578 research outputs found

    A systematic review of machine learning techniques related to local energy communities

    Get PDF
    In recent years, digitalisation has rendered machine learning a key tool for improving processes in several sectors, as in the case of electrical power systems. Machine learning algorithms are data-driven models based on statistical learning theory and employed as a tool to exploit the data generated by the power system and its users. Energy communities are emerging as novel organisations for consumers and prosumers in the distribution grid. These communities may operate differently depending on their objectives and the potential service the community wants to offer to the distribution system operator. This paper presents the conceptualisation of a local energy community on the basis of a review of 25 energy community projects. Furthermore, an extensive literature review of machine learning algorithms for local energy community applications was conducted, and these algorithms were categorised according to forecasting, storage optimisation, energy management systems, power stability and quality, security, and energy transactions. The main algorithms reported in the literature were analysed and classified as supervised, unsupervised, and reinforcement learning algorithms. The findings demonstrate the manner in which supervised learning can provide accurate models for forecasting tasks. Similarly, reinforcement learning presents interesting capabilities in terms of control-related applications.publishedVersio

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    Applications of Probabilistic Forecasting in Smart Grids : A Review

    Get PDF
    This paper reviews the recent studies and works dealing with probabilistic forecasting models and their applications in smart grids. According to these studies, this paper tries to introduce a roadmap towards decision-making under uncertainty in a smart grid environment. In this way, it firstly discusses the common methods employed to predict the distribution of variables. Then, it reviews how the recent literature used these forecasting methods and for which uncertain parameters they wanted to obtain distributions. Unlike the existing reviews, this paper assesses several uncertain parameters for which probabilistic forecasting models have been developed. In the next stage, this paper provides an overview related to scenario generation of uncertain parameters using their distributions and how these scenarios are adopted for optimal decision-making. In this regard, this paper discusses three types of optimization problems aiming to capture uncertainties and reviews the related papers. Finally, we propose some future applications of probabilistic forecasting based on the flexibility challenges of power systems in the near future.© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Deep Learning Techniques for Power System Operation: Modeling and Implementation

    Get PDF
    The fast development of the deep learning (DL) techniques in the most recent years has drawn attention from both academia and industry. And there have been increasing applications of the DL techniques in many complex real-world situations, including computer vision, medical diagnosis, and natural language processing. The great power and flexibility of DL can be attributed to its hierarchical learning structure that automatically extract features from mass amounts of data. In addition, DL applies an end-to-end solving mechanism, and directly generates the output from the input, where the traditional machine learning methods usually break down the problem and combine the results. The end-to-end mechanism considerably improve the computational efficiency of the DL.The power system is one of the most complex artificial infrastructures, and many power system control and operation problems share the same features as the above mentioned real-world applications, such as time variability and uncertainty, partial observability, which impedes the performance of the conventional model-based methods. On the other hand, with the wide spread implementation of Advanced Metering Infrastructures (AMI), the SCADA, the Wide Area Monitoring Systems (WAMS), and many other measuring system providing massive data from the field, the data-driven deep learning technique is becoming an intriguing alternative method to enable the future development and success of the smart grid. This dissertation aims to explore the potential of utilizing the deep-learning-based approaches to solve a broad range of power system modeling and operation problems. First, a comprehensive literature review is conducted to summarize the existing applications of deep learning techniques in power system area. Second, the prospective application of deep learning techniques in several scenarios in power systems, including contingency screening, cascading outage search, multi-microgrid energy management, residential HVAC system control, and electricity market bidding are discussed in detail in the following 2-6 chapters. The problem formulation, the specific deep learning approaches in use, and the simulation results are all presented, and also compared with the currently used model-based method as a verification of the advantage of deep learning. Finally, the conclusions are provided in the last chapter, as well as the directions for future researches. It’s hoped that this dissertation can work as a single spark of fire to enlighten more innovative ideas and original studies, widening and deepening the application of deep learning technique in the field of power system, and eventually bring some positive impacts to the real-world bulk grid resilient and economic control and operation

    Microgrid Energy Management using Weather Forecasts: Case Study, Discussion and Challenges

    Get PDF
    The main objective of this study is to demonstrate the integration of weather forecasts which can lead to a significant reduction in energy costs and carbon emissions while ensuring the reliability of the microgrid operation. By serving a small area or a particular building, the incorporation of weather forecasts can considerably increase the efficiency of microgrid energy management. The planning and operation of microgrids can be greatly improved by using weather predictions, which give useful information about upcoming weather conditions. By forecasting future energy demand and supply based on meteorological conditions, Microgrid Energy Management (MEM) is utilized to optimize the energy management decisions in microgrid systems. Making better choices regarding energy generation, storage, and consumption may be aided by the incorporation of weather forecasts, which can offer a more precise and trustworthy estimate of the energy demand and supply. This strategy can result in increased energy efficiency, decreased energy prices, and decreased carbon emissions, all of which are important goals for contemporary power systems. A promising approach for raising energy effectiveness and lowering greenhouse gas emissions in contemporary power networks is MEM. The incorporation of weather forecasts into MEM can improve decision-making regarding energy management by giving a better insight of future energy demand and supply. This essay examines the advantages and disadvantages of using weather forecasts in MEM through the presentation of a case example. By providing valuable information about future weather conditions, weather forecasts this review explain the Optimized Renewable Energy Integration, Improved Energy Storage Utilization, Load Shifting and Demand Response, Efficient Grid Management for reducing reliance on fossil fuels and lowering energy cost and carbon emissions. In order to address the issues related with MEM employing weather forecasts, this study offers potential fixes for increasing the accuracy of weather forecasts and emphasizes the necessity for more research in this area

    Review of Low Voltage Load Forecasting: Methods, Applications, and Recommendations

    Full text link
    The increased digitalisation and monitoring of the energy system opens up numerous opportunities to decarbonise the energy system. Applications on low voltage, local networks, such as community energy markets and smart storage will facilitate decarbonisation, but they will require advanced control and management. Reliable forecasting will be a necessary component of many of these systems to anticipate key features and uncertainties. Despite this urgent need, there has not yet been an extensive investigation into the current state-of-the-art of low voltage level forecasts, other than at the smart meter level. This paper aims to provide a comprehensive overview of the landscape, current approaches, core applications, challenges and recommendations. Another aim of this paper is to facilitate the continued improvement and advancement in this area. To this end, the paper also surveys some of the most relevant and promising trends. It establishes an open, community-driven list of the known low voltage level open datasets to encourage further research and development.Comment: 37 pages, 6 figures, 2 tables, review pape
    • …
    corecore