86 research outputs found

    A Hybrid Ensemble of Learning Models

    Get PDF
    Statistical models in time series forecasting have long been challenged to be superseded by the advent of deep learning models. This research proposes a new hybrid ensemble of forecasting models that combines the strengths of several strong candidates from these two model types. The proposed ensemble aims to improve the accuracy of forecasts and reduce computational complexity by leveraging the strengths of each candidate model

    Deep learning architectures applied to wind time series multi-step forecasting

    Get PDF
    Forecasting is a critical task for the integration of wind-generated energy into electricity grids. Numerical weather models applied to wind prediction, work with grid sizes too large to reproduce all the local features that influence wind, thus making the use of time series with past observations a necessary tool for wind forecasting. This research work is about the application of deep neural networks to multi-step forecasting using multivariate time series as an input, to forecast wind speed at 12 hours ahead. Wind time series are sequences of meteorological observations like wind speed, temperature, pressure, humidity, and direction. Wind series have two statistically relevant properties; non-linearity and non-stationarity, which makes the modelling with traditional statistical tools very inaccurate. In this thesis we design, test and validate novel deep learning models for the wind energy prediction task, applying new deep architectures to the largest open wind data repository available from the National Renewable Laboratory of the US (NREL) with 126,692 wind sites evenly distributed on the US geography. The heterogeneity of the series, obtained from several data origins, allows us to obtain conclusions about the level of fitness of each model to time series that range from highly stationary locations to variable sites from complex areas. We propose Multi-Layer, Convolutional and recurrent Networks as basic building blocks, and then combined into heterogeneous architectures with different variants, trained with optimisation strategies like drop and skip connections, early stopping, adaptive learning rates, filters and kernels of different sizes, between others. The architectures are optimised by the use of structured hyper-parameter setting strategies to obtain the best performing model across the whole dataset. The learning capabilities of the architectures applied to the various sites find relationships between the site characteristics (terrain complexity, wind variability, geographical location) and the model accuracy, establishing novel measures of site predictability relating the fit of the models with indexes from time series spectral or stationary analysis. The designed methods offer new, and superior, alternatives to traditional methods.La predicció de vent és clau per a la integració de l'energia eòlica en els sistemes elèctrics. Els models meteorològics es fan servir per predicció, però tenen unes graelles geogràfiques massa grans per a reproduir totes les característiques locals que influencien la formació de vent, fent necessària la predicció d'acord amb les sèries temporals de mesures passades d'una localització concreta. L'objectiu d'aquest treball d'investigació és l'aplicació de xarxes neuronals profundes a la predicció \textit{multi-step} utilitzant com a entrada series temporals de múltiples variables meteorològiques, per a fer prediccions de vent d'ací a 12 hores. Les sèries temporals de vent són seqüències d'observacions meteorològiques tals com, velocitat del vent, temperatura, humitat, pressió baromètrica o direcció. Les sèries temporals de vent tenen dues propietats estadístiques rellevants, que són la no linearitat i la no estacionalitat, que fan que la modelització amb eines estadístiques sigui poc precisa. En aquesta tesi es validen i proven models de deep learning per la predicció de vent, aquests models d'arquitectures d'autoaprenentatge s'apliquen al conjunt de dades de vent més gran del món, que ha produït el National Renewable Laboratory dels Estats Units (NREL) i que té 126,692 ubicacions físiques de vent distribuïdes per total la geografia de nord Amèrica. L'heterogeneïtat d'aquestes sèries de dades permet establir conclusions fermes en la precisió de cada mètode aplicat a sèries temporals generades en llocs geogràficament molt diversos. Proposem xarxes neuronals profundes de tipus multi-capa, convolucionals i recurrents com a blocs bàsics sobre els quals es fan combinacions en arquitectures heterogènies amb variants, que s'entrenen amb estratègies d'optimització com drops, connexions skip, estratègies de parada, filtres i kernels de diferents mides entre altres. Les arquitectures s'optimitzen amb algorismes de selecció de paràmetres que permeten obtenir el model amb el millor rendiment, en totes les dades. Les capacitats d'aprenentatge de les arquitectures aplicades a ubicacions heterogènies permet establir relacions entre les característiques d'un lloc (complexitat del terreny, variabilitat del vent, ubicació geogràfica) i la precisió dels models, establint mesures de predictibilitat que relacionen la capacitat dels models amb les mesures definides a partir d'anàlisi espectral o d'estacionalitat de les sèries temporals. Els mètodes desenvolupats ofereixen noves i superiors alternatives als algorismes estadístics i mètodes tradicionals.Arquitecturas de aprendizaje profundo aplicadas a la predición en múltiple escalón de series temporales de viento. La predicción de viento es clave para la integración de esta energía eólica en los sistemas eléctricos. Los modelos meteorológicos tienen una resolución geográfica demasiado amplia que no reproduce todas las características locales que influencian en la formación del viento, haciendo necesaria la predicción en base a series temporales de cada ubicación concreta. El objetivo de este trabajo de investigación es la aplicación de redes neuronales profundas a la predicción multi-step usando como entrada series temporales de múltiples variables meteorológicas, para realizar predicciones de viento a 12 horas. Las series temporales de viento son secuencias de observaciones meteorológicas tales como, velocidad de viento, temperatura, humedad, presión barométrica o dirección. Las series temporales de viento tienen dos propiedades estadísticas relevantes, que son la no linealidad y la no estacionalidad, lo que implica que su modelización con herramientas estadísticas sea poco precisa. En esta tesis se validan y verifican modelos de aprendizaje profundo para la predicción de viento, estos modelos de arquitecturas de aprendizaje automático se aplican al conjunto de datos de viento más grande del mundo, que ha sido generado por el National Renewable Laboratory de los Estados Unidos (NREL) y que tiene 126,682 ubicaciones físicas de viento distribuidas por toda la geografía de Estados Unidos. La heterogeneidad de estas series de datos permite establecer conclusiones válidas sobre la validez de cada método al ser aplicado en series temporales generadas en ubicaciones físicas muy diversas. Proponemos redes neuronales profundas de tipo multi capa, convolucionales y recurrentes como tipos básicos, sobre los que se han construido combinaciones en arquitecturas heterogéneas con variantes de entrenamiento como drops, conexiones skip, estrategias de parada, filtros y kernels de distintas medidas, entre otros. Las arquitecturas se optimizan con algoritmos de selección de parámetros que permiten obtener el mejor modelo buscando el mejor rendimiento, incluyendo todos los datos. Las capacidades de aprendizaje de las arquitecturas aplicadas a localizaciones físicas muy variadas permiten establecer relaciones entre las características de una ubicación (complejidad del terreno, variabilidad de viento, ubicación geográfica) y la precisión de los modelos, estableciendo medidas de predictibilidad que relacionan la capacidad de los algoritmos con índices que se definen a partir del análisis espectral o de estacionalidad de las series temporales. Los métodos desarrollados ofrecen nuevas alternativas a los algoritmos estadísticos tradicionales.Postprint (published version

    Modelling atmospheric ozone concentration using machine learning algorithms

    Get PDF
    Air quality monitoring is one of several important tasks carried out in the area of environmental science and engineering. Accordingly, the development of air quality predictive models can be very useful as such models can provide early warnings of pollution levels increasing to unsatisfactory levels. The literature review conducted within the research context of this thesis revealed that only a limited number of widely used machine learning algorithms have been employed for the modelling of the concentrations of atmospheric gases such as ozone, nitrogen oxides etc. Despite this observation the research and technology area of machine learning has recently advanced significantly with the introduction of ensemble learning techniques, convolutional and deep neural networks etc. Given these observations the research presented in this thesis aims to investigate the effective use of ensemble learning algorithms with optimised algorithmic settings and the appropriate choice of base layer algorithms to create effective and efficient models for the prediction and forecasting of specifically, ground level ozone (O3). Three main research contributions have been made by this thesis in the application area of modelling O3 concentrations. As the first contribution, the performance of several ensemble learning (Homogeneous and Heterogonous) algorithms were investigated and compared with all popular and widely used single base learning algorithms. The results have showed impressive prediction performance improvement obtainable by using meta learning (Bagging, Stacking, and Voting) algorithms. The performances of the three investigated meta learning algorithms were similar in nature giving an average 0.91 correlation coefficient, in prediction accuracy. Thus as a second contribution, the effective use of feature selection and parameter based optimisation was carried out in conjunction with the application of Multilayer Perceptron, Support Vector Machines, Random Forest and Bagging based learning techniques providing significant improvements in prediction accuracy. The third contribution of research presented in this thesis includes the univariate and multivariate forecasting of ozone concentrations based of optimised Ensemble Learning algorithms. The results reported supersedes the accuracy levels reported in forecasting Ozone concentration variations based on widely used, single base learning algorithms. In summary the research conducted within this thesis bridges an existing research gap in big data analytics related to environment pollution modelling, prediction and forecasting where present research is largely limited to using standard learning algorithms such as Artificial Neural Networks and Support Vector Machines often available within popular commercial software packages

    Data-driven decision support for perishable goods

    Full text link
    Retailers offering perishable consumer goods such as baked goods have to make hundreds of ordering decisions every day because they typically operate numerous stores and offer a wide range of products. Daily decisions or even intraday decisions are necessary as perishable goods deteriorate quickly and can usually only be sold on one day. Obviously, decision making concerning ordering quantities is a challenging but important task for each retailer as it affects its operational performance. Ordering too little leads to unsatisfied customers while ordering too much leads to discarded goods, which is a major cost factor. In practice, store managers are typically responsible for decisions related to perishable goods, which is not optimal for various reasons. Most importantly, the task is time consuming and some store managers may not have the necessary skills, which results in poor decisions. Hence, our goal is to develop and evaluate methods to support the decision-making process, which is made possible by advances in information technology and data analysis. In particular, we investigate how to exploit large datasets to make better decisions. For daily ordering decisions, we prose data-driven solution approaches for inventory management models that capture the trade-off of ordering too much or ordering too little such that the profits are maximized. First, we optimize the order quantity for each product independently. Second, we consider demand substitution and jointly optimize the order quantities of substitutable products. For intraday decisions, we formulate a scheduling problem for the optimization of baking plans based on hourly forecasts. Demand forecasts are an essential input for operational decisions. However, retail forecasting research is mainly devoted to weekly data using statistical time series models or linear regression models, whereas large-scale forecasting on daily data is understudied. We phrase the forecasting problem as a supervised Machine Learning task and conduct a comprehensive empirical evaluation to illustrate the suitability of Machine Learning methods. We empirically evaluate our solution approaches on real-world datasets from the bakery domain that are enriched with explanatory feature data. We find that our approaches perform competitive to state-of-the-art methods. Data-driven approaches substantially outperform traditional methods if the dataset is large enough. We also find that the benefit of improved forecasting dominates other potential benefits of data-driven solution methods for decision optimization. Overall, we conclude that data-driven decision support for perishable goods is feasible and superior to alternatives that are based on unreasonable assumptions or established time series models

    Meta-learning for Forecasting Model Selection

    Get PDF
    Model selection for time series forecasting is a challenging task for practitioners and academia. There are multiple approaches to address this, ranging from time series analysis using a series of statistical tests, to information criteria or empirical approaches that rely on cross-validated errors. In recent forecasting competitions, meta-learning obtained promising results establishing its place as a model selection alternative. Meta-learning constructs meta-features for each time series and trains a classifier on these to choose the most appropriate forecasting method. In the first part, this thesis studies the main components of meta-learning and analyses the effect of alternative meta-features, meta-learners, and base forecasters in the final model selection results. We investigate different meta-learners, the use of simple or complex base forecasts, and a large and diverse set of meta-features. Our findings show that stationarity tests, which identify the presence of unit root in time series, and proxies of autoregressive information, which show the strength of serial correlation in a series, have the highest importance for the performance of meta-learning. On the contrary, features related to time series quantiles and other descriptive statistics such as the mean, and the variance exhibit the lowest importance. Furthermore, we observe that using simple base forecasters is more sensitive to the number of groups of features employed as meta-feature and overall had worse performed. In terms of the choice of learners, classifiers with evidence of good performance in the literature resulted in the most accurate meta-learners. The success of meta-learning largely depends on its building components. The selection and generation of the appropriate meta-features remains a major challenge in meta-learning. In the second part, we propose using Convolutional Neural Networks (CNN) to overcome this. CNN have demonstrated breakthrough accuracy in pattern recognition tasks and can generate features as needed internally, within its layers, without intervention from the modeller. Using CNN, we provide empirical evidence of the efficacy of the approach, against widely accepted forecast selection methods and discuss the advantages and limitations of the proposed approach. Finally, we provide additional evidence that using meta-learning, for automated model selection, outperformed all of the individual benchmark forecasts

    Review of Low Voltage Load Forecasting: Methods, Applications, and Recommendations

    Full text link
    The increased digitalisation and monitoring of the energy system opens up numerous opportunities to decarbonise the energy system. Applications on low voltage, local networks, such as community energy markets and smart storage will facilitate decarbonisation, but they will require advanced control and management. Reliable forecasting will be a necessary component of many of these systems to anticipate key features and uncertainties. Despite this urgent need, there has not yet been an extensive investigation into the current state-of-the-art of low voltage level forecasts, other than at the smart meter level. This paper aims to provide a comprehensive overview of the landscape, current approaches, core applications, challenges and recommendations. Another aim of this paper is to facilitate the continued improvement and advancement in this area. To this end, the paper also surveys some of the most relevant and promising trends. It establishes an open, community-driven list of the known low voltage level open datasets to encourage further research and development.Comment: 37 pages, 6 figures, 2 tables, review pape

    An assessment of the effectiveness of using data analytics to predict death claim seasonality and protection policy review lapses in a life insurance company

    Get PDF
    Data analytics tools are becoming increasingly common in the life insurance industry. This research considers two use cases for predictive analytics in a life insurance company based in Ireland. The first case study relates to the use of time series models to forecast the seasonality of death claim notifications. The baseline model predicted no seasonal variation in death claim notifications over a calendar year. This reflects the life insurance company’s current approach, whereby it is assumed that claims are notified linearly over a calendar year. More accurate forecasting of death claims seasonality would enhance the life insurance company’s cashflow planning and analysis of financial results. The performance of five time series models was compared against the baseline model. The time series models included a simple historical average model, a classical SARIMA model, the Random Forest Regressor and Prophet machine learning models and the LSTM deep learning model. The models were trained on both the life insurance company’s historical death claims data and on Irish population deaths data for the 25-74 age cohort over the same observation periods. The results demonstrated that machine learning time series models were generally more effective than the baseline model in forecasting death claim seasonality. It was also demonstrated that models trained on both Irish population deaths and the life insurance company’s historical death claims could outperform the baseline model. The best forecaster was Facebook’s Prophet model, trained on the life insurance company’s claims data. Each of the models trained on Irish population deaths data outperformed the baseline model. The SARIMA and LSTM consistently underperformed the baseline model when both were trained on death claims data. All models performed better when claims directly related to Covid-19 were removed from the testing data. The second case study relates to the use of classification models to predict protection policy lapse behaviour following a policy review. The life insurance company currently has no method of predicting individual policy lapses, hence the baseline model assumed that all policies had an equal probability of lapsing. More accurate prediction of policy review lapse outcomes would enhance the life insurance company’s profit forecasting ability. It would also provide the company with the opportunity to potentially reduce lapse rates at policy review by tailoring alternative options for certain groups of policyholders. The performance of 12 classification models was assessed against the baseline model - KNN, Naïve Bayes, Support Vector Machine, Decision Tree, Random Forest, Extra Trees, XGBoost, LightGBM, AdaBoost and Multi-Layer Perceptron (MLP). To address class imbalance in the data, 11 rebalancing techniques were assessed. These included cost-sensitive algorithms (Class Weight Balancing), oversampling (Random Oversampling, ADASYN, SMOTE, Borderline SMOTE), undersampling (Random Undersampling, and Near Miss versions 1 to 3) as well as a combination of oversampling and undersampling (SMOTETomek and SMOTEENN). When combined with rebalancing methods, the predictive capacity of the classification models outperformed the baseline model in almost every case. However, results varied by train/test split and by evaluation metric. Oversampling models performed best on F1 Score and ROC-AUC while SMOTEENN and the undersampling models generated the highest levels of Recall. The top F1 Score was generated by the Naïve Bayes model when combined with SMOTE. The MLP model generated the highest ROC-AUC when combined with BorderlineSMOTE. The results of both case studies demonstrate that data analytics techniques can enhance a life insurance company’s predictive toolkit. It is recommended that further opportunities to enhance the predictive ability of the time series and classification models be explored

    Forecasting: theory and practice

    Get PDF
    Forecasting has always been in the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The lack of a free-lunch theorem implies the need for a diverse set of forecasting methods to tackle an array of applications. This unique article provides a non-systematic review of the theory and the practice of forecasting. We offer a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts, including operations, economics, finance, energy, environment, and social good. We do not claim that this review is an exhaustive list of methods and applications. The list was compiled based on the expertise and interests of the authors. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of the forecasting theory and practice
    • …
    corecore