ Gs :
σ(sd) = active ∧ φ+

σ (msd ) ∧ σ(sa) = active

∧ σ(s) = inactive ∧ φσ (gs) ∧ φ+
σ (ms)

Now we observe that σ(s) = inactive and σ(sd) = active
do not contradict. So, if a stage s is inactive, its descendants
sd need to be active. We did discuss a situation where this
may happen in the previous paragraph when we considered
the combination FCR-1 + FCR-2, but under the disjointness
condition this inconsistency is eliminated. Hence, we can
conclude that given a workflow that aligns with the disjoint-
ness condition, no conflicts occur.

	⇒ There is no σ that leads to a conflict of FCR-2 and
FCR-4 in s and/or sd

As result, we know that under the disjointness condition,
for each state σ , σ ′ is unambiguously determined. Formally,
we can say:

σ 	⇒ σ ′

In addition to that, we even can conclude that if any rule
derives a new value for a status information variables, there
exists no other rule that derives a different value, even if we
do not know the order of the rule execution. This implies
that if there is any status information variables σ(x) = y,
and any individual FCR r deriving a value σr (x)′ = y′, then
σ ′(x) = y′ (where σr (x) = y is the value y of x if only r is
applied). Thus, we can write:

σ(x) = y ∧ σr (x) = y′ 	⇒ σ ′(x) = y′ (3)

6.2.2 GSM Invariants

The invariants GSM-1 and GSM-2 define combinations of
status attributes that are inconsistent. If one of the invariant
is violated, the workflow state is inconsistent.
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GSM-1 “If a stage S owns a milestone m, then it cannot
happen that both S is active andm has status true. In
particular, if S becomes active, thenm must change
status to false, and if m changes status to true, then
S must become inactive.” [11]

∀s ∈ S,m ∈ Ms :
σ(s) = active 	⇒ σ(m) �= achieved

∧σ(m) = achieved 	⇒ σ(s) �= active

GSM-2 “If stage S becomes inactive, the executions of all
substages of S also become inactive.” [11]

∀s ∈ S, sd ∈ Ds :
σ(s) = inactive 	⇒ σ(sd) = inactive

Additionally we define a function c : � → {true, f alse},
that determines whether both GSM invariants hold on a snap-
shot σ .

None of these invariants are allowed to be violated at any
time. As the first step of our proof, we show that all possible
states induced by the FCRs do not violate the GSM invariants
using mathematical induction.
Theorem: GSM-1 and GSM-2 are not violated throughout
the workflow execution.

Proof: We apply the set of FCRs to the information model.
One snapshot σ contains all data concerning the workflow’s
state, as well as environment values at the beginning of each
iteration. The state of the workflow and the environment val-
ues correspond to status and data attributes, respectively. σ0
represents our initial workflow state after the initialisation.
We now proof the theorem using mathematical induction.
Base case: σ0 : No stage is activated yet 	⇒ c(σ0) = true.
�
Step case: σ → σ ′ : In order to get into an inconsistent state
one of the invariants must be violated. We distinguish two
cases—a violation of GSM-1 and a violation of GSM-2:

GSM − 1 To infer the consistency of σ ′ we assume the
contrary. We assume a set of rules that derive at least
one triple so that c(σ ′) = false. To achieve that given
c(σ ) = true, there must be a milestone m and a stage s
which either satisfy (C1) or (C2):

(C1) : σ(m) = unachieved ∧ σ ′(m) = achieved

∧σ ′(s) = active

(C2) : σ(s) = inactive ∧ σ ′(s) = active

∧σ ′(m) = achieved

In words, case (C1) describes the case where a milestone
becomes achieved and its stage stays active. Case (C2)

corresponds to the case, where a stage becomes active
although one of its milestones is still achieved.
Case(1) : We assume that condition (C1) holds. Since
only FCR-2 leads to the achievement of a milestone, we
know that σ(m) = unachieved and σ ′(m) = achieved
is true, if and only if the condition of FCR-2 is sat-
isfied. Hence, we conclude that the action of FCR-2
holds as well. From equation 3, we know that σ ′(m) =
unachieved. This is a contradiction to our condition
(C1). �
Case(2) : We assume condition (C2) holds. Because
(C2) requires a stage becoming active in σ ′, we conclude
that the condition FCR-1 must be satisfied. Considering
equation 3, we know that

σ(s) = inactive ∧ σ(sa) = active ∧ φσ (gs)

∧σ ′(ms) = active

If we consider the assumption that there exists a mile-
stone ms ∈ Ms and σ ′(ms) = achieved, either the
milestone must have been already achieved in σ or it
became achieved in σ ′. FCR-1 and FCR-4 share the
almost same condition. The difference is that FCR-4 sets
all corresponding achieved milestones to unachieved.
Hence, in the first case, if σ(ms) = achieved, FCR-4
implies σ ′(ms) =unachieved. By Eq. 3, we know that
σ ′(ms) =unachieved. This contradicts assumption (C2).
In the latter case,FCR-2must hold, since it is the only rule
that implies an achieved milestone. FCR-2 also implies
σ ′(s) = inactive though, which also contradicts our
assumption. �
GSM − 2 Similar to GSM-1, we show the contrary by
assuming there are rules that derive at least one triple in
such a way, that c(σ ′) = false. This requires

∃s ∈ S, sd ∈ Ds :
σ(s) = inactive ∧ σ ′(sd) = active

Because FCR-1 requires all ancestors to be active, a vio-
lation of this condition is only possible if a parent stage is
set to inactive while its parent stays active. Only FCR-2
leads to a stage being set to inactive. While it implies
σ(s) = inactive, it also implies σ(sd) = inactive for
all sd ∈ Ds . Again, by Eq. 3, we know that σ(sd) =
inactive holds for all sd ∈ Ds . �

As result we conclude that, under the disjointness con-
ditions, f does not imply a transition from a state σ with
c(σ ) = true to a state σ ′ with c(σ ) = f alse. 	⇒ Step
case �
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By the principle of mathematical induction, we have
shown that the invariants GSM-1 and GSM-2 are not vio-
lated. ��

6.3 Applicability

In Sect. 1, we described different scenarios and deployments
from automotive, avionics, manufacturing, and Internet of
Things, where our approach could be applied. To publicly
showcase the approach presented in this paper, we build
an small conference demonstrator [1] based on Internet of
Things devices with Read-Write Linked Data interfaces. The
implementation this demonstrator can be found online.29 For
the status attributes and rule interpreter, the demonstrator
uses LDBBC30 as Linked Data Platform Container imple-
mentation, and Linked Data-Fu31 [40] as N3 rule interpreter
with ASM4LD [23] operational semantics.

6.4 Performance

Our approach takes the GSM approach and brings it to Read-
Write LinkedData. Therefore, we contrast our approachwith
the converse, namely to bring Read-Write Linked Data to
GSM. We compare: our operational semantics deployed on
Linked Data-Fu and status attributes maintained in LDBBC,
with the CMMN implementation in Camunda,32 a commer-
cial process and case management suite (CMMN,33 the Case
ManagementModel andNotation, is a standard that is closely
related to GSM [11]).

Both engines therefore need to make HTTP requests to
sources that provide RDF and reason over the data using
RDF using rules that implement the RDFS semantics given
to the engines for data integration.

With Camunda of course not built for that workload, we
now describe our assumptions and implementation: For data
processing, Camunda has SPIN,34 a library to extend the pro-
cess languages they support with data processing of XML35

and JSON in a scripting fashion, such that we can use a class-
less, declarative approach to define the processing steps, in
line with the declarative input of rules to Linked Data-Fu.
We chose the tree-based XML as data format, as one can
serialise RDF graphs in XML trees using the RDF/XML16

serialisation format, and the querying support of the XML
stack is better supported in the extensions of Camunda.

29 http://github.com/nico1509/data-driven-workflows.
30 http://github.com/kaefer3000/ldbbc.
31 http://linked-data-fu.github.io/.
32 https://camunda.com/.
33 https://www.omg.org/spec/CMMN/1.1/.
34 https://github.com/camunda/camunda-spin, not to be confused with
the SPIN notation for SPARQL queries, also used by our approach.
35 http://www.w3.org/TR/xml/.

We then specified the processing steps as BPMN36 pro-
cess, which we plugged into our CMMN diagram as process
task. Our BPMN process mimics Linked Data-Fu’s oper-
ational semantics (cf. Sect. 3.6) by parallel downloading
RDF/XML, and subsequent37 parallel rule evaluation of the
RDFS semantics. As the processing of arbitrary RDF/XML
using the XML querying stack is a research endeavour of
its own, where one reason is that different XML trees can
represent the same RDF graph [5], we assume a determin-
istic mapping from triples to XML trees, where each triple
gets a dedicated rdf:Description node, as employed
by many popular RDF/XML serialisers.38 Furthermore, we
assume ground triples without literals and lists, as blank
nodes, datatypes and lists would require specialised treat-
ment in RDFS and RDF/XML. Then, we can give the rules
to implement RDFS using BPMN Script Tasks implemented
declaratively inXQuery 3.1.39 Those parallel taskswith rules
are placed in a loop that runs until no further deductions are
derived (and thus, the fixpoint is calculated).

For our tests, we crafted aworkflow, whichwe designed to
include different constellations of stages, guards, and mile-
stones. Specifically, the workflow includes nested stages and
milestones whose sentries check whether other milestones
have been reached. The workflow contains 8 stages, starts
with two sequentially arranged stages, and leads into a com-
bination of stages with 2 as the maximum level of nesting.
Thereby occur some interesting situations like parallel exe-
cution of s2 and s4 where s4 is nested in another stage s3.
For a deterministic evaluation, the sentries are designed to
be always fulfilled, but their queries need to be evaluated.
We designed the data part of the sentries to check for data
that needs to be derived using reasoning. In case of Linked
Data-Fu, those are SPARQL ASK queries in SPIN notation,
in case of Camunda, those are XPath 1.040 queries within
an EL41 expression. We did not include invalidating sentries
for the milestones in order not to have to build the equiva-
lence of dynamic data attributes, which could also reduce the
determinismand the repeatability of the evaluation.Although
there is no specific story to that workflow you can think of it
as a simplification of the Order-to-Design workflow exam-
ple from [11]. The workflowmodel in both implementations,
the BPMN for Linked Data processing, and the data to be
retrieved can be found online.42

36 https://www.omg.org/spec/BPMN/2.0/About-BPMN/.
37 For simplicity sake, we left out writing and link following, and pro-
vided the URIs to be read from upfront.
38 Including librdf http://librdf.org/, andOWLAPI if not in pretty print-
ing mode https://github.com/owlcs/owlapi.
39 http://www.w3.org/TR/xquery-31/.
40 http://www.w3.org/TR/1999/REC-xpath-19991116/.
41 https://jcp.org/en/jsr/detail?id=341.
42 http://people.aifb.kit.edu/co1683/2019/gsm/jods/.
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Fig. 5 The workflow we use in our evaluation

We ran our experiments on a MacBook Pro with an Intel
Core i5-5257U processor with 2.7GHz, 4 threads, and 8GB
RAM running OpenJDK 1.8.0_131 on Mac OSX Version
10.14.6 and allow for awarm-up time of 10s.We repeated our
experiments 5 times. For our set-up, we used Linked Data-
Fu 0.9.13pr1 and LDBBC 0.0.5. For the Camunda set-up, we
used Camunda 7.14 Community Edition, where we needed
to remove the limit of 4000 characters in certain columns of
the database Camunda runs on.

We show our results in Fig. 6. We see that the declara-
tive Read-Write Linked Data processing approach in Linked
Data-Fu outperforms the approach with a declarative imple-
mentation of data retrieval and reasoning from within the
Camunda process engine. On top, the Linked Data-Fu
approach retrieves and reasons with every execution cycle
such that the queries run on fresh data, where the Camunda-
based approach only retrieves and reasons in 3 of the stages.
This limitation of our implementation is due to difficulties
we faced when connecting the retrieval and reasoning part
to the CMMN workflow lifecycle. Therefore, our results
for Camunda only serve as a lower bound. On the other
hand, we see for Linked Data-Fu that the handling of work-
flow instances in data structures and code not optimised for
that purpose puts considerable load on the system: Already
between 1 and 9 instances, the runtime doubled.

7 Conclusion and Discussion

Wepresented an approach to specify and execute agent speci-
fications in the form of data-centric workflows in Read-Write
Linked Data, i.e. an environment of semantic knowledge
representation and reasoning. To this end, our approach con-
sists of an ontology, and operational semantics. We gave
the operational semantics in a rule language for Read-Write
Linked Data, derived requirements for modelling and dis-
cussed the rule expressivity required for querying data and
status attributes. We showed the correctness of our rules for
the operational semantics and provided a performance eval-
uation.

Fig. 6 Results from 5 runs of our evaluation: Time in ms until the
termination of the last workflow when starting n workflows in parallel

While we envision our approach to be particularly useful
in small-scale scenarios where agents interact with a handful
of resources with only few workflow instances, we evalu-
ated our approach against a workflow engine, which is built
for scenarios with many instances. In the evaluation, our
general-purpose Read-Write Linked Data processor made to
maintain workflow instance state outperformed a workflow
engine made to perform Read-Write Linked Data process-
ing with data retrieval and reasoning. This is despite the
overhead people often fear when considering polling-based
approaches. Viewed from a broader perspective, we remark
that in essence, our agent behaviour specification encodes the
behaviour part missing in the integration standards from the
web architecture such as HTTP for interaction and symbolic
reasoning in RDFS for data integration. If we take BPM solu-
tions as way of doing integration in practice by specifying
the behaviour that orchestrates system components, our eval-
uation agrees with [34] that there is still a way to go until the
integration capabilities of the web architecture can be fully
exploited in practice.

Funding Open Access funding enabled and organized by Projekt
DEAL.
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