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Abstract

Model selection for time series forecasting is a challenging task for practitioners and
academia. There are multiple approaches to address this, ranging from time series analysis
using a series of statistical tests, to information criteria or empirical approaches that rely
on cross-validated errors. In recent forecasting competitions, meta-learning obtained
promising results establishing its place as a model selection alternative. Meta-learning
constructs meta-features for each time series and trains a classifier on these to choose the
most appropriate forecasting method.

In the first part, this thesis studies the main components of meta-learning and analyses
the effect of alternative meta-features, meta-learners, and base forecasters in the final
model selection results. We investigate different meta-learners, the use of simple or
complex base forecasts, and a large and diverse set of meta-features. Our findings show
that stationarity tests, which identify the presence of unit root in time series, and proxies
of autoregressive information, which show the strength of serial correlation in a series,
have the highest importance for the performance of meta-learning. On the contrary,
features related to time series quantiles and other descriptive statistics such as the mean,
and the variance exhibit the lowest importance. Furthermore, we observe that using
simple base forecasters is more sensitive to the number of groups of features employed
as meta-feature and overall had worse performed. In terms of the choice of learners,
classifiers with evidence of good performance in the literature resulted in the most
accurate meta-learners.

The success of meta-learning largely depends on its building components. The selection
and generation of the appropriate meta-features remains a major challenge in meta-
learning. In the second part, we propose using Convolutional Neural Networks (CNN) to
overcome this. CNN have demonstrated breakthrough accuracy in pattern recognition
tasks and can generate features as needed internally, within its layers, without intervention
from the modeller. Using CNN, we provide empirical evidence of the efficacy of the
approach, against widely accepted forecast selection methods and discuss the advantages
and limitations of the proposed approach.

Finally, we provide additional evidence that using meta-learning, for automated model
selection, outperformed all of the individual benchmark forecasts.

Keywords: Forecasting; Model selection; Meta-learning; Meta-features; Convolutional

neural network.
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Chapter 1: Introduction and Background

1 Introduction and
Background

1.1 Motivation

The rapid development of computing resources eases the process of collecting
a large amount of data for enhancing business analytics. Meanwhile, Big Data
brings challenges for forecasting, such as selecting an appropriate forecasting
model efficiently for tens of thousands of time series. This has attracted the

attention of an increasing number of scholars.

There are multiple approaches used for model selection: ranging from
statistical tests to information criteria or empirical approaches that rely on
cross-validation (Fildes, 1989, Fildes and Petropoulos, 2015). Information
criteria, which are penalised likelihood functions (i.e., Akaike information
criteria (AIC), Bayesian information criteria (BIC), and so forth), balance the
goodness of fit with model complexity and are calculated based on in-sample
data (i.e., data used for fitting the model). In contrast, the cross-validation
approach evaluates the models’ performance by some error measures (i.e.,
MASE, RMSE, and so forth) on a validation set, which is not used for fitting
the model (Hyndman and Athanasopoulos, 2014). Compared to the
information criteria, cross-validation differs in three aspects. First, multi-step-
ahead forecasts can be used to inform model selection. Second, cross-

validation can evaluate the forecasts generated by different classes of
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Chapter 1: Introduction and Background

forecasting models or a combination of different models from various classes.
Last, pre-processing of in-sample data, such as truncating and
transformations, does not invalidate different models’ comparisons. A
limitation of the cross-validation approach is that the validation set must be
split from the original series, which sometimes may be problematic due to the

limited available sample.

However, both these approaches require implementing all candidate
forecasting models for each time series before evaluation and selection. These
so-called “wrapper approaches” significantly increase computational costs
and time when facing a large set of time series. In that case, meta-learning has
been proposed as a promising alternative for forecasting model selection and
has been explored by many studies. Meta-learning is a “filter” methodology
that learns to select the best forecasting model based on extracted time series
characteristics (meta-features) without implementing the competing
candidate forecasts. Lemke and Gabrys (2010) suggest that meta-learning
relates the objective of time series forecasting to selecting or combination of
the most suitable forecasting models using a meta-learner based on meta-
features extracted from time series. A meta-learner is a classification
algorithm, where meta-features are used as input, and the best forecasting
model is the label of the classification algorithm. A meta-learner relates the
meta-features with models’ performance. It outputs a set of weights
representing the performance of each candidate model and recommends the
most appropriate model (i.e. the one with the largest weight) or a combination
of them according to their weights. Meta-learning avoids implementing all
candidate forecasting models, which can significantly save computational
time and costs.

This doctoral thesis focuses on evaluating alternative building blocks of meta-
learning, including meta-learners, base forecasters, and, more importantly,
meta-features. To the best of our knowledge, most existing meta-learning
methods in forecasting model selection and combination rely heavily on
judgementally selected meta-features. Based on a review of previous meta-
learning studies in forecasting model selection, a varied set of features are

introduced for different situations. Besides, the process of choosing a set of

Sasan Barak -August 2021 2



Chapter 1: Introduction and Background

useful manually constructed features is challenging since this process requires
a deep understanding of features’ concepts and empirical evidence that can

demonstrate the usefulness of these features from related studies.

1.2 Meta-learning and meta-features

Although the meta-learning approach has shown its superiority in terms of
model selection and combination (Talagala et al., 2018; Montero-Manso et
al., 2018), the meta-feature extraction process is challenging and potentially
unreliable in the context of Big data (large number of time series). According
to Ma and Fildes (2020), current meta-learning studies rely heavily on

manually selected meta-features.

Many attempts have been made on mining more useful time series features.
Fulcher (2018) summarises thousands of such features to provide more useful
insights into the time series structure. Christ et al. (2018) introduce a Python
package that can extract 794 features from time series and select statistically
significant features via hypothesis tests; they describe the application of these
features, such as in regression and clustering. Hyndman et al. (2019)
summarise several feature-extracting methods which have been successfully
applied in time series problems, including anomaly detection (Hyndman,
Wang, and Laptev, 2015), forecasting method evaluation (Kang, Hyndman,
and Smith-Miles, 2016), and time series classification (Fulcher and Jones,
2014).

Inspired by these studies related to time series features, we argue that selected
time series meta-features play an important role in forecasting using meta
learning. Indeed, the potential usefulness of time series features in forecasting
has been discussed by some early studies. For example, according to
empirical results of M3 Competition (Makridakis and Hibon, 2000),
Lawrence (2001) and Hyndman (2001) argue that useful information that
exists in time series can improve the process of selecting the most suitable
forecaster or a combination of forecasters with appropriate weights. Wang et
al. (2009) propose a meta-learning framework to recommend acceptable
forecasting models. They introduce a set of comprehensive time series

features and visualise the time series features in a two-dimensional map. Due
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Chapter 1: Introduction and Background

to the generality and usefulness of this vector of features, Widodo and Budi
(2013) adopt it to build a meta-learning framework applied in forecasting
model selection. They implement Principal Component Analysis (PCA) to
reduce the extracted time series features and find that such a dimensional
reduction process improves the forecasting performance of meta-learning
without damaging its classification performance. Kiick et al. (2016) consider
a new set of meta-features related to errors of forecasting algorithms and
employ Multilayer Perceptron (MLP) as a meta-learner. They evaluate their
meta-learning framework in the NN3 time series competition (Crone, Hibon,
and Nikolopoulos, 2011) and conclude that including error-based features
helps the meta-learner to learn more useful patterns and thus improves the

overall accuracy of forecasting.

More recently, Talagala et al. (2018) propose a more general meta-learning
framework called FFORMS (Feature-based FORecast Model Selection),
where they further expand the feature space to include 33 features based on
Wang et al. (2009), Hyndman et al. (2015) and Kang et al. (2017). Montero-
Manso et al. (2018) introduce FFORMA (Feature-based FORecast Model
Averaging) with 42 meta-features where the output of the meta-learner is a
set of weights assigned to each candidate’s forecasting models instead of the
index of the best forecaster. This approach achieves the second rank in the

M4 competition (Makridakis, Spiliotis, and Assimakopoulos, 2020).

Through consideration of the pertinent research in this area, it can be inferred
that the selection of a proper subset of meta-features mainly follows the
decision makers’ expertise which is mostly subjective and non-systematic.
Fulcher (2017), Fulcher and Jones (2014) and Timmer et al. (1993) indicate
that it is difficult to conclude whether new features presented by researchers
are better than existing alternatives. They mentioned that it is hard to
determine whether methodologically complicated meta-features outperform
simple alternatives. Therefore, analysing the meta-learning framework based
on the meta-feature perspective and proposing techniques that rely less on the
manually selected features is an urgent need in this field. Besides, having a

systematic meta-feature analysing method with the potential for selecting
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Chapter 1: Introduction and Background

more representative features is also essential for improving the meta-learning

performance.

Furthermore, manually extracted meta-features from time series may not
reflect all characteristics of the series. According to Li, Kang and Li (2019),
current studies in this area mostly employ global features as the input of the
meta-learning framework but neglect the importance of some local
characteristics which may significantly affect the performance of different
forecasting models. For instance, in the area of retail sales, if the promotion
or special events exist in some time horizons of a time series, the value of
sales in these time horizons is very likely to be significantly different from
those without these activities or events (Fildes and Ma, 2019). In this case, if
we only use some global features, such as trend or seasonality, the meta-
learner may not be able to learn local knowledge, and hence the meta-
learner’s input can mislead it. This can be resolved by proposing an
automated approach which detects the important meta-features and forecasts

based on them simultaneously.

Although previously mentioned studies have stated that their proposed meta-
learning frameworks achieve a good result, no study directly argues about the
reason for their superiority. It is not clear whether the high accuracy is due to
the choice of their proposed features, meta-learners (as classifiers), or
alternative forecasting models. Moreover, when there are many time series,
the process of manually extracting features will cost comparable time and
resources, which lowers the forecasting performance of the whole process of
meta-learning particularly when the correlation between these features and

forecasting models’ performance is weak.

To the best of our knowledge, there is no study that evaluates the reliability
and performance of meta-learning by considering the three facets of meta-
features, meta-learners, and base forecasters. Therefore, we aim to analyse
these variations in the context of forecasting model selection and combination

for business time series.
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Chapter 1: Introduction and Background

1.3 Contribution of the thesis

Although there is substantial literature on meta-learning, the investigation of

its use on time series data has largely been overlooked from the algorithmic

and machine learning viewpoints. In this thesis, we build on this by taking a

time series standpoint, bringing the learning from that literature to the

specification and use of meta-learning in forecasting.

First, we propose a series of statistical tests, which build upon time
series analysis theory that is often overlooked in the primary machine
learning based meta-learning literature and evaluate their
effectiveness. We analyse the relationship between these meta-
features and the meta-learners and compare the result of meta-learning
with individual and aggregate forecasting model selection. We find
that statistical tests performed better in meta-learning compared to
pre-defined packages such as Tsfeatures.

Second, we analyse meta-learning from three aspects: meta-features,
meta-learners, and base forecasters. To do so, we compare the results
of simple and complex forecasting models, as well as single and
ensemble meta learners. Moreover, we evaluate different groups of
meta-features in the meta-learning context. In terms of the simple and
complex base forecasters, we find that using more accurate base
forecasters can improve the meta-learning accuracy. Moreover, we
show that using more advanced base forecasters overfits the result of
meta-learner.

Third, we evaluate the feature importance of a large number of meta-
features within ten groups of statistical tests, statistical description,
autoregressive, autocorrelation and so forth, in responding to the
forecasting model selection accuracy and analyse the forecasting
performance of groups based on variants of meta-learners and base
forecasters. We find that the larger Tsfresh set of meta-features
performs best, compared to Tsfeatures. However, by eliminating the
least important features, we could increase accuracy further.

Fourth, we propose the MetaTS package, an open-source Python

library to ease meta-learning for time series forecasting by offering a
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Chapter 1: Introduction and Background

toolkit containing the typical components needed for a meta-learning
workflow that facilitates the process of doing it for users. In addition
to providing new components and facilities, we aim to unify the
available Python libraries which can be useful for meta-learning on
time series data.

Fifth, we run additional experiments using the MetaTS package to
investigate the effect of feature importance on meta-learning
performance. We show that, first, increasing the number of features
does not necessarily improve meta-learning performance, so it may
even have an adverse effect. Second, the quality of meta-features is
very important in the performance of meta-learning, and features that
are data-driven, such as autoencoders, which we extracted using
MetaTS, have more quality than pre-defined features.Sixth, we
propose a novel deep meta-learning framework where Convolutional
Neural Networks (CNNSs) can automatically extract and learn useful
meta-features from time series. We demonstrate that the proposed
CNN can effectively generate relevant features to the base forecasters
and reduce the need for ad-hoc meta-features. The proposed CNN is
also able to jointly construct the features and the classifier. We find
that CNN can improve the meta-learner’s accuracy in the trend and
level time series; however, it needs further analysis for the seasonal
time series.

It is worth noting that for chapter 2, we use predefined properties of
time series as meta-features, while in chapter 3 and 4 we extracted a
new group of meta-features which are fundamentally different from
the predefined features. We use autoencoders in chapter 3 and CNN

for chapter 4.

Finally, we evaluate the ability of transfer learning for the deep meta-
learner for selecting a forecaster or the combination of forecasters in
a real dataset (M3 competition). We compare the performance of our
proposed transfer learning framework with conventional model
selection approaches and demonstrate its efficacy, but also avenues

for future research.
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Chapter 1: Introduction and Background

1.4 Structure of the thesis

The next three chapters of this thesis consist of three potential research
articles that are either submitted for publication or are in preparation for

submission. The following is a brief description of each chapter:

Chapter 2: Meta-Learning Using Statistical Tests for Forecasting Model
Selection

In this chapter, statistical tests are presented as a group of feature-based
representation of time series, and their effectiveness is evaluated and

compared with commonly used meta-features.
Chapter 3: On the Design of Meta-learning for Forecast Selection.

This chapter investigates the building blocks of meta-learning and analyses
the impact of meta-features, meta-learners, and base forecasters in the final
model selection output. To do so, we investigate three alternative meta-
learners, the use of simple or complex base forecasts, and a large and diverse

set of meta-features.
Chapter 4: Deep Learning for Forecasting Model Selection

This chapter proposes the use of Convolutional Neural Networks (CNNs) to
automatically extract and learn useful and model-performance-relative meta-
features from time series and then employ these to classify candidate
forecasting models. The deep meta-learner can generate features as needed
internally, within its layers, without intervention from the modeller. Its

properties and performance are examined using simulated and real data.

Finally, chapter 5 provides a discussion and concluding remarks for the thesis,

where current limitations, and future avenues of research are outlined.
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Chapter 2: Meta-Learning Using Statistical Tests for Forecasting Model Selection

2 Meta-Learning
Using Statistical
Tests for
Forecasting
Model Selection

2.1 Introduction

Nearly 30 years of research and empirical evidence on identifying and
selecting the best forecasting method shows the challenging attribute of the
model selection problem. Based on the “No Free Lunch (NFL)” theorem, the
criteria of a proper model for one problem may not hold for another problem.
This is the crucial idea that no one model works best for every problem and
whenever a learning algorithm achieves good results on some problems, it
must perform poorly on others (Giraud-Carrier, 2008b). Therefore, building
a decision system which can select the best learning algorithm between
candidates becomes a worthwhile endeavour. Moreover, the number of
modelling algorithms and explanatory variables makes the selecting process
a problem in itself to solve. In the business analytics area, finding a true
classification or forecasting algorithm along with measuring its parameters is
one of the crucial stages which is called 'model selection' (Smith-Miles,
2009).

In the forecasting community, forecasting managers may have to forecast
thousands of series every month with heterogeneous time series patterns and
many forecasting algorithms to match the series with them. At the same time,
the quality and quantity of potential model inputs have increased
exponentially, permitting models to use more information sources and

support a higher frequency of decision making, such as daily and weekly
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planning cycles. Consequently, the model selection issue arises in practice as
an essential problem across all industries and sectors. All these have
facilitated and made necessary an increase in automation of the forecasting

model selection.

In business analytics, forecasters mainly use individual approaches such as
penalized likelihood methods or empirical cross-validation with different
error measures to forecast a collection of series, but a learning process does
not exist to make the connection between the data characteristics and the
models. To involve the learning process in the model selection, meta-learning
from the machine learning field is utilized in the forecasting model selection.
Based on Rice (1976), the mathematical definition of the meta-learning

system is presented as follows:

For a given problem space x € P with features f (x) € F, find the selection
algorithm S(f (x)) in algorithm space A, such that the selected algorithm a €
A maximizes the performance mapping z (a(x)) € Z in terms of a performance
measure p (Rice, 1976). In a meta-learning system, features F from Rice’s
formulation are called meta-features, and they represent inherent

characteristics of a given task, x.

Compared to a base learner (forecasting algorithms) which learns a particular
task from the corresponding data (e.g., load forecasting, demand forecasting,
and so forth), meta-learning continuously gains knowledge (e.g., the learning
algorithm properties, the characteristics of the learning problems) from base
learners in order to improve the performance of the learning algorithms
(Giraud-Carrier, 2008a). Therefore, two concepts of (i) data characteristics
and (ii) the best forecasting model can be connected by meta-modelling,
which is a learning approach — seen in, for example, classification algorithms.
However, doubts always exist on the efficiency of calculated data
characteristics. A common challenge comes with the efficiency of meta-
features and how much these could be beneficial in selecting the best model.
Is it possible to have less sophisticated but more descriptive meta-features in
a meta-learning approach? Is using a complicated selection process in

comparison to simple individual selection worth? While to answer these
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questions, an overview of meta-learning as a model selection procedure as

well as the implemented meta-features in forecasting problems is needed.

Therefore, in this chapter, a brief review of the different model selection
procedures in time series forecasting is studied, and then meta-learning
studies in forecasting model selection are reviewed. More specifically, the
implemented meta-feature in the feature-based representation of time series
is considered broadly, and the gaps in utilized meta-features are investigated.
In this regard, for the first time, the effectiveness of using statistical tests as a
new group of meta-features is evaluated and compared with the commonly
used meta-features. Finally, the relationship between the applied meta-
features and the meta-learner algorithms have been investigated, and the
forecasting performance of meta-learning in comparison with individual

model selection is further demonstrated.

Consequently, contributions of the current research could be noted as: 1.
Empirically demonstrating the usefulness of statistical tests as a new group of
meta-features and comparing the forecasting performance with the other
group of meta-features 2. Comparing different filter and wrapper model
selection approaches and 3. Assessing the forecasting performance of using

meta-learning for model selection in different sample sizes.

The structure of this chapter is undertaken as follows: Section 2.2 articulates
different model selection approaches in forecasting. Section 2.3 elucidates the
features-based representation of time series while Section 2.4 explains the
methodology and experimental design. Section 2.5 presents the results of the
research and finally, section 2.6 concludes the article, and suggests the further

scope of research.

2.2 Model selection in forecasting

Selecting an appropriate forecasting model because of the increasing number
of algorithms, large number of business time series, and different time series

patterns has turned into a complicated problem (Fildes, 2001).
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2.2.1 Forecasting model selection using wrappers

Two conventional approaches in time series forecasting are distinguished.
Firstly, “aggregate selection”, which is the implementation of one model for
all the time series. Secondly, “individual selection”, which is the
identification of one particular method appropriate for each series and then
the application of that model for forecasting (Fildes, 1989).

Although the aggregate selection is simple in practice, in principle, different
individual models, which take into the account time series characteristics such
as trend and seasonality, make the forecasting more accurate (Fildes and
Petropoulos, 2015). Further, in consideration of the NFL theorem, there is no
guarantee that one forecasting model has proper accuracy in all or even more
than one-time series (Ma and Fildes 2020). Fildes (2001) indicated that if
individual model selection could be done perfectly, then the gains would be
substantial. Individual selection mainly have classified into theoretical and
empirical methods (Fildes and Petropoulos, 2015).

A significant characteristic of empirical models is in using a validation (out
of sample) performance to evaluate how well a model performs on the part of
data which is not considered when fitting the model. Model selection on
(cross-) validation has two advantages. Firstly, the performance of multiple
step-ahead forecasts can be used to inform selection. Secondly, the validation
approach is able to evaluate forecasts derived from any process (including
combinations of forecasts from various models). The disadvantage of this
approach is that it requires setting aside a validation set, which may not

always be feasible.

The theoretical models generally are penalized likelihood functions
calculated in the in-sample data (Hyndman and Athanasopoulos, 2014). Two
best-known criteria are the AIC and BIC and different developed versions of
these two approaches. The robustness of theoretical models is that there is no
need for a validation sample which requires more data for model fitting. The
downside, however, is that manipulating time series by changing the number
of data points or transforming the sample invalidates the comparison. Hence,

researchers mainly recommend using them only within a single model family
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(e.g. between exponential smoothing models) (Kourentzes, 2017).
Information criteria measures the accuracy of one step ahead in-sample
fitting; however, Fildes and Petropoulos (2015) shows the inefficiency of one
step ahead forecasting in model selection. This is because of the fact that the
likelihood function cannot be proper for multiple-step forecast if the
postulated forecasting error is wrong (Xia and Tong, 2011). Therefore, cross
validation statistics are mainly used in this study whilst the results are

compared with AIC and BIC as benchmarks.

All of the mentioned model selection approaches, either using information
theoretic criteria or empirical criteria, require candidate forecasting
algorithms to have been computed and the error utilized for the selection of
the best algorithm. In machine learning, this is called the “wrapper approach”
(Barak et al., 2015). Therefore, individual selection must implement all
candidate models in the whole dataset to evaluate model performance, then

select between them.

2.2.2 Forecast model selection using filters

Substantially increasing the number of time series for business forecasting
makes the wrapper model selection highly time demanding, and in some cases
inefficient. The filter approach is a favourable alternative which extracts
information from the time series based on some protocols and exploits it for
business forecasting. A filter-based model selection provides patterns that
identify which model should be used for each time series forecasting without

measuring all the past forecasts in a whole time series.

In the forecasting model selection literature, filter approach-based selection
protocols such as variance analysis (Gardner Jr and McKenzie, 1988),
automatic identification (Vokurka et al., 1996), and rules-based forecasting
(Adya et al., 2001) measure data characteristics and use them in forecasting

models to generate the best prediction (Fildes et al., 2007).

In contrast to forecasting model selection using wrappers, practitioners in
forecasting as well as statistical and econometric research employ filters to

conduct ex-ante model selection, narrowing the number of relevant
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algorithms based upon time series features identified using visualisation of

time series data and statistical tests.

Surprisingly little research has been conducted on how to utilise data
visualisation for filtering and model selection. Typically, a forecasting expert
employs the use of time series graphs, seasonal diagrams, autocorrelation
(ACF) and partial autocorrelation functions (PACF), spectral analysis and
various seasonal subseries plots etc. for this purpose (Petropoulos et al.,
2018).

In contrast, a number of statistical tests have been developed to determine an
adequate model form ex ante by identifying the nature of the underlying data
generating process, including statistical tests for stationarity, seasonality,
trend, outliers, structural breaks and other regular and irregular time series
patterns. As these tests are later on employed as both direct filters and meta-
features to train a meta-learning algorithm, based on the literature of time
series we introduce a number of more common tests which have been

implemented in many studies (Pohlert, 2016).
e Trend Tests:

In testing the trend, the non-parametric Mann-Kendall Trend test which has a

null hypothesis of “no trend”, estimating

Wl (2-1)
S = sgn (X; — Xp)
k=1 j=k+1
1 if X>0
with sgn(x)=40 if X =0
-1if X<0

The statistic S is closely related to Kendall’s t as given by 1 =S / D, where

(

. 1/2 , 12
P tj(t_jn] [—n(-n—n] 2:2)

b =

, 2
j=1
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p is the number of the tied groups in the data set, and t;j is the number of data
points in the j™ tied group (Pohlert, 2016).

The Cox-Stuart trend test defines a binomial distribution for trend detection.
Given a set of ordered observations X1, X2, ..., Xn, let ¢ = n/2 if n even, or let
¢ = (n+1)/2 if n odd. Then pair the data as X1, X1+c, X2, X2+c, ..., Xn-c, Xn.
The Cox-Stuart test is then simply a sign test applied to this paired data.

Alternatively, Spearman's rho (SR) test utilises rank-based non-parametric
statistical test for detecting a monotonic time trend in a time series (Lehman,
2005).

e Stationarity Tests:

Next, we introduce a number of stationarity tests, in essence testing the
absence of trends and other patterns, most notably the ADF test and KPSS

tests.

The Augmented Dickey-Fuller test (ADF) test with the null hypothesis of a
unit root: The alternative hypothesis could be different depending on which
version of the test is used, but it is usually stationarity or trend-stationarity.
Therefore, in this chapter, three kinds of tests which are “no constant-
no trend”, “constant-no trend”, and “constant-trend” were established. The
ADF test is based on estimating the test regression

P (2-3)
Ay, = D, + 7wy + Z'z;')jAyt_j +&

Jj=1

where D, is a vector of deterministic terms (constant, trend etc.) (Said and
Dickey, 1984). The p lagged difference terms, Ay;-;, are used to approximate
the ARMA structure of the errors, and the value of p is set so that the error &t
is serially uncorrelated. Under the null hypothesis, Ayt is 1(0) (no trend) which
implies that = = 0. The ADF t-statistic is then the usual t-statistic for testing 7t
= 0. However, as mentioned before, with changing the 7 = ¢—1, we can test

the 1(1).
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As an alternative to the ADF- family of tests, the Kwiatkowski—Phillips—
Schmidt-Shin (KPSS) tests for testing a null hypothesis that an observable
time series has a unit root against the alternative of a stationarity around a

deterministic trend (i.e., trend-stationary).

The KPSS test statistic is the Lagrange multiplier (LM) or score statistic for

testing 6% = 0 against the alternative that 6% > 0 and is given by

(2-4)

T
KPSS = (T2 3 Sf) Y
t=1

2 t A A . - .
where StzZHut , U, is the residual of regression of y; on D

(y,=B'D, + i, +u,) and A% is a consistent estimate of the long-run

variance of ur using 4, . Under the null, y: has 1(0) (Pohlert, 2016).

e Seasonality Test:

Moreover, we introduce a number of seasonality tests, which include the Chi
square test, Friedman test, Multiplicative seasonality test (Pearson), and
Kruskall-Wallis test.

The Chi square test (y%) is a goodness-of-fit test for detecting the seasonality
which is relatively popular because of its simple mathematical theory (Nwogu
et al., 2016). For testing the seasonality, the frequency 0;,i=1, 2,..., k and
the frequency E;,i=1, 2,..., k are the observed and expected value frequency
at the ith season, respectively. Under the null hypothesis that there is no

seasonal effect, then E; = E» =...= Ex and the statistic

k
Oi _ Ei 2 (2'5)

is asymptotically distributed as y*> with v =k — 1 degrees of freedom (Horn,
1977).
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The Friedman test calculate the p-value for testing the seasonality as a non-
parametric alternative to ANOVA with repeated measures. No normality

assumption is required. The Friedman statistic Q is given by

12 , (2-6)

Q= m SScoI

where SS/, is the sum of squares between groups using the ranks instead of

raw data. When k > 5, the probability distribution of Q can be approximated
by that of a chi-squared distribution and the null hypothesis is rejected

2
when Q > Xerit.

Furthermore, Pearson correlation facilitates a Multiplicative seasonality test
(Lehman, 2005).

The Kruskal-Wallis test of seasonality is a non-parametric test which is used

in place of a one-way ANOVA. Kruskal-Wallis statistics H is given by

12,
n(n+1) °

(2-7)

where SS/, is the sum of squares between groups using the ranks instead of

12(k -1)
n+1)

raw data. This is based on the fact that is the expected value (i.e.

mean) of the distribution of SS/ . If there are small sample sizes and many

ties, a corrected Kruskal-Wallis test statistic /7' = H/T gives better results

1

where T =1-—
n°—n

Z (f3—f) . Here, the sum is taken over all scores where
ties exist, and f is the number of ties at that level.
e Other Combinations:

Finally, we test stationarity (level), trend, and seasonality of time series with
some properties of the ACF plot. Slowly decay of ACF plot indicates a trend
and the seasonality can be captured with the peak in a seasonal basis. The

noise data (level) with ACF of a sampling distribution can be approximated
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by a normal distribution with mean zero and standard error %ﬁ where n is the

number of observations in the series. We use this info to develop tests of

hypotheses and confidence intervals for the ACF. We expect 95% of all

sample ACF to be within izin , then we have a stationary time series,

otherwise the series can have trend / seasonality.

Some of our meta-features are non-parametric tests which do not rely on
standard normality assumptions and are often based on ranks rather than raw
data. It is possible to extend our feature space by adding more statistical tests;
however, the most popular tests have been used in this study, and we would
like to investigate explicitly whether or not the meta-learning procedure can
capture the correct forecast algorithm with common statistical tests (without

measuring the forecast errors).

2.2.3 Forecast model selection using machine learning

Rice (1976) explained the model selection problem as a learning problem
which attempts to capture the structural characteristics of the problem or
instance and to use them for selection of the most relevant algorithm with a
meta-level learning algorithm. In the forecasting, the meta-learning process
is a learning approach which selects the best forecasting model based on the
features of the time series without implementation of the candidate algorithms
at first. Therefore, this is a filter approach with less computational cost for
implementation. Figure 2-1 illustrated three main components of the meta-
learning procedure including base level models (forecasting algorithms),

meta-features, and meta-level models (meta-learners) and their connection.

Using model selection with machine learning in forecasting was first
proposed by Arinze (1994). Chu and Widjaja (1994) proposed a neural
network system to select among several exponential smoothing models using
the autocorrelations. Both of these studies treat model selection as a
classification problem, while outputs of the classification algorithm (machine
learning model) rank the forecasting models, and the inputs are features
calculated from the case study data. Therefore, these works can be viewed as

particular examples of meta-learning, but they do not mention the context of
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meta-learning. Prudéncio and Ludermir (2004) claimed that they used the
context of meta-learning in time series forecasting for the first time. Two case
studies were implemented, while in the first example, J.48 (a version of the
C4.5 decision tree) is utilized to choose among two models of forecasting
stationary time series (simple exponential smoothing model (SES), and the
time-delay neural network (TDNN)), and in the second example, NOEMON

as a meta-learner generates ranks for the pool of forecasting models.

Time series
characteristics
extraction

Time series forecasting
methods evaluation

Training time series

Meta features Base level
models

Meta Forecast
features ranking

Meta learner — —

Filter procedure

[
[
!
v
Model New Time
recommendation series

Figure 2-1. Overview of meta-learning procedure

Zhou et al. (2012) proposed an improved decomposition method and back-
propagation neural network model (BPNN) for gold price forecasting. In this
approach, characteristics of different decomposed subsets of series are
explored by training different BPNNs. A rate-based meta-learning model is
used to identify the most suitable BPNN model for selecting one of the

networks in determining the future trend of gold prices.

Feature selection in meta-learning can be implicitly applied when decision
trees are used as the meta-learner; however, within different studies in
applying meta-learning to forecasting, to the best of our knowledge, Cui et al.
(2016a) is the first work which implemented feature selection methods for

meta-features’ reduction. They applied singular value decomposition,
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stepwise regression, and ReliefF for feature selection, and used hit ratio and
Spearman’s ranking correlation coefficient as performance evaluation of the
meta-learning system. Talagala et al. (2018a) proposed a meta learning
framework called FFORMS (Feature-based FORecast Model Selection) that
uses a set of 33 meta-features for seasonal and non-seasonal data and a
Random Forest as meta-learner to select the best single model from five main
forecasting models including, ARIMA, ETS, Random walk, naive, Theta, and
their variants. Montero-Manso et al. (2020) proposed FFORMA (Feature-
based FORecast Model Averaging) which is a weighted combined model
selection using meta-learning and obtained the second rank in the M4
forecasting competition. The main difference of this study is that they used a
weighted combination of Arima, ETS, Theta, Naive, Seasonal Naive, Neural
Network, Random walk, TBATS, and STLM-AR models instead of solely
selection with meta learners. They used XGboost as meta learner with 42
meta-features. All of the features have been previously used in Talagala et al.
(2018a) and Montero-Manso et al. (2018), and an R package ‘tsfeatures’ is
developed by Hyndman et al. (2019) to facilitate the feature calculation.
Recently, Ma, and Fildes (2021) present a meta-learning framework based on
newly developed deep convolutional neural networks, which can first learn a
feature representation from raw sales time series automatically, and then link
the learned features with a set of weights that are used to combine a pool of
base-forecasting methods. The experiments which are based on IRI weekly
data show that the proposed meta-learner provides superior forecasting
performance compared with a number of state-of-art benchmarks, though the
accuracy gains over some more sophisticated meta-ensemble benchmarks are
modest, and the learned features lack interpretability. When designing a meta-
learner for forecasting retail sales, they recommend building a pool of base-
forecasters including both individual and pooled forecasting methods, and
target finding the best combination forecasts instead of the best individual
method.

A comparison between meta-learning studies in forecasting is presented in
Table 2.2-1. Applied meta-learner, data set, the domain of the data,
forecasting algorithms, feature selection procedure, and findings from the
papers are considered as different criteria in Table 2.2-1. By evaluating the
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last row of Table 2.2-1 (Findings), it can be inferred that meta-learning does
not always deliver the minimum error in all cases. However, in addition to
the accuracy, the computational time for model selection is also essential.
Meta-learning mostly achieves a significant improvement in computational
time in comparison to the wrapper model selection approach (Prudéncio etal.,
2011). For example, dos Santos et al. (2004) applied random walk, Holt, and
auto-regressive (AR) models as sub learners and zoom ranked algorithm as a
meta-learner. The results indicated that when the accuracy of the selected
model is considered, the zoom rank results are not promising and the Holt
model has the lowest error, but when the computation time is added into the
cost function, zooming provides a small improvement in the model
selection’s accuracy. The same evidence was reported by Lemke and Gabrys
(2010a) while they considered 15 simple and combined models as base
learners, whilst support vector machine, neural network, and decision tree
were considered as meta-learning. In their first experiment, none of the
applied meta-learners decreased the overall forecasting error; however, the
zoom rank algorithm (combination of meta-learners) significantly reduced the
symmetric Mean Absolute Percentage Error (SMAPE) of the overall

forecasting error.

Table 2.2-1. Summary of meta-learning literature in time series

forecasting

Prudéncio Lemke and Kiick et

Montero-

. . Wang et al. Matijas et al. Cui et al. Talagala, et Ma, and
Arinze (1994) and Ludermir Gabrys al. Manso, et .
(2004) (2009) (20103) (2013) (2016) (2016a) al. (2018) al. (2020) Fildes (2021)
1) J4 M NN
) 148 oM. ' Euclidean
distance,
2) NOEMON DT DT, CART, LI:/Q .
network, -nearest
I':;f:]ae'r DT MLP, Auto NN neighbour, R:g:je‘;;” XgBoost CNN
SVM, MLP, e- ANN
SVM,
Gaussian
Zoomed Process (GP).
ranking
NN3 111 a4 IRI dataset
. . y . . NN3 benchmarks
" : M3 (3003- 315-time time series, 1 time series e (Bronnenberg
DR 67-time series time series) series NNS5, 111- with 69 Task 111 Flme from IEEE M3 M4 , Kruger, &
time series series CEC Mela, 2008)
2013&2014 !
Demographic BL_Jsiness, Bgsiness,
Data Econometric Finance, economics, Business, Load and Simulated IFnI gj;i; IFnI gﬁ;‘;i[‘
Domain data on the US Industry, mgdlca], cash machine electricity Business d_ata in Macro. Macro, Business
economy Macro, engineering withdrawal Engineering . .
Micro. Other Micro, Micro,
' Other Other
. RW, ARMA, ANN, kriging, . Arima,
forecast S Avimaand 1) SES, A prima, SIErS similarDays  ANA,  SVRRBF, /MM ETS Them, FTS DL
ES models TDNN ES NN' Re }esg,ion' algorithm, AAN, MARS, NN, Na’|‘\}e RV\/ Naive, NN, SVM YGBR'IV'
' 9 ' Layer RNN, AAA PR ! RW, ' '
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Prudéncio Lemke and Kiick et

Montero-

A n Wang et al. Matijas et al. Cuietal. Talagala, et Ma, and
Arinze (1994) and Ludermir Gabrys al. Manso, et .
(2004) (2009) 20102 (2013) (2016b) (2016a) al. (2018) al. (2020) Fildes (2021)
Theta, NN, VLD, m- TBATS ADLP, RT,
Elman NN SVR, Robust STLM-AR ELMP
2) RW, Holt, LS-SVM
AR
singular
value
Feature Implicitly with Implicitly I_mpllcnly Feature decompositi Feature Feature
: : with DT and L on, step- o S
selection DT with DT weighting N weighting weighting
ZR wise
regression,
and ReliefF
Faster but Faster and \ggnmneerti?ifc:rr:e
Findin Faster and with the more morepaccurafe More More More More More More
9 accurate accurate accurate

lower accurate accurate accurate

accuracy

more accurate .
with zoom

ranking

accurate

DT: Decision Tree, RW: Random walk, HL: Holt exponential smoothing, AR: Auto-regressive model, SVR: Support

vector regression, RBF: Radial basis function, MARS: Multivariate adaptive regression splines, NN: Neural network,

PR: Polynomial regression.

Combinations of meta-learners have also been studied by Matijas et al. (2013).

They considered four types of load forecasting task to apply the meta-learning
approach to multivariate time series by ten different base learners and eight
meta-learners. The results indicated a lower MAPE for all of the tasks with
ensemble of meta-learning classifiers. Moreover, their overall runtime
decreased by almost three times in comparison with the wrapper model

selection.

After the general overview about model selection and meta-learning, in the
next section, feature-based representation of time series will be explained,
and a common challenge with the efficiency of meta-features has been

addressed.

2.3 Features-based representation of time series:
meta-features

Analysing time series based on the property and structure of extracted
features enhances our interpretation about the problem and eases the decision-
making process for selecting the appropriate forecasting model. The feature-
based representation of time series (meta-features) can exploit machine

learning potential in discovering the hidden pattern in complex time series.

Feature-based characterization of time series not only can be utilized on
univariate time series, but also for multivariate versions, unordered data sets,

and features of inter-relation between the pairs of time series. This study
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mainly focuses on univariate time series to capture the underlying pattern and

interesting structures in business domain datasets.

Proper detection of time series’ similarities by their features’ characterization
can tackle time series data mining problems, such as anomaly detection, motif
discovery, model selection, clustering, and classification of time series
(Bagnall et al., 2017). The superiority of using meta-features in these
problems is that meta-features can take full-time series as an input rather than
shorter subsequences, distilling the complex pattern into understandable, low
dimensional properties. So, meta-features can be implemented on the time
series with different lengths, phase-alignments, and context of the problem;
the outcome will then be a matrix of time series (row) x features (columns)
which is similar to the statistical learning cases. Therefore, there is no
problem related to the length of the time-series and alignment in time.
Secondly, the current space of the time series may not mirror the problem
characterization, while a well-suited meta-feature transfers the problem into
the feature space and provides interpretability and better understanding about
the problem (Harvey and Todd, 2015). Note that different authors have
discussed that the critical issue does not lie in developing or finding a complex
prediction/classification algorithm, but in the selection of well-discriminating
features (Timmer et al., 1993, Bagnall et al., 2012). Based on evidences from
the Kaggle competition, the significant difference between the leaders and
other competitors is hardly implementing sophisticated models, but creating
relevant features from the dataset and predicting with them (Blum and Hardt,
2015). However, from considering the feature list, it can be inferred that the
selection of a proper subset of these meta-features mainly follows the
expertise of data analysts and is mostly subjective and non-systematic.
Fulcher (2017), Fulcher and Jones (2014), Timmer et al. (1993) indicated that
it is difficult to conclude whether new features presented by researchers are
better than existing alternatives. Moreover, it is hard to determine whether
methodologically complicated meta-features outperform simpler alternatives.
Fulcher et al. (2013) discussed that a threshold on the simple standard
deviation computed for each time series provides comparable classification
performance on different problems, undermining the need for computing

nonlinear features or the use of complex classification algorithms. Commonly,
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the main criteria for selection of meta-features is overall predictive accuracy
using the subset of meta-features. However, based on Giraud-Carrier (1998),
other criteria such as computational complexity, expressiveness, compactness,

and prior knowledge encoding may have equal importance.

Early efforts of meta-learning studies, which include meta-features in
forecasting, have been summarized in Smith-Miles (2009). The number of
implemented meta-features in papers is different, as while some researchers
incorporated small sets of 6-13 features (Prudéncio and Ludermir, 2004,
Wang et al., 2009, Venkatachalam and Sohl, 1999), others applied larger sets
of 25- 38 features (Lemke and Gabrys, 2010a, Shah, 1997, Meade, 2000,
Lemke and Gabrys, 2010b, Kiick et al., 2016b).

Until now, three main classes of meta-features have been suggested: 1.
statistical and information-theoretic characterization, 2. model-based features,
and 3. “landmarkers” (Brazdil et al., 2008). The first group estimated the
statistical features of the dataset. For example, standard deviation of series,
skewness, kurtosis, length of series, entropy of series, and number of
exogenous variables are some of these features. As an example of the second
type, one can build a decision tree from a dataset and capture the properties
of the tree such as maximum tree depth, shape, and tree imbalance as model-
based features. Finally, the last class of so-called landmarkers exploits
information obtained from the performance of a set of learners/forecasts and
their accuracy is used to characterize the time series. The differences between
the model-based features and landmarkers are related to the fact that the latter
does not come under model characteristics, but performance measures of the
built model. Kick et al. (2016b) used the errors on the training, validation,

and test set of the neural network as landmarkers.

Characteristics of a learning algorithm with meta-features and gaining a better
view about the problem performance is a narrow research topic with limited
literature on it (Vanschoren and Blockeel, 2006). For example, Hyndman et
al. (2015b) used 18 meta-features to characterize the time series, then applied
a two-dimensional principal component decomposition to the features to
detect unusual series with bivariate outlier detection methods. Kang et al.

(2017) visualized 6 meta-features into a two-dimensional principal
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component feature space and explained which algorithm can be suited to
forecast a specific type of time series in different parts of the space. Talagala
et al. (2018a) used a set of 33 meta-features including different variant of
Autocorrelation function (ACF) as well as some ETS model base meta-
features. Montero-Manso et al. (2020) applied 42 meta-features mainly from
Talagala et al. (2018a) study as well as model based meta-features from ARCH
and GARCH.

A summary of meta-features used in the literature is presented in Table 2.3-1.
Hyndman, et al. (2015) and Kang et al. (2017) studies are not in the context
of meta-learning; however, they use meta-features for time series evaluation.
Table 2.3-1 classifies the meta-features into four sections which are statistical
and information-theoretic features, model-based features, statistical tests, and
land markers respectively. It can be inferred that land markers are hardly used
since the learning models have to be applied on the whole data set, thus not
benefitting from the speed of filter meta-features. Moreover, establishing
statistical tests, a common way for time series trend and seasonality detection,
is largely overlooked in this area. Statistical tests are a “filter” approach which
only evaluate the time series and label them without learning from the past.
It is truly rational that using statistical test for detecting the most important
attributes of time series (level, trend, and seasonality) are more meaningful,
than many statistical features such as skewness, lumpiness, etc. Statistical
tests for determination of trend and seasonality of time series are commonly
used between researchers (Kendall and Ord, 1990, Hamed, 2008, Sun and
Fang, 2017, Sayemuzzaman and Jha, 2014), proposing better forecasting
algorithms along with characterising the time series. Specifically, when the
presence of seasonal or trend patterns are not entirely visible, these tests are
more useful (Kourentzes, 2017). Therefore, for the first time, we establish
different combinations of statistical tests in meta-learning to clarify the time
series by determining the statistical relationships in the data, e.g., stationarity,

seasonality, trends, and nonlinearity.
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Table 2.3-1. Summary of implemented meta-features in different

studies

Prudéncio
. Lemke and Kiick et Montero-
Arinze and [Wang et al. Matijag et Hyndman et | Kang et [Talagala, et Ma, and
Features . Gabrys al. Manso, et al. X
(1994) Ludermir (2009) al. (2013) al. (2015b) |al. (2017)| al. (2018) Fildes (2021
2004) (2010a) (2016b) (2020)

Standard deviation v v v

Mean

Minimum

Skewness v v v

Kurtosis v v v

Length v v

Granularity

Periodicity (per) v v

Traversity

NENENEN RN EN RN RN NN
AN

Trend v v v v

Seasonal period

<

Entropy v v v v v’

Step changes v

stability "z

hurst v’

Turning points Vi v v

Kullback-Leibler (kl)

score

index of the

AN

maximum KL score

Curvature

Peak

Seasonality v v v

Linearity

Lumpiness

Trough

flat spots

NN N N AN ENENEN
NI RN N AN AN ENEN
NN N N RN ENENEN

Level shift

Number of crossing

AN
<
AN

points

Spikiness v v v v’

Variance change

Fickleness v

Self-similarity v v

Serial correlation v v

Model-based features | v v v

Predictability

measure

Nonlinearity measure v v v v’

Largest Lyapunov

exponent

Durbin-Watson v

Exogenous v
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Prudéncio .
i Lemke and Kiick et Montero-
Arinze and [Wang et al. Matijas et Hyndman et | Kang et |Talagala, et Ma, and
Features . Gabrys al. Manso, et al. .
(1994) Ludermir (2009) al. (2013) al. (2015b) [al. (2017)] al. (2018) Fildes (2021

(2004) (2010a) (2016b) (2020)

Highest Acf v v v

Acf / diff Acf v v v v v

Pacf / diff Pacf

Domain frequency v v v v v

Diversity features v

Optimal Box—Cox

transf. par.

Mean of five first v

autocorrelations

Test of Turning v
Points

Test of v

autocorrelations

Alpha v’

Beta v

ARCH.LM v

Recurrence
quantification v
analysis (RQA)

Mann-Kendall

Spearman’s Rho

Cox- Stuart

Chi-square test

Kruskal-Wallis test

Train Error

Validation error

AU N AR NN N N N B N RN

Train error ranking

Validation error

<

ranking

By analysing the features presented in Table 2-2, we can find that still there
is a lack of research in using the data driven features extracted from more
advanced methods like unsupervised deep networks. We consider these group

of features in the next chapters.

2.4 Experimental Design

2.4.1 Methodology

Our aim is to assess the empirical accuracy of the meta-learning approach in

forecasting model selection, in comparison to established benchmark
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approaches. We train multiple classification algorithms to predict the most
probable class membership of time series based only on the input features of
statistical trend and seasonality tests, in an attempt to select the right base

learner to predict future realisations of time series.

In order to limit complexity, we constrain our classification to the four
univariate classes of constant, trend, seasonal, and trend-seasonal time series
of the Pegels-Gardner classification (Pegels, 1969, Gardner Jr, 1985). These
four archetypical patterns represent the biggest theoretical differences in data
generating processes of observed time series, each requiring a specific model
form to be adequately captured and extrapolated. Should a meta-learner, or
indeed any other benchmarking approach of model selection, fails to make
these fundamental distinctions, it should result in increased forecast errors.
Moreover, specific type of patterns like damp seasonal or damp trend are not

considered here.

To match the classes of the data generating process with base learners, both
for meta-learning and alternative model selection benchmarks, we consider
four Exponential Smoothing (ETS) methods, which are well-established in
commercial forecasting software and research packages, and thus enhance the
relevance of our experimental findings for researchers and practitioners
(Gardner Jr, 2006). A survey of forecasting practices identified exponential
smoothing families as the most frequently used methods (Weller and Crone,
2012), with a proven track record in practice (Gardner Jr, 2006) and a proven
relative performance compared to more complex methods (Makridakis and
Hibon, 2000, Armstrong, 2006, Crone et al., 2011).

The task of the meta learner is thus to select the Exponential Smoothing
algorithm from the set of four archetypical algorithms of a constant model
ETS(ANN), a seasonal model ETS(ANA), a trend model ETS(AAN), and a
trend seasonal ETS(AAA). Each chosen algorithm is parameterised using
maximum likelihood on the training data using the Smooth package in R
(Svetunkov 2017).

Predictive classification accuracy for a given multi-class classification

problem depend on the type of classification algorithm used, the input
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features utilised, and the data conditions. Consequently, our experimental

design seeks to assess the sensitivity of the results across:

o different classification algorithms in multi-class classification,
including Decision Trees (DT), Neural Networks (NN), Support
Vector Machines (SVM) and popular ensemble extensions such as
Random Forests, Bagging, and Stochastic Gradient Boosting,

o different sets of input features, limited to statistical tests of trend and
seasonality and extended to include features used in previous meta
learning studies,

o different splits of the given dataset in training, validation and test data
of 60:40, 70:30, and 80:20 to influence the ability for the classifier to
learn the classification task on training data, and to generalise it to
unseen test data. It should be noted that the results may alter with the
change in the size of the training/test dataset because of shifting in

data distribution.

Therefore, in the first experiment, we would like to explicitly investigate
whether the statistical tests are capable of detecting the level, trend,
seasonality, and trend-seasonality in different time series.

Secondly, to evaluate the potential of statistical tests as meta-features, we
compare their forecast performance versus the statistical, information-
theoretic, and model-based features implemented in Hyndman, Wang, and
Laptev (2015a). Their features later presented as TsFeature and including
mean, variance, the first order of autocorrelation, trend, linearity, curvature,
seasonality, peak, trough, spectral entropy, lumpiness (changing variance in
the remainder), spikiness, level shift (using rolling window), variance change,
flat spots (using discretization), number of crossing points, Kullback-Leibler
(k) score, and an index of the maximum KL score.

Finally, in the third experiment, we seek to assess the robustness of our
approach by considering different training and test ratios consisting of 80%-
20%, 70%-30%, and 60%-40% to enhance the reliability of the experiment.
Different sample size of training data may result in different features selected,

different parameters estimated and thus different relative ranking of model
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selection approaches, assessing the robustness of our proposed approach on
different model forms and parameters. We select a specific random number

to avoid different permutations in the cross-validation.

The suggested approach has minimum assumptions or requirements and is
easy to apply as a model selection approach. However, in this chapter, we
investigate the ability of meta-learning to capture the trend and seasonality of
time series and therefore consider four exponential smoothing variants that
have clear patterns of trend and seasonality. Here, our main aim is pattern
detection with meta-learning and not solely increasing the forecasting
performance. However, for the forecasting performance, you would need

more base forecasters.

The practical importance of the chapter is that it enhances the accuracy of
model selection further, while decreasing the selection time of commonly
used wrapper model selection. In the big data era, which we are encompassed
with lots of time series, the proposed model can get a reasonable accuracy
within dramatically lower time. It is worth mentioning that because of the
pattern detection spirit of this chapter, we solely focus on selection not
combination of base forecasters.

It may happen that different selection criteria lead to different forecasts which
makes uncertainty in identifying the best model; however, this problem can
be alleviated using meta learning. Meta learning uses the character of time
series to select the relevant forecast which result in the best accuracy in the
similar data driven time series. This does not necessarily need to determine

one best forecast for all-time series.

2.4.2 Meta-learners for classification

At the core of meta-learning, the choice of meta-learners may impact the
classification performance and thus its forecasting performance. In our
experiments the meta-learner is tasked with learning a relationship between
input features of statistical tests computed on time series, and the final
performance of four archetypical base learners of ETS each representing a

class of constant, trended, seasonal or trend-seasonal time series. As different
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classification algorithms partition feature space differently, we seek to
evaluate a selection of different meta-learners in order assess similarities or
differences in their performance on the same input features, most notably
Decision Trees, Neural Networks and Support Vector machines, as well as
ensembles of Decision Trees in the form of Bagged Trees, Random Forrest
and XGBoost.

e Artificial Neural Networks:

Artificial neural networks are well-established algorithms, which are inspired
by the functioning of biological nervous systems, and capable of multiclass-
classification (Priddy and Keller, 2005). In our application as meta-learners,
the inputs of a neural network are vectors of features corresponding to the
statistical tests, which are weighted and combined by linear filters to become
inputs of hidden layers using non-linear combinations. In this study,
feedforward neural network architecture of a multilayer perception (MLP) is
used, with sigmoid activation function. For the number of hidden layer nodes,
we use a convenient rule which suggests the mean value of input variables
and output variables. So, we use two hidden layers that first one has 17 nodes
and the second one has 7 nodes. The number of epochs is set to 200. We also
train the network with different hyper parameters and find the mentioned
parameters as the most optimised specification in the training set. Since these
hyper parameters are determined in the training set, we control our results

from overfitting.
e Decision Tree:

The Decision Tree (DT) algorithm is a non-parametric and non-linear
machine learning technique. This technique takes advantage of a hierarchical
structure for recursively segmenting training data and therefore it has a great
flexibility and interpretability in data analysis. In this chapter, we are using
CART (classification and regression tree) and the evaluation function used
for splitting in classification trees is the Gini index. The Gini index can be
stated as: Gini(t) = 1 — Y[P(K|t)]> where P(K]|t) is the proportion of
finding the data class K in node t (node purity). The aim is to minimize the
Gini index. From the formula it can be inferred that if the classification is
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done in a perfect way, the Gini index would be zero (Friedman et al., 2001).
For implementing this method, we use ‘rpart’ package in R (Therneau et al.,

2018) with 10-fold cross-validation and a maximum depth of 10 for the tree.
e Support Vector Machine:

Support Vector Machine (SVM) are an algorithm, where for a set of data
(x1,v1), (%2, V2) ..., (xn, y,) Where (x;,y;) € R? are the respective input and
output with the help of kernel functions the input data is converted to a new
higher dimensional space which is called the feature space. In the feature
space an estimated function such as: g(x) = ax + B will be considered,
which is in fact the equation for a hyper plane in the feature space. Finally,
with the help of Lagrange multipliers the equation for the hyper plane can be
rewritten as: g(x, B, B) = Xi=1(Bi — Bi)K(x,x;) + ¢ where K(x,x;) is
the kernel function. More details can be found in Vapnik (2013). In this
chapter, we use ‘SVM’ function from ‘1071’ package in R (Dimitriadou et

al., 2006) with radial kernel function.
e Random Forest:

Random Forest (RF) is an ensemble classifier, made by a combination of
decision trees which are created by recursive partitioning. In order to
construct the RF model, with the help of bootstrapping, new sets of training
data are created and then RF randomly chooses the variable for each set for
better diversity in results. Then RF starts creating decision trees for each
group with respective variables. Finally the outcome forest of trees will be
combined and the average of the predictions will be considered as the result
(Friedman et al., 2001). For testing the accuracy of the RF, Out-of-Bag (OOB)
data which are the samples that were not selected in bootstrapping in the RF
procedure, can be used. Choosing randomly a subset of predicting variables
help the model to have less computation and to avoid the over-fitting problem.
For implementing this method, we use Caret package in R with “ntree=500",
which indicates the number of trees that should be grown with 10-fold cross-

validation.
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Bagging, which is an abbreviation for Bootstrap aggregation, is an ensemble
technique that uses a bootstrap to generate samples of the original data. In
prediction problems this algorithm averages the prediction over a collection
of bootstrap samples and the class of a new observation is the most selected
class among the number of trees constructed on the bootstrap samples
(Breiman, 1996). In RF, trees are grown deep without pruning. But by
building sufficient trees, the over-fitting is less probable to happen. The
algorithm can be described by a loop where for | = 1: B we generate a
bootstrapped sample of the data, then create unpruned decision trees on the
samples, and then average over all the outcomes, and end. In this method, like
the case of random forests before, OOB data can be used to evaluate the
performance of the model (Kuhn and Johnson). In this chapter, we use the
bagging function from ‘ipred’ library (Peters et al., 2009), with ‘nbag=25" as
the tuning parameter which indicates the number of bootstrap replications.

Also, we use 10-fold cross validation as training control.
e Extreme Gradient Boosting:

The Extreme Gradient Boosting (XG-boost) is an optimized implementation
of boosting method (Chen and Guestrin, 2016). In Additive learning of
XGBoost, the first learner is fitted on the whole data, and the next learners
are fitted to the residuals of the former learners. In fact, each learner is fitted
using information from previously fitted learners. The general function for

the prediction at each step is presented as follows:

O __ (2-8)
FF=D Fiey) =771+ £ o)

where f(x;) is the learner at step i, fAjt is prediction at step t, and x, is the

input variable. Unlike the random forest and bagging, gradient boosting
methods are prone to over-fitting if the number of trees is too large. A
computation procedure for preventing over-fitting can be found in Fan et al.
(2018). We implement this model using the ‘xgboost’ package in R (Chen et
al., 2015) with ‘nround=100’ that indicates the maximum number of iterations

and for this number we set the learning rate to 0.2 (eta=0.2). It is worth noting
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that all the hyper parameters tuning are implemented in the training set for all

the classifiers and therefore we avoid trapping in the overfitting.

2.4.3 Feature encoding

All classifiers have in common that their output corresponds to a multi-class
classification problem of four classes, providing either the true class
membership or the probability of belonging to one class of single ETS(ANN),
Trend ETS(AAN), Seasonal ETS(ANA), or Trend-Seasonal ETS(AAA). The

true class here means the algorithm that has the lowest error.

All meta-learners receive the same meta-features to learn the mapping of
input features to true class membership. These features include statistical tests
of Mann-Kendall trend test, ADF test with alternative hypothesis no Constant
- no Trend, Constant- no Trend, and Constant — Trend, Spearman's rho (SR)
trend test, Chi square seasonality test, Cox-Stuart trend test, Cox-Stuart
dispersion test, Friedman seasonality test, Pearson correlation multiplicative
seasonality test, ACF for detecting seasonality, trend, and level,
Kwiatkowski—Phillips—Schmidt-Shin (KPSS) tests, Kruskal-Wallis test of
seasonality, and linear coefficient trend test. All tests are provided as a
metrically scaled variable of the corresponding p-value of the statistical tests
[0.00, ..., 1.00], in addition to the ACF and ADF tests which are presented in
four states with critical values of p<0.01 corresponding to strong significance
of the test, 0.01<p<0.05 as moderate significance, 0.05< p<0.10 as weak and
p>0.1 as not significant. Note however that the critical level of significance
is not information provided, so must be learned by the meta-learner. The list

of meta-features is presented in Table 2-3.

It should be noted that the list of features presented in Table 2-3 is not a subset
of Table 2-2. Rather, here we focus only on statistical tests, and we want to
measure the performance of meta-learner by using these features. Table 2-2
includes the predefined features that have been used in recent studies, but it
does not include all the statistical tests that are in Table 2-3. Also, Table 2-3
can be extended, and more statistical tests can be added to it, but we

considered those statistical tests that have been used more in recent studies.
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Table 2.4-1. List of meta-features

Number

© 00 N oo O b~ W DN B

=
o

11
12

13

14

15

16
17

Features name
Mann-Kendall
SpearmanRho
Cox-StuartTrend
Cox Stuart dispersion
LinearCoefficient
ChiSgMod
Kruskal-Wallis
F-test

Friedman test
Kpss
Multiplicpval

adf-R

ADF (no constant-no
trend)

ADF (constant-no
trend)

ADF (constant-
trend)
ACF-Stationary
ACF-Trend
ACF-Seasonality

Description

P-value for the Mann-Kendall test

P-value for the SpearmanRho test

P-value for testing trend

P-value for testing dispersion trend
P-value for the coefficient test of linearity
P-value for the Chi Square seasonality test
P-value for the Kruskal-Wallis test
P-value for the Friedman test 2

P-value for the Friedman test

P-value for the KPSS test

P-value for the Pearson test of multiplicative
seasonality

P-value for the ADF test

In four states including No, Weak, Moderate,

In four states including No, Weak, Moderate,

Strong

Strong

In four state including No, Weak, Moderate, Strong

In four states including No, Weak, Moderate,
In four states including No, Weak, Moderate,
In four states including No, Weak, Moderate,

Strong
Strong
Strong

2.4.4 Forecasting models as base learners

One of the core components of meta-learning is the base learner, the

forecasting algorithms to be selected by the classification algorithm. In this

research, exponential smoothing (ETS) forecasting methods based on

Gardner’s classification (Gardner Jr,

1985) with a fully automatic

methodology using state space models developed by Hyndman et al. (2002)

is used. All Gardner’s methods can be summarized by the following

equations:

Ye = h(xe-1) + k(xe-1)&;

Xe = f(xp-1) + g(Xe-1)&;
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where X = (I, B, S84+ S_np)) i a state vector, and {¢, }is a Gaussian

white noise process with mean zero, variance o? and Y, = h (X,_,) is the one-

step-ahead forecast. In this chapter, we only applied four ETS models which
are: single exponential smoothing (SES), trend ETS (Holt model), seasonal
ETS (Winter model), and trend-seasonal ETS (Holt-Winter model). Since we
are using the Forecast package in R (Hyndman and Khandakar, 2007), these
models are denoted as ANN, AAN, ANA, and AAA respectively.

Other alternatives exist instead of ETS as base learner, such as artificial neural
networks or other machine learning methods; however, they provide limited
or no insights into how the forecasts are produced and which data properties
are considered in the forecast (Sagaert et al., 2018), whilst with ETS the
explicit model form determines their suitability to a data generating process,
e.g. selecting a seasonal ETS(ANA) model for a seasonal time series without

trend.

2.4.5 Benchmark dataset

As a dataset, we employ the reference benchmark dataset of the NN3
competition. Note that the four classes of time series patterns capture all
differences of the data generating processes in the benchmark dataset from
the NN3 competition (Crone et al., 2011). The empirical benchmark dataset
of the NN3 competition contains 111 monthly time series of industry sales,
originally derived from the popular M3 competition of which most are from
the economics and business sectors (Crone et al., 2011). Of the 111-time
series, 46 are short (<60 data points), while the rest are considered long (80
to 126 data points), which allows an assessment of the accuracy across
different data conditions of time series length, a characteristic which may
influence the precision of the statistical tests as well as the representativeness

of empirical forecast errors and information theoretic metrics to be estimated.

It should be noted that the length of time series may affect the quality of
extracted meta-features. Therefore, in chapter 4 we analysed the performance
of meta-learning on different length of the series. By the way, in this study,

we did not split the time series into different fragments.
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2.4.6 Forecasting model selection benchmarks

We seek to assess the efficacy of meta-learning for model selection against
established model selection benchmarks, which include different wrapper and

filter approaches identified in our literature review.

To begin, we consider the traditional form of aggregate model selection of
applying each base learner ETS(ANN), ETS(ANA), ETS(AAN) and
ETS(AAA) to all time series within the dataset, following the traditional
suggestions by Fildes (1989). Aggregate model selection by terminology
presumes that no (individual) model selection per times series implicitly
equals a model selection for the dataset, so qualifies as a filter approach,
normally decided by a human expert for reasons of convenience or limited
computational powers. It still serves as a valid benchmark, most notably in
the form of aggregate model selection of the Naive and the Seasonal Naive
benchmark methods.

With the growing compute power, both forecasting research and practice
turned to employ model selection based on wrapper-based approaches,
utilising either empirical performance measures of forecast accuracy such as
SMAPE or MASE, estimated in-sample or out-of-sample with fixed or rolling
origins, or alternatively on information criteria such as AIC, AlCc or BIC.
Considering the properties of the NN3 dataset, including short time series, we
employ the AICc with correction for small sample sizes with the benchmark
results denotes selAIC (Burnham and Anderson, 2003). Since all our base
learners are exclusively from the same model family of ETS, a use of IC

seems permissible.

As a further benchmark we compare accuracy against individual model
selection of ETS(ZZZ) automation developed to detect the appropriate
exponential smoothing models by Hyndman and Khandakar (2007). This
procedure selects the best fitting ETS candidate from different exponential
smoothing models using the AIC criterion. Minimizing the AIC is
asymptotically equivalent to minimizing the one-step-ahead out-of-sample
MSE; a smaller AIC means better forecasts, and ZZZ can determine the

optimized model of time-series based on minimizing the AIC. Therefore, as
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a further benchmark we add selETS(ZZZ) utilising a wrapper with AIC

selection.

Although filter approaches using statistical tests are rarely used in practice,
we consider the evaluation of their accuracy as an important intermediate step
to meta-learning using the said tests. Consequently, we include statistical tests
for seasonality and trend as benchmark. We run each statistical test
independently, e.g., Cox-Stuart for detecting trend and the Friedman-test for
detecting seasonality and combine both for a one-in-four class membership.
As multiple test combinations are feasible, we constrain our analysis to four

popular combinations of two tests.

Finally, to determine a lower bound of forecast accuracy, we identify the
lowest achievable error by selecting for each series that base learner with the
lowest test error ex post, i.e., the error resulting from a perfect selection,

denoted as selMinError.

To summarise, we compare meta-learning model selection with
representatives of all other approaches to forecast model selection, in order to
assess the relative capability of the meta-modelling approach in a
comprehensive design of multiple benchmark approaches.

2.4.7 Assessing predictive accuracy

Predictive accuracy may be assessed in two ways: first, as meta-learning is
foremost a multiclass classification problem, through the classification
accuracy of the meta-learner; second, we may assess the accuracy of meta-
learning through the final forecasting accuracy estimated from the base-

learner selected by meta-learning for each of the time series.

First, we consider the simple average classification accuracy of each
algorithm’s multiclass prediction in learning and generalising the meta-

learning task, i.e.

TP+TN 2-11
Accuracy = ( )
TP+TN+ FP +FN
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as the percentage of predicted true positives (TP) and true negatives (TN) over
all predicted instances of TP, TN, false positives (FP), and false negatives
(FN). This simple metric seems permissible as the NN3 dataset is balanced
with regard to seasonality and short vs long series (so no severe or class
imbalances need to be considered which would warrant more complex
metrics such as multiclass ROC-curves and AUC, see, e.g. Fawcett (2006).
The true class membership of each time series is determined ex-ante
according to its identified time series pattern cp= [constant; trend; seasonal;
trend-season] from the ETS forecasting algorithm with the lowest SMAPE
test error. Note that this may induce potential misclassification in a few cases,
e.g., by selecting a seasonal pattern as the true class for a time series due to
the lower ETS(ANA) test-error on the last 12 months of test error, which has
been caused by a diminished local time trend despite the global time series

pattern resembling a trend-seasonal pattern.

In addition to accuracy in predicting class membership of the meta-learner,
we assess the forecasting accuracy of the chosen base-learner applied to the
forecasting task. Once an ETS algorithm is chosen, we assess a rolling origin

symmetric mean absolute percentage error (SMAPE) from the actuals y, and

corresponding forecast y, for each forecasting horizon h=1,...,H and

across multiple forecasting origins i=1, ..., i+I-1 for each time series:
Rolling Origion SMAPE/.., (Y, ¥ —% +Z SMAPE"(y, ) (2-12)
ko
with
smapg" - 220 Zh: %=, (2-13)

t=i+l |yt|+|9t|

In order to make a better comparison, we define a metric called Relative
SMAPE (RelsMAPE) for measuring forecasting accuracy. It is the ratio of
the SMAPE between the candidate model and the benchmark model
(aggETS(AAA)).
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SMAPE} (2-14)

RelsMAPE = 7
SMAPE oor15(aan)

Thus, the empirical evaluation employs a fixed horizon time window H=12,
multi-origin 1=6, out-of-sample evaluation on each time series, withholding
18 observations for testing in order to ensure more valid and reliable estimates
of forecast accuracy than feasible form a single holdout-validation window
(Tashman, 2000). These errors are then averaged across all time series in the
dataset. Given the test set of size m and horizon h, for each data set ¢ = m-h+1

the ETS parameters are reoptimized.

2.5 Experimental results

2.5.1 Meta-learning versus alternative model selection

approaches
First, we seek to assess the overall accuracy of meta-learning using statistical
tests for time series patterns. Table 2-4 presents for each algorithm the
forecast accuracy measured in RelSMAPE, and the classification accuracy on
training and test data (80-20% for train-test percentage), including the
respective ranks of algorithms. Table 2.5-1 also reports the RelSMAPE of
aggregate and individual selection benchmarks, in addition to the naive and

seasonal naive for the train and test, corresponding with ranks of them.

Table 2.5-1. Classification and Forecasting Results of Model Selection
Approaches (80%-20% holdout)

RelsMAPE Accuracy Rank RelsMAPE Rank Accuracy

Train Test Train Test Train Test Train Test
selMinError 0.843 0.903 100.000 100.000 - - - -
metaDecisionTree 0.898 0.959 56.000 36.600 5 4 7 12
metaNN 0.880 0.959 100.000 46.670 4 4 1 6
metaSVM 0.916 0.979 76.000 53.330 6 7 5 4
metaRandomForrest 0.843 0.952 100.000 60.000 1 3 1 2
metaBagTree 0.843 0.945 100.000 63.330 1 1 1 1
metaXGBoost 0.843 0.945 100.000 56.660 1 1 1 3
selAIC 0.976 0.979 54.000 53.330 10 7 8 4
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RelsMAPE Accuracy Rank RelsMAPE Rank Accuracy
Train Test Train Test Train Test Train Test
selETS(ZZZ2) 0.946 1.028 57.000 44.000 7 12 6 8
aggETS(ANN) 1.108 1.234 10.000 14.000 16 15 18 17
aggETS(AAN) 1.187 1.241 14.000 12.000 17 16 17 18
aggETS(ANA) 0.946 1.034 40.000 38.000 7 13 11 11
aggETS(AAA) 1.000 1.000 35.000 36.000 13 10 13 13
Naive 1.373 1.497 24.000 35.000 18 18 16 14
Seasonal Naive 1.012 1.386 31.000 22.000 14 17 15 16
test CS & Fr 0.988 0.986 51.000 40.000 12 9 9 9
test MK & Fr 0.976 1.007 45.000 30.000 10 11 10 15
test CS& Sp 1.030 1.103 40.000 40.000 15 14 11 9
testCS & KW 0.964 0.966 34.000 46.670 9 6 14 6
mean of meta 0.873 0.959 88.667 52.765 3.00 3.33 2.67 4.67
mean of sel 0.964 1.007 55.500 48.665 8.50 9.50 7.00 6.00
mean of agg 1.060 1.131 24.750 25.000 13.25 13.50 14.75 14.75
mean of test 0.988 1.014 42.500 39.168 11.50 10.00 11.00 9.75

Overall, meta learning classifiers with statistical tests of time series patterns
as input features outperforms all other approaches of forecasting models
selection, including aggregate model selection, individual model selection
using AIC (selAIC and selETS), and simple combinations of statistical tests
on both classification accuracy and forecast errors. To generalise the
indication of individual errors for groups of algorithms, we compare average
ranks across groups of algorithms at the bottom of the Table 2-4: the group
of metaTest shows an average rank of 3.33 with an average RelsMAPE of
0.959 while individual selection ranks 9.50 on average with RelsMAPE of
1.007, and tailed by aggregate selection with 13.50 average rank and
RelsMAPE 1.131.

With regard to individual algorithms, the ensemble meta learners
metaBagTree achieve the lowest forecast error of 0.945 RelsMAPE and the
highest classification accuracy of 63.33%, followed by the ensemble of
metaXGBoost and metaRandomForrest with 0.945 and 0.952 RelsMAPE and
56.66% and 60.00% classification accuracy respectively. The three
ensembles of meta-learners are followed by individual meta-learners of
metaNN, metaDecisionTree, and metaSVM in error and accuracy, with only

metaSVM showing inferior performance to alternative model selection
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approaches on the test data. It is noteworthy, that all three ensembles of meta-
learners lead the underlying single decision tree algorithm on both metrics,
confirming findings from the literature that combinations of classifiers
outperform individual ones. Extended experiments could consider ensembles
of NNs and SVMS, although no direct equivalents of Random Forests or
XGBoosting algorithms exist for other base learners. Overall, we conclude
that all meta ensembles using statistical tests outperform individual meta

learners of the same feature set, followed by all other approaches.

To aid interpretation of the algorithms’ performance we determine a lower
bound of forecast accuracy selMinError as the lowest achievable error given
all base learners selected for each series, i.e., the error resulting from a perfect
selection, resulting in a bound of 0.903 test RelSMAPE. Meta-learners using
statistical tests for times series patterns get closest to this bound, with errors
of 0.945, 0.952 and 0.959 RelsMAPE being the lowest of all algorithms.

Aggregate selection of a single ETS algorithm across all-time series shows
inferior forecast accuracy to model selection, as expected following the recent
research. The least damaging aggregate selection strategy would employ a
trend seasonal ETS(AAA) for all series, followed by a seasonal model
ETS(ANA). This is intuitive given the balanced nature of the NN3 dataset:
the aggregate seasonal algorithms would be capable of correctly capturing the
50% of seasonal time series well but would underperform on the other 50%
of non-seasonal series where the algorithms would still estimate seasonal

coefficients, thus extrapolating noise into the future.

Surprisingly, simple combinations of statistical test for seasonality and trend,
which are rarely used in statistical forecasting perform on a par with
individual model selection using AIC (selAIC) or AIC in ETS selection
selETS(ZZZ), which are considered the current standard in forecasting model
selection, and clearly outperform aggregate model selection. Most notably, in
combining Cox-Stuart with Kruskal-Wallis test achieves a 0.966 RelsMAPE
and 46.67 accuracy; note though that the result may be biased as the selection
of statistical tests listed in Table 2-4 shows only the most promising
combinations of trend and seasonality tests by accuracy: many inferior

combinations are excluded for readability. In comparison to meta-learning
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though, the leading combinations of statistical tests show both an inferior
classification accuracy as well as forecasting accuracy, indicating that a more
complex combination of all tests yields improved accuracy. The reason that
the combination of statistical tests has unfavourable results is that they cannot
detect patterns. Therefore, they do not have acceptable results when they are

used as meta-learners.

Overall, we observe that classification accuracy and forecast accuracy are
correlated, which indicates that an improvement in classification induces an
improvement in forecast error. This is an intuitive yet important finding, as it
provides anecdotal evidence as to the efficacy of using classification for
forecasting model selection, and the underlying narrative that selecting an

adequate model class matching the time series pattern improves accuracy.

Furthermore, it should be noted that the run-time of the competing approaches
varies significantly: while meta-learning runs only a single ETS model
(predicted to be the best given the statistical tests), individual model selection
needs to compute all base learners, assess accuracy, and then select.
Consequently, as long as statistical tests are executed faster than an ETS
model, meta-learning promises increased efficiency on top of increased

accuracy.

To better understand the performance of meta-learners in the data set,
comparing their results with the true class performance is necessary. As
mentioned in the previous sections, true class is the class for a time series with
the least error. We depict the relative error distribution diagram [see Figure
2-2] to better understand the results. Our criterion for identifying the best
model is the AIC measure. To draw the relative error distribution diagram,
we define the relative error as a ratio, the numerator of which is the error
related to the class predicted by the meta-learner, and the denominator is the
error related to the true class. Since the true class always has the least error,
this ratio is always greater than 1 (the more this ratio deviates from 1, the poor
performance of meta-learners for that time series). Figure 2-2 shows two
meta-learners' relative error distribution diagram, RF and Xgboost, for the
training and test data of 80%-20% split.
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Relative Error Distribution For Xgboost Meta-Learner

Relative Error Distribution For RF Meta-Learmer
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Figure 2-2. Relative error distribution for RF and Xgboost

According to Figure 2-2, it is clear that RF has performed better than Xgboost,

which is consistent with the results obtained in Table 2-4.

2.5.2 Meta-learning using “time series tests” versus

a

Iternative features

We seek to assess the accuracy of meta-learning using statistical tests for time

series patterns in comparison to alternative meta-features used successfully in

other prominent stories. Table 2.5-2 presents for each algorithm the forecast

accuracy measured in SMAPE, and the classification accuracy on training and

test data, including the respective ranks of algorithms, for the new meta-

features based on statistical tests versus those in Hyndman et al. (2015b) as a

baseline features.

Table 2.5-2. Classification and Forecasting Results of Different Meta
Features (80%-20% train test holdout)

Statistical Test Meta-Features

Hyndman, et al. (2015) Meta-

Features
SMAPE % Accuracy % SMAPE % Accuracy %
Train Test  Train Test  Train Test  Train Test
metaDecsionTree 14.9 13.9 56.00 36.60 15 1375 5550 4333
meta NN 14.6 13.9 100.00 46.67 151 1452 98.00 37.00
metaSVM 15.2 142 76.00 53.33 145 1435 70.37 40.00
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metaRandomForre 14 13.8 13.97 14.06

60.00 100.00 46.67
st 100.00

metaBagTree 14 13.7 100.00 63.33 13.97 14.35 100.00 40.00
metaXGBoost 14 13.7 100.00 56.66 13.97 14.09 100.00 43.30
Mean Values 1445 1387 88.66 52.77 14.28 1412 85.17 42.66
Rank Accuracy Rank Accuracy
Rank sMAPE % o Rank sSMAPE % o
0 0

Train Test  Train Test  Train Test  Train Test

metaDecsionTree 5 4 7 12 5 1 7 5
meta NN 4 4 1 6 6 10 4 12
metaSVM 6 7 5 4 4 7 5 7
metaRandomForre 1 3 1 2
1 3 1 2

st

metaBagTree 1 1 1 1 1 7 1 7
metaXGBoost 1 1 1 3 1 4 1 6
Mean Ranks 3 3.33 2.67 4.67 3.00 5.33 3.17 6.50

We compare the performance of all meta learners, single and ensembles,
using otherwise identical settings on two different meta-features: 17 statistical
tests of time series patterns, and 21 meta-features used in Hyndman et al.
(2015b).

Both meta-learners are built using different meta-features of statistical tests
versus those of Hyndman, et al. perform well, showing comparatively low
average forecast errors on test data of 13.87% and 14.12% and classification
accuracies of 52.77 and 42.66 respectively, indicating their capability of
separating classes and predicting suitable base learners. Overall, meta-
learners using statistical tests outperform those of Hyndman, et al. showing
both lower average errors and higher average classification accuracies, and
also each meta-learner outperformed its counterpart using the Hyndman, et
al. features with the exception of MetaDecisionTree with a higher 13.90%
versus 13.75% sMAPE and a lower classification accuracy of 36.60 versus
43.33. However, all other meta-learners and meta-ensembles improve

accuracy and corresponding ranks noticeably.

The decision tree algorithm plot allows an intuitive interpretation of both the
splitting criteria used and the resulting node purity for the four classes of ETS

base learners, as shown in Figure 2-3.
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Figure 2-3. Plot of decision tree splitting criteria for Statistical Test and

Hyndman, et al. meta-features (80-20%o test)

The plot of the decision tree shows the first split is conducted on the ACF
seasonality test, followed by p-value of Friedman test and p-value of Cox
Stuart trend test. If the ACF Seasonality test says moderate or no seasonality
(i.e. p>0.01), then Cox Stuart further splits with p-value >0.48 which rejects
the trendy time series and label the time series as level, while p-value<0.48
has ended to trend. Alternatively, Friedman indicates no seasonality (with p
>0.014) and the Friedman test further splits into strong (i.e. p<0.01) or not
strong. Apparently, most splitting criteria focus on differentiating seasonality
with multiple test which helps to explain why meta-learning outperforms
simple statistical seasonality tests. Note that the tree-structures show only the
top features used after the algorithm automatically prunes the tree to a
moderate size and level of generalisation, in essence performing feature
selection on the feature sets as part of the parameterisation. The
metaDecisionTree built on the Hyndman-features on the right naturally
utilises different features to split, most prominently lumpiness, followed by
linearity, spikiness, and entropy, not including any features suitable to

indicate seasonality, trend or constant patterns.
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To derive additional insights, an export of the relative importance of the input
features, measured by the mean decrease in Gini for the metaRandomForrest,

provides the order of the most to least discriminant features.

For time series tests, the seasonal tests of Friedman (6.8916) is most
important, followed by ChiSq seasonal test (5.0259), Kruskal Wallis (4.7067)
and Friedman test 2 (4.5204), Cox Stuart dispersion test (3.9875), Pearson
multiplicative pval (3.3965) and Spearmans Rho (3.1352), moderate
importance of otherwise important test Cox-Stuart Trend (2,8755), Mann
Kendall (2.6623), Linear Coefficient (2.5234) and p-value of ADF (2.5122),
ACF Seasonality (1.8424), with most stationarity tests trailing the others, with
KPSS (1.6176), ADF Constant-Trend (1.469), ACF Stationarity (1,3005065),
ADF Constant-No Trend (1.2959) and ACF Trend (1.2785) as expected. For
the metaRandomForrest split on meta-features from Hyndman et al., the
analysis of the mean decrease in Gini indicates the different features used, but
notably also starting with the feature of season (5,971061), but then followed
by seemingly less relevant attributes such as lumpiness (5,674215), linearity
(4,982886), curvature (4,344528), trough (4,226755), variance change
(4,000030), KLscore (3,715280), change.idx (3,401562), Cpoints (3,380744),
spikiness (3,345100), peak (3,286640), level shift (2,985979), entropy
(2,967787), and the presumably relevant indicators of trend (2,646244),
ACF1 (2,329272) and flat.spots (1,812584) trailing other features less
intuitively related to the correct selection of a base learner.

Overall, in comparison to individual or aggregate model selection
approaches, both sets of meta-features outperform all alternative approaches
(see errors and accuracy in Table 2-4 of the previous section) indicating the
suitability of meta-learning irrespective of the meta-feature set to differentiate
patterns for the selection of base learners. With meta-features of statistical
tests outperforming the Hyndman-features these should be considered for
future use, or potentially combined with additional features for an even

stronger feature set.
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2.5.3 Meta-learning robustness by data conditions

Next, we seek to assess the robustness of the meta-learning approach
conditional on the data conditions, in particular the split between training data
provided to the meta-learner for parameterisation and the test data for out-of-
sample evaluation of its accuracy. Given the limited number of 111 time
series in the dataset, any allocation of more data to training may void the
ability to generalise on fewer time series of the test data. We rerun all
experiments on different splits of the hold-out data, gradually altering the
distribution from 80% training and 20% test data split to 70%-30% and 60%-
40% split. As this changes the ground-truth of the datasets, we also provide
RelsMAPE errors and classification accuracy for all benchmark algorithms
of individual selection, aggregate selection and statistical tests in Table 2.5-3.
Classification and Forecasting Results of Different Meta-Learning Dataset
split.

Table 2.5-3. Classification and Forecasting Results of Different Meta-

Learning Dataset split

40%-60% (test— | 30%-70% (test— | 20%-80% (test —
train) train) train)
RelsMAP RelsMAP RelsMAP
Accuracy Accuracy Accuracy
Train Test Test | Train Test Test | Train Test Test
selMinError 0.865 0.841 - |0.853 0.850 - 0.824 0.873 -
metaDecsionTree 0.919 0.890 47.62|0.882 0.929 43.75|0.882 0.933 36.60
meta NN 0.919 0.907 42.86|0.882 0.929 53.12|0.882 0.933 46.67
metaSVM 0.939 0.901 45.24|0.882 0.929 43.75]0.882 0.933 53.33
metaRandomForrest 0.865 0.907 47.62/0.882 0.929 40.62|0.824 0.933 60.00
metaBagTree 0.865 0.951 47.62|0.882 0.929 46.88|0.824 0.933 63.33
metaXGBoost 0.865 0.907 35.50|0.882 0.929 47.22|0.824 0.933 56.66
selAIC 0.980 0.967 45.00|1.000 0.929 48.10|0.941 0.933 53.33
selETS(ZZ2) 0.973 0.940 47.62|1.000 0.929 44.12{0.941 1.000 44.00
aggETS(ANN) 1.162 1.099 19.00[1.118 1.286 14.00[1.059 1.200 14.00
aggETS(AAN) 1.270 1.099 12.00(1.118 1.429 10.00|1.176 1.200 12.00
aggETS(ANA) 0.973 0.951 34.00|0.941 1.000 38.00|0.941 1.000 38.00
aggETS(AAA) 1.000 1.000 35.00|1.000 1.000 40.00|1.000 1.000 36.00
Naive 1.257 1.110 35.00(1.176 1.429 37.00|1.353 1.467 35.00
Seasonal Naive 1.128 1.069 20.00|1.059 1.214 25.00|1.000 1.333 22.00
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testCox-Stuart &
) 1.007 0.934 20.00(0.941 1.143 0.17 |0.941 0.933 40.00
Friedman
test Mann-Kendall &
) 1.007 0.934 15.55[0.941 1.143 25.00|0.941 1.000 30.00
Friedman
testCox-Stuart &
1.101 0.956 28.89(1.000 1.214 25.00|1.000 1.067 40.00
Spearman
testCo