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Abstract

Forecasting is a critical task for the integration of wind-generated energy into electricity
grids. Numerical weather models applied to wind prediction, work with grid sizes too large
to reproduce all the local features that influence wind, thus making the use of time series
with past observations a necessary tool for wind forecasting. This research work is about the
application of deep neural networks to multi-step forecasting using multivariate time series
as an input, to forecast wind speed at 12 hours ahead.

Wind time series are sequences of meteorological observations like wind speed, tempera-
ture, pressure, humidity, and direction. Wind series have two statistically relevant properties;
non-linearity and non-stationarity, which makes the modelling with traditional statistical
tools very inaccurate.

In this thesis we design, test and validate novel deep learning models for the wind energy
prediction task, applying new deep architectures to the largest open wind data repository
available from the National Renewable Laboratory of the US (NREL) with 126,692 wind
sites evenly distributed on the US geography. The heterogeneity of the series, obtained from
several data origins, allows us to obtain conclusions about the level of fitness of each model
to time series that range from highly stationary locations to variable sites from complex
areas.

We propose Multi-Layer, Convolutional and Recurrent Networks as basic building blocks,
and then combined into heterogeneous architectures with different variants, trained with
optimisation strategies like drop and skip connections, early stopping, adaptive learning
rates, filters and kernels of different sizes, between others. The architectures are optimised
by the use of structured hyper-parameter setting strategies to obtain the best performing
model across the whole dataset.

The learning capabilities of the architectures applied to the various sites find relationships
between the site characteristics (terrain complexity, wind variability, geographical location)
and the model accuracy, establishing novel measures of site predictability relating the fit
of the models with indexes from time series spectral or stationary analysis. The designed
methods offer new, and superior, alternatives to traditional methods.

Keywords: Deep Learning, Wind Prediction, Time Series Forecasting, Multi-step prediction,
RNN, CNN, Spectral analysis, Forecastability.





Resum
Arquitectures d’aprenentatge profund applicades a predicció de

múltiple esglaó de series temporals de vent

La predicció de vent és clau per a la integració de l’energia eòlica en els sistemes elèctrics.
Els models meteorològics es fan servir per predicció, però tenen unes graelles geogràfiques
massa grans per a reproduir totes les característiques locals que influencien la formació de
vent, fent necessària la predicció d’acord amb les sèries temporals de mesures passades
d’una localització concreta. L’objectiu d’aquest treball d’investigació és l’aplicació de xarxes
neuronals profundes a la predicció multi-step utilitzant com a entrada series temporals de
múltiples variables meteorològiques, per a fer prediccions de vent d’ací a 12 hores.

Les sèries temporals de vent són seqüències d’observacions meteorològiques tals com,
velocitat del vent, temperatura, humitat, pressió baromètrica o direcció. Les sèries temporals
de vent tenen dues propietats estadístiques rellevants, que són la no linearitat i la no
estacionalitat, que fan que la modelització amb eines estadístiques sigui poc precisa.

En aquesta tesi es validen i proven models de deep learning per la predicció de vent,
aquests models d’arquitectures d’auto aprenentatge s’apliquen al conjunt de dades de vent
més gran del món, que ha produït el National Renewable Laboratory dels Estats Units
(NREL) i que té 126,692 ubicacions físiques de vent distribuïdes per total la geografia de nord
Amèrica. L’heterogeneïtat d’aquestes sèries de dades permet establir conclusions fermes en
la precisió de cada mètode aplicat a sèries temporals generades en llocs geogràficament molt
diversos.

Proposem xarxes neuronals profundes de tipus multi-capa, convolucionals i recurrents
com a blocs bàsics sobre els quals es fan combinacions en arquitectures heterogènies amb
variants, que s’entrenen amb estratègies d’optimització com drops, connexions skip, estratè-
gies de parada, filtres i kernels de diferents mides entre altres. Les arquitectures s’optimitzen
amb algorismes de selecció de paràmetres que permeten obtenir el model amb el millor
rendiment, en totes les dades.

Les capacitats d’aprenentatge de les arquitectures aplicades a ubicacions heterogènies
permet establir relacions entre les característiques d’un lloc (complexitat del terreny, variabili-
tat del vent, ubicació geogràfica) i la precisió dels models, establint mesures de predictibilitat
que relacionen la capacitat dels models amb les mesures definides a partir d’anàlisi espectral
o d’estacionalitat de les sèries temporals. Els mètodes desenvolupats ofereixen noves i
superiors alternatives als algorismes estadístics i mètodes tradicionals.

Paraules Clau: Aprenentatge Profund, Predicció Vent, Predicció de series temporals, Predic-
ció de múltiple esglaó, MLP, CNN, RNN, Anàlisi espectral, Predictibilitat.
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Resumen
Arquitecturas de aprendizaje profundo aplicadas a la predición en

múltiple escalón de series temporales de viento

La predicción de viento es clave para la integración de esta energía eólica en los sistemas
eléctricos. Los modelos meteorológicos tienen una resolución geográfica demasiado amplia
que no reproduce todas las características locales que influencian en la formación del viento,
haciendo necesaria la predicción en base a series temporales de cada ubicación concreta.
El objetivo de este trabajo de investigación es la aplicación de redes neuronales profundas
a la predicción multi-step usando como entrada series temporales de múltiples variables
meteorológicas, para realizar predicciones de viento a 12 horas.

Las series temporales de viento son secuencias de observaciones meteorológicas tales
como, velocidad de viento, temperatura, humedad, presión barométrica o dirección. Las
series temporales de viento tienen dos propiedades estadísticas relevantes, que son la no
linealidad y la no estacionalidad, lo que implica que su modelización con herramientas
estadísticas sea poco precisa.

En esta tesis se validan y verifican modelos de aprendizaje profundo para la predicción
de viento, estos modelos de arquitecturas de aprendizaje automático se aplican al conjunto
de datos de viento más grande del mundo, que ha sido generado por el National Renewable
Laboratory de los Estados Unidos (NREL) y que tiene 126,682 ubicaciones físicas de viento
distribuidas por toda la geografía de Estados Unidos. La heterogeneidad de estas series
de datos permite establecer conclusiones válidas sobre la validez de cada método al ser
aplicado en series temporales generadas en ubicaciones físicas muy diversas.

Proponemos redes neuronales profundas de tipo multi capa, convolucionales y recur-
rentes como tipos básicos, sobre los que se han construido combinaciones en arquitecturas
heterogéneas con variantes de entrenamiento como drops, conexiones skip, estrategias de
parada, filtros y kernels de distintas medidas, entre otros. Las arquitecturas se optimizan
con algoritmos de selección de parámetros que permiten obtener el mejor modelo buscando
el mejor rendimiento, incluyendo todos los datos.

Las capacidades de aprendizaje de las arquitecturas aplicadas a localizaciones físicas
muy variadas permiten establecer relaciones entre las características de una ubicación
(complejidad del terreno, variabilidad de viento, ubicación geográfica) y la precisión de
los modelos, estableciendo medidas de predictibilidad que relacionan la capacidad de los
algoritmos con índices que se definen a partir del análisis espectral o de estacionalidad de las
series temporales. Los métodos desarrollados ofrecen nuevas alternativas a los algoritmos
estadísticos tradicionales.

Palabras Clave: Aprendizaje profundo, Preidicción viento, Predicción de series temporales,
Predicción de múltiple escalón, MLP, CNN, RNN, Análisis espectral, Predictibilidad.
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"The wind is an untamed and unharnessed force; and quite
possibly one of the greatest discoveries hereafter to be made,

will be the taming and harnessing of it."

(1860) Abraham Lincoln [124]

"Prediction is the essence of intelligence"

(2016) Yann LeCunn [121]

Part I

Introduction
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Chapter 1

Context, motivation, structure, and
contributions

The new renewable energy paradigm requires precise prediction of future energy generation
to maintain stability in the electricity grid. As renewable generation sources increase,
forecasting becomes critical to optimise the electricity systems around the world. Renewable
forecasting has been declared an essential activity by Artificial Intelligence researchers that
have analysed how this discipline can contribute to the worldwide initiative to stop climate
change [181].

This thesis is aligned with this global effort and deals with the application of deep
learning to forecast future wind intensity from past observations, a hard problem due to the
intrinsic physical complexity of wind formation.

Deep learning (DL) has shown outstanding results in many forecasting and classification
tasks, and we believe it can be applied to the wind time series multi-step forecasting produc-
tively and efficiently. This Thesis proposal shows several novel deep learning approaches
applied to wind forecast.

All this research work uses the National Renewable Energy Laboratory (NREL) wind
dataset, which is the largest wind resource dataset available for research in this area. The
availability of computing power has been made possible by the collaboration with the
Barcelona Supercomputing Centre (BSC) [147], which has provided their infrastructure
(Minotauro GPU cluster) to support the experiments.

This chapter is structured as follows: in Section 1.1 we develop the motivation for this
work and its context then, in Section 1.2 we describe the structure of the dissertation and
finally, in Section 1.3 we summarise the main contributions from this research.
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Context, motivation, structure, and contributions

1.1 Context and Motivation

The actual climate emergency is probably the most critical challenge faced by humankind in
its long historical journey, as there will only be future viability of life on earth if this threat is
curved down, and if not, the survival of the human race on earth is compromised. Tackling
climate change is a global and gigantic task that requires global coordination like the global
agreements signed between most nations at the United Nations Climate Change Conferences
(COP) of the last years like the summit COP21 held in Paris, the COP23 in Bonn or the recent
COP25 in Madrid [228, 159, 39].

The main area of concern is the transformation of our actual carbon-based economy into
an emission-free energy generation, by replacing all fossil fuels with renewables, like wind
and solar [236] [100].

Fig. 1.1 Grid Planning time frames 1

Wind, like other renewable sources, is intermittent by nature as its intensity depends on
a combination of natural phenomena that have complex interactions.

This intermittence would generate instability in the electricity system if it were not
continuously orchestrated with advanced forecasting at different time-frames (see Figure
1.1), and for this reason, predicting future renewable energy inputs is critical to assure the
security of the electricity system.

The initial developments in wind power forecasting can be found in the ’80s when some
regression algorithms were applied to the first wind parks installed in California. Since
then, this field has grown accordingly with the increase of penetration and sophistication
of wind turbines, that has become a critical contributor to the electrical supply systems in
many countries around the world. As an example, we can cite some nations with high wind
penetration in their electricity generation mix (as a percentage of total production in 2016)
like Denmark (36,8%), Ireland (27%), Portugal (24,7%), Spain (19%) or Germany (16%).

1Source Scientific American Article by Fares in [50]

4



1.1 Context and Motivation

Wind forecasting (see Figure 1.2) is an activity performed with two major approaches,
depending on the data source, one using time series and the other numerical weather models
as an input.

Time series based forecasting is better suited for short-term prediction while Numerical
Weather Prediction (NWP) models are more precise for mid and long-term wind forecasting.
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Fig. 1.2 Multi-step prediction with horizon 12 steps

Commercial applications use for forecasting a combination of time series and NWP
modelling. Forecasting wind intensity can evolve into several new areas, like adding
probabilities to the prediction or analysing small anomalies like wind ramps or wake effects
[38, 164, 66, 55, 236].

The wind is the product of complex meteorological interactions, and the multivariate
time series obtained from different observations share this complexity, presenting challenges
for its modelling, fundamentally because they are non-stationary and non-linear. Due to
these two properties, the accuracy of predictions using simple linear methods applied to the
time series data appears to be inadequately low. For this reason, the industry includes in
their approach numerical weather forecasting when the prediction horizon is over a four to
six hours [73].

Algorithms that learn from data have shown high adaptability to all kinds of applications,
by using different data sources, like structured data, images, video, sound, natural language
and many more. Time series are another relevant data type to be used in deep learning and
in particular its application to time series in general and with wind in particular.

The central theme of this dissertation comes from joining two ideas, the importance of
forecasting for the renewables and the yet unlocked capabilities of deep learning in this
field. The integration of these two areas, artificial intelligence and earth sciences, guides the
motivation of this research, that starts from a series of research questions.
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Context, motivation, structure, and contributions

The first research question is the fundamental idea and primary motivator.

Can deep learning improve the traditional prediction methods accuracy on wind time
series and become a tool for Wind forecasting?

The objective is to contribute to a better understanding of the application of deep learning
to the multi-step forecast of multivariate Wind Time Series.

Deep Learning algorithms that learn from large quantities of data are showing strong
capabilities to extract hidden patterns in the inputs that are difficult to be perceived even for
trained humans. For example in [170], Poplin et al. shows how sex detection from eye images
is much more accurate performed by deep learning algorithms than made by humans, or He
et al. who in the framework of the Imagenet competition created new approaches improving
accuracy [83], or Silver et al. who created the Alphazero algorithm, defeating a Lee Sedol,
the GO world champion, showing how reinforcement learning can support sophisticated
strategies [195]

Deep learning is based on neural networks used as building blocks in diverse structures
and forms [79]. These Networks are based on Neuroscience principles, as they try to replicate
how the human brain works. The original idea in this field was to reverse engineer the
neuron and its connections, and these first artificial neural networks have evolved into
complex and sizeable deep learning models surpassing human skill in some tasks, thanks to
the massive availability of software and computing power [27].

Artificial neural networks have shown high effectiveness in many challenging applica-
tions, and this discipline is leapfrogging traditional approaches obtaining accomplishments
that were unexpected just a few years ago.

Deep learning is currently applied to many areas, and one of them is the application
to time series prediction. Different sciences deal with time series, like health sciences,
engineering or econometrics, all of them are trying to understand how deep learning will
revolution its principles, and this is where this work can be framed, in trying to shed some
light in how deep learning can help in the modelling of wind multivariate time series. At
this point, the application of deep learning to wind forecasting is not widespread [134, 141],
motivating the need for further research. This Thesis proposal tries to contribute to the
understanding of how deep models can help to obtain better wind forecasting.

The definition of deep learning is quite broad as it includes many different algorithms,
with different behaviours and many variants. This diversity is at the centre of this work, as
we designed and tested many different deep learning modelling approaches, to determine
which are the best-suited ones when applied to wind considering this our second research
question:
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1.1 Context and Motivation

Which are the best deep learning Algorithms for Wind Time series prediction and Why?

In this work, we have defined novel architectures using three basic building blocks,
Multi-layer perceptrons, Convolutional and Recurrent Neural Networks, and combinations
between them. The challenge is to be able to compare methods in a way that is unbiased
on the data, and this is not an easy task, being the wind a local phenomenon, that can be
easy to predict in one site (with stationarity air patterns) or extremely chaotic on another
site [73]. The intimate relationship between terrain features and wind is well proven,
and this work has confirmed it in many results, implying that a limited validation on a
geographically homogeneous set of observations is not enough to establish the superiority
of an approach over others. For this reason, we have chosen to work with the NREL Wind
dataset which, with 126,692 sites, is the largest and more heterogeneous open wind dataset
with time-series observations available today. With this dataset, which has all kinds of
terrain sites distributed in the US, the algorithms work on many different site topologies and
characteristics. By testing with this comprehensive example, we can establish correlations
between site complexity and modelling, and thus the next research question arises:

Which kind of relationship have the methods with site characteristics?

Wind depends on site roughness, geographical location, altitude, and some more features,
but the wind patterns change over time, due to different climate transitions and due to the
effect of climate change in our atmosphere. The available data for this work has seven years
of length, and one research question that has appeared during the research is related to
changing wind patterns. The learning algorithms have identified pattern changes in wind,
but can they assess meaningful changes over the seven years? These considerations have
motivated our next question:

Are the series long enough to allow the deep learning modelling algorithms to identify
Climate Change patterns on the wind?

During this research, our understanding of wind variability and site complexity has
increased, which has allowed us to develop a new conceptual idea, the forecastability. We
define it as the ease or complexity of forecasting a specific site. There are only naive metrics
in the literature, and for this research, more robust approaches have been defined, based on
stationarity time series analysis and spectral signal decomposition. These measures have
been tested and correlated to the deep learning approaches and used for the description of a
wind site complexity. Then, our next question is:
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Context, motivation, structure, and contributions

Can some measures from spectral or time series analysis be a good predictor of wind site
complexity?

To forecast the accuracy of a site from the time series structure is known as forecastability.
We have explored several indexes for its forecastability and identified promising features in
the series that have strong correlations with prediction accuracy. We analysed roughness as
a predictor of accuracy, leading to our last question:

Is terrain topology a good predictor of a deep learning model accuracy when applied to
the site?

This work has used three topics; wind, time series and deep learning as prime ingredients
trying to answer relevant questions in the intersection of the three disciplines, the results
foresee potential future applications of the findings to the wind forecasting science.

1.2 Thesis dissertation structure

We have organised the document in four parts, each one divided into chapters and sections:
The first part, Introduction, sets up a general outline of the Thesis work with a focus in

the context and contributions from this work.
The second part, Foundations, analyses the state of the art of the different topic areas

that configure this work, starts with an analysis of the time series field, with a focus on the
wind time series. We describe deep learning and its application to time series modelling,
and the most relevant approaches used in the research. The chapter finalises with a state of
the art review of the wind forecasting field, reviewing weather based forecasting, time series
forecasting, and then going into the application of deep learning to wind time series.

The third part, Experimentation, describes the work performed with a description of the
general architecture of the experiments and the novel models designed and implemented,
followed with a detailed analysis of the results. This part starts describing the data and the
general framework of the experimentation and then we include the four main chapters that
identify the most significant areas of experimentation performed, the main algorithms, a
review of variants on the main architectures, a detailed study of the convolutional network
models and finally forecastability measures for the wind prediction activity.

Fourth and last part, Conclusions, summarises the different research areas and conclu-
sions of this thesis work. Further on it outlines a set of ideas for future research directions,
which have not been analysed in this thesis, but are reasonable extensions of this work.

Some results of this work have been published in proceedings of peer-reviewed confer-
ences and journals, contributions that are listed in Section 1.3. Some of these articles are
self-cited in the content. All the published works and conference material is entirely original
and has been created from this thesis research project.
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1.3 Thesis Contributions

1.3 Thesis Contributions

In this section we describe the main contributions generated from this PhD work. Con-
tributions have been in the form of Journal or Conference articles published in different
proceedings, posters presented in conferences, presentations at conferences and, finally,
software created for the experiment general setup and organisation.

1.3.1 Scientific Journal and Conference publications

Several articles in Scientific Journals and Conferences have been produced as by-products
of this thesis and are cited in different parts of the dissertation and included in the list of
references.

Journal Publications generated from this dissertation

(Jour-2) J. Manero, J. Béjar, and U. Cortés. "Dust in the wind...", deep learning application
to wind energy time series forecasting. Energies, 12(12):2385, 2019. doi: 10.3390/
en12122385

(Jour-1) J. Manero, J. Béjar, and U. Cortés. Wind energy forecasting with neural networks. a
literature review. Computación y Sistemas, 22, 2018. ISSN 2007-9737. number 4

Journal pending Publications from this dissertation at time of thesis deposit

(Pend-1) J. Manero. Convolutional networks for wind speed multi-step time-series forecast-
ing. "tbd", 2020

(Pend-2) J. Manero. Predicting the prediction. site forecastability for 12 hours ahead multi-
step wind prediction using deep learning in north-america. "tbd", 2020

Conference Publications

(Con-3) J. Manero, J. Béjar, and U. Cortés. Deep learning is blowing in the wind. deep
models applied to wind prediction at turbine level. Journal of Physics: Conference
Series, 1222:012037, May 2019. doi: 10.1088/1742-6596/1222/1/012037

(Con-2) J. Manero, J. Béjar, and U. Cortés. Predicting wind energy generation with recurrent
neural networks. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 11314 LNCS:89–98, 2018

(Con-1) J. Manero, J. Béjar, and U. Cortés. Go with the flow: Recurrent networks for wind
time series multi-step forecasting. Frontiers in Artificial Intelligence and Applications,
308:79–83, 2018
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Context, motivation, structure, and contributions

The candidate has presented as a speaker in different congresses.

Congress Speaker

(Spe-2) IRC-2019 : 8th International Energy Agency (IEA) International Research Confer-
ence 26–28 June 2019 at The Danish School of Education, Aarhus University in
Copenhagen

(Spe-1) IDEAL 2018 : 19th International Conference on Intelligent Data Engineering and
Automated Learning. Nov 21, 2018 - Nov 23, 2018. Madrid Spain.

The candidate has presented Posters in several congresses (for illustration see Appendix C)

Congress Posters

(Pos-3) In energy3canada 2019 conference, (Canada conference on energy with a focus on
offshore wind), Halifax, Nova Scotia Canada, October 16-18 2019.

(Pos-2) WindEurope 2019 & Exhibition, (European Wind Industry Conference) Bilbao,
Spain, April 2-4 2019.

(Pos-1) 21st International Conference of the Catalan Association for Artificial Intelligence,
CCIA 2018 October 8-10, Roses, Girona, Spain

1.3.2 Other contributions

During his PhD program, the candidate has collaborated with other research teams in the
use of deep learning in time series applications and has generated contributions in several
journals and conferences.

Deep learning for intrusion with time series anomaly classification and detection

The candidate is collaborating with Dalhousie University (Canada). The focus of the
research is the application of deep learning to cyber-security. The application of deep
learning classification techniques to network packets time series is an approach similar to
time series forecasting.

This collaboration has allowed testing some of the time series approaches designed for
the Wind Prediction field to network intrusion detection and generating several journal
publications and opened some new areas for research at the Faculty of Computer Science
(Systems, Networks and Security department).
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1.3 Thesis Contributions

Journal pending Publications from this dissertation at time of thesis deposit

(Pend-5) D. Upadhyay, J. Manero, M. Zamanand, and S. Sampalli. An intrusion detection sys-
tem for power grids based on a gradient boosting algorithm with feature selection.
tbd, 2020. Article submitted, pending publication

(Pend-4) A. Alsirhani, J. Manero, S. Sampalli, and P. Bodorik. A DDoS detection framework:
Deep learning in a distributed system cluster. tbd, 2020. Article submitted, pending
publication

(Pend-3) D. Upadhyay, J. Manero, M. Zamanand, and S. Sampalli. Majority vote ensemble
algorithm for intrusion detection in power grids. tbd, 2020. Article submitted,
pending publication

Previous Work
Finally, in the framework defined by the PhD coursework, initiated some years ago, the

author collaborated in published papers on the application of Fuzzy Logic to bibliographic
information databases. These are works performed outside the core interest of this thesis,
but as we considered them valuable, we highlight one of those publications.

Publication

(Jour-6) R. L. de Mántaras, U. Cortés, J. Manero, and E. Plaza. Knowledge engineering for
a document retrieval system. Fuzzy Sets and Systems, 38(2):223–240, 1990. ISSN
0165-0114. doi: https://doi.org/10.1016/0165-0114(90)90151-U. Fuzzy Information
and Database Systems

1.3.3 Graduate teaching experience

During the Research visit at Dalhousie University, the author has given Seminars to Master,
and Doctorate students included in the official MS and PhD Curriculum of the Faculty of
Computer Science (credits valid for graduate students).

− "Deep Learning applied to Time Series Forecasting". This seminar was CSCI 6999
eligible, to fulfil curriculum requirements for Master & PhD students in Computer
Science, and open to all faculty members

− "Introduction to Deep Learning". This multi-day seminar was open to Graduate
and Undergraduate students and faculty from different departments at Dalhousie
University and introduced the basic components of Deep Learning and its application
to several applications and problems.
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Context, motivation, structure, and contributions

During the thesis work period, the author has held an assistant professor position at
the IE University teaching a Deep learning course at the official Master program "Master in
Management specialisation in Big Data" a pioneering program that helps to understand the
new developments in Artificial Intelligence to the new business leaders of tomorrow.

1.3.4 Code and Result Notebooks

We share, in an open github repository, a set of jupyter notebooks that contain the results
and the code used for the experimentation. These repositories are located in:

NOTEBOOKS: https://github.com/castorgit/Articles-2020

CODE: https://github.com/castorgit/Wind_code

All the research and experimentation has been made using open source tools. Code and
specific information about approach and experimentation methodology and processes is
available to any researcher under request.
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"The most important lesson from 60 years in AI is that the
most difficult tasks (disease diagnosis, play chess at master

level, etc.) have been quite easy to solve, while tasks that
seemed quite easy have shown to be the most difficult ones"

(2015) - R. López de Mántaras [56]

"I cannot command winds and weather"

(1800) Vice-Admiral Horatio Nelson [157]

Part II

State of the Art
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Chapter 2

Time Series

Time is one of the natural dimensions of nature. Data, as an image of our world, must
represent it, and one way to do it is by representing the periodic measures over time, in the
so-called time series. Time series are sequences of observations obtained at some specific
time interval. We find time-stamped data in many areas of our everyday lives, like weather
reports, banking records, stock valuations, housing indexes, health measures, grades in
school, astronomical data, sea tides, and others.

Time series are long lists of data with recorded observations at predefined time intervals.
Humankind, since the inception of time, has tried to analyse data series of events to find
inner patterns that allow to predict the future. In this way, we managed to forecast star
movements, weather phenomena, health events, all of them just by recording and analysing
a long list of data. Forecasting time series is a crucial element in the decision-making process
in many industries, a critical skill for many applications.

In this chapter, we analyse the time series formalisation, and then we describe some
relevant properties with an emphasis on the main forecasting approaches. Then we describe
the use of deep learning techniques used for modelling and prediction of time series. The
final section is devoted to wind time series, the central data structure used in this thesis
work.

15



Time Series

2.1 Introduction to Time Series

Time series were defined thousands of years ago by scientists in many ancient civilisations
like Babylonia, Egypt, Mesoamerican cultures or in ancient Asian dynasties. They designed
sophisticated tables filled with observations that allowed them to forecast astronomical
events like eclipses or star movements with astounding precision. All these scientists
learned to record periodical observations and then used them to find the internal structure
of the data, to predict future events, thus setting up the fundamentals for the first time series
theory. They modelled the movements of celestial objects with high precision, and predicted
eclipses, comets appearances and planets movements, just from their accurately recorded
observations.

In agriculture, they learnt to calculate the harvest seasons and to optimise the annual
task cycles. In this way, the crop yields increased by applying the scientific understanding of
the calendar, seasons, and moon. Since these early human discoveries, a limitless number of
applications have been created by applying prediction and modelling techniques to time
series, in almost all areas of knowledge.

Between all the possible applications, one area appears as particularly relevant for the
time series field, this being economics. In this area, we can find many time-related data
series, like inflation, growth, interest calculations, sales, taxes. In all these sequences of
numbers, time is a relevant dimension, forming a time series.

The study of economy series gave birth to the econometrics science, a discipline devoted
to model economic-related time series. Econometrics develops methods to analyse time series
of data to find relationships and trends and, by applying statistical inference approaches,
predict future values from the actual data, performing forecasts that are more or less accurate
depending on the defined model strength.

Formally a time series is a temporal sequence of values recorded in fixed intervals (every
n seconds, m minutes, p hours). The series then are a discrete representation of an event
that is continuous, like an electroencephalograph, a cardiogram, a city temperature, or the
temperature in a sensor (see Figure 2.1. The time intervals in the series can vary and are
related to the application of the time series, in very short intervals (10−3, 10−4 seconds), hour
intervals (101, 102 seconds) or year or even longer (104, 1010 seconds). The period length is a
relative characteristic, for an energy load time series, milliseconds can be a reasonable time,
but for a planetary orbit prediction, multiyear observations are the reasonable interval.

In a time series, the different steps can have some kind of relationship, and the models
we develop have as an objective to identify these relations. Relations that may not be trivial,
in this way, they can have an apparent relationship (a linear relationship), a more complex
combination (a non-linear function from different step values), or even a no relationship at
all if it is a random mechanism [171].
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2.2 Time Series definition and representation

Fig. 2.1 Barcelona average monthly temperature time Series. source: www.berkeleyearth.org

2.2 Time Series definition and representation

Formally we can define a time series X as a discrete set of tuples or vectors that contain
one or several observations belonging to the same time step. Each time series has a fixed
period t between steps, and then we name the steps in the following manner ti ∈ T were
T ∈ (t1, t2, · · · , tn) or in a more general way T ∈N.

Time series can be either univariate or multivariate, in the first one, each observation is
an individual value, wherein the second one, each step is a list of values, where each value
is an observation.

Wind time series are usually multivariate, as each time step contains several observational
measures, corresponding to meteorological observations from different sensors.

An example of a multivariate wind time series xi is:

X : ⟨xi,x2, · · · ,xn⟩ (2.1)

Where each step is a tuple or list of m values.

xi : ⟨a1, a2, · · · , am⟩ (2.2)
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and each tuple is composed of several observations:

a1 : wind speed

a2 : temperature

a3 : wind speed at hub level

a4 : wind speed at ground level

....

an : others

The observations or values on each time step can either be categorical or numerical.
Categorical values usually define a qualitative property and can be completely unrelated or
disconnected. An example could be a score in a test (A, B, C, D, F), or a financial rating (A++,
A+,..), or many more. A numerical value can be a whole number v ∈N or a real one v ∈R.

2.3 Time Series Properties and Models

Modelling time series consists of defining a mathematical model that can act as a function
model that fits the data sequences. For a given time series T : (t1, t2, · · · , tn) a model will
be a function f (t) where f (1) = t1, f (2) = t2, · · · , f (n) = tn. A model can be obtained
by regression analysis techniques (if the values are real numbers) or using classification
algorithms (if the values are categorical). Modelling of time series using regression requires
a good understanding of the series properties, and to develop this understanding is at the
centre of the forecasting science.

In this chapter, we analyse different time series properties useful for forecasting, and
then we review some of the existing modelling approaches, then we focus on the specific
properties of wind time series.

2.3.1 Stationarity and Ergodicity properties

The first time series property we analyse is ergodicity. To define it we assume that in a
series t of length n the expectation [Et] = µ and the variance V[xi]

n
1 = σ2 are constant for the

complete series n→∞. Ergodicity is a property that materialises when a part of the time
series describes the variance and mean of the whole process.

Two different classes of ergodicity can be defined, depending on the impact in the mean
or the variance. Ergodicity in mean:

lim
T→∞

E

[(
1
T

T

∑
t=1

xt − µ

)2]
= 0 (2.3)
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2.3 Time Series Properties and Models

Ergodicity in variance:

lim
T→∞

E

[(
1
T

T

∑
t=1

(xt − µ)2 − σ2

)2]
= 0 (2.4)

Another relevant property is stationarity, present when the joint distributions of random
variables from a process are time-invariant.

A time series from a stochastic process is:

• Mean Stationary: If µ is constant
• Variance Stationary: If σ2 is constant.
• Covariance Stationarity: Cov[xt,xs] = E[(xt − µs)(xs − µs)] = γ(|s− t|)

As variance stationarity immediately results from covariance stationarity for s = t, a
stochastic process is stationary when its mean and covariance are stationary.

These properties cannot be proven as we are not able to work with the infinite time series,
and thus, they have to be assumed. However, for a time series to have ergodicity, it has to
show mean, variance or covariance stationarity.

In summary, if some stationarity is present in mean, variance or covariance, the stochastic
process will have ergodicity [109]. An example of such process can be white noise 1.

To measure the stationarity in a time series, we can use the augmented Dickey-Fuller
test (ADF) which tests the null hypothesis of a unit root present in the series. The alternate
hypothesis explanation is stationarity of the series. By using this test, it is possible to establish
if a series is stationary. For instance, in the stock exchange example, the ADF test will show
the non-stationarity of the series.

In statistics and econometrics, an augmented Dickey-Fuller test (ADF) tests the null
hypothesis that a unit root is present in a time series sample. The alternative hypothesis
is different depending on which version of the test is used but is usually stationarity or
trend-stationarity. It is an augmented version of the Dickey-Fuller test for a more extensive
and more complicated set of time series models.

The augmented Dickey-Fuller (ADF) generates a negative number that indicates the
rejection of the hypothesis, where the more negative the result is, the more significant
rejection of the assumption or hypothesis will be, in this example, the test statistic rejects the
stationarity of the series as it has a -121.684 value on the Test Statistic.

2.3.2 Decomposing a Time Series in Trend and Seasonality

When the series show regular fluctuations in fixed periods, it has seasonality. In many
econometric series, cycles have an impact in the series. For instance, if we observe that in

1If a series has no correlation between values, and constant variance is observed it is defined as white noise, if
the observations follow a normal distribution then is Gaussian white noise (source: [153], [193]).
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Table 2.1 Dickey Fueller test results (statsmodels/*
library package)

Results of Dickey-Fuller Test:

Test Statistic -121.684243
p-value 0.000000
Lags Used 0.000000
Number of Observations Used 14384.000000
Critical Value (1%) -3.430805
Critical Value (5%) -2.861741
Critical Value (10%) -2.566877

a perfume sales time series, Christmas has a stiff peak in sales, and sales in summer are
low, then the series has a strong seasonal pattern. In another example, we know that solar
radiation changes between day and night, and we have more radiation in summer versus
winter, thus sun generates a time series with two components, daily and summer-winter
seasonality.

Inside the time series, some internal components define these seasonal patterns, meanly
seasonal and trend. The trend is the long-term increase or decrease of the series values
and, in some cases, it may contain fluctuations related to cyclical increases or decreases
overlaid on top of others. With some techniques, time series can be decomposed in its
internal components.

Usually, series are decomposed in three components, trend, seasonal and residual X =

Trt + St + ϵt where Trt is the trend, St the seasonality and ϵ is the residual element.
As trend and seasonal are elements of the time series, there are several methods defined

to decompose a time series in those components, being one the most common the classical
decomposition (moving averages) method (see Algorithm 2.1). However, there are other
methods like the STL (Seasonal and Trend decomposition using Loess).

Algorithm 2.1: Time Series decomposition
Data: initial Series X : ⟨x1,x2, · · · ,xn⟩

begin
Trend is found using moving averages method
Subtract trend from the series
Calculate Seasonal component by averaging values on each period
The remainder trend is obtained by subtracting the trend and seasonality from

original series
end
Result: Trend, Seasonal and Remainder series
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Fig. 2.2 Decomposition time series example, NN52 series from NN3 competition (source:
http://www.neural-forecasting-competition.com/NN3/)

Figure 2.2 illustrates how a time series is decomposed in trend, seasonal and residual
components.

One way to cope with non-stationarity is to transform the series in a way that we extract
the non-stationary components eliminating the trend, by statistically differencing the series.

Statistical differentiation for a given series X consists in generating a new Series X′ where
x′i = (xi+1 − xi).

Fig. 2.3 Three Time series corresponding to the closing stock value of IBM. The first is the raw value,
the second applying logarithm, both are non-stationary. The third one is the differenced example is

stationary
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Fig. 2.4 The series has internal correlation however, the differenced series has no correlation
.

The Partial Autocorrelation Function (PACF) obtains the correlation in a stationary time
series. This function finds a correlation in the lagged values inside the series.

Using the Partial Autocorrelation Function (PACF) in the example in Figure 2.4, we can
see that the two series correlate. However, if the series are differenced, then the correlation
disappears.

2.3.3 Linearity in time series

Linearity is a property in a time series where each data step can be obtained from a
combination of other steps or differences of steps.

This property tells the ability to use linear models to represent the series if a linear model
can model a time series, it the series are linear, however, if we consider linearity as a property,
then we require a method for the calculation of the linearity degree of a time series. There is
not a single method to rate the linearity, as there are different approaches in the literature,
described in Section 2.4.2.

In general, linear methods have two components Auto-Regressive (AR) and Moving
Average (MA) (or both).

yt = at +
M

∑
m=1

bmy(t−m)︸ ︷︷ ︸
AR component

+
N

∑
n=0

cnx(t−n)︸ ︷︷ ︸
MA component

(2.5)

Models that are a combination of both approaches are Auto-Regressive Moving Average
(ARMA). If we perform differentiation in the series, then the model is an Auto-Regressive
Integrated Moving Average method (ARIMA), which is the most general linear method.
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2.4 Forecasting Time Series

2.3.4 Time series as a stochastic process

From a theoretical point of view, a time series can be formalised by the use of probability
theory. A time-series X : ⟨x1,x2, · · · ,xT⟩ has a corresponding multivariate distribution, this
distribution is a series of random variables (xt)

T
t=1 which define a stochastic process. A specific

time series then is a subset of the whole series X from (1 · · ·n) and, if the series is infinite
or very long, it can be considered as the single instance of the whole stochastic process.
Otherwise, there can be many instances of the whole process, each instance being a time
series.

2.4 Forecasting Time Series

Predicting a time series can be considered a regression problem, as the traditional way to
perform a forecast is to develop a model that is an empirical representation of the time
series, this model will represent a hypothesis on the probability of the values of the steps
to be predicted. Forecasting then consists of an optimisation problem to obtain the best
parameters for the model. In this sense, the definition of the model is critical and must be
verified experimentally to obtain the best fitting approach for each time series characteristics.

Forecasting methods can be classified using different criteria. An initial taxonomy can
be created based on the statistical properties of the forecast, in two major classes, point
forecasting and probabilistic forecasting. A second possible classification can be made based
on the number of steps to predict, with two significant strategies, single step and multiple
step forecasting. A third classification is obtained depending on the characteristics of the
prediction model, where the main ones are linear and non-linear models.

In the next sections, we analyse different forecast classifications taxonomies, going deeper
into the state of the art of the different forecasting techniques.

2.4.1 Point and probabilistic forecasting

To forecast a single value in the future is a point forecast, and for a multi-step, it means
predicting a value for each future step. Nevertheless, there are alternatives to this design,
the main one being probabilistic forecasting.

A probabilistic forecast quantifies the uncertainty in a prediction by adding a confidence
interval to the predictions. We find examples in several areas of science, and specifically in
the wind speed prediction as in [169] or [251].

A probabilistic forecast generates a probability distribution instead of a value for each
prediction point. There are two approaches to build the probabilistic distributions. The first
one is to transform a point prediction into a probabilistic by using a statistical conversion,
like considering the point prediction as the mean of a Gaussian or a Poisson distribution, the
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second approach consists in using an ensemble of methods that generate a distribution of
values [75].

Fig. 2.5 Bank of England probabilistic forecast of inflation as a percentage increase in the consumer
price index. The shaded bands in the fan chart show prediction intervals in increments of 10%.2

This thesis is based on point forecasts as the complexity added by using probabilistic
distributions would have increased the computing requirements of the work due to the
increase of data to manage, nevertheless, we believe is an interesting line of work that can
be researched in future research projects.

The transformation of point forecast into a probabilistic has two major approaches,
parametric and non-parametric. The parametric approaches use a prior model to fit the
distribution, like a Gaussian or Weibull distribution where non-parametric use algorithms
like direct quantile regression or kernel density estimators.

We can find some applications that apply a probabilistic forecast to wind in the litera-
ture, like the work by Gneiting and Katzfuss in [75] where they describe an application of
probabilistic forecasting to wind energy. In this case, the point prediction, generated with
information from three neighbouring sites, is transformed into a probabilistic prediction by
using a truncated Gaussian distribution. In another recent work Shi et al. in [192] develop a
probabilistic prediction based on an RNN neural network that applies Prediction Intervals
(PI) as a non-parametric method, testing the model with the Adelaide wind farm dataset
from Ontario, Canada [97].

2.4.2 Linear and non-linear forecasting methods

Linearity is a critical property in the time series when it comes to prediction, as this property
defines some of the method characteristics and behaviour.

2Source: www.bankofengland.co.uk/inflation-report/2019/may-2019/prospects-for-inflation .
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Linear methods applied to linear time series have been trough-fully analysed in the
literature because most series in the science of economics have this property. The Box-
Jenkins approach is based on linear series. However, the maturity of basic linear approaches
and the irruption of new forecasting requirements on non-linear datasets generates the need
for the development of alternative methods.

2.4.2.1 Linear forecasting methods

Linear models have been studied extensively. For instance, the AR models were defined as
early as 1927 [244], and have been extensively used, improved and sophisticated since then.

The general construction of linear models is described in Equation 2.5, using two compo-
nents, the AR and the MA component.

Both models can be used independently or combined. We start by analysing the inde-
pendent MA model where the modelling equation has only the MA component of order
q.

yt = at +
q

∑
m=1

bmx(t−m) + ϵt (2.6)

When the AR model is used independently, the equation shows only the AR component. An
AR model of order p shows this structure:

yt = at +
p

∑
m=1

bmy(t−m) + ϵt (2.7)

In this model aj are real constants, p is the order and ϵt are the zero-mean uncorrelated
random variables that form the so-called white noise. Both models show good results when
representing linear series and combined evolution to an Auto-regressive moving average
model or ARMA model by replacing ϵt by an average of ϵt,ϵ(t−1), · · · ,ϵ(t−n)

Xt = a0 +
p

∑
i=1

aiX(t−i) +
n

∑
i=0

biX(t−i) (2.8)

ARMA is a well-known method that shows excellent robustness for linear time series
modelling but presents limitations on series that show non-stationary (see Section 2.3.1
behaviour.

In the ’70s Box et al. defined a new model that reduced the stationarity of data by
differencing the series [22].

Series differentiation consists of computing the differences between consecutive observa-
tions into a new series where:

y′t = yt − yt−1 (2.9)
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Differentiation can be recursively applied, and by applying it, the stationarity of the
series is removed. Each differentiation order removes a different stationarity type (first-order
time differences remove a linear drift, second-order removes a polynomial trend, and so
forth),

We define a new model by using differentiation, this is the nonseasonal ARIMA model,
which is defined by three values to become the ARIMA(p,d,q) where the coefficients mean:

• p is the number of auto-regressive terms,
• d is the number of nonseasonal differences needed for stationarity, and
• q is the number of lagged forecast errors in the prediction equation.

The forecasting equation which is constructed by differentiation works as follows

I f d = 0 : yt = Yt

I f d = 1 : yt = Yt −Yt−1

I f d = 2 : yt = (Yt −Yt−1)− (Yt−1 −Yt−2) = Yt − 2Yt−1 + Yt−2

The Second difference is the recursive application of differentiation on the first order one,
and the general ARIMA(p,d,q) equation will be:

ŷt = µ + ϕ1yt−1 + · · ·+ ϕpyt−p − θ1ϵt−1 − · · · − θqϵt−q (2.10)

The term ARIMA or ARMA can be confusing, as the AR and MA components have the
same mathematical form. They are both linear combinations of present and past values of
random variables. The general form comes from the Box Jenkins approach. The general
approach can be described as:

X t = ϕ1X(t−1) + ϕ2X(t−2) · · ·ϕpX(t−p) + ϵt + θ1ϵ(t−1) + · · · θqϵ(t−q) (2.11)

A time lag operator L is defined as:

Lxt = x(t−1) for all t ∈Z (2.12)

and transforming the equation using the time lag operator, plus Differencing it (in statistics
differencing is a transformation applied to time-series data to make it stationary). The
stationary time series property does not depend on the time at which the series is observed
y′ = yt − y(t−1) or y” = y∗t = y′t − y′(t−1).(

1−
p

∑
j=1

ϕjLj

)
Xt =

(
1−

q

∑
j=1

θjLj

)
εt (2.13)
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The Equation 2.13 states that time series Xt depends on a linear combination of past
observations plus a moving average of series ϵ forming the general equation origin of the
ARMA and ARIMA models. In the ARMA(p,q) model p is the order of the linear regression
and q is the order of the moving average errors.

The ARIMA(p,d,q) model is a more general equation(
1−

p

∑
j=1

ϕjLj

)
(1− L)dXt =

(
1−

q

∑
j=1

θjLj

)
εt (2.14)

where d is the order of the differentiation. The letter I in ARIMA name refers to the fact that
the dataset has been initially differenced. There are some already defined ARIMA models
(see Table 2.2).

Table 2.2 ARIMA(p,d,q) models

Arima Model p d q Description
ARIMA(0,0,0) 0 0 0 White Noise
ARIMA(0,1,0) 0 1 0 Random walk
ARIMA(0,1,2) 0 1 2 Damped Holt’s model
ARIMA(0,1,1) 0 1 1 Basic exponential smoothing

Its accuracy comes from the training strategies utilised in the algorithm, which offers
reasonable accuracy in short prediction times. ARIMA methods are found in hybrid combi-
nations with all kinds of other methodologies, like fuzzy, Bayesian transformations, SVM
(vector machines) or Gauss process regressions that support the model differenced data.

2.4.2.2 Forecasting series from decomposition

Decomposing the time series into its trend, seasonality and residual components allow to
handle its complexity. The prediction of the individual components is more straightforward
as we eliminated the combined effects. It is possible to decompose the series, then model each
component isolated, and then combine them back into a result becoming the single forecast.
This approach obtains better results than approaching the combined series monolithically.

We illustrate the general algorithm for forecasting from a decomposition in Algorithm
2.2, and some reference to its application is in [215].

2.4.2.3 Non-linear time series forecasting methods

The AR, MA, and ARIMA approaches are all linear methods, suited for linear models.
When used with non-linear series, they obtain consistent results for light linearity, but if this
property is much stronger, then their results are not feasible, and we need to use non-linear
models.
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Algorithm 2.2: Forecasting from a Decomposition
Data: initial Series X : ⟨x1,x2, · · · ,xn⟩

begin
Decompose time series into Xt = Trt + St + ϵt
Compute deseasonalised series initial Series ⟨A1,A2, · · · ,An⟩ by
At = Xt − St = Trt + ϵt

Forecast At obtaining ⟨ÂT+1, · · · , ÂT+H⟩
Forecast St obtaining ⟨ŜT+1, · · · , ŜT+H⟩
Combine results by ŶT+1 = ⟨ÂT+1 + ŜT+1⟩

end
Result: Ŷ = ⟨ŶT+1, · · · , ŶT+H⟩

The extensive experimentation and development of linear models dwarfs the advances
in non-linear approaches, which are much less studied in the literature, but with a large
number of approaches.

The number of methods in non-linear modelling is vast, and range from non-linear auto-
regressive methods (NARX) [217], spectral analysis methods [103], state-space and hidden
Markov chain models [225], autoregressive conditional heteroskedasticity (ARCH) models
to the more recent addition of Machine Learning methods like SVM or neural networks [59].

Neural networks can be combined with autoregressive and moving average components
like the non-linear ARMA (NARMA), and the autoregressive neural network (ARNN) to
obtain the best of both worlds [212, 211], but usually are used independently.

Neural network approaches are appropriate for non-linear series and can bring its
powerful representation capabilities into the non-linear forecasting task.

2.4.3 Single-step and Multiple-Step ahead forecasting

Single-step forecasting consists of forecasting a single point in the future. Usually, the
forecasting methods are single-step, as they only predict one value in the future; however,
forecasting multiple steps in the future is multi-step forecasting.

Multi-step ahead forecasting consists in forecasting a time series of horizon H (or H time
steps) from a time series that contains t(1,2, · · · , t) past observations. Single-step forecasting
is the case where the prediction is for a single point (at distance H into the future and can be
applied to any future single step as it is illustrated in Equation 2.15.

⟨x1,x2, · · · ,xt⟩ → ⟨ŷt+H⟩ (2.15)

⟨x1,x2, · · · ,xt⟩ → ⟨ŷt+1, ŷt+2, · · · , ŷt+H⟩ (2.16)
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Other applications focus on the multi-step approach, where the forecast objective is to
obtain a future time series of a predetermined length of H (see Equation 2.16). The multi-step
prediction can be generated using different methods.

• Recursive: This method is based on using a prediction step as input for the successive
prediction, recursively until the horizon is reached.

• Direct: The direct method uses different methodologies depending on how the pre-
dictions are obtained. One approach consists of training a model for each step to be
predicted, and the result is the concatenation of all individual predictions. This method
optimises the error for each time-step separately, although in a computationally-
expensive way. An alternative methodology consists of a model that generates multi-
ple outputs by training the model to minimise the error for all the time steps in the
horizon at the same time. This method is also known as the Multiple Input Multiple
Output (MIMO) approach. A compromise between the two approaches is also possible
by obtaining separate models that predict subsets of steps.

Some works in the literature describe the superior results obtained by direct methods
over recursive ones [208] [33], specifically in non-linear applications, nevertheless, these
findings are based on empirical assumptions, as there is lack of theoretical work in this area,
and the superiority of one approach over the others is based on specific examples tied to
a problem or a data origin. For this reason, we find opposite conclusions from different
problems, due to different characteristics of the data used for the prediction.

Atiya et al. in [5] find better results with the direct strategy over recursive applying
neural networks to time series of river flows. Kline in [110] finds better results with the direct
approach versus the recursive one with some experimental tests based on the M3 competi-
tion3, or Chevillon in [33] develops a comprehensive analysis, for linear models, on which
one performs better, showing the dependency of each model with the data characteristics.

In linear models, we consider that an implemented model is the true model when the
length of the series is infinite t→∞, in this case, the multi-step forecast using a recursive
model will perform with optimal results, becoming the best approach. However, the as-
sumption of a true model is not valid for most problems, and in this cases, the recursive
problem may not be the best approach, when the modelling cannot be considered the true
model (misspecified modelling) the direct regression is superior to recursive.

For non-linear models, the problem gets more complicated, as there are several recursive
approaches for non-linear modelling that can improve the results like the naive recursive,
the Monte-Carlo or the Bootstrap methods [213].

The question on which approach generates better accuracy remains open, as it depends
on several conditions like the characteristics of the original time series, the horizon H to

3M3 competition is an econometric forecasting competition performed periodically and managed by Spyros
Makridakis at Georgetown University [136].
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predict or the number of steps to predict, usually (1, · · · , H), but could be (n, · · · , H). The
accuracy depends on the modelling technique.

We are interested in machine learning models, and in this category of models, there are
some pieces of evidence of better results obtained by using the direct approach [14, 15, 208].
In this thesis work, we have performed comparisons of different approaches applied to wind
time series confirming the superior results of direct MIMO approaches (see Chapter 7).

2.5 Signal theory and time series analysis

Signal analysis is an area in engineering (usually in electrical engineering) that deals with
time-dependent measures from continuous systems like the electric voltage, noise waves,
radar sensor and many more. This field overlaps with the time series forecasting field. The
signal theory approach instead of trying to develop models that will be used to forecast
future steps, it tries to model the signal to extract some information from it, with different
objectives, like to develop a noise reduction filter on a voice signal.

The signal analysis thus deals with quite similar data types as time series analysis,
but with an emphasis on the internal structure of the series, In this field, the series are
usually sampled with very short periods (10−3 seconds for instance). From this area of
knowledge, we imported approaches used in this work (see Chapter 10) to find measures
and concepts that are helpful to describe the wind time series, applying some entropy and
spectral analysis.

Spectral analysis has as an objective to extract components from the series that have
structure, like its trend or its oscillatory components, and split those parts from others that
have no structure or just noise. This technique is successfully applied to time series as we
can see in [76].

Entropy analysis comes from Shannon works published in his article from 1948 [189] the
basis for entropy analysis related to information communication theory. The main goal for
the entropy to measure is the amount of information that can be transmitted in a message,
this theory offers tools to evaluate the amount of information present in a signal, and this
can help to identify if a time series has some internal structure of if it is just random noise
(see Equation 10.9 in Section 10.7).

2.6 Wind time series

Wind time series come from observations of several weather measures from a specific
location. The relevant observations, in a non-exhaustive list, are wind speed, wind direction,
temperature, humidity, barometric pressure, solar radiation or power generated by a real
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or theoretical turbine). The Wind time series then are composed by tuples of data recorded
every t units of time, that can be milliseconds, seconds minutes or hours.

One characteristic that these series have, which is relevant for modelling, is that they
can have lots of noise derived from its high dimensionality. To solve these issues, we can
filter the data using signal processing techniques, like filtering or wavelet analysis. Another
characteristic is that we do not know how many variables are required in the time series, as
the combination of features may be too correlated and bring imperfect information to the
predictive task [134].

Graphical representations are useful to illustrate complex sets of data. To show the
fluctuations of a wind speed time series in a specific location, we can use a two-dimensional
plot like the Figure 2.6 and to see how the dominant wind direction and intensity changes in
a place we can use a wind rose representation as in Figure 2.7

Fig. 2.6 Wind speed time series in a site located in Techado, New Mexico each row corresponds with
one year of measures, in the illustration row is one year of data starting 1 January 2007 and ending 31

December 20124

Time Series forecast methods are critical for the GRID operators (see Chapter 1). as
they have to assure the integration of renewable energy into the electricity systems. The
operators develop complex prediction systems to manage this integration. As an example,
Red Eléctrica Española (REE), the Spanish TSO, has engineered a forecasting system named

4Wind site located in Techado, New Mexico (USA), latitude N 34°32’ 12" longitude W 108°20’ 59", from the
NREL dataset (see Section 5.2).
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SIPREOLICO [186], Germany uses the Wind Power Management System (WPMS) [49],
or Denmark uses various prediction tools to determine wind production in an area that
comprises the Baltic and continental Denmark [234].

Fig. 2.7 Wind direction dimension in one year of time series measurements in the Sotavento Park
located in Galicia, Spain 2016 [43]

A wind time series is a time-stamped sequence of several measures related to wind.
The most usual observations measured are; wind power (MW), wind direction (degrees),
air pressure (Pa), wind speed (m/s), temperature (C or K), air density (kg/m3), relative
humidity (%), these last two are volume and pressure air relationships and expressed by the
formula ρ = p÷ RairT where Rair is the specific gas constant of air 287.058 J/(kg · K).

All these observations can be generated at different heights (floor, hub height, half-
height) as the wind at 100 meters high (hub turbine height) is the one that moves the blades,
becoming the highest relevance measure, while wind direction is essential to understand
how the dominant winds might impact wind patterns and intensity. In Figure 2.7 a summary
of one-year data from the Sotavento wind park is shown using a wind rose representation,
and it can be easily observed the dominance of E/NE and W/SW winds for this specific site.
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Table 2.3 ADF test on two NREL dataset sites (using Adfuller test from statsmodels)

Offshore New Orleans Edgeley North Dakota
turbine: 3007 turbine: 112500
latitude: 28.580738 latitude 46.292343
longitude -90.734619 longitude -98.736877
ADF Statistic: -31.418378 ADF Statistic: -44.676385
p-value: 0.000000 p-value: 0.000000
Critical Values: Critical Values:

1%: -3.430 1%: -3.430
5%: -2.862 5%: -2.862
10%: -2.567 10%: -2.567

2.6.1 Non-Stationarity of wind time series

Stationarity in a time series is understood as the property where some statistical character-
istics such as the mean, the variance or the internal correlation, are constant over time or
repeated over time in some repeated frequencies like daily, monthly, weekly, summer/winter.

There are several tests used to analyse the stationarity of a time series. The Dick-Füller
(ADF) test and its evolution, the augmented ADF, are the most common [44]. The ADF
looks for a unit root in a time series sample. A unit root is a statistical feature that determines
randomness in the series. The ADF Tests sets up a hypothesis that there is a unit root. The
more negative is the result, the higher the rejection of the hypothesis, and the probability of
the time series being non-stationary increases. In Table 2.3 an example of the application of
an ADF test to a wind time series is shown. The negative ADF shows clear non-stationarity
in two sample turbines in the NREL dataset.

When this test is applied to a time series, if the result is positive, it will show stationarity,
oppositely, if the result is negative, then the hypothesis of non-stationarity is confirmed,
and then the series is considered as non-stationary. Wind time series is in many physical
locations non-stationary, but in some places (steady winds or evident seasonal trends) it can
show light stationarity, and the site will be easier to forecast (see Section 10.8).

Stationarity in time series is difficult to assess, as this property can happen in subsets of
the time series. For instance, if we only see the winter, it could be highly stationary, but if we
see winter and summer we can observe significant differences without stationarity, for this
reason, it is crucial to analyse in large series the existence of these properties.

For shorter series, we can find the issue of co-variance shift [201] this problem is present
in supervised learning when the validation, test and training datasets have strong statistical
differences. In this research we avoided this issue by using series with enough data (a 7
years dataset), then we split the dataset into three subsets (training, test and validation)
assuring the statistically homogeneity between the three.
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2.6.2 Non-Linearity of wind time series

Linearity is another relevant property to be found in the wind time series. Linearity is
present if the use of linear forecasting methods can model the series, and this property states
that each time step Xt is a linear combination of past or future values.

There are several models that represent these linear combinations like like the auto-
regressive (AR) or the moving average (MA) methods.

For instance, an auto-regressive p linear combination will have this structure:

Xt = c +
p

∑
i=1

φXt−i + ϵt (2.17)

or in a moving average order p,q method

Xt = µ + ϵt + θ1ϵt−1 + · · ·+ θpϵt−q (2.18)

The validation of linearity in a time series is not an easy and straightforward task. The
surrogate data method, described by Theiler in [214] is one tool to validate linearity. This
test applied to wind time series shows that linearity, in general, is not found in wind time
series, and correlations are found in differenced data [68].

If the wind is non-linear, how can linear models be used for forecasting? The answer
lies in the fact that the wind series contains inner structures that may be linear. Proper
forecasting methods will extract these structures, and by learning these patterns will improve
the forecasting results.

2.6.3 Distribution function in wind time series

Usually, wind distribution functions are approximated using a Gaussian approximation.
However, the wind does not fit precisely into a Gaussian curve.

To analyse the distribution function, we represent the wind speed values of a time series,
and we try to fit different functions.

The best approximation is obtained by a Weibull function [226]. The Weibull function
has the following formulation.

f (v) =
k
c

(v
c

)k−1
e−(

v
c )

k
(2.19)

where k is the shape (it has no units), and c is the scale parameter measured in m/s. The
cumulative distribution function F(v) offers the probability that a given wind will exceed

5Consecutive wind sites from California to Florida crossing the US Geography - sites 5000 to 5499 in the
dataset, fitted with the scipy Weibull fit method.
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Fig. 2.8 PDF of 500 turbines fitted with a Weibull distribution 5

the value v and is:
F(v) = e−(

k
c )

k

(2.20)

A Weibull distribution with k=1 equals an exponential distribution, and with k=2, we
obtain a Rayleigh distribution.

We can see empirically how wind speed follows this distribution by fitting a curve to a
set of wind observations, in this case by using 500 wind sites from the National Renewable
Laboratory Wind dataset (see Figure 2.8). This distribution is relevant to calculate the energy
generation potential of a specific wind site [28], and it has been used in combination of
Neural Networks to develop models for wind prediction [101], by combining the Weibull
distribution with a simple Neural network, and obtains some improvements over the
prediction without fitting the Weibull PDF.

Carrillo et al. in the article [28] fit the wind time series using a Weibull curve, and then,
taking into consideration the turbine power generation function, uses it to calculate the
potential wind resource in a geographical area. The fitting process, in this case, is not
straightforward as it tries to include the wind turbine conversion modelling into the fitting
calculations. The solution obtained is the Part Density Energy Method (PDEM) which
takes into consideration the cut-in and cut-out points in the energy generation curve in the
probability distribution function.
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Chapter 3

Deep learning and time series

Feature representation consists in extracting the most relevant and characteristic elements
hidden a set of raw data. The machine learning methods depend heavily on this feature
representation process, a step that by pre-processing the input increases the efficacy of the
machine learning model used after. The feature representation step is a time consuming
process that requires a good understanding of the subject area and the use of the right
algorithms to optimise the data transformation.

Deep learning methods, composed of multiple non-linear transformations, generate sim-
pler representations of data that are combined to form complex hierarchical representations
by the use of deeper architectures. Deep learning is a subset of machine learning, but with
the capability of automatically represent the world by using a hierarchy of simpler represen-
tations, thus making the feature representation step automatically. The major contribution
of deep learning lies on its ability to extract features from complex data without an explicit
feature representation phase using subject area expertise [18, 79].

Deep learning is breaking performance barriers day after day in extraordinary feats that
defeat our traditional beliefs on the limits of the computer algorithms. Understanding im-
ages, natural language, generating art, in many areas we see results that challenge traditional
approaches reaching or overtaking human skill in some tasks. Deep learning is also applied
to time series, an area possibly not as flamboyant as recognising a Van Gogh painting in
a museum or translating Chinese to Spanish, but extremely valuable in many critical and
widely used applications.

This chapter develops some fundamental Deep learning principles and how these basic
principles apply to time-series forecasting.
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3.1 Machine and Deep learning algorithms for time series fore-
casting

There is some ongoing controversy about the applicability of Machine Learning methods to
time series forecasting, as some econometricians claim supremacy of the traditional statistical
methods over machine learning algorithms.

Possibly the most verbal expression of this conflict comes from the MM3 competition
held in the year 2000 [136]. This forecasting competition had very few entries based on
neural networks, and the entries with Neural Networks and obtained mediocre results. One
comment about the use of neural networks was "Artificial Neural Networks may produce poor
results if used under certain conditions " [11], a sentence that can be explained by the lack of
software tools, and the limited forecasting experiences with Neural Networks at that time.

After this competition and in the following years, the machine learning field made
notorious advances, generating enough interest in the field to perform a competition only
for neural networks, the NN3 (2006/2007) competition.

This new challenge tried to find answers to two questions: "(1) What is the performance of
NN in comparison to established forecasting methods?" and "(2) What are the current "best practice"
methodologies utilised by researchers to model NN for time series forecasting" the conclusions
showed promising advances made by the NN as the organisers concluded: "The results
highlight the ability of NN to handle complex data, including short and seasonal time series, beyond
prior expectations, and thus identify multiple avenues for future research" [40].

The main organiser of these competitions, Professor Makridakis, announced the M4
competition for 2018 [137]. This competition signals the coming of age of deep learning for
time series as the winner was a new Hybrid ES-RNN Model presented by Slawek Smyl from
Uber [199], [138], in this competition deep learning had finally the opportunity to beat the
statistical approaches competing with them hand in hand.

After the controversies and advancements, we can conclude that Neural Networks offer
relevant capabilities for time series forecasting applications, and can be a potent tool for
commercial wind forecasting.

Wind prediction from time series is a field where traditional statistical algorithms include
additional data from weather forecasting models. This approach has been thoughtfully
tested and showed its robustness to the industry.

The introduction of neural networks in forecasting appears in the last decade, but despite
the rapid development of the field, they are not widely adopted by all the wind forecasters,
more prone to the use of large ensembles of methods with statistical and NWP prediction
models.

In this section, we review the most relevant literature that shows the application of
machine and deep learning to wind prediction.
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There is an early work by Palit and Popovic that applied of feed-forward networks to
forecasting with a fuzzy logic [245] angle, good design but with limited testing as when
this work was released, there was limited availability of software that could support the
development of experimental exercises.

Later in 2010, we find a preliminary review of Machine Learning applications performed
by Ahmed et al. in [1] revisiting the M3 competition with several Machine Learning ap-
proaches (for one-step-ahead forecasting), including neural networks.

Finally, we notice that the adoption of Neural Networks in time series forecasting is
increasing. The commercial forecasters are starting to incorporate these networks into large
statistical ensembles, which allows them to obtain the best of the traditional statistical
approaches with the capabilities of the deep learning, obtaining an increase in the overall
precision of the forecasts [112].

There is a long catalogue of Machine Learning algorithms. We can cite k-means, Bayesian
methods, k-NN neighbours or Support Vector Machines (SVM) which are applied to time
series and specifically for wind forecasting, along with the artificial neural networks (see the
state of the art review in Chapter 4).

Neural Networks are applied to wind forecasting in many flavours, from the basic Multi
Layer Perceptron (MLP) constructions [248], or [211], with modifications like Extremely
Learning Machines [93] or using alternative models based on Convolutional or Recurrent
Networks (see Chapter 4), their adoption is increasing as the understanding of their capabili-
ties increases along with the availability of powerful programming frameworks that allow
to develop complex networks with ease.

In the following sections, we develop how deep learning applies to time series forecasting
and which models offer the best fit for the wind prediction activity.

3.2 Multi-step forecasting with Neural Networks

Deep learning works on different types of structured and unstructured data, like text,
numbers, images, voice, video frames, or written language, and, finally, time series. The
deep learning algorithms process these data types with different approaches and techniques.

Depending on the number of variables on each step, the series are univariate or multi-
variate. This property defines the model dimensionality. With time series, neural networks
perform two main operations, classification and regression. Predicting future steps in a time
series is a regression, as we we obtain values approximating future points of the series.

Depending on the dimensionality of the output we can distinguish between single-step
and multiple-step prediction. Single-step is when the regression algorithm predicts one
value at a particular horizon H, and multiple-step is when the regression obtains a sequence
of values. The length of the output sequence is the horizon H or number of forecast steps (See
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this work [15] from Ben Taieb et al. for a complete classification of multiple-step prediction
methodologies).

Multi-step forecasting can be performed with different approaches. One technique
consists of integrating several single-step predictions and then concatenate all the results
obtaining a sequence or vector of values. An alternative is the Multiple Input, Multiple
Output (MIMO) approach, wherewith an input as a sequence, we obtain the full output
sequence, in one go.

MIMO or sequence to sequence learning is applied extensively in the Natural Language
Processing (NLP) field, where it shows excellent performance results. The seminal work on
this area was described in a well-known work from Sutskever et al. just a few years ago in
[204], a contribution that signalled the start of a set of developments that revolutionised the
NLP field.

There is some literature about the application of deep learning to time series, [67], and
even scarcer for wind, however, there is an undoubted interest in the development of this
area. For a review of deep learning application to wind time series see Section 4.3.

The fundamental research questions for the application of deep learning to time series
forecasting is How accurate is a specific DL architecture with these kind of series?, Which
is the best DL architecture for forecasting?. These two questions hoover around this field,
some of them analysed in this section.

• Motlagh and Khaloozadeh propose in [154] an architecture based on the combination
of Recurrent Neural Networks plus a Nonlinear auto-regressive (NARX) construction.
This model performs two steps ahead predictions on stock exchange series. The
combination of algorithms outperforms the individual performance of each one of
them.

• In [172] Qin et al. propose an RNN with an attention mechanism for non-linear time
series. This model outperforms NARX constructions, the predictions are for stock
exchange data for ten steps ahead.

• In [238] Xiong et al. analyse different strategies for one step ahead forecasting vs
multiple-step and obtains some meaningful conclusions on the application of the
MIMO strategy for multi-step prediction.

• In [29] Chang et al. use an RNN architecture to forecast long sequences afinding dilation
as a useful tool for accuracy improvement when used with recurrent networks.

• In [218], Torres et al. perform time series forecasting using an MLP network for each
prediction time step (with h models for h time steps), the horizon chosen is 4 hours for
10 minute sampling (24 time steps). This construction obtains good results, measured
in MRE (mean relative error) on an electricity consumption dataset.

• In [220], Torres and Aguilar, use an MLP network to forecast wind generation values
from a time series of different observations from a site. The data is obtained from a
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numerical weather report model. This work concludes that shallow networks have
consistent results compared to deep architectures, considering computing power and
training time costs. This same group of researchers further develop these experiments
adding convolutional networks to the wind energy generation problem using forecast
weather observations as input [221].

All these experiences show a promising outlook for deep learning applied to forecasting,
either linear or non-linear, time series. To review different approaches to forecasting we will
formalise what a prediction is. Let be the forecasting task a regression which approximates
a function f (x)→ y to a continuous output variable. A continuous output variable is a
real number, such as an integer or floating-point value, these values usually correspond to
amounts, sizes or other physical measures. Forecasting then, consists of determining the
value of the next step into the future, generated from the time series past.

f (x1, · · · , xn)→ ŷn+1 (3.1)

The predicted time step can be just the immediately next one (as in Equation 3.1), or
it could bee some other single step in the future, this approach is single-step forecasting.
But forecasting requires predictions in more than one step. Many functional domains and
particularly wind forecasting, require sequences as predictions, and not just a single value.

Multiple-step ahead forecasting can be defined as a multiple regression problem, where
the same data has to be used to obtain multiple answers. There are several methods to
approach this problem (see Section 2.4.3) analysed in the literature, like those in [32, 208].

The first one is the recursive approach that estimates one model to estimating one step
ahead, and the successive steps are calculated recursively using the previous results as actual
values. This method has, as a main disadvantage that the error of the prediction propagates
to successive predictions. Usually, this method does not yield the best results.

The second approach is the direct strategy. This method has different characteristics,
depending on how we obtain the model for the predictions. The first possibility is to develop
a model for each step on the horizon to predict. In this case, we train each model to minimise
its error for each time step separately, which is a computationally expensive task. The second
possibility is to train a model that generates multiple outputs by minimising the error for
all the time steps in the horizon at the same time. This method is also known as the MIMO
approach. A compromise between these extremes is also possible by obtaining separate
models that predict subsets of steps.

To summarise our approach, given the time series X of n elements [x1,x2, · · · ,xn] we
want to obtain a prediction for a h steps ahead (horizon) Ŷ = [ŷn+1, ŷn+2, · · · , ŷn+h]. With the
MIMO approach we perform one regression with one model, obtaining the Ŷ from the input
sequence X. In the next section, we develop neural network architectures for MIMO time
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series forecasting using the basic models from the main families of networks, Multi-Layer
Perceptron, Convolutional Networks and Recurrent Networks.

3.2.1 Multiple Input Multiple Output Forecasting

Multiple Input Multiple Output (MIMO) learning happens when the neural network model
uses sequences as an input and generates a sequence as an output. In the broad definition of
MIMO learning, the sequences can be of unknown length for example as in natural language
processing [204], [16], but in the application for wind forecasting, the input and output
sequences are of fixed length.

lag Horizon

input sequence output sequence

Fig. 3.1 Input and output sequences in a seq2seq model. lag is the length of the input, horizon is the
length of the output. In multivariate series the time series have multiple measures or observations

for each time step

For applications on sequences of unknown length, the encoder-decoder approach is
advantageous. It works by transforming (encoding) the input sequence into an internal
vector structure, the model transforms this structure and then is decoded into the output.
This model obtains very good results in machine translation applications, where the input
is a sentence in one language and the output is that sentence in the target language, or in
conversational systems, where the input is a question and the answer is the output [204],
[79].

With sequences of fixed length, we handle them differently. The network needs to learn
a mapping between the past time series (input) and the forecast (output). The inputs are
examples of length (lag), and the output is the sequence to predict of length (Horizon). The
network learns from the example sequences and develops a model for modelling the outputs.
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The Lag is calculated empirically, as this length suggests how much information from the
past contains valuable information for the prediction.

3.3 Deep learning architectures for time series forecasting

In this section, we review four basic constructions implemented in this research work for
MIMO learning, these constructions are MLP, CNN, and Recurrent Networks, these ones
with two variants, RNN MIMO and RNN encoder-decoder.

Fully Connected MLP 1D Temporal CNN RNN 
All Sequence Output

RNN
Summary State Output

MLP seq2seq CNN seq2seq RNN Encoder-Decoder RNN

Components

MIMO Architectures

-

Fig. 3.2 Components and MIMO Architectures for sequence to sequence learning

3.4 Multi-layer perceptrons applied to time series

Multi-layer perceptrons can be a good forecaster for multi-step sequence modelling. The
multivariate sequences of length lag are flattened as input, while the output is a vector with
a length Horizon equal to the number of steps required by the forecast.

These networks are based on the elemental Rosenblatt perceptron, described as early as
1958 in a pioneering paper [182] . The perceptron has several components that are illustrated
in Figure 3.3.
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Fig. 3.3 A Perceptron is the basic building block in Multi layer Perceptrons

Multi-layer perceptron networks are fully connected, which implies a large number of
parameters to train. Relevant parameters to train are dropout, which improves the generali-
sation capability of the training, learning rate, batch size, and activation function, plus depth
(number of layers) and the number of neurons of the fully connected network. The set of
parameters to discover grows as the network is more complex, and as the model variability
increases, the number of combinations increases accordingly, and training becomes a harder
task [51].

Mathematically the MLP architecture can be formulated as:

xi = gi(bi + W ixi−1) (3.2)

where i is the ith layer, xi−1 is the vector of inputs from the previous layer, gi is the
activation function of the layer, W i is the weight matrix of the neurons in the layer, and bi

the vector for the independent terms, or bias for this layer. The MLP networks, and most
of the deep learning networks are trained using the backpropagation algorithm, which
is the keystone that boosted the neural networks, as it offers a practical approach to set
an optimised matrix of weights. The backpropagation algorithm requires an optimisation
strategy, being the most common gradient descent, however in this work we have used
adamax, a consistent and efficient strategy defined by Kingma and Ba in [108] and widely
adopted in many deep learning applications.

The neural network functioning is defined by many parameters that modify its behaviour,
like the layer structure, number of neurons, activation, use of connections and many more.
The number of combinations exceeds makes impossible to find the optimum set of combi-
nations with trial and error approaches, for this reason we use a hyper-parameter search
(see Section 6.4). For instance, in MLP we need to set the parameter depth of the network
(number of layers), the number of neurons on each layer, the lag of the input examples, or
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the activation function used, between others. In Table 7.5 we can see the hyperparameter
space defined for the MLP networks.

3.5 Convolutional networks for time series

The original idea that allowed the inception of convolutional networks comes from Kunihiko
Fukushima who described them in an article in 1980 [63]. In this work, he defined an
inspiration of the convolutional networks based on the human perception mechanisms
baptized as Neocognitron. The name did not hold, but the idea of local feature integration
evolved into the Convolutional Neural Network, an approach that burst into the pattern
recognition field in 1989 [120], transforming the way computing science understands the
artificial vision. Since then, and mainly due to the success of the Alexnet [114], VGG16
and VGG19 [196], ResNet [84] and GoogleNet [205] at the Imagenet challenge [52, 183],
convolutional networks have become the method of choice for pattern recognition in images.
They are responsible for the revolutionary advances in this area that amazed us some years
ago, and now are included into our daily routines in all kinds of applications that make our
lives easier.

These networks use a specific kind of layer that applies a convolution operation on the
input matrix (see Figure 3.6), this layer extracts features from the input matrixes, showing
some properties that difference them from the MLP standard networks.

In calculus, convolution is an operation defined by an integral transform of the product
of two functions where one is reversed and shifted:

( f ∗ g)(t) =
∫ +∞

−∞
f (δ)g(t− δ)dδ (3.3)

This operation in a discrete space will be:

( f ∗ g)(t) =
+∞

∑
−∞

f (δ)g(t− δ) (3.4)

Furthermore, this is the operation that defines a convolutional layer. To perform this
operation we need two elements, Input and Kernel, also sometimes called filter. The input is
a matrix of data, and the kernel is a matrix of weights. The kernel slides across the matrix
performing a summation operation that obtains the convolution result.

The kernel has a smaller dimensionality than the input. The weights in the kernel come
from network training, and they resemble the weights in an MLP layer. We can observe that
the number of weights in a kernel is a smaller number than the weights in an MLP layer,
making their training more efficient.
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The convolution operation in a layer consists of two steps. In the first, several convolutions
are produced in parallel generating a reduced version of the original matrix. Then in the
second step, an activation function is applied to each result, introducing the non-linearity.

After the convolution, it is usual to position an optional pooling layer (with three variants,
maximum, minimum, or average). The pooling operation reduces the input and obtains
an invariant result. We can consider that the convolutional layer extracts the features and
the pooling layer summarises the result making it translation invariant, making easier the
feature understanding of the initial image (see Figure 3.6).

The combination of the convolution plus the pooling operation extracts the features
from the original matrix, and this output becomes the input of another layer. The result
consists of a succession of feature extraction operations (layers plus pooling) that specialise
in recognising different properties contained in the input matrix.

To implement the MIMO approach with a CNN network, we combine one or several CNN
layers with an MLP network. The CNN extracts the features from the input sequence, and the
MLP performs the regression to obtain the output sequence. We illustrate a representation
of this architecture in Figure 9.2.

Examples

ste
ps 

v
a
ri

a
b

le
s

[1..la
g]

Fig. 3.4 The wind time series is divided in examples with dimension (lag × number variables). The
neural network receives sequentially each example as an input
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In this thesis, we use CNN architectures with one-dimensional convolutions that process
the input sequences. One element of these sequences is a bi-dimensional matrix of depth lag
and height equal to the number of variables (see Figure 3.4).

Convolutional networks are composed of a variable number of layers and performs a
convolution operation on each one of them. Inputs and outputs on each of those layers can
be of multiple dimensions (one, two, three or higher), while the convolution operation can
be one, two or three-dimensional as well.

The convolution operation is defined by three elements, kernel, stride and filters which
define how is applied. In Figure 3.5 we illustrate a one and a two-dimensional convolutions
performed with one and a two-dimensional kernels. The stride property shows how the
kernel moves in the matrix.

Filter

Kernel

Filter

Kernel

1d 2d

Fig. 3.5 Convolutional operation in 1D and 2D

Filters define the output dimensionality, if filters is greater than 1, then the convolution
generates a number of parallel channels. Each one of the output filter matrixes learns a
feature of the initial matrix, as the learned weights on each filter are different.

Focused interactions, also called sparse interactions [79], happen when the kernels are
smaller than the input, even for a substantial input (a high-resolution image or a long
sequence), the kernel looks for a specific pattern or feature in a small part of the input matrix
(matrixes are also called tensors). By stacking many kernel layers in sequence, each one
extracts different features. Additionally, convolutional networks can obtain results with less
processing complexity if compared with MLP networks, as in the standard MLP the number
of operations for a layer is (m× n) wherein a convolution is (k× n), if the input m is much
higher than the kernel size then the number of operations is reduced by several magnitudes.

Parameter sharing defines the fact that a kernel has a set of common parameters common
to all the operation, wherein the MLP version, each connection has a different weight, for
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this reason, the number of parameters in a CNN network is smaller, compared to a similar
MLP architecture with the same number of layers.

Convolutional layers have an equivariant representation property. Equivariance happens
between two functions g and h, if they are symmetric like g( f (x)) = f (h(x)). For a CNN
neural network, this means that for two-dimensional inputs like images if this image moves
around, the output will move in the same way. This property is handy for image recognition
or time-sequenced data because each filter focuses on a feature, and the invariance protects
the sequence of actions.

The convolutional layers combine with non-linear activation units (to introduce non-
linearity) and max-pooling layers that reduce dimensionality of the output and make the
overall process more efficient. A pooling layer reduces the dimensionality of a matrix by

(1)

(2) (3)

6x6
4x4 4x4

2x2

Fig. 3.6 Convolutional operation plus pooling. (1) application of filter 3x3 on matrix with stride 1
without padding. (2) non-linear activation application. (3) pooling operation

applying a function based on the combination of the interior matrix cells. The functions can
be maximum, minimum or averaging. Max pooling maintains the invariant properties and
can help to homogenise the output when using inputs of different sizes.

3.5.1 Padding in the convolutional operation

A relevant feature used by the convolutional operation is padding (see Figure 3.7). When the
convolution operation is applied close to the edges (for a 2D convolution) or at the sequence
beginning (for a 1D convolution), the kernel goes out of bounds and exceeds the matrix
limits. Padding solves this issue at the edges by adding additional cells (pixels in images, or
steps in sequences) on the exterior of the original matrix. Padding has different strategies:

• Valid padding: Valid padding consists of no padding: the kernel avoids going off
bounds and stops before reaching the borders. This strategy reduces the size of the
output matrix.
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• Same padding: Consists in adding enough cells with zeros at the borders. The output
will be of the same size as the input.

• Causal padding: Causal padding is used with 1d convolutions and consists in adding
zeros at the beginning of the sequence. The input and output sequences are of the same
length and cause a ’dilation’ that forces the output [t + 1] depend only in sequences up
to input [t]. Causal padding is practical for sequence forecasting as the convolution
operation does not violate the time sequence by using only the past steps [162].
Using padding causal we generate an implicit dilation, and used with sequences the
CNN interprets the sequence in order adding a temporal interpretation to the network.
For some deeper analysis of dilation applied to neural networks see [243].

1 2 3 54 6 87

1 2 3 54 6output

padded cells

same
1 2 3 54 6 87

1 2 3 54 6 87

causal
1 2 3 54 6 87

1 2 3 54 6 87

valid

input

filter length 3 stride 1 

Fig. 3.7 Comparison between different padding strategies, example sequence to sequence with filter
size 3

The classic convolutional models include many convolutional layers stacked sequentially
or in parallel, and each one of them specialises in different features in the input matrix.

The most relevant parameters in these architectures are filters and strides which define
the convolution, depth multiplier which modifies the output channels, drop for each channel,
and the architecture of the MLP component, number of layers, number of neurons and drop.

As in the MLP, the number of parameters to optimise in one convolutional architecture
is very high, and increases along with the number of layers, making necessary the use of a
hyperparameter optimisation tool to obtain the best results.

3.5.2 Separable convolution

Separable convolutions are a subtle variation of Convolutions created by by Laurent Sifre in
[194] and later enhanced by François Chollet in [34] this construction reduces the number
of operations to be performed by the network from the standard convolutional approach.
The result is a more stable training, improving the accuracy in some cases. Convolutional
networks have many variants that make them very versatile for different kinds of data. These
variants can be quite efficient for specific data types and applications. Separable convolutions

49



Deep learning and time series
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Fig. 3.8 Convolutional 2D separable operation

split the convolutional operation into two steps where two kernels act sequentially. In the
standard convolution there is a single kernel in a single step (see Figure 3.8).

Doing the convolution in two steps reduces the number of mathematical operations, thus
improving the overall performance of the layer. Filtering an image of (m× n) pixels with
a filter of size p× q requires (m× n× p× q) multiplications. However with a separable
approach it is done in two steps, the first step will have (m× n× p) operations and the
second will require (m× n× q) being the total (m× n× p) + (m× n× q), therefore, making
the separable approach more efficient.

The approach presented by the Xception (image recognition with separable layer blocks)
architecture [34] is to refine the original Inception [206] with separable convolutions. In this
case, the first separable convolution is called the depthwise convolution and the second the
pointwise. In the three-dimensional separable operations, the depthwise operation acts on the
channels independently, and the point-wise operation mixes the outputs in a new channel
space. The obtained separable architecture is not only more efficient but obtains some gains
on accuracy compared to the pure Separable approach, results that are consistent with the
work presented in in Chapter 9.

Convolutional Networks have been subjected to different refinements, generating vari-
ants that show good adaptability to specific conditions, and of these relevant variations is
the separable convolution.

Separable convolutions are a subtle variation of convolutions, they were created by
Laurent Sifre [194] and later by François Chollet [34]. This variant reduces the number
of operations to be performed by the network from the standard convolutional approach.
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This reduction impacts in more stable training, and for some applications, there is a slight
improvement in the accuracy.

Separable convolutions split the convolutional operations into two steps that combine
two kernels instead of one operation with a single kernel (see Figure 3.8). The first step in
the separable convolution is called the depthwise convolution and the second the pointwise
convolution. In the three-dimensional separable operations, the depthwise operation acts
on the channels independently, and the pointwise operation mixes the outputs in a new
channel space. For one-dimensional convolutions, used on sequences, the first convolution is
depthwise, with multi-variate wind time series each variable is a channel, while the second
convolution pointwise only acts in one dimension, as the sequences are uni-dimensional.

Separable convolutions can multiply the output several times, with the depth multiplier.
This parameter replicates (multiplies) the output sequence generating deeper sequences. By
default, its value is one, and with higher values, increases the number of output channels,
which improve the capability of the network to learn more features.

3.5.3 Skip and Residual connections

Deep fully connected networks are notoriously difficult to train. The vanishing/exploding
gradient is an issue that averts training processes to work properly.

There are different techniques to improve the training stability. One of them is normalisa-
tion, which can be applied to the input data, to the batches or to a layer. Data normalisation
consists in changing the data elements in the input to a common scale. There are several
strategies for this scaling, like rescaling (also called min-max scaling), where data is mapped
to a scale of [0,1].

xnorm =
x− xmin

xmax − xmin
(3.5)

Standardisation or z-standardisation consists of transforming the data to a mean of zero
and standard deviation of one.

xnorm =
x− µ

σ
(3.6)

Other approaches consist of scaling to unit length

xnorm =
x
∥x∥ (3.7)

The second strategy is batch normalisation, defined by Ioffe and Szegedy in [99], it is
widely used in the main deep learning applications today. this strategy is used for improving
the training by stabilising the distributions of layer outputs during the training phase by
reducing the internal co-variant shift. A batch normalisation acts on the layer output and
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Fig. 3.9 Training stabilisation and Skip and Residual connections

controls the means and variances of those outputs, in a way is like applying the data
normalisation strategy to the output of each layer.

The third is layer normalisation, firstly defined by Ba et al. in [7], consists of transposing
the batch normalisation strategy to the layers but, in this case, before the non-linearity
function is applied. This strategy is very effective with Recurrent Neural Networks.

The vanishing gradient issue problem increases as the depth of the architecture grows,
and we can reduce its impact by using another technique called dropout. We briefly de-
scribed dropout in the Multi Layer Perceptron Section 3.4 were we pointed to its effectiveness.
Dropout was first described by Hinton et al. in [89], consisting in eliminating neuron connec-
tions randomly in the training process, in this way each training pas is performed with a
different layer connection layout, thus reducing the noise in the training. Neural networks
have a strong adaptability, and then this ability corrects the voided paths by adapting to the
new ones. It is a very effective technique widely used in all kinds of deep nets, reducing
overfitting and increasing training effectiveness, is effective with networks with a large
number of neurons.

Dropout has generated controversy as Google patented the algorithm in 2016 [88],
generating strong dissension in the Deep learning community [184], and maybe signalling a
change or course in the actual openness of software and algorithms in this field.
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Another technique consists in the use of additional connections between layers as short-
cuts, that improve the accuracy by reducing the degradation issues. This construction was
first proposed by He et al. in [84] and since then adopted in many applications.

These new connections are added to the model. They are useful as they help to reduce
the impact of singularities in the neural network; the most notorious are elimination, overlap
and linear dependencies between nodes [163]. Elimination happens when one node is
suppressed. Overlap appears when nodes collapse into each other, and linear dependencies
may appear due to dependent nodes. These connections add or concatenate the input
matrix to the output sequence of a layer (see Figure 3.9). If we combine the sequences
with a summation, then we call them residual connections, and if we combine them by
concatenation, we call them skip. Concatenating increases the size of the original sequence,
while adding maintains the original dimension.

The convolution operation has an issue when working at the edges of sequences or
matrixes. The output length can be preserved in the convolution operation by the use of the
right padding strategy padding (see Figure 3.7 and Section 3.5.1), which makes it possible to
generate an output with the right length.

3.5.4 Multi-head models and stacked models

Stacked models are those that combine elementary network blocks formed by several indi-
vidual convolutional layers. This idea is extensively used for image recognition applications,
like the VGG or the ResNet architectures which obtained the best results in the Imagenet
challenge in 2014 and 2015 [196, 84].

Convo layer

Concat. sequences

MLP Layers

MH Architecture

Fig. 3.10 Multi-Head architecture

These models can work with time series too, in architectures like InceptionTime, de-
scribed in [51], based on the original Inception architecture. The Inception model is the
basic building block of GoogLeNet, which started a family of Google architectures that
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at the top of the field in image recognition using deep learning [205]. A stacked model is
an architecture that combines several blocks, with blocks that are combined sequentially,
horizontally or both. The InceptionTime architecture, for instance, combines layers horizon-
tally and sequentially. A horizontal combination of layers is a Multi-Head architecture (see
Figure 3.10) and combines the individual blocks in parallel. Each head is a block. As in the
sequential combination, each block specialises in a scale of features. Then the outputs from
each block are combined.

3.6 Recurrent Neural Networks
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Fig. 3.11 Unfolding, over time, of an RNN architecture

Recurrent Neural Networks are considered as the better adapted architectures for se-
quence modelling. Their way of working is based on managing the inputs sequentially, as
the internal construction of the RNN allows time-related feeding. In Figure 3.11 we illustrate
a graph representation of an RNN neuron that shows a cycle around the neuron, and when
we unfold the graph we can see the temporal sequence, where the input from previous steps
feeds the next step. Xi are the original sequences and fi the neuron output on each step.

The RNN neuron has the ability to use past information on each time step, and has
two refinements the Long-short term memory (LSTM) and the Gated Recurrent Unit (GRU)
defined below.

A relevant property for RNN is its ability to process sequences of undefined length, this
property is vital for processing language sentences because, in a natural language phrase,
all the words are relevant to understand the meaning, a sentence can be long, and as the
algorithm processes the words one by one, we know that the initial words are important for

54



3.6 Recurrent Neural Networks

the overall meaning, and they need to remembered when we are processing the last words in
the secuence.

Using an MLP the individual steps are processed independently, and in this way the
different steps do not influence the others. An RNN does not have this limitation as the
information flows temporally as we process the sequence of words one by one.

RNN are good at processing sentences, but have an issue with long sequences, because
due to the vanishing gradient issues, the information from the beginning of the sequence
has a small influence (as the value values are very close to zero) in the last sentences (see
vanishing gradient issue in networks in 3.5.3)

The LSTM cells solve this issue. They were initially described by Hochreiter and Schmid-
huber in [90], and they define an internal gate in the cell that allows the past information
to flow or not into the sequence. The GRU cell, which is a simplification of the LSTM was
proposed by Chung et al. in Chung et al., is a simpler version of the LSTM that works very
well in some problems.

3.6.1 GRU and LSTM units for RNN architectures

When working with sequences, especially with natural language sequences, neural networks
have the issue of short-term memory. When the sequence is long, the information from the
beginning of the sequence is forgotten when the final steps are processed.

This problem is called the vanishing gradient issue that appears during the backpropaga-
tion phase, after many calculations the gradients decrease in a way that become infinitesimal.
In this way when the gradients are close to zero, the network loses its learning capabilities.

To solve this issue Long-short memory units and Gated recurrent units can be used to
build up RNN architectures. Both units can, as a main property, maintain in the network in-
formation from the parts of the sequence that are far away, allowing the model to ’remember’
the first elements processed.
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Fig. 3.12 Graphical representation of RNN units, LSTM, GRU

In Figure 3.12 we can see a graphical representation of the different individual cells, the
vanilla RNN, the LSTM and the GRU cell.
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GRU cells are simpler than LSTM as they lack an output gate. The LSTM has stronger
learning capabilities, but for simple problems GRU can be easier to train showing equal or
even better results.

The gates regulate the flow of information into and out, allowing the cell to remember
information from past time intervals. It is unclear which of them is better adjusted to a
problem, requiring experimentation on the specific application and data characteristics.

RNNs show outstanding behaviour with sequences of undetermined length because
their dynamic nature adapts very well to the variable length of the sentences, but LSTM and
GRU cells helps to control the information flow in long sequences. However, for time series
of fixed length, their capabilities do not differ much from an MLP or a CNN architecture, as
the experiments show in Chapter 8.

3.6.2 RNN with Attention mechanisms

In 2015 Bahdanau et al. in [9] introduced a new mechanism in neural networks, the attention.
This new development is quite effective in applications like machine translation and is
applied in new fields like computing vision, with success.

In this research, and as a cross-over between different areas, we have designed and
implemented an attention layer for an RNN architecture to model wind time series.

horizon

RNN MIMO

Input Sequence

Recurrent Layer

MLP Layers

horizon

Encoder Decoder

Input Sequence

Output Sequence
Output Sequence

Recurrent Encoder Layer

Recurrent Decoder Layer

Fig. 3.13 Recurrent Neural Network MIMO strategy, and RNN Encoder-Decoder

An attention layer consists in a vector of trainable weights (w1,w,2, · · · ,wH) applied
to the input vector, these weights wi are values in the interval [0,1] and are calculated by
gradient descent (or the chosen optimisation algorithm) simultaneously to the rest of the
network training. The final values of the attention are obtained by applying a softmax
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function, as the intention is to concentrate the values in a part of the sequence. We can see
attention as a magnifying glass on one or a few of the time steps that are more relevant for
the output.

3.6.3 RNN MIMO Architectures for time series

To work with wind time series sequences, we have designed two architectures based on the
RNN elementary neuron, which are the RNN ED construction and the RNN MIMO. Both of
them can process sequences and produce outputs of predetermined fixed length.

The RNN ED architecture processes sequences directly with the Encoder-Decoder ar-
chitecture. This model inputs a sequence and produces a sequence as an output. This
construction is widely used in Natural Language Processing as it is very effective with
sequences of undefined length [204].

The second architecture is the RNN MIMO architecture, where there is a single RNN
layer with a stacked MLP network (made of one or several layers). In this model the MLP
layer performs the regression after the information has been processed by the RNN (see
Figure 3.13).
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Chapter 4

State of the Art of wind forecasting
with deep learning

We analysed the fundamental principles of wind, the structure of time series, and Deep
learning fundamentals in previous sections. In this chapter, we analyse the wind forecasting
activity using deep and machine learning, and we present a literature analysis of this field.

As we have covered in previous chapters, there are two significant groups of forecast-
ing methods used today in the renewable industry, Meteorological Numerical Weather
prediction methods and time series methods. Time series methods, can be classified based
on the approach used for the classification, which can be linear statistical methods and
non-linear methods, with Machine Learning and Deep learning methods belonging to the
second category.

Hybrid methods combine meteorological with time series methods,but these hybrid
approaches are not analysed in depth in this chapter, as the focus is mainly in time series
based methods.

This chapter has three main sections. First there is a high-level review of meteorological
approaches to wind forecasting. Second, we present some relevant works on wind time
series forecasting with linear statistical models, and then we analyse in more detail the
machine and deep learning models.

The content of this chapter has generated a Journal Article:

[1] J. Manero, J. Béjar, and U. Cortés. Wind energy forecasting with neural networks. a literature review.
Computación y Sistemas, 22, 2018. ISSN 2007-9737. number 4
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4.1 State of the art of Meteorological based forecasting

Meteorology is the primary tool for wind speed prediction. This science tells us that winds
are the result of complex atmosphere interactions between global and local features, the local
elements (terrain, geography, roughness) are complex to introduce in the actual resolution
of the meteorological models used to forecasting wind. The challenge faced by the earth
sciences is how to increase the resolution of the models to include these local events while
coping with the increasing requirements of computing resources, to model complex weather
features like wind.

4.1.1 Meteorological models for wind prediction

Forecasting weather has been an elusive activity pursued by men since the human civilisation
exists. Nevertheless, the origins of this discipline as a structured science are quite recent as
they are found in Victorian Great Britain and the just-born United States of America, less
than 200 years ago. The traffic of goods between the Atlantic was critical for commerce
between the empire and the new colonies, but sea navigation, was still a dangerous event.
In the North Atlantic there is complex weather system where storms come up unexpectedly.
This dangerous sea sank ships by the thousands, that were unable to cope with the fierce
strength of winds and waves, just between 1852 and 1855 over 1.000 ships sank due to
storms, killing more than 900 men per year. To reduce this toll became a top priority for both
countries a new science with new methods and new knowledge was required [130].

A few years before, some events marked the initial steps of this new discipline. In 1743
Benjamin Franklin set up the hypothesis that storms move from one place to another, a
revolutionary theory that marks the start of the weather prediction science. From this initial
hypothesis it took 100 years for Sir Robert FitzRoy to propose the development of a storm
warning network in Britain, while at the other side of the Atlantic a Smithsonian director,
Mr Joseph Henry, took the initiative to position a map in the main hall of the museum with
information on the weather in different locations of the US, information gathered thanks to
a new invention, the telegraph. With this simple and, powerful idea, he created something
as extended today as the weather map. It was a sound success and immediately many
newspapers copied this pioneering idea and created the popular weather section, making it
an essential feature in all papers, from Boston to Philadelphia. Eleven years later, in 1861,
The Times published its first structured weather forecast in their pages. The fascination and
curiosity of men for the future weather was suddenly fulfilled with the weather prediction
information, a feature that persists in the actual newspapers or in sophisticated real-time
applications in our smartphones.

We can define weather forecasting as the determination of the atmosphere status in
the next future, evolved from the actual situation. The way to solve this problem is by
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developing a model that replicates the atmosphere behaviour, and then to synthetically
evolution this model to the next state to identify the future conditions.

The actual situation of the atmosphere is a state of the model, and by solving some
complex differential equations that simulate the atmosphere interactions, we calculate the
next steps of the model situation. The equations depend on the grid resolution which
determines the complexity of the system (we understand as the granularity of the prediction
the terrain resolution of the model 50×50 km, 25×25 km, 10×10 km) the smaller the grid, the
more complex the modelling, and the complexity has a direct impact in the computational
requirements to solve the model.

The grid size defines the model complexity and the data requirements to manage. The
weather grid is three-dimensional (latitude, longitude and altitude) and this motivates the
need for large amounts of data, and as a consequence resolving the equations requires vast
computing resources. Supercomputing facilities support the large weather forecast models.
As the available computing power increases, the resolution can be increased, being the
actual state of the art, the use of grid areas of 4×4 km for some regional models. The quest
for 2×2 km grid is underway by many national weather services as the limits of weather
predictability have not been reached yet [247]

The NWP models usually have a three-phase processing cycle, namely, pre-processing,
processing and post-processing. Pre-processing consists of the definition of a matrix that
contains the real weather data for each point. If measurements are unknown, then interpola-
tion is used to fill the gaps. Processing consists in the resolution of the differential equations
(weather equations dependent on time) for each point in the matrix. Finally, post-processing
is the phase to transform numerical data in the information to be processed, either the
well-known meteorological maps or specific media or databases for particular points (wind,
clouds, waves).

There are three groups of atmospheric models based on the time-space scale, Macro-
scale, Meso-scale and Micro-scale. Some phenomena, like wind, require small grids as they
happen at a low-resolution level, and change in short cycles. Other models do not require
this granularity and might be able to give predictions with matrices with far fewer points and
with more extended periods. Large government agencies are responsible for the maintenance
of the global models, which are resolved several times every day, for instance; the National
Centre for Environmental Prediction (NCEP) is responsible for the American model, and the
European Centre for Weather Forecast (ECMWF) is responsible for the European one.

The global models work with geographical matrixes; for instance, the American Global
Forecast System Model (GFS 1º) has a matrix unit size of 100 km, with calculations every
6 hours. However, this model, at a square size of 100 km, is not granular enough for
many kinds of forecasting, for this reason the regional models exist, which must function
coordinately with the global model, they have a higher resolution, This regional models are
called meso-scale.
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Fig. 4.1 European Weather map obtained from ECMWF modelling

A popular Meso-scale model for the US is the MM5. Created by Penn State University
and the National Centre for Atmospheric Research is an open-source project used for testing,
and an excellent tool to compare the reliability and error of new models [148].

In Europe, the most used models are the ones generated by the ECMWF. Those models
are becoming quite sophisticated, generated coordinately with local government agencies
like the Asociación Española de Meteorología (AEMET) which refines the models to be more
adapted to the local variations of the geography [156].

As computing power has become more accessible, these systems have started to rely
on ensemble models (see Section 4.1). An ensemble approach is a combination of different
methods that integrated using statistical algorithms; in this way, the resulting combining
scenario is more accurate than the individual original modelling.

The ECMWF weather prediction model runs 51 times with different starting points,
and each model has some differences in the equations. All the scenarios combine into a
forecast (ensemble) or alternative forecasts, and all the results can be used for the probability
computation of future weather predictions [25].

Wind prediction has high complexity due to the local characteristics of wind creation.
Wind comes from the interaction of pressure gradients that appear over vast distances, and
the combination of changes with the local orography produce wind with a specific speed and
pattern. The large numerical prediction models are not useful for wind energy prediction as
the wind speed has to be determined with a very high resolution, and the global models
cannot work at this resolution.
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Models are improving due to the increase of available computing power with the
widespread use of supercomputing facilities or massive cloud computing.

4.1.2 Numerical Weather Prediction methods

Numerical Weather Prediction (NWP) includes all prediction methods where the forecasting
is made from a model based on equations.

These models have some issues, first, as they have a level of uncertainty they introduce
this error in the prediction, and second, in general, the granularity is no optimal for wind
speed prediction (as wind modelling using weather models require grids with very large
resolution), this problem is approached by introducing down-sampling algorithms that
are applied to the models to increase resolution. But down-sampling generates new errors
that combine with previous ones. In an interesting article [185], Sanchez develops a model
showing how the forecasting and the weather model down-sampling errors chain together.

The NWP methods are classified in Global and Regional (limited area) models. Global
models have less resolution as their grid size is bigger than the ones used in the regional
models. The grid resolution in the regional models (due to advances in resources and
models) is increasing from the traditional 12×12 km or 7×7 km to the much smaller 2×2 km
or 1×1 km grid sizes [73].

The meteorology science tries to find a way to reduce the error in the weather equations
while increasing the resolution to a level that is useful for wind forecasting. To increase
the resolution of a model is called downscaling. However, it could be that downscaling
alone cannot increase resolution in a way that decreases the overall error for renewable
prediction; for this reason, we need to develop workarounds or indirect methodologies.
These indirect approaches use extensive knowledge of the local conditions (geography,
terrain). We can cite, for instance, the approach designed by Martin et al. in [146] in the
early days of wind prediction. They implemented, for a wind park in Algeciras, a method
to forecast wind by using the pressure differences between measurements in two points
using indirect independent measurements. The measurements came from the Jerez and
Málaga airports, obtaining good forecasts when integrating both of them. This approach is
an example of how using low-resolution observations to improve the weather model obtains
good results with more accuracy. 1.

The NWP models produce more substantial errors than pure time series approaches for
short term predictions, and for this reason, for windows from milliseconds to 2-3 hours,
methods based on time series are preferred.

The threshold for a forecast to be considered long term is at the 48 hours line, in this
segment NWP work better than time series models. From 2-3 hours to 48 hours, predictions

1Algeciras is subjected to constant winds from the Mediterranean to the Atlantic and vice versa, Málaga is
located in the Mediterranean coast while Jerez de la Frontera is by the Atlantic at roughly the same latitude, the
difference of pressure between them predicts the wind direction and intensity.
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are considered mid-term, and in this area time series prediction can or cannot be better than
NWP, depending on the length (closer to 48 hours is NWP, while closer to two is time series),
the terrain, the meteorology or the available data. The prediction science is trying to squash
this interval by making the NWP methods to go into shorter time frames (by increasing
resolution of the models, for instance) while time series models try to extend their area of
comfort by using more sophisticated approaches or combinations of existing models. This
thesis contributes to this objective, by designing models that allow the time series models to
extend its validity to 12 hours ahead prediction.

This chapter contains a literary review analysis covering forecasting based on time
series without covering the NWT approaches with the same detail. However, some of the
techniques are common to both fields and are used indistinctly in either approach.

One approach that produces excellent results is the use of Ensembles (see Section 4.2.6).
Ensembles are combinations of algorithms that are combined using statistical techniques
and obtain better results than any of the individual models. This area of work has generated
systems like the windstorms system for the north-west of Europe [175], that generates
warning alerts for windstorms. This system is an ensemble that has several methods which
combine competitively. Ensembles are relevant because they are used for commercial
forecasting systems, as the objective is to get the best possible accuracy, with ensembles the
combination improves the accuracy of the individual models.

Another example of work focused on NWP models is the use of Kalman Filtering
methodology used for data assimilation. The use of this filter is a way to reduce the
limitation of the NWP models to predict sub-grid phenomena accurately.

Downscaling the NWT model is the objective of researchers around the world, and the
orthodox approach is by developing more detailed equations and using more computing
power to resolve them. However, there are some alternative ways to improve resolution
at a lower cost. One of them is Kalman Filtering which consists of a set of mathematical
equations that provides an efficient computational solution of the least squares method with
an easy adaptation to any alteration of the observations.

A Kalman filter can be used as a recursive filter applied to a linear dynamic system
containing a list of noisy measurements over time. It is a widely used technique in several
fields and specifically in wind prediction. Kalman filters use the joint probability distribution
of the variables on each step and estimate future values of the variables in the future.

In Louka et al. in [132] they develop a practical implementation of a Kalman filter for
wind prediction and suggest that instead of using costly computational resources to perform
downscaling to smaller grids than 6 km, using adaptive techniques like Kalman filtering, we
can obtain accurate predictions at wind farm level.
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4.2 State of the art of Machine learning methods for wind time
series

Time series based models are an alternative to the meteorological weather prediction. There
are several relevant analyses of the state of the of wind prediction using time series as an
input, like [160], [30] or [58]). In this section we present a selection of the most commonly
used methods for wind prediction using statistical or machine learning methods, with some
relevant works on each one them.

The list of method families is as follows.

• Linear regression methods
• Signal analysis applied to wind forecasting
• Bayesian models
• k-nearest neighbours (k-NN)
• Support Vector Machines (SVM)
• Fuzzy methods
• Combined approaches and Ensembles
• K-means for unsupervised analogy detection

4.2.1 Linear regression methods

Statistical methods look for data relationships inside the time series. Approaching the wind
prediction as a linear regression problem is a common approach, which includes AR (auto-
regressive moving average), ARMA (Auto-regressive moving average methods) and ARIMA
(Auto-regressive integrated moving average methods) and there are many implementations
for wind forecasting using any of these approaches, each one with its particular flavour.
The first paper about wind power prediction using statistical regression algorithms appears
as early as 1984 by Brown et al. in [24], that described an auto-regressive Process using a
previous Gaussian distribution of the wind speeds. From there, the use of regression has
spread all over the industry.

Lujano-Rojas et al. in [133] used an ARMA model in 5 sites in Navarra, Spain. The ARMA
model outperformed the persistence model in one-hour forecasts improving the RMSE and
MAE for longer periods up to ten-hour predictions.

Milligan et al. in [151] applied several ARMA models in forecasts up to 6 hours for wind
farms in Minnesota and Iowa and concluded that the training was dependent on using data
from a recent period.

Erdem and Shi in [48] created four approaches based on ARMA and VAR (variable
autoregressive) approaches that show a good fit to forecast the wind speed and direction,
their conclusions found out that the VAR models perform better than the ARMA in most
tests.
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Palomares-Salas et al. in [166] develop an ARIMA Algorithm and compare it to a Neural
Network, data is sampled every 10 minutes (18,690 steps) from a weather station in Sevilla.
Their findings show that the ARIMA and the NN algorithms obtain very similar results. The
ARIMA algorithm obtains an RMSE of 1.07 for 1h, 1.31 for 2h and 1.55 for 4 hours.

4.2.2 Signal Analysis

Independent Component Analysis (ICA) is based on the assumption that time-series are
a linear mixture of some factors such as seasonal components or trend, in this sense the
irregularities come from these components hidden in the time series model.

x(t) = A · s(t) (4.1)

This formula is called the basic ICA model, where x(t) is the sum of an instantaneous
mixture of source signals s(t), and A is the mixing matrix. The goal of ICA is to find a
linear transform of A by which the sources (ICS) s(t) are statistically independent. There is a
a variation from ICA which is the Principal Component Analysis PCA, which assumes a
Gaussian distribution in the series.

PCA or ICA are usually used to transform the original data to be used in subsequent
algorithms. The transformation is later reversed to obtain the final prediction.

Firat et al. in [57] present a statistical method based on independent component analysis
(ICA) and autoregressive (AR) linear regression using two ICA algorithms, Fast(ICA) and
a second-order blind identification (SOBI). FastICA is based on the maximisation of non-
Gaussianity, and SOBI exploits the time structure of the data using second-order statistics.
They compared the results with a pure AR model using a dataset from seven wind parks
in the Netherlands (low RIX). Their application was inconclusive and left open the use of
alternative methods combined with the ICA treatment. For three and six hours obtained a
definite improvement with the SOBI algorithm (1.24 MSE for 3 hours and 1.48 MSE 8 hours).

4.2.3 Bayesian methods

There are some experiences applying Bayesian methods to wind prediction, based on the
application of a probabilistic approach to classification and regression.

For instance, if we want to forecast the temperature in Seville in summer, we can consider
a uniform distribution of temperatures between 0°C and 100°C, or we can estimate based
on a distribution from historical series. We know that the probability of having a cold
temperature in summer is almost zero, and the temperature has a much higher probability
of being a value between 35°C and 45°C.

The Bayesian approach allows for the implementation of nested structures, in this sense,
it allows for further characterisation of the time series data. For instance, in a wind park,
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we could divide the turbines in a wind park in two categories, in one set the turbines in flat
terrain, and in another the ones in slope, using this approach we add expert knowledge in
the data, thus improving the capabilities to model the overall system.

Miranda and Dunn in [152] offer a complete methodology to build up a Bayesian model
based on two years of data from a weather station in the Shetland Islands. The results
showed that the Bayesian model performed slightly better than the persistence (relative
RMS 17.3% persistence over 16.4% Bayesian).

Ibargüengoytia et al. in [95] present a Bayesian approach for wind speed. This approach
uses a Dynamic Bayesian Network (DBN). The DBN learns from historical data. This method
showed a marginally better behaviour compared to AR and ARIMA models and an RMSE
of 9.84% for a 5h prediction.

Li et al. in [123] develop a Bayesian multi-model method, which is a Bayesian multi-
model Averaging (BMA), this model performs a Bayesian integration of 3 Neural Networks.
The NN methods include an Adaptive Linear Neuron or later Adaptive Linear Element
(ADALINE) with back propagation and using a Radial Basis Function (RBF) plus an ARIMA
model. In this paper they show how the best results for integrating the four models are
always obtained with the Bayesian Model Averaging (BMA) algorithm, making this approach
attractive when there is a need to integrate diverse methods.

Bayesian Model Averaging (BMA) is a technique used to combine different predictions
in an ensemble. The BMA offers a framework that includes model uncertainty in the model
selection phase. The BMA method weights individual predictions based on their posterior
model probabilities, and then the better-performing predictions are assigned higher weights
than the worse ones. The BMA method can thus generate an averaged model, especially in
cases where more than one model has a non-negligible posterior probability [91]

The different Bayesian approaches, integrated with probabilistic forecasting 2.4.1 , offer a
solid framework to build forecasts based on individual predictions that include uncertainty
in the result and in the internal mechanisms of the model.

4.2.4 k-NN: k-Nearest Neighbours

The k-NN nearest neighbours approach has been used in wind forecasting, either by esti-
mating temporal proximity of values in a single time series or by finding spatial similarities
with geographically close wind sites.

Another method based on similarity calculation is the K-means unsupervised method
that we discuss in Section 4.2.8, used extensively in site characterisation.

We can find many applications of k-NN in wind prediction, and we have selected some
representative works.

Yesilbudak et al. in [242] use a k-NN algorithm to obtain wind speed using different
characteristics like wind direction, atmospheric pressure or relative humidity. This approach,
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tested with Manhattan and Minkowski distance calculations, outperforms the persistence
model by 25.74% as the model predicts the next time step with series sampled in 10 minutes
intervals.

Heinermann in [85] develops a complete comparison using MSE as error measure,
between a Random Forest (RF), Support Vector Regression (SVR) and a k-NN algorithm.
The objective is to predict the power output using wind speed as input for an ensemble
method. In this approach, the k-NN algorithm shows better accuracy than the baseline
methods. This research team from the university of Oldenburg (Germany), specialised in
renewable energies, use a version of the NREL dataset, and has developed tools to access
grouped wind sites from the big set of data.

4.2.5 Support Vector Machines (SVM)

SVM or Support Vector Regression methods use alternative dimensional spaces to simplify
the modelling in the actual representation. The change of reference space is made by the
use of a so-called Kernel trick which is a practical mathematical artefact defined in the initial
paper by Cortes and Vapnik in [37] and later enhanced by Vapnik in his relevant book
’The Nature of Statistical Learning’ [232]. The SVM family of methods were popular before
Neural Networks became ubiquitous. SVM are a powerful tool for the representation of
non-linear classification and function estimation problems. However, its issue is the amount
of fine-tuning required, with a complex and lengthy convergence when training in some
problems. Another conclusion has been that the size of the datasets is essential. For small
training data sets, the error produced by this method can be substantial.

SVM apply linear classification techniques to non-linear classification problems. Being
capable to model non-linear relation in an efficient way, it shows excellent performance with
time series data with large datasets.

An interesting implementation is found in the work from Heinermann in [85]. We know
that to define a SVM we need a regression algorithm plus a kernel function, in Heinermann
approach the regression algorithm for the SVM is based on the found weights matrix w,
obtained with the Vapnik proposed formulas.

minimise
1
2
∥w∥2 + C

N

∑
i=1

(ξi + ξ∗i ) (4.2)

C is a constant (C 0) chosen as a parameter that penalises only those errors greater than
xi. In this work Heinermann tests other kernel functions, using an RBF function to obtain
better definition of the data boundaries.

k(x,x’) = exp

(
−∥x - x’∥2

2σ2

)
(4.3)
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The performance of an SVM algorithm is affected by the SVM configurations, mainly the
kernel function characteristics. In [250] the comparison between 3 different kernel functions
is made (see below discussion on this work).

Zeng and Qiao in [246] compare an SVM with an RBF neural network. Applying the
algorithms on three years of data for 68 sites in the NREL dataset. He finds the optimal
training length is 100 days and concludes that the SVM model is superior to the RBF one,
and obtains for the SVM a MAPE of 1.0768% in 1h, 2.8778% in 2h and 5.36% in 3h.

Zhou et al. in [250] develop an LS-SVM (Large Scale-Support Vector Machine). The
basic principle of an SVM regression is to estimate the output variable y from x being x a
vector x = (x1, x2, · · · , xk)

T where K is the order of the SVM. The general model of the SVM
regression is:

y = wTφ(x) + b (4.4)

where w is the weight vector and b the bias term. Given a set of training data

{(xi,yi)}N
i=1

the LS-SVM determines the optimal weight vector and bias term minimising the following
cost function R.

min
w,e

R(w,e) =
1
2
∥w∥2 +

1
2

γ∥e∥2 (4.5)

This formula is a depart from the standard SVM model (that has inequality constraints with
slack variables) the SVM-LS instead is subject to the equality constraints

yi = wTφ(xj) + b + ei, i = 1,2, · · · , N (4.6)

where e = (e1, e2, · · · , eN)
T The LS-SVM simplifies the quadratic optimisation problem in the

standard SVM which becomes linear in the LS-SVM.
Zhou et al. in [250] develop and analyse three kernel functions; Linear, Polynomial and

Gaussian. Linear Kernel
kL(x,z) = xTz (4.7)

Polynomial Kernel
kp(x,z) = (xTz + c)d (4.8)

where c and d are the bias and degree of polynomial kernel respectively Gaussian Kernel

kG(x,z) = exp(−∥x− z∥2 /σ2) (4.9)

where ∥·∥ is the 2-norm and γ is a constant determining the width of the Gaussian kernel.
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This work finds that the optimal parameters of the SVM are related to the size of the
dataset. The error measurement is classified by season as the patterns change seasonally, and
this fact changes the accuracy of the models (steady wind vs variable winds for instance).

Table 4.1
Forecasting error (RMSE) of persistence and 3 kernels (Linear, Gausian and Polynomial) single step
forecasting one step ahead (1h) for wind speed. This table comes from the article [250], and errors are

measured with RMSE

RMSE Persistence Linear Gaussian Polynomial

Spring 1.650 1.421 1.42 1.417
Summer 1.209 1.343 1.33 1.323
Fall 1.584 0.972 0.961 0.966
Winter 1.216 0.956 0.919 0.906

This work finds a strong relationship between the sample sizes and the SVM accuracy.
For small sample sizes the SVM under-performs the traditional approaches, obtaining the
best results with large sample sizes. where

In conclusion, the LS-SVM approach shows better results with temporal variability.
Another conclusion from the exercise is that the training sample size impacts on the accuracy.

4.2.6 Ensemble methods

A machine learning ensemble consists of the combination of several learners to obtain a
result with better accuracy than any of them [180]. Ensembles are a statistical artefact known
for over hundred years based on the principle of "Wisdom of the Crowds", the tradition says
that Sir Francis Galton, observing a crowd in a cattle fair, made a contest and showed that he
was able to determine the weight of an ox by averaging the individual guesses from each
person, in a more accurate way than any of the individual guesses [203].

There are four major classes of ensembles, Bagging, Boosting, Voting and Stacking.
Bagging and Boosting use the same learner algorithm on the data and each one of them uses
different distributions (boosting) or bootstraps samples from a fixed distribution over the
data (bagging) [82].

The third class is a simple combination of different ML algorithms by a voting process.
The fourth class, Stacking (called also stacked generalisation) combines several machine

learning algorithms using another ML algorithm, the first algorithms generate a set of data
that feeds the combiner algorithm, and this one obtains the final result.

We can choose from several approaches in Voting. The simplest one is the Majority Vote
method. In this method, we assume that the probability of each classifier being correct is
(1− ϵ), and we formulate the hypothesis that the classification errors are independent. The
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method consists in choosing the label prediction by more than 1/2 of the classifiers.(
n
k

)
ϵk(1− ϵ)n−k (4.10)

The probability that a majority vote generates an error is obtained with the following
equation:

n

∑
k n

2

(
n
k

)
ϵk(1− ϵ)n−k (4.11)

If ϵ < 1
2 and the predictions from the classifier can be considered as independent, the error

is, in principle, smaller, and when n→∞ then ϵ→ 0
We can find better accuracy over the direct or linear-averaged approach as this one gives

the same weight to each one of the votes in a "democratic approach". In this way, if some inputs
are stronger than others, the inputs can be quantified and adjusted, for instance in a Bayesian
model averaging (BMA) where the weighting is adjusted after training by reviewing the
individual contributions to the accuracy one by one. Sloughter et al. in [198] develop this
approach showing material improvements in accuracy by using a BMA-calibrating approach
over the traditional linear-averaged model, this work is made on a 48-hour forecasting of
maximum wind speeds in the Pacific. Traiteur et al. in [224] develop an ensemble approach
for a wind speed forecast at 1-hour horizon with 21 individual forecasts with different
configurations. This work shows how the use for NWP forecasts for short term predictions,
usually done with statistical approaches, is valid and how the integration in an ensemble
weighted algorithm generates good accuracy.

The use of ensemble algorithms allows the integration of several NWP models with
different imperfections, or by developing a prediction algorithm with inputs from several
models that work in parallel to compensate different adjustments to the specific conditions
of winds and terrains.

NWP models are not used for short-term wind speed forecasting, as the time series
approaches obtain better accuracy [73]. However, NWP models have several distinct advan-
tages over statistical models. First, typical statistical time series models predict the future
based on the past. This approach has an implicit assumption of stationarity that may not
be applicable in a changing environment. For example, empirically identified relationships
that govern wind speed are likely to change with changes in climate or land use–land cover.
Second, many statistical models avoid the stationarity problem by using adaptive techniques
where model parameters are updated frequently. This approach may also pose a problem if
the memory of the system is short, for example, in a dynamic environment dominated by
small-scale turbulence where winds are changing fast. Hence, numerical models with prog-
nostic differential equations representing the temporal evolution of atmospheric dynamic
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and thermodynamic variables are the best option for forecasting wind speeds in changing
environments. A direct comparative study, albeit for more extended time scales, has found
that appropriately calibrated NWP model ensembles provide better wind power density
forecasts than statistical models alone [210]. Finally, another significant advantage of NWP
models is that they can simultaneously provide wind speed forecasts and information on
atmospheric turbulence with no added computational costs.

For Machine Learning approaches, bagging (see Section 4.3) can be used to develop
ensembles. We can find an example in [86] where Heinermann and Kramer propose an
algorithm using neighbouring turbines based on a previous work by Kramer et al. in [113].
Bagging or bootstrapping aggregation consists of building independent predictors extracting
different samples from the training set and averaging the output obtained by the prediction
algorithms. To construct an ensemble, the predictors must be independent and loosely
correlated, to obtain the best results [180].

We can find other ensemble approaches applied to prediction in the electricity sector,
like these two works that analyse deep learning for energy demand forecasting applications
[116, 81].

The use of ensembles is a valuable area of research as the ability to run multiple al-
gorithms in parallel is efficient, and the combination of models with different strengths
generates improved results [73].

4.2.7 Gradient Boosting based ensembles

Gradient boosting is an ensemble algorithm defined by Friedman in his work [62] where he
published the original gradient boosting approach (see Algorithm 4.1)

This algorithm consists of designing a cost or learning function based on the error and
minimise its value by applying successive alternative learners. In this case, the learning
function becomes a kind of Loss function L that is optimised.

Gradient boosting is extensively used in combination with decision trees but is applied
successfully to any kind of weak learners, including neural networks [17]. In this thesis we
apply successfully this approach using convolutional networks as learners.

The gradient boosting approach is generating a lot of interest since several refinements
have been recently published, using the original idea of the Adaboost optimisation [60],
possibly the most effective being the XGBoost approach [31]. These new methods offer an
improvement in the selection of the learner, which results in better accuracy of the result.
The XGBoost approach is very effective in classification problems with structured data, being
one of the most used algorithm in Kaggle competitions [174].
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Algorithm 4.1: Friedman’s Gradient Boosting Algorithm

Data: input data (x,y)N
i=1

M = number of iterations
ψ(y, f )← Loss Function
choice of the base learner model h(x,θ)
begin

initialise f̂0
for t = 1 to M do

compute negative gradient gt(x)
fit a new base learner function h(x,θt)
find the best gradient descent step-size ρt:
arg min∑N

i=1 ψ
[
(yi, f̂t−1(xi) + ρh(xi,θt))

]
Update function estimate:
f̂t←+ f̂t−1 + ρh(xi,θt)

end
end
Result: f̂t with minimum error

4.2.8 K-means as unsupervised Learning for wind time series

K-means is an unsupervised method that comes from the signal analysis discipline. The
objective is to partition a set of n observations into k clusters, where each observation is
assigned to the cluster with the nearest mean. The mean of a cluster is calculated using a
central or centroid calculation.

This widely used algorithm has three major issues, the first one sits in the determination
of the number of clusters, that needs to be predetermined and heuristically found, the second
has to do with getting sometimes trapped into local minimums, not obtaining the best results,
and the third is that the initialisation state can impact the result.

For wind time series, k-means is used to find analogies between different examples of
the time series to use them combined with other methods as in [72], or as in [6] where the
k-means output is used to feed a neural network then applies a transformation of the wind
data using wavelet functions to improve the overall accuracy of the approach.

4.3 State of the art of deep learning applied to wind prediction

There are not many practical applications of deep learning to wind energy forecasting
applications. The fact that the last decade has seen many developments in this science
discipline explains this limited adoption, that is slowly catching up as the first commercial
DL implementation are appearing.

73



State of the Art of wind forecasting with deep learning

For this thesis we performed a state of the art review, where we recollected different
applications of deep learning for wind forecasting [141], this work is partially included in
this section. We summarise the results in Table 4.2 that illustrates this literature review in a
tabular form.

We have grouped the different contributions in three groups based on the deep learning
technique used. The first group contains all the experiences using multi-layer perceptrons
(MLP), followed by convolutional (CNN) and recurrent networks (RNN). In some cases,
different approaches are combined, a situation that we specify in the analysis.

4.3.1 Multi-Layer Perceptrons

This section analyses works that develop neural network models using basic and hybrid
MLP architectures. Hybrid models in this section mean a combination of several models,
that can be neural networks or a set of different architectures with linear and non-linear
approaches (where usually the MLP covers the non-linearity side of the model).

Liu and Zhang in [127] explore several ML architectures (k-NN, REP-tree, SVM, MLP
and RBF networks) in 7 datasets, which integrate observations with meteorological data
from NWP Models. It uses seven features, temperature, dew point, relative humidity, wind
direction, wind speed, station pressure, and wind power, then creates an additional measure
for the cube of wind speed. The architectures are tested with several hidden layers (up to 4)
with 300 neurons, but increasing the number of layers does not improve the results of the
experiment. The conclusions show that the best model is SVM with somehow promising
results from the MLP (but with lower RMSE consistently); however, the MLP architectures
show better behaviour with longer time scale predictions.

Tao et al. in [209] develop a deep belief network DBN architecture with 3 layers of 100,
200 and 300 nodes. Data from a wind station in Mongolia is used sampled every 10 minutes.
They perform several experiments training in three months of data to generate forecasts
from 6 to 24h ahead. The results accuracy, measured with MSE and MAE show stable results
from 6 to 24h, which demonstrates that the models have potential to capture some of the
hidden patterns in the wind series.

Kani and Riahy in [102] develop an MLP architecture integrated with a Markov Chain
probabilistic engine to establish forecasts in very short-term (seconds). This short term
forecast has the objective to identify turbulences and wind changes for the turbine control.
The new model improves the persistence results.

Ranganayaki and Deepa in [173] describe an ensemble architecture of MLPs that obtain
accurate results. It integrates several data elements like temperature, wind direction, wind
speed and relative humidity. The MLP architectures tested are an MLP, with two variants,
one with standard perceptrons and the other with adaline neurons and a Probabilistic
Network. The models are tested with a two year dataset with observations from a real wind
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farm in India. The research develops a criterion to fix the number of hidden neurons and
obtains a sensible improvement from other methods measured in MSE.

Sapronova et al. in [187] present a DL approach that outperforms linear extrapolation
for short-term wind speed predictions (up to 30 min). The DL architecture is not specified
in detail, and one of the conclusions of the experiment is that using NWP data does not
improve the accuracy for wind speed short term forecasting (at 10 and 30 minutes ahead), in
this short article the authors express their belief that shorter time windows in the series can
obtain better accuracy, a fact that has been tested in this research work in (see Chapter 8 and
Chapter 9).

Shi et al. in [191] develop a hybrid approach that consist in using a two step model
combining an ARIMA model that works on the linear components of the series plus an
MLP or an SVM that focuses in the non-linear component. The conclusion is that a hybrid
methodology is a viable option, but it is a complex approach with little improvement over
the isolated methods.

Liu et al. in [126] using data sampled every half an hour from a Chinese wind farm
in Qinghai develop several hybrid models, an ARIMA linear model, a wavelet (signal
decomposition) and an MLP. For the MLP try several training approaches. They conclude
that the hybrid algorithms have better performance than the isolated ARIMA or Persistence,
and the best training algorithm is the BFGS Quasi-Newton Back Propagation. However, the
improvements calculated in terms of MAE, MSE and MAPE are not spectacular. In a similar
approach, Khandelwal et al. in [106] apply a wavelet transformation on the time series to
decompose the linear and non-linear components of the data, to apply ARIMA methods to
the linear dataset and an MLP to the non-linear. With this approach obtains better results
than with the single standard approach.

Li and Shi in [122] compare several MLP architectures using data observations in North
Dakota in the US. He evaluates the results in MAE, RMSE and MAPE. They conclude
that there is not a superior architecture as the results depend on the data. They obtain
improvements up to 20% with better tuning of the models. The authors propose a post-
processing methodology to apply to the forecast results to decrease the model differences. It
is interesting to note here that the importance of tuning with the DL models is a conclusion
on this thesis which is described in detail in Section 6.4.

Other approaches integrate Solar and Wind data, like Hossain et al. in [92], where they
develop an MLP architecture for Hybrid forecasting (wind and solar). The model includes
eleven meteorological observations, like wind speed, wind direction, solar radiation, relative
humidity, rainfall, wind speed, wind direction, maximum peak wind gust, evaporation and
average barometer measure. The output is a three hour ahead forecasting. The data is from
the Australian town of Rockhampton as the observations come from a tower in this town.
This work shows the importance of integrating exogenous variables in the prediction that
improve the learning quality of the network.
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4.3.2 Convolutional Neural Networks

Convolutional neural networks outperform other methods in image and pattern recognition,
where they obtain outstanding results. The overspecialisation in images has hampered its
application to other areas, however, its excellent pattern recognition capabilities are applied
to other problems with success.

Díaz et al. in [42] use three years of NWP wind data (8 parameters) from a model
sampled every 3 hours and compares the results to real production data from one site
(Sotavento Wind Park in Galicia, Spain) and for the whole Country wind energy production
(Spain). Three deep learning architectures are tested and compared with a Gaussian SVR
model and a Neural Network with just one hidden layer. In the experiments they tested
an MLP architecture with two hidden layers of 250 and 300 neurons, a standard CNN
with the first layer with 2x6 filters and two fully connected layers of 200 and 400 neurons,
the last architecture is a LeNet-5 network with two initial convolutional layers and two
fully connected 200 unit layers. Results are measured with MAE, and the values improve
around 5% from the SVR algorithm. The forecasts horizon is not specified, the conclusions
are promising about the architectures, but some concerns about computational cost and
improvement of the parameter setting in future works are made in the document.

Wang et al. in [233] propose a CNN approach that beats a shallow MLP, the persistence
method, and a simple regression algorithm. The data comes from a wind park in Sangchuan
Island (China), with a length of one year. The time series is decomposed in different
frequencies, and each one of them has its own CNN architecture. Results are post-processed
into a time-series forecast, beating the other methods by 10%, in the shortest term, and by
100% in a 4-hour time frame. An exciting conclusion is the finding of a remarkable seasonal
(winter, summer, spring, autumn) difference between the error results (up to 6x difference).

4.3.3 Recurrent Neural Networks

Recurrent Neural Networks are the best candidate for a sequence to sequence learning, as
their internal memory gates obtain outstanding results with natural language processing
and other applications, they have limited testing with wind time series, but some of the
works have encouraging results.

Ghaderi et al. in [71] develop an LTSM and an RNN architecture using spatial information
(data from neighbours), they use data from 57 meteorological stations obtained from the
Airport Meteorological control in the East coast of the US. With this data, they Develop RNN
and LSTM architectures, obtaining excellent results for short-term forecasts. One satisfying
conclusion is the excellent performance of the DNN architectures on the site located in
Nantucket (this site has stable wind regimes as it is by the sea). The DL methods beat any
other method and accomplish to obtain a good forecast based on the observations from the
57 meteorological sites.
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Cao et al. in [26] use data from a meteorological tower in the Texas university that
generates a time series with a 15-minute sampling of wind speed data at five different
altitudes. Develops an RNN architecture and compares it with two ARIMA algorithms. The
experiments are measured in MAPE, MAE and MSPE. From the experiments two significant
findings are obtained, one is that using wind speed measured at different heights improves
the ARIMA models sensibly up to 40% (in MAE), second the much better performance of the
RNN architecture, over 100% improvement from the ARIMA algorithms, showing that the
RNN network acquires the internal patterns of wind, integrating the covariate information
of the different heights.

Liu et al. in [128] develop a methodology to forecast the power generated by a wind
power plant (wind park composed of several turbines). The procedure is based on a two-
step methodology with two NN architectures, first a probabilistic neural network screens
the data and identifies which of the turbines are the best representatives of the plant, this
representative data feeds an RNN network in a second step obtaining the total power of the
plant. The errors from this approach are calculated from 10 minutes ahead to 60 min ahead
horizon and range between 7.8% to 9.58% RMSE.

Olaofe in [161] develop an RNN architecture for one hour ahead of wind power prediction,
and the test data come from real weather observations in the Slangkop wind site (South
Africa). Using sampled data at 1s, mean data at 1h is generated in a dataset composed by
five elements (the speed at 50m, gust, pressure, temperature and humidity), this data feed
an RNN with two layers. The relevant point is that the training is fitted using the power of
the turbine, as it is adjusted to obtain the minimum MSE between the theoretical power the
power curve of the turbine and the results from the algorithm, this generates training based
on the power output. The results for one-hour prediction ahead (power) are 0.156 RMSE or
0.009 MAE.

Balluff et al. in [12] develop a RNN architecture for long term (24h) prediction. Based
on an exercise performed with NWP model data for off-shore points concludes that this
architecture has potential but requires a high degree of fine-tuning. It does not develop error
comparison but observes good learning potential in the RNN architecture.

Khodayar et al. in [107] test an NN with stacked architecture on a subset of the NREL
dataset. The architecture combines an RNN approach with a Stacking of encoding and
decoding layers. The results of this construct improve a standard ANN by more than 20% in
short term prediction up to 3 hours.
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Table 4.2 Review summary of methods (MLP:Multilayer Perceptron, CNN:Convolutional Network,
RNN: Recurrent Neural Network)

Type Author Data Architectures Results Comments

MLP Liu and Zhang
[127]

7 farms with real +
meteo data

DNN, SVM,
ANN Best, MAE 6h = 12 Rolling structure of

algorithms

MLP Tao et al. [209]
wind turbine
Mongolia 10
minutes

DBF 3 layers
100/200/300
neurons

Stable results 6-24
hours ahead

Better performance
for mid-term forecast

MLP Kani and Riahy
[102]

Several sets wind
speed 2.5s

2 layers ANN
integrated with
Markov

15% improvement
MAPE with MC

Prob. approach for
very short term
prediction

MLP Hossain et al. [92]
Rockhampton
Solar and wind
data

ANN with 11
variables

non-qualified
results

Integration
Solar/Wind, use of
exogenous vars

MLP Ranganayaki and
Deepa [173]

Two year data
observations from
2 wind park sits
(India)

ANN ensemble
(4 variants)

2-10x improv.
over previous exp.
in MSE for short
term

Methodology for the
calculation of hidden
nodes

MLP Sapronova et al.
[187] NA 2.5s ANN , DL

architecture

20/25% improv.
over ANN (MAE
or RMSE)

Very short term
prediction,
architecture not
specified in detail

MLP Shi et al. [191] NREL North
Dakota 1 to 7 steps

ANN ARIMA
SVM hybrid

Only 3%
improvement
hybrid over single
method

Hybrid does not
always generate better
performance

MLP Liu et al. [126]
25 days data Wind
Farm Qinghai
China

ANN Wavelet
ARIMA hybrid

Wavelet + ANN
(BFGS) best model

Hybrid is marginally
better but more costly

MLP Li and Shi [122]
North Dakota sites,
1 year hourly
sampled

3 ANN
architectures

Best model
depends on data

There is not a best
model

CNN Díaz et al. [42] Meteo Data 1 farm
and Areas in Spain CNN and NN MAE 5% than

SVR algorithm
Exp. algorithms with
promising results

CNN Wang et al. [233]
One year data
from 2 wind farms
in China

CNN DL
Architecture

20% up to 600%
improvement in
some time frames

Decomposition of
time series in signals
of different frequency

RNN Ghaderi et al. [71] 57 locations meteo
data

RNN and LSTM
architectures RNN best results

Arch. obtain good
results in one site
from the others,
learning geo-spatial
correlation

RNN Liu et al. [26] Meteo Texas U. 5
heights 15 min RNN and arima RNN better than

arima
Covariate usage of
wind at 5 heights

RNN Liu et al. [128]
250 Turbine Wind
Farm in Colorado
(US)

10min to 60 min
7.8% to 9.58%
RMSE

Probabilistic NN
feeds RNN

Power results with
RNN from selected
representatives

RNN Olaofe [161]
Weather obs.
Slangkop and
power data

2 RNN
architectures
(Power)

RMSE 0.156% 1h
ahead

Train RNN on Power
expected from power
curve, with good
results

RNN Balluff et al. [12] NWP data from
offshore sites RNN Improvement but

not measured

Concludes RNN as
the right architecture
for wind prediction

RNN Khodayar
et al.[107]

NREL data from
points in Idaho, US

RNN and ANN
architecture with
encoding/
decoding layers

20% RMSE
improvement on 3
hours from
standard RNN

RNN recommended
approach with
stacking, using rough
set theory on the
neurons
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"You don’t understand anything until you learn it more
than one way"

2005 - Marvin Minsky [87]

"You can’t refute a statistic with an anecdote "

2019 - Pedro Domingos [168]

Part III

Experimentation, Methodology and
Results
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Chapter 5

Wind Data

The wind energy generation industry is a data-rich environment. Wind parks generate and
store multiple observations in sequences of data with frequencies that can be as short as
seconds or milliseconds. Unfortunately, the wind industry considers this information as
commercially and strategically valuable, and for this reason, they lock it up. This issue is a
roadblock for the wind research community, as this lack of access to open data blocks the
interest for new research [115].

We require large amounts of wind data to apply deep learning algorithms, but the scarcity
of available datasets invalidates some works that are based on a small number of wind sites.
A generalisation of results from a few sites is not possible as the experimentation in this
thesis demonstrates.

For this research, we have obtained access to the most significant public wind dataset
available in the world, the NREL (National Renewable Laboratory United States) Wind
Toolkit. This complete set of data is the input for all the forecasting exercises in this thesis.

We structure this chapter into three sections. In the first section we describe the Sotavento
Park, an open data experimental wind park in Spain that is used in some preliminary
experiments. The second section analyses the NREL dataset, which is the data backbone of
this Thesis. Finally, the third section looks into some new datasets with potential for future
works.
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5.1 The Sotavento wind park dataset

The Sotavento wind park dataset [131] is a set of observational data generated from sensor
measures from the Sotavento wind park. Sotavento is an experimental wind park project
funded by the local government of the Galician autonomous region in Spain, formed by 25
turbines from different manufacturers producing 38,500 MWh per year with a total nominal
power of 16,56 MW.

Their dataset has data available since its first production date, with time series of over
ten years long, which are sampled at 5 minutes intervals containing three measures, wind
speed, wind direction and total energy generated. The information comes aggregated from
the wind park as a whole (there is not information from an individual turbine).

This dataset is widely present in the literature, with many research works using these
data, like [73, 222, 247, 248, 43, 133].

This long list of research articles and conferences shows the value of this park as a
scientific resource, however, it lacks weather observations linked to the data (there is a
weather station close by, but the data belongs to the meteorological Spanish service and has
some access restrictions).

Table 5.1 Wind Turbines in Sotavento wind park, Galicia Spain

Turbine Type Power(kW) Rotor ϕ(m) Tower height(m) Units

Neg Micon NM-48 750 48 45 4
Gamesa G-47 660 47 45 4
Made AE-46 660 46 45 4
Izar-Bonus MK-IV 600 44 40 4
Ecotecnia 44/640 640 44 46 1
Neg Micon NM-52 900 48 46 1
Made AE-52 800 52 50 1
Made AE-61 1,320 61 60 1
Izar-Bonus 1.3 1,300 62 49 1

In summary, the limited size and the lack of dimensions (variables) of this data do not
make it valuable for deep learning experimentation as this kind of algorithms require a more
substantial amount of data.

5.2 The NREL Wind dataset

The National Renewable Energy Laboratory publishes a wind resource dataset [46] with in-
formation from sites in the U.S. This large dataset offers production and meteorological data
(wind speed, wind direction, temperature, humidity and pressure) generated synthetically
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from meteorological global models, and later cross-verified with real observed data. The
dataset contains 126,692 sites evenly distributed across the North America geography. All
this information is sampled in 5 minutes intervals, in a seven years long sequence (from 1st

January 2007 to 31st December 2013)

Fig. 5.1 Wind sites in the NREL dataset showing the elevation in meters of each point

This data is probably the largest publicly available wind dataset available today, and it
has been the core dataset used in this work. The amount of data requires the availability
of large amounts of computing resources which have been provided by the Barcelona
Supercomputing Center (BSC) 1

Table 5.2 Dimensions on the NREL Wind dataset

Measure Description

Time (UTC) Time of the recording
Wind speed (m/s) Wind speed at hub level (100m)
Temperature (K) Temperature in Kelvin
Wind direction (º) Wind direction at hub level (100m)
Pressure (Pa) Barometric pressure at surface level
Air density (kg/m3) Air density at hub level (100m)
Wind Power (MW) Wind Power every 5 min 2

1The Barcelona Supercomputing Center (BSC-CNS) is the national supercomputing centre in Spain. Spe-
cialised in high-performance computing (HPC) manages MareNostrum, one of the most powerful supercomput-
ers in Europe.
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Fig. 5.2 Wind speed mean (over total length of series) in the NREL dataset

Fig. 5.3 Wind speed variance (over total length of series) in the NREL dataset

This dataset is synthesised from meteorological data, obtained from the Weather Research
and Forecasting Model (WRF) version 3.4.1. described in [197]. The NREL dataset has 2km
as a minimum distance between sites, complemented with terrain, roughness and soil

2Wind speeds have been converted to power applying normalised power curves described in [46].
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properties obtained from the U.S. Geological Survey GTOPO30 data. The data is verified
with real observations to eliminate anomalies and increase the quality of the result. The
dataset contents are described in Section 5.2.

A preliminary statistical analysis of the dataset allows us to observe some characteristics
of the wind regimes in North America (see Figures 5.2 and 5.3). In this map, we can see
that the most variable sites (high σ) are in the planes just at the east of the Rocky mountains
range, in some westernmost states (like Oregon, Idaho, Nevada) and in the North Atlantic
Coast. It is relevant to note the high heterogeneity of the sites. We can see in Figure 5.4 how
different are the dominant wind directions in sixteen sites chosen randomly, and in Figure
5.5 we can see how similar the directions are for sites located in the same geographical area
(an area of around 20 km in the illustration).

This dataset is virtually the data source of choice for large deep learning research on wind
prediction, and there are some works recently published that use it. We can cite, between
others, some works developed using the NREL dataset: [54, 53, 149, 86, 85].

We illustrate some basic statistical descriptive maps in Figures 5.2 and 5.3, Then in
Figures 5.4 and 5.5 we can see how 16 sites randomly selected offer a variable picture of
wind direction and intensity, while 16 sites chosen in the same area (see Figure 5.5) show
very similar patterns, this two illustrations help to understand why it is important, when
working with wind data, to obtain many very different sites, otherwise the results have a
high risk to be biased.

From several experiments we build some geo-spatial representations relating those
representations with method accuracy and other properties. We specifically devote Chapter
10 to the analysis of the relationship of a physical location with its forecastability.
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Fig. 5.4 Wind-roses from several sites chosen randomly, we can see how the dominant winds
direction differ in 16 random sites

86



5.2 The NREL Wind dataset
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Fig. 5.5 Wind-roses from several sites located in a square of 10 × 10 km near Rapid City in South
Dakota. All sites have the same dominant winds. See Figure 5.6 for an illustration of the sites

location in a Map

87



Wind Data

Fig. 5.6 Location of a group of turbines in South Dakota illustrated in Figure 5.5

5.3 Other datasets

There are other datasets that offer wind and power information from a wind park or from
some turbines. We can cite the Dataset from the independent TSO in Canada, that offers
power information from a wind farm in Ontario, a dataset that has been used in works like
[192]. This dataset, even if limited, is a useful tool as it comes from real observations [97].

The generation of a massive new dataset is a costly project, but there is interest in
developing new resources, like the INDECIS project [96], that is developing an open data
wind dataset with information from tall towers around the world.

This project is grouping and cleansing data from many sources, that will be available for
studies in the next future.

In summary, we can conclude that a common platform for results comparison between
different research projects will push innovation and new ideas in this field. This dataset
that does not exist yet and must include wind data sites from as many places as possible
from real observations, and with very long series. A resource of this kind will accelerate the
application of deep learning to wind forecasting.
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Chapter 6

Experimental Framework

To verify the applicability of the wind prediction deep learning models, we must develop
an unbiased experimentation framework to run the experimentations. In Chapter 5 we
analysed the data, and in this chapter, we describe the experimentation details of the process,
regarding programs, executions, architectures and how the experiments have been designed
and executed.

The research objective is to develop new deep learning architectures to forecast wind
speed. The experimentation consists of designing architectures and then testing and vali-
dating them with the NREL dataset. We compare the results using standardised accuracy
measures.

This chapter has four sections. The first is about the general design principles, followed
by a section describing how the data is prepared and pre-processed for the algorithms
ingestion. The third section describes the general experiments set up with a description of
how to interpret the outputs (results distributions). The last section describes in detail the
hyperparameter search used to optimise the parameters in the different architectures.

All the experimental work (as seen in Chapters 7, 8, 9 and 10) has been performed using
this common experimental setup.
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6.1 Experiment design settings

The architectures have been developed using Python 3.6, with add-on packages, being the
most relevant:

• Machine Learning platform: Tensorflow 1.14.0
• Deep learning library: Keras 2.2.4
• Scikit-learn machine learning library: 0.21.4
• Statistical support: statsmodels 0.11

The experiments have been supported by a NVIDIA GPU based computer at the Super
Computing Center [147]. The resource is the Minotauro cluster which is build with BULL
and it has 39 bullx R421-E4 servers, each server with:

• 2 Intel Xeon E5-2630 v3 (Haswell) 8-core processors, (each core at 2.4 GHz, and with 20
MB L3 cache)

• 2 K80 NVIDIA GPU Cards
• 128 GB of Main memory, distributed in 8 DIMMs of 16 GB – DDR4 @ 2133 MHz - ECC

SDRAM –
• 1 PCIe 3.0 x8 8GT/s, Mellanox ConnectX®-3FDR 56 Gbit
• 4 Gigabit Ethernet ports.

The full machine provides a Peak Performance of 250.94 TERAFLOPS distributed as 226.98
TERAFLOPS (K80) + 23.96 TERAFLOPS (Haswell)

The available computing power has allowed to perform the experimentation to un-
derstand the modelling dynamics of each deep learning architecture, to identify the best
architecture and its best features for the problem. From this statement, we have defined a
list of design principles that guide all the work:

1. The experimental data is the NREL Dataset
2. The experiments have to show comparable results, thus the sampling approach to the

sites must be consistent.
3. All the experiments must be reproducible
4. The deep learning architectures must be optimised through an iterative process until

we obtain the best possible value
5. The comparison of results will be made using data from all sites

The experimentation consists of three significant steps or phases, Experiment preparation,
Experiment execution and Experiment results analysis. In the following sections, we develop
each one of them.
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6.2 Data preparation

6.2 Data preparation

The NREL Dataset is a set of 126,692 files that contain the time series data for each one of
the sites. These files have the extension .nc, an extension used for files encrypted with
the Linux mcrypt format. They use the md5 algorithm, which creates a hash signature to
assure the consistency of contents on each file through transmission or storage operations.
The data format in the files is NetCDF, a format defined by the University Corporation for
Atmospheric Research (UCAR) which is an international standard of the Open Geo-spatial
Consortium [155].

This format is a secure format for sharing and storing the data, but computationally
expensive to read and manage, for this reason, we decided to transform the original data
format into a common .npy file, transforming the data to time series represented by numpy

arrays (with dimensions = steps, variables).

6.2.1 Time series pre-processing

The original time series has the structure described in Table 5.2, a multivariate series with
five dimensions for each time step. (Wind speed, temperature, wind direction, pressure and
air density), we can see an illustration with the series from a single site (see Figure 6.1).
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Fig. 6.1 NREL wind time series plot, decomposed by its variables (see Table 5.2) for site located in
Horseheaven, Oregon [44.733, -120.462], the bottom measure is direction (measured in 360°) which

has an unusual shape due to continuity issues when wind changes from 360°to 0°
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The first operation is the transformation of the wind direction. We transform this variable
from degrees to the sines and cosines of the angle. This formula is called Beers transformation,
firstly mentioned in [13], and generates two sub-series one for the sines and another for the
cosines of the angle. With this new structure, the information of wind direction is preserved,
and the data is ready to train the architectures. With this transformation, the multivariate
series becomes a six variable, time series, with wind speed, temperature, density, pressure,
cosine wind direction and sine wind direction.

The next step is to normalise the data, a process that increases the stability of the neural
network training. We have tested several methods of data normalisation, like feature scaling
(re-scaling data between 0 and 1) or standardisation (using z-score or t-scores). Based
on preliminary testing and literature recommendations, we chose the z-standardisation
approach. Data z-standardisation consists of adjusting the values to a mean zero and
variance σ2 of one. This data transformation generates better results and optimises resources
by making the training more stable [188, 79].

We decided to average the series in one-hour intervals. Originally the series have been
sampled at 300 seconds (5 minutes) intervals, but as the prediction is for 12 hours ahead, we
can optimise the training time by re-sampling the series to one-hour intervals. We believe
that reducing the amount of data by a factor of 12 will help to optimise the training times
of the experiments. However, we will perform some experiments with the original series,
using data with five-minute steps, to verify the accuracy differences with experiments with
different step length (see Sections 8.4 and 9.6 for experimentation using 5 minutes series).

From the original series we created two different sets of data, one with the series with
their initial step of 5 minutes, and the other with data aggregated (averaged) hourly, where
the time steps frequency is 1 hour.

6.3 Experiment Setup

The platform for the experimental setup requires to cover several objectives. Firstly, it needs
to define a common playground for all the different models. Secondly, it needs to assure
replicability of the process with traceability of the different steps, and thirdly it must help the
efficiency of the process by sharing the common parts of the code. We illustrate the overall
structure in Figure 6.2, where we can see a graphical representation of the different blocks of
the experimental process.

The definition for each experiment is based on a configuration .json file (see Figure 6.3)
that defines the architecture and the set of hyperparameters. The definition of architecture
contains three major areas, Data which specifies the data characteristics with a definition
of the input length of the training examples and the steps to predict, Arch, that defines the
parameters of the architecture, and Training, which specifies some training parameters. In
this last category, we include the way on how each model processes the input data (shape of
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Fig. 6.2 Experiment framework

the input sequences) and the specific characteristics of its training process ("mode"). In this
way, each experiment has a corresponding .json file that defines all the characteristics of
an experiment.

The data characteristics define, variables used as multivariate input, the lag length of the
examples for training and the number of steps to predict H horizon.

We define the architecture in the segment "arch", which contains the different parame-
ters of the specific model. The architectures are defined to be interpreted either by Keras,
Tensorflow or Scikit frameworks.

The Keras framework is a library of functions developed on top of TensorFlow, based on
python classes that allow defining the network architectures using some predefined building
blocks. Keras acts as a simplified interface to tensorflow speeding the development.

The architecture defines the model behaviour with parameters like the number of layers,
the number of neurons, activation functions, drops or skip connections. Each group of
architectures requires a different set of parameters, depending on its inner structure and
requirements.
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Finally, the training segment defines some training characteristics like the optimisation
algorithm, learning rate, batch size or epochs number. This training segment is common
in most of the experiments. The ("mode") parameter defines the training mode for this
architecture, as there can be several training strategies like:

• Sequence to Sequence training: used for MIMO architectures
• Direct Regression: trains direct regression architectures
• Joint Multiple Regression: Generates several regressions slicing the output sequence in

several objectives to regress.
• Recursive: Obtains output recursively
• Gradient Boosting: Obtains regression result by applying a Gradient Boosting algo-

rithm
• Scikit training, MIMO, Direct to be used with Scikit routines (Random forest, k-NN)
• persistence: persistence and other simple methods

Fig. 6.3 Experiment parameters for a convolutional separable model with 2 layers using as an input
series averaged at 1h and training lag of 18 steps

The configuration file determines the behaviour of the model. The set of values defines a
multi-dimensional parameter space that is analysed with the hyperparameter optimisation
technique to obtain teh best set of results.
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6.4 Hyper-parameter setting strategy

A prediction can be formalised in the following way, let xi be the multivariate series for
step i and lag the total length of the input samples, and H the horizon of the multi-step
prediction.

⟨x1,x2, · · · ,xlag⟩︸ ︷︷ ︸
multivariate input series

−−−→ (ŷ1, ŷ1, · · · , ŷH)︸ ︷︷ ︸
single variable multi-step prediction

(6.1)

The accuracy is calculated by comparing the values predicted with the real values for
the Horizon steps. The algorithm generates a .json file with resulting error measures,
which are: R2, MSE, MAE, RMSE, nRMSE and nMAEval. For instance, for the coefficient of
determination R2 is calculated as follows:

R2 = 1− ∑H
i=1(yi − ŷi)

2

∑H
i=1(yi − y)2

(6.2)

Where yi are the real values and ŷi the predicted ones.

6.4 Hyper-parameter setting strategy

As the deep learning architectures have many parameters, their combination generates
many possibilities that define the behaviour of the algorithm and its performance. From the
beginning of the experimentation in wind time series, we observed that the differences for a
single experiment, just by small changes in parameters, was noticeable. In some architectures,
the performance between an optimised set of parameters and a random selection can be as
high as 20%, a fact that points to the need for a structured parameter optimisation approach.

The simplest method for parameter optimisation considered is the naive method. This
method consists of combining the parameters by intuition or trial and error, this is an obvious
method but can only work for simple architectures. However, as the complexity increases,
this modelling can be frustrating as finding the right measures is time-consuming, and in
some cases, almost impossible as the number of combinations is too high. For this reason,
we decided to use a more sophisticated automated and structured approach.

To define an approach, we need first to analyse our problem. For the experimental work
at hand, the objective is to obtain a single parameter optimisation of an algorithm considering
all the wind sites in the dataset. We search for a unique optimisation of parameters valid
for all data points. The quality or cost function, in the hyperparameter optimisation, must
consider that the requirement is a global optimisation and not an optimisation for a single
site.

The algorithm parameter optimisation, for this problem, can be formalised as follows:
Given an algorithm A with a set of parameters P, and a set (or distribution) of sites s and a
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quality metric Q. In this environment, the optimisation must find the P settings on A that
minimise the Q on s.

We can approach this problem with model-free algorithms that search using a pre-defined
strategy on the set P, this family of optimisation algorithms has a fixed model before the
execution starts and does not change. An example of this approach is the widely used
grid-search that combines all the parameters and performs a systematic search. Another
approach is a random search that seeks random combinations and executes the algorithm A
for a number of iterations, selecting the best result [36].

Algorithm 6.1: Hyperparameter optimization algorithm
Data:
Set of Parameters P (ϕ,o) Algorithm A
Selected Sites: s

begin
while accuracy keeps improving do

Phase 1: Generate Random experiments in Selected Sites 1.1: Intensify,
creating more experiments from best configurations

Phase 2: Generate Score prediction using Random Forest strategy and use it to
create more combinations with approach

case approach do
(random): Randomly from parameter surface
(best score): From best score prediction randomly
(cross-over): Doing cross-over of best score predictions

end
Phase 3: Create (equalise) most promising parameters with more sites

end
end
Result: Best Set of Parameters P(ϕ,o)

Model-based methods have the property to use the results from a previous execution
of the algorithm A to select next parameter P combinations, in this sense the algorithm
changes its parameter selection based on the results of the executions, following a modelled
strategy. These methods have the ability, when the set P is vast, to find right combinations
of parameters in a more efficient way than using model-free strategies.

In the model-based methods, we can find a subfamily, the sequential model-based optimi-
sation (SMBO) that is quite effective. It consists of a formalisation of Bayesian optimisation.
Bayesian optimisation tries to generate the next set of parameters based on a surrogate
probability method that is easier to optimise than the quality function. A Bayesian logic
approach can be quite similar to the kind of reasoning that we do intuitively trying to solve
a problem, as our brain is quite good at simplifying problems to be able to solve them [19].

96



6.4 Hyper-parameter setting strategy

The SMBO performs tests sequentially, and each iteration tries to find a better set P using
Bayesian reasoning using a surrogate or probability function. This surrogate function can be
challenging to define.

There is another approach to the sequential model-based algorithm configuration (SMAC)
that uses a Random-Forest algorithm to determine the next configuration. This approach is
practical and works with categorical values, a relevant feature for deep learning parameter
optimisation [94],

For this specific problem, we have used an adaptation of a SMAC approach, which is
a novel combination of several steps that have proven to be effective in revealing good
parameter combinations for wind prediction algorithms optimisation.

The approach consists of three phases. The first phase creates several random com-
binations of parameters (subjected to some constraints), then in a second phase the most
promising combinations are exploited to generate new sets of combinations, are created
from the best initial combinations. The second phase uses one of three different techniques
(random forest, further combinations or cross over) that is chosen by the operator. The final
phase consists in increasing the number of sites for the better-ranked, in order to have a
comparable number of sites with similar parameter combinations (using this strategy we
can obtain good parameter combinations with a small number of sites that under-perform
when tested with a broader set of sites.

This approach is not fully automated but it is efficient to obtain a good set of parameters
in the algorithm. From the experience on the wind series we know that the surface of
solutions has many local maximum, and we can obtain many combinations of parameters
that obtain results that differ only by one or two hundredths.

Table 6.1
Best Experiments from optimisation example. These are the six best parameter combinations, the

differences between the best ones are small

n Activation full drop kernel size lag Test mean count Val mean

1 [’elu’, 0.3] [128] 0.0 [1] 6 7.19171 25 6.81979
2 [’elu’, 0.3] [128] 0.2 [1] 6 7.19895 50 6.87788
3 [’leaky’, 0.1] [64] 0.2 [9] 12 7.18365 50 6.81057
4 [’elu’, 0.4] [256] 0.3 [1] 6 7.19677 25 6.81856
5 [’elu’, 0.3] [128] 0.2 [9] 12 7.15832 50 6.87765
6 [’leaky’, 0.2] [256] 0.3 [9] 12 7.19851 25 6.85464

In Table 6.1 we present an example from an optimisation exercise, the six best combina-
tions are promising, but they need to be tested on a larger number of sites, as 25-50 are not
significant yet. Equalising by increasing the number of sites with the parameter combinations
will obtain a new batch with a better assessment of the most promising combination.

97



Experimental Framework

Not all the parameters are optimised, as some parameters are manually set, like the
optimiser, where the choice is an adaptive gradient descent search method (Adamax) [108].
All executions have limited the number of training epochs to 200 with an early stopping
strategy that ends the optimisation when the accuracy does not improve for ten epochs. For
a detailed description of each architecture component, see Tables (7.6, 7.9, 8.1).

6.5 Interpreting the results of an experiment

For each experiment, the model trains with five years of data (Training set). This model is
optimised using hyperparameter optimisation techniques (see Section 6.4). We calculate
the model accuracy with the validation and test datasets, each one of one year long. Each
model obtains an accuracy value for each site adding the H time steps (for instance for the
coefficient of determination R2 is ∑H

1 R2
i), and for the whole experiment is the average value

of all sites used in the experiment.
When the experiment has been performed over a set of sites, each site result can be

considered an error probability distribution (see Figure 6.4).

Fig. 6.4 Probability density function for test and validation data in a Random Forest model
experiment on the 126,692 NREL sites

We have considered R2 better suited for comparison between comparisons, and is widely
used in most experiments and representations.

As a summary, we can conclude that a site is characterised by a value or a score, while
an experiment generates a distribution of values (as many as sites used for the experiment).
To compare the results of two experiments, we need to compare their distributions, and for
this comparison, we need to use some statistical tools.
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• ANOVA test: To determine if the differences of means in a group of experiments are
statistically significant

• Tukey’s honestly significant difference test: Anova tells if there is a significant differ-
ence, and the Tukey’s test determines the difference

• Kolmogorov Smirnoff test: to determine if two experiments generate statistically
different distributions

We developed some graphical representations to see the results of the experiments on
a map, a representation illustrating how the accuracy of a method corresponds with the
geography. The maps show the correlation between accuracy and wind resource intensity
areas (see Chapter 10).

Fig. 6.5 This map shows the accuracy of MLP architecture over 126,692 wind sites on a map of the
U.S. The colours indicate the error measures as the sum of R2, the best sites are in the Atlantic and

Pacific Coast where the lowest accuracy sites are in the plains
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Chapter 7

Basic Deep learning architectures for
wind time series forecasting

This chapter describes the first wave of experimentation performed with DL architectures
to predict wind speed. For the experimentation, we use the data described in chapter 5,
and pre-processed to optimise the use of neural networks (see chapter 6 for details). The
architectures used are deep learning models that fall into three major families, Multi-Layer
Perceptron (MLP), Convolutional Neural Networks (CNN) and Recurrent Neural Networks
(RNN).

This chapter is structured as follows. First, we describe the baseline methods developed
for comparison with the deep learning algorithms. We discuss how the best regression
strategy has been identified, and finally, a detailed analysis of the main methods developed
with a focus on its characteristics and performance.

This chapter has led to publications in several congresses and journals:

[1] J. Manero, J. Béjar, and U. Cortés. "Dust in the wind...", deep learning application to wind energy time
series forecasting. Energies, 12(12):2385, 2019. doi: 10.3390/en12122385

[2] J. Manero, J. Béjar, and U. Cortés. Deep learning is blowing in the wind. deep models applied to wind
prediction at turbine level. Journal of Physics: Conference Series, 1222:012037, May 2019. doi: 10.1088/
1742-6596/1222/1/012037

[3] J. Manero, J. Béjar, and U. Cortés. Go with the flow: Recurrent networks for wind time series multi-step
forecasting. Frontiers in Artificial Intelligence and Applications, 308:79–83, 2018

[4] J. Manero, J. Béjar, and U. Cortés. Predicting wind energy generation with recurrent neural networks.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 11314 LNCS:89–98, 2018
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Basic Deep learning architectures for wind time series forecasting

7.1 Experiments with Deep learning architectures

This chapter applies several deep learning models (see Table 7.1) to the wind forecasting
problem, to predict wind speed at 12 hours ahead horizon. In the wind prediction field, a
horizon of 12 hours is considered mid-term prediction, and usually, approached with NWP
approaches [73]., however in order to test the capability of the deep learning models, we
require a challenging horizon to obtain meaningful results.

To answer the fundamental research question of this work, Can DL be used for wind
forecasting? we need to prepare the experimentation accordingly. The first step is to
establish the horizon H for the algorithms. In this case, we choose 12 hours as the horizon.
A longer horizon will generate too large errors when using time series, and with a shorter
horizon, the problem will be less complex. With this horizon, rarely used for time series
prediction, the experiments can show its contribution to the prediction problem.

All predictions in this work are multi-step (versus a single prediction) obtaining as an
output of the algorithms 12 steps of data that correspond to the future 12 predictions of wind
speed (ŷt+1, · · · , ŷt+H). All the experiments are executed on the NREL dataset (with 126,692
wind sites).

Table 7.1
Models developed in the experiments with short description and abbreviation used in this chapter

Family Description Abbr Used

Baseline Prediction persistence Persistence
Baseline Random Forest sequence to sequence RF
Baseline k-NN neighbors k-NN

MLP MLP MIMO MLP MIMO
MLP MLP recursive prediction MLP rec
MLP MLP with Direct regression MLP Dir

MLP MLP sequence to sequence MLP MIMO
CNN CNN sequence to sequence 2 layers CNN 2l
RNN RNN Encoder Decoder RNN ED
RNN RNN MIMO RNN

The architectures belong to four major families (see Figure 7.1), which are:

• Baseline - Baseline architectures (persistence or statistical)
• MLP - Multi layer Perceptron
• CNN - Convolutional Network
• RNN - Recurrent Neural Network

All the architectures are MIMO (Multiple-Input Multiple-Output), as they have a multi-
variable sequence as an input and generate a sequence as an output. The MLP are well
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7.2 Experimentation Approach
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Fig. 7.1 Multiple Input Multiple Output (MIMO) deep learning architectures. MLP: MIMO ; CNN:
Convolutional Network MIMO ; RNN MIMO and RNN encoder-decoder (ED) (see Section 7.1)

suited for this construction as the first layer can be interpreted as a sequence and the output
as another sequence. The convolutional networks have a MIMO structure by being stacked
on top of an MLP, as the MLP performs the regression to the prediction sequence, and finally,
the RNN perform the MIMO with two architectures. First, with a sequence to sequence
architecture stacking an RNN with an MLP (similar to the CNN) or second, with just an
encoder-decoder construction that obtains a sequence of fixed length directly, without the
need of an MLP, In Figure 7.1 we show a graphical representation of both designs.

7.2 Experimentation Approach

The experimentation has 3 phases. The first one consists of the development of baseline
methods, which are persistence, Random Forest and k-NN methods. The second one is to
choose of the best multi-step forecast regression method, a selection to be made between
direct, recursive and the MIMO approaches, the final phase is the development and experi-
mentation of the different DL architectures with the complete set of data. To the obtained
results, we apply a set of statistical analysis to infer a set of conclusions presented in the next
sections and Chapter 11.

Table 7.1 shows the list of developed architectures in this phase, while the complete list
of results from these experiments is in the Appendix A in Tables A.1, A.2 and A.3.

7.2.1 Calculation of Baseline methods

Auto-regressive or moving average methods have been discarded as baselines, as they
cannot cope with the wind time series non-linearity and non-stationarity.
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Basic Deep learning architectures for wind time series forecasting

Persistence is the standard baseline method for wind prediction experiments. This
method uses the last time step xt as the prediction for each one of the H future time steps
(xt+1, · · · , xt+H), for short term predictions, this naive method can be accurate, but for more
than a few hours ahead predictions, its accuracy and deviation is high, voiding it as a
feasible methodology for prediction. Nevertheless, we have chosen persistence as the first
and primary baseline method.

The possible parameters for the optimisation are illustrated in Table 7.2. The architectures
for the baseline methods are simpler, nevertheless requiring exploration with the methods
described in Section 6.4.

Table 7.2 Parameter space for baseline architectures

Method Parameter Space - Values - Comments

Persistence None No optimisation is required method has fixed parameters

RF
n_estimators

The number of trees in the Forest, the search values are 100,
to 800

max_features
How to to consider features. It has been set to AUTO which
implies that max_features =

√
n_features

lag Lag is set from 6 to 18 steps or hours

k-NN
n_neighbours Number of neighbours space used 60 to 200 neighbours

weights
Method for weighting distance. uniform (weighted equally)
or distance (weighted inverse of distance)

lag Lag is set from 4 to 18 steps or hours

Table 7.3 Baseline Methods and pbet architecture parameters used

Architecture Description

Persistence
Persistence consists in using the real wind speed for time step t as
prediction for all the time steps from 1 to 12.

RF

Random Forest (RF). Ensemble of Trees, using bootstrapping new
trees are generated recursively. All the features are used on each
split and the number of trees generated is limited to 400, best lag
parameter has bee chosen to 12

K-NN

K-Nearest Neighbour using pre-processed examples data, lag 4
steps in length, and using 101 nearest neighbours (distance calcu-
lation Euclidean) and uniform weights- the prediction is obtained
by averaging the next 12 hours of each neighbour.

Persistence is the naive method for a time series ⟨x1,x2, · · · ,xn⟩ and uses the value xn as
a prediction for a Ŷ series with horizon H like xn+1 = xn+2 = · · ·= xn+h = xn.
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7.2 Experimentation Approach

The Persistence calculation confirmed the literature findings [73], generated results that
showed a steep accuracy (R2) deterioration as time steps increase (each time step worse
accuracy), becoming negative for some wind sites, and, for most sites, the error in step 12
is high. When the results (∑ R2 of each wind site for the 12-hour steps) are positioned in a
map, the areas with more variability of winds can be observed graphically (see Figure 7.2);
comparing these areas with wind resource studies of the U.S. geography, (like the global
wind atlas [8]). We observe that where the persistence ratings are weak, the variability of
winds is very high. The most significant errors located in areas with complex terrains (Rocky
Mountains) and with high wind variability (West Coast and Central Plains). As a result of
this comparison, a research question arises. Is the error in persistence an indication of the
terrain complexity of the site? This question is developed in detail in Chapter 10.

Fig. 7.2 This map shows the 126,692 wind sites on a map of the U.S. The colours indicate the error
measures as the sum of R2 for applying a persistence method 12 h ahead for all the sites. Dark is low

error, while lighter colour shows a higher error, a measure that is an indication of the forecast
complexity of the site.

Random Forest is the second baseline method. This choice is based on the known ability
of decision trees to perform valid predictions on wind time series [222], and thus becoming
a useful benchmark measure. The Random Forest regression model is an ensemble method
based on decision trees with bootstrapping. The time-series is transformed into a set of
examples E∗ for training, and from this set, a random new set Z∗ is constructed using the
bootstrap technique with size N. (Bootstrapping consists in generating sets of samples
from an initial set randomly with replacement). Then Trees are built recursively with the
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Basic Deep learning architectures for wind time series forecasting

bootstrapped set of data Z∗, generating an ensemble of N trees {Tb}N
1 the regression function

will be then:

ŷ = ( f̂ )N(x) =
1
N

N

∑
b=1

Tb(x) (7.1)

The bias of the forest usually increases compared to a simple tree, but due to the averaging
of the bootstrapped data, its variance decreases, hence generating a better learner than using
individual trees. The strategy followed in the experimentation is to use all the features on
each tree split action, while the number of trees chosen is 100.

Random Forest obtains excellent results on the training dataset, but with costly use of
computer resources as the recursive approach is costly. The results show a 6.770 R2 average
over all the NREL sites for the test data (sixth year) and 6.532 for the validation (seventh
year).

The last baseline consists of the application of a k-Nearest Neighbours (k-NN) approach.
We have optimised the number of neighbours and how to combine its predictions, and
the best k-NN model found uses pre-processed examples data with time windows of 6 h
in length, using 15 nearest neighbours (applying Euclidean distance) and with prediction
obtained by unweighted averaging of the next 12 h of each neighbour. The results of the k-NN
accumulated accuracy (adding the accuracy of the 12 steps ∑ R2) is 4.91 on average, better
than persistence, but not close to the Random Forest, which obtained the best performance.
The results for the three baselines are presented in Table 7.4.

Table 7.4
Baselines distributions summary

Architecture Test-mean Test-σ Val-mean Val-σ

Persistence 2.699 1.951 2.486 1.919
Random Forest 6.770 0.804 6.532 0.737
k-NN 4.675 1.02 4.430 0.941

Figure 7.3 compares the distributions in test and validation dataset for each experiment
and shows the density plots of both sets of distributions.
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7.2 Experimentation Approach

(a) Persistence distribution plot (b) Persistence density plot

(c) Random Forest distribution plot (d) Random Forest density plot

(e) k-Nearest Neighbor K-NN Distribution Plot (f) k-Nearest Neighbour K-NN Density Plot

Fig. 7.3 Baseline plots, Persistence, Random Forest on whole dataset and k-NN on 4,200 sites
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7.3 Determination of best regression strategy

In Section 2.4.3, we described different strategies for a multi-step-ahead forecast, which
we summarise in three groups, regressive, direct or MIMO. The objective of this initial
experimentation is to analyse, which is the best regression approach for the wind forecasting
problem. This result is relevant as all the models and architectures will apply the best
approach in the experiments. To determine the best regression strategy, we need to analyse

Table 7.5 Parameter space for MLP architectures

Method Parameter Space - Values - Comments

MLP

activation
The activation function to be used in the architecture. ReLU,
Elu (with alpha), Leaky relu (with alpha), Prelu (with alpha),
Linear, Hard_sigmoid, Tanh

layers
We considered several combinations of layers and neurons
per layer. Basically 1 to 6 layers with combinations of neuron
numbers like [32, 64, 128, 256, 512, 1024, 2048]

drop
0.0, 0.1, 0.2, 0.3, 0.4, 0.5. MLP architectures share same drop
across layers

lag 6, 12, 18, 24

the three different approaches empirically, as there is not a consensus on which is the best
approach, as this depends on the problem and the data [14].

The main issue with wind time series is their non-linearity property. Most of the work
about multi-step forecasting uses linear models because these methods are effective with
linear time series. In some cases, with series that are weakly non-linear, the linear methods
work quite well. Wind time series can be strongly non-linear, and for this reason, we can
presume the superiority of the direct strategy over the recursive, as it is pointed, in previous
works like [200, 110].

MIMO is a variant or improvement from the Direct approach. While the direct approach
consists of applying one model per each time step to forecast, the MIMO approach generates
them in "one go" (all steps at the same time). This model is inspired in the works of [110], [21]
and [14], researchers that have gone more in-depth in the development of MIMO approach
for non-linear time series forecasting. There are works in the literature that describe how the
recursive approach introduces some uncertainty in the forecast, thus becoming less accurate
than the other methods [208], despite knowing those precedents we tested this approach in
the experimentation to verify its accuracy.

We tested the three approaches with the MLP (direct, MIMO and recursive). The experi-
ment consisted of the execution on 2,000 sites (architectures with two layers of depth and
input sequences with lag of 12).
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7.3 Determination of best regression strategy

Table 7.6
Direct and MIMO strategies description and parameters

Architecture Description

MLP Direct

MLP with Direct regression, it has with two hidden layers with
1024 and 512 neurons with the ReLU activation function and
dropout layers of 0.2 and one output layer with one neuron with
linear output. This architecture requires being used as many times
as time steps to forecast, 12 times (for horizon 12 h) in this work.

MLP MIMO
MLP sequence to sequence or Multi-Input Multi-Output (MIMO)
series consists in predicting the output sequence in one regression.

MLP rec
The MLP recursive approach consists in a multi-regression but
using (recursively) previous predicted values as input for the next
step.

Table 7.7
Direct Regression compared to Recursive and seq2seq (MIMO) approach

Architecture Test-mean Test-σ Val-mean Val-σ

MLP MIMO 7.254 ±0.792 6.954 ±0.732
MLP Direct Regression 7.241 ±0.791 6.938 ±0.733
MLP recursive 7.109 ±0.788 6.826 ±0.728

The experiment produced three distributions of accuracy results measured in R2. Figure
7.4 illustrates the comparison between the distributions of the three methods and the means
and variances of the distributions are in Table 7.7 for the Test and Validation datasets. To
compare the mean values, we need to verify that these means are significant enough for
comparison.

109



Basic Deep learning architectures for wind time series forecasting

(a) MLP MIMO distribution plot (b) MLP MIMO density plot

(c) MLP direct regression distribution plot (d) MLP direct regression density plot

(e) MLP Recursive distribution plot (f) MLP Recursive density plot

Fig. 7.4 Plots comparison for regression approach selection: MIMO, Direct Regression and recursive
architectures
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7.4 Main Experiment: Deep learning Models

To verify if the three distributions are different and comparable, we perform a one-way
ANOVA test on the three distributions, which rejects the hypothesis that are the same. We
apply a Tukey’s Honestly Significant Difference (HSD) test to verify the significance of the
means from the distribution, which also rejects the hypothesis that are the same. In this way,
we can assure that the MIMO approach represents a statistically significant improvement
over the other two methods.

One-way ANOVA Test set

=============

F value: 69.89231156533315

P value: 1.0051486082850431e-30

Multiple Comparison of Means - Tukey HSD,FWER=0.05

==============================================================

group1 group2 meandiff lower upper reject

--------------------------------------------------------------

JM_MLP_DirREG JM_MLP_MIMO 0.1371 0.0777 0.1964 True

JM_MLP_DirREG JM_MLP_recursive -0.162 -0.2214 -0.1026 True

JM_MLP_MIMO JM_MLP_recursive -0.2991 -0.3585 -0.2397 True

--------------------------------------------------------------

The statistical analysis helps us to determine that the MIMO approach is slightly more
accurate, and taking into account the higher computational requirements (as every step in
the horizon prediction requires an individual model) of the direct regression, we can see that
the MIMO approach has better accuracy in a wind forecasting application. The conclusion
from this experiment is to use the MIMO approach in the architectures.

7.4 Main Experiment: Deep learning Models

We choose four architecture families for the experimentation, Multi-Layer Perceptron MIMO
(MLP), Convolutional Network seq2seq (CNN), Recurrent Neural Network seq2seq (RNN),
and Recurrent Network with the Encoder-Decoder architecture (RNN ED).

The universe of parameters for CNN and RNN is illustrated in Table 7.8, for the MLP is
in Table 7.5.
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Table 7.8 Parameter space for CNN and RNN architectures. Some combinations are missing as some
architectures allow for different parameters per layer (for example different kernels or filters per

layer)

Method Parameter Space - Values - Comments

CNN

activation
The activation function to be used in the architecture. ReLU,
Elu (with alpha), Leaky relu (with alpha), Prelu (with alpha),
Linear, Hard_sigmoid, Tanh

filters
The number of filters to be used in the convolution [16,32,
64, 128, 256, 512, 1024, 2048]

strides Strides in the convolution [1,2,3,4,5]
kernel_size kernel size for the convolution [1,2,3,4,5,6,7,8,9]
drop drop to apply to the layers[0.0, 0.1, 0.2, 0.3, 0.4, 0.5]

depth_multiplier
Depth multiplier allows to multiply the number of channels
in the convolution output [1,2,3,4,5,6,7,8]

fulldrop drop to use in the MLP layers [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]

full

layers and neurons of the MLP network [64],[128],[256],
[512], [1024], [2048], [4096], [64,32], [128,64], [256,128],
[512,256], [1024,512], [2048,1024], [128,64,32],[256,128,64],
[512,256,128], [1024,512,256]

activation full
Activation for MLP (with alpha), Prelu (with alpha), Linear,
Hard_sigmoid, Tanh

lag Input sequence [6, 12, 18, 24]

RNN

activation
The activation function to be used in the architecture. ReLU,
Elu (with alpha), Leaky relu (with alpha), Prelu (with alpha),
Linear, Hard_sigmoid, Tanh

neurons Number of neurons in RNN layer [32, 64, 128, 256, 512, 1024,
2048]

neuronsE Number of neurons in Encoder layer for RNN ED [32, 64,
128, 256, 512, 1024, 2048]

neuronsD Number of neurons in Decoder layer for RNN ED layer [32,
64, 128, 256, 512, 1024, 2048]

drop drop in RNN layer [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]

nlayers
number of layers in RNN [1,2,3] there is a related parame-
ter that is nlayersE and nlayersD which are the number of
encoder-decoder layers

activation full
Activation for MLP (with alpha), Prelu (with alpha), Linear,
Hard_sigmoid, Tanh

fulldrop drop to use in the MLP layers [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]

full

layers and neurons of the MLP network [64],[128],[256],
[512], [1024], [2048], [4096], [64,32], [128,64], [256,128],
[512,256], [1024,512], [2048,1024], [128,64,32],[256,128,64],
[512,256,128], [1024,512,256]

lag Input sequence [6, 12, 18, 24]
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7.4 Main Experiment: Deep learning Models

For all these models, the selection of parameters is obtained by hyper-parameter search-
ing using a selection of controlled sites and then tested with the whole dataset (see Section
6.4).

The question to answer is: Which method is better for wind forecasting? After performing
all the experiments, we compare the R2 distributions as we illustrate in Figure 7.8.

The first issue would be how to compare the different distributions, and this was accom-
plished by performing an Analysis Of Variance (ANOVA) test, which determines if there are
significant statistical differences between the means of all the obtained distributions.

Table 7.9 Deep learning Basic Architectures details.

Architecture Description

MLP MIMO

MLP with two hidden layers with 258 and 128 neurons with the
ReLU activation function and dropout layers of 0.4 and one output
layer with 12 neurons (equal to the prediction horizon of 12 h) with
linear output.

CNN

One 1D convolutional layer with the ReLU activation function, 256
filters with a stride of 1 and a kernel size of 5, followed by an MLP
with an input layer of 32 neurons with the linear activation function
and one output layer with as many neurons as the prediction horizon
with the linear output, in this case 12, as the horizon is 12 h.

RNN MIMO

Two recurrent layers with 32 neurons each, using GRU units with a
hard sigmoid recurrent activation function, a ReLU activation, and
with recurrent dropout of 0.1 followed by an MLP with an input layer
of 512 neurons with a sigmoid activation, a dropout of 0.1, and a final
linear output layer with as many neurons as the prediction horizon,
in this case 12, as the horizon is 12 h.

RNN ED

An RNN encoder with two layers of GRU units of 96 neurons and an
RNN decoder with one layer of GRU units with 64 neurons both with
the hard sigmoid recurrent activation function, ReLU activation func-
tion, and a dropout of 0.3, each time step of the prediction horizon is
with a linear activation function.

The question to answer is: Which method is better for wind forecasting? After performing
all the experiments, we compare the R2 distributions as we illustrate in Figure 7.8.

The first issue would be how to compare the different distributions, and this was accom-
plished by performing an Analysis Of Variance (ANOVA) test, which determines if there are
significant statistical differences between the means of all the obtained distributions.

The test result obtains an F-value of 2.655 and a p-value of 0.0317. These results tell
significant differences among the group of means. To assess the individual differences,
we use Tukey’s honestly significant difference test (see Table 7.10). This test compares the
distributions assessing the pair differences.
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Table 7.10 Distribution comparison between the experiment using Tukey’s honest significant
difference test, Family wise error rate FWER = 0.05, after the ANOVA test of a F-value of 2.655 and a

p-value of 0.0317.

Group 1 Group 2 Meandiff Lower Upper reject

CNN MLP 0.1485 0.1402 0.1568 True
CNN RNN −0.0566 −0.0649 −0.0483 True
CNN RNN ED −0.0409 −0.0491 −0.0326 True
MLP RNN −0.2051 −0.2134 −0.1968 True
MLP RNN ED −0.1894 −0.1976 −0.1811 True
RNN RNN ED 0.0158 0.0075 0.0241 True

The results point to the MLP method as the better overall, with a more significant
positive difference in the mean compared to the other methods. CNN was better than both
RNN variations while RNN encoder-decoder was marginally better than RNN sequence to
sequence. From the closeness of the results, we observe that the worse and best models are
not very far from one another.

It could seem to counter-intuitive that recurrent neural networks models do not have
the best performance in this domain, given that they are specifically tailored to process
sequential data. There has been recent literature questioning the necessity of recurrent
models in certain domains including time series prediction where high dependencies are
not needed [190, 10] or because the recurrent models used are stable (no gradient problems
during the optimisation) and can be approximated by feed-forward models [150]. Some
feed-forward and convolutional architectures outperform recurrent ones in some examples
of automatic translation [69] or speech synthesis [231].

A boxplot of the distribution of R2 for each time horizon (see Figures 7.5 and 7.6)
also shows some relevant characteristics. The RNN and CNN models performed better
in the short term (1–2 h) than the MLP ones, which showed better results in the 3–12-h
interval. In this sense, it is observed that RNN and CNN are better at learning the short-term
characteristics of the series, while MLP is more consistent in the full 12-h prediction. Again,
the differences were small, but relevant, as calculated on the 126,692 sites, and showed a
strong trend.

We developed a map of the persistence accuracy across the North America geography
(see Figure 7.2). With all the experimental results obtained, we include in the map the best
architecture for each site (see Figure 7.7), allowing a graphical analysis of the results to
identify geographical patterns related to architectures.

• MLP showed better accuracy in most places
• CNN showed the best accuracy in the Rocky Mountains and the Florida and North

Carolina Atlantic Coastline.
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Fig. 7.5 Boxplot comparing the hourly distribution of R2 error results between the MLP and CNN
methods.

Fig. 7.6 Boxplot comparing the hourly distribution of R2 error results between the MLP and RNN
ED methods.

• RNN (encoder-decoder) and RNN seq2seq became the best methods in the western
area of the U.S. between the Rockies and the Pacific West Coast, especially in the
Nevada and Arizona deserts.

From the information on the comparison map (see Figure 7.7), a relationship between site
location (terrain and local characteristics) and the best model can be drawn. This relationship
opens possible new areas of research, some of them discussed in Section 7.5. Is the accuracy
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Fig. 7.7 Graphical analysis of the best model for each site. Each site is coloured with the best method
in that site and shows some geographical wind patterns in the U.S. geography, opening the

discussion of the relationship between wind site topology and deep learning method.

Table 7.11 Mean and standard deviation of probability distributions for main architectures

Architecture Test-mean Test-σ Val-mean Val-σ

MLP MIMO 7.254 ± 0.792 6.954 ± 0.732
CNN 2 layers 7.146 ± 0.795 6.840 ± 0.751
RNN MIMO 7.147 ± 0.797 6.823 ± 0.736
RNN ED 7.101 ± 0.804 6.790 ± 0.743

constant over the years? If there are changes caused by drifting winds, seasonal weather
model modifications, and climate change, then the accuracy will vary over time. With
seven years of data available, five for the initial training, one year for a test, and another
for validation, an analysis of the accuracy evolution was made. The comparison between
the test and validation datasets that used the sixth and seventh year respectively showed
differences in their distributions. In this case, applying a t-test for two related samples, given
that the scores were computed for the same population, resulted in a significant difference
in means, as can be seen in the Figure 7.8 that summarises the results for the test and mean
datasets of the experiments.

Computing a linear regression between the validation and the test dataset results, we
obtain a value of 0.97. This high value is showing a great correlation between the predictions,
which tells that the model is consistent for the 6th and the 7th years.
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(a) Distribution plot CNN 2layers seq2seq (b) Density plot CNN 2layers direct

(c) RNN s2s distribution plot (d) RNN s2s density plot

(e) RNN ED distplot (f) RNN ED densplot

Fig. 7.8 Plots of CNN and RNN architectures
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7.5 Discussion

The experimentation shows that the series lag adequate for training is quite short (12-18
steps or hours), a finding aligned with the physics of wind formation.

Another finding is related to the importance of hyper-parameter optimisation. A sample
architecture shows over 20% variability between its vanilla version (manual selection of
parameters) and the tuned one (after an extensive parameter space search). This result is
another expected outcome as the deep learning models have many parameters that require
a structured parameter optimisation to release all their potential.

Regarding the specific architectures, we observe that the RNN have not rated as the
best, a finding that conflicts with the naive understanding about how the recurrent neural
networks are better for interpreting sequences. In this case, we can infer that the recurrent
networks do not perform so well due to the nature of the problem, with short input and
output sequences, both of fixed length.

MLP and CNN models have shown the best results. with a slight advantage on the MLP.
However, from the experimentation we have observer higher variability in the CNN models,
for this reason we have chosen the convolutional operation as a target for further specific
experimentation in order to understand better the capacity of the convolutional operations
on multi-step wind time series forecasting (see Chapter 9).

On the question regarding the validity of training for the sixth and seventh year, we have
shown that the training is still valid for both years.

Finally, we have noticed that the methodology is well defined for overall accuracy
assessment, but with a single value for an architecture it impossible to understand the
dynamics of the prediction in a single site. In the thesis the value that qualifies the result
of an architecture (see result tables in Appendix A) comes from calculating the mean of the
accuracy distribution results (R2). However, as the distributions come from thousands of
sites, it is difficult to understand the behaviour of the prediction for a specific geographical
location. To interpret the values in a single site, we have designed a representation that
allows to visually observe how the algorithm performs in a site over a year (see Figure 7.9)

The strip visualisation allows to understand the accuracy of the prediction for a specific
site. In the next pages we use this representation to illustrate the accuracy over a whole year
of a method applied to a single site. The horizontal axis correspond to time steps and covers
a full year, while the vertical axis to the 12 hours prediction.

The accuracy calculation in the figure is made based on the difference between predicted
and real values, measured in m/s. A point in the figure, for wind speed, is the difference
between prediction and real value for a time step i and for a prediction step j, the value
for one step i = (1, · · · ,8760) and j = (1, · · · ,12) is vij = ŷij − y(i+j).The colours represent
the absolute value of vi. White colour is zero, which is a perfect prediction, while dark red
signals a positive deviation of 15 m/s or more. Dark blue is a negative deviation of -15 m/s.
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Prediction 
time step

[1:12]

time step (1 hour interval) 
Jan 1st - Dec 31st

Fig. 7.9 Interpretation of strip visualisation

The visualisation is used to understand the accuracy patterns of a given prediction for a
site. By observing how the colours change between seasons, or by comparing them with
the results from other sites we can understand which model is more accurate and how it
represents seasonality, under-prediction or over-prediction.

In the next pages we illustrate these interpretations with ten strip representations, in two
groups of figures, in the first we selected randomly between the best accuracy sites, and in
the second from the worst, as follows,

1. Figure 7.10 : Prediction accuracy. Sites selected from best accuracy measured in R2
(above 9.0 average)

2. Figure 7.11 : Prediction accuracy. Sites selected from low average accuracy measured
in R2 (below 4.9 average)

In Figure 7.10 we can observe how the top two sites (116672 ans 23770) a clear seasonality
between summer and winter. the other three sites have less seasonality and specially the
bottom two (152, 1534) show good prediction across all seasons. Both sites are located in the
same area (Florida-Gulf of Mexico) and we see corresponding errors in the accuracy (Red
vertical stripes around step 4200 and blue around step 7000).

In Figure 7.11 there predictions have less accuracy in general (darker colours) and we
can observe better accuracy in summer in the bottom site (12499 - New Mexico) and in the
top one (site 54711 - Colorado) we see a period of good accuracy at the end of winter.
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Fig. 7.10 Accuracy strips for 5 sites with MLP R2 accuracy above 9.0. Vertical axis represents the 12
steps in the horizon (top is first step, bottom 12th step), horizontal axis are the hours in a year. The
horizontal coloured bar illustrates seasons (winter: blue, spring: green, summer: red, fall: brown)
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Fig. 7.11 Accuracy strips for 5 sites with MLP R2 accuracy below 4.9. Vertical axis represents the 12
steps in the horizon (top is first step, bottom 12th step), horizontal axis are the hours in a year. The
horizontal coloured bar illustrates seasons (winter: blue, spring: green, summer: red, fall: brown)
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Chapter 8

Going Deeper with wind time series
forecasting architectures

After the first wave of experiments, we designed new architectures with new features and
models. We use RNN and MLP basic models, extending them with new characteristics.
Another addition has been the use of series sampled every five minutes, to predict at twelve
hours and one hour ahead. A final set of experiments consists of adding some weather
information into the series. This variable is a low-resolution weather forecast measure (in
these experiments is temperature), and we analyse the impact in the model accuracy.
This chapter has four main sections. The first one analyses variants on the MLP architecture.
The second section analyses new approaches with RNN architectures using GRU and LSTM
cells. Then we describe how the results improve by the use of higher frequency series, and
the last section introduces some weather forecast information in the series.
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Going Deeper with wind time series forecasting architectures

8.1 Introduction

In Chapter 7, we described a set of experiments with the basic MLP, CNN and RNN architec-
tures. In this chapter, we perform experimentation on MLP and RNN architectures using
different variations and features that add some new capabilities to them. The Convolutional
networks are analysed in depth in Chapter 9. Then we perform two main additional changes
in the experimentation. Firstly, we experiment with series with a shorter period, and we
use them for prediction at one hour ahead, and twelve hours ahead. The final experiments
deal with the introduction of some weather information into the network. The purpose is to
verify if there is a change in the accuracy of the networks.

8.2 MLP architecture variants

In Chapter 7, the experimentation showed that the MLP architectures are a good fit for
multi-step wind speed forecasting. In this section, we explore two variations on the classic
architecture, one with cascade connections and then with the SJOINT model. We analyse
several regression approaches alternative to the direct regression and the MIMO approach.

Table 8.1 MLP additional Architectures

Architecture Description

MLP skip

Based on the baseline MLP Architecture, connections between
input and input of new layers are connected. This allows for
deeper architectures. The example shown in the results has one
layer of 1024 neurons, followed by two layers of 512 neurons.

MLP SJOINT
Multihorizon SJOINT strategy Training is done separately for
blocks of horizons (if the block size is one this is a direct regression)
as generating a model with multiple regressions

Both architectures are refinements of the classic MLP. MLP Cascade adds connections
between layers, while MLP SJOINT experiments with training strategies that try to extract
information to regress not a single output but multiple outputs.

8.2.1 Skip connections in MLP architectures

Skip connections are defined to avoid the vanishing gradient issue with neural networks
by adding additional connections from the input to the network to the intermediate layers
and concatenating this input with the intermediate layer output. Skip connections are used
in large Convolutional networks but can be added to MLP networks as described in [241]
where they use an MLP with a single skip connection.
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8.2 MLP architecture variants

In this section, we perform several experiments with skip connections in an MLP network.
(see Figure 8.1). This architecture shares the inter-layer connections with the skip models.
The connections allow maintaining the input values across the layers avoiding vanishing
values when close to zero.

Concatenate 

input sequence

output layer

Connections

MLP Layer

MLP Layer

MLP Layer

Fig. 8.1 Skip connections in MLP architecture

Table 8.2 Mean and standard deviation of probability distributions for MLP additional architectures

Architecture Layers Test-mean Test-σ Val-mean Val-σ

MLP SKIP 1L 7.170 ±0.801 6.847 ±0.737
MLP SKIP 2L 7.253 ±0.796 6.948 ±0.734
MLP SKIP 3L 7.250 ±0.801 6.940 ±0.739
MLP SKIP 4L 7.233 ±0.800 6.922 ±0.741
MLP SKIP 5L 7.216 ±0.800 6.903 ±0.744

The different experiments use the same parameters as the classic MLP architecture for
comparison results, and we have experimented with skip connections with one to five layers.
The results obtained show how the skip connection maintains the accuracy in deeper models,
a reasonable outcome, as the cascade connection avoids the vanishing gradient to happen in
the deepest layers by refreshing the input sequence on each layer.

The comparison experiment uses similar parameters for the cascade and for the classic
architectures, to obtain a valid comparison. It is relevant to mention that we did not perform
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Going Deeper with wind time series forecasting architectures

Table 8.3 Comparison Cascade with Classic MLP

Layers Classic MLP MLP skip2

1 Layer 7.169 7.170
2 Layers 7.253 7.253
3 Layers 7.211 7.250
4 Layers 7.181 7.233
5 Layers 7.111 7.216

a complete parameter optimisation for each one of the architectures, to level the field for the
comparison. For illustration purposes, we compare the cascade connections in Table 8.3.

8.2.2 Multi-regression architectures MLP SJOINT

In Chapter 7, we performed the experimentation with three regression strategies, which
are; MIMO, that generates the whole output sequence in one simultaneous step, recursive
regression, where a regressed step is used by the next regression recursively, and the multi-
regression approach, where there is an independent regression for each future prediction
time step.

However, there are intermediate strategies like the SJOINT, which is an intermediate
approach [208], sitting between the direct regression and the multi-step regression. It divides
the output sequence into blocks of consecutive steps, and then the architecture performs
a regression for each block. There will be a different set of parameters θ for each set of
parameters.

Being n the length of the block and H the number of steps in the prediction, the number
of blocks is L = H/n. L is also the number of regressions performed in the model (see Figure
8.2).

Our SJOINT architecture only performs regressions on sequences of equal length, thus
reducing the total number of possibilities, and making the experiments more straightforward.
For a horizon H of 12, we can perform this the SJOINT regression in six different ways (see
Figure 8.2).

Each regression trains on a slice of output sequence. As the horizon is twelve, the
number of possible slices is the divisors decomposition of H, in this case (1,2,3,4,6,12), the
slice determines the block size for the regression. As an example, for a slice block of1one,
there are twelve possible regressions, where for a slice block of six, there are two. When
the model performs a single regression, then is the equivalent to the MIMO approach, and
when performs twelve regressions is equivalent to the already analysed direct regression
(see Section 7.3).

In the analysis of Direct Regression compared to the MIMO approach, the MIMO ar-
chitecture obtained a slightly better result, but with a short margin (just over 1%). When
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8.2 MLP architecture variants

horizon = 12

n=1 12 regressions

n=2 6 regressions

n=3 4 regressions

n=6 2 regressions

n=4 3 regressions

1 2 3 4 5 6 7 8 9 10 11 12

regressionregression

Fig. 8.2 Multiple regressions with Sjoin architecture, n is the size of the contiguous steps to be
considered for training

performing the SJOINT comparison, we obtain the SJOINT with block size six (two regres-
sions) as the best performing architecture. The architecture with three regressions and block
size four obtains a better result than the MIMO approach.

These results are telling us that the algorithms perform better if we divide the sequence to
predict in chunks of three or four hours. The time length aligns with the physical properties
of wind, which changes in periods of approximately 3 hours [117] and with the conclusions
from the experimentation in this thesis regarding the wind-speed series length (see Section
11.3.1).

We leave an open question regarding how the SJOINT multiple regression strategy
behaves with other deep learning architectures (like CNN or RNN), nevertheless is relevant
to point out that the small improvement of accuracy by using SJOINT require to double (or
triple) the computer resources for the training process.

Table 8.4 Mean and standard deviation of probability distributions for MLP Multi-regressions. Slice
is the size of the block to predict (slice 2 = 12/2 = 6 regressions)

Architecture Block Regressions Test-mean Test-σ Val-mean Val-σ

MLP SJOINT 1 12 7.241 ±0.791 6.938 ±0.733
MLP SJOINT 2 6 7.247 ±0.790 6.943 ±0.731
MLP SJOINT 3 4 7.252 ±0.788 6.947 ±0.731
MLP SJOINT 4 3 7.255 ±0.788 6.949 ±0.730
MLP SJOINT 6 2 7.257 ±0.790 6.953 ±0.730
MLP SJOINT 12 1 7.253 ±0.792 6.951 ±0.731

Performing an Tukey’s honestly test with the distributions to check if they are signifi-
cantly different, we obtain false results, concluding that the differences are not significant.
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8.3 RNN Architectures GRU or LSTM cells and Attention

We analysed two basic RNN architectures in Section designed explicitly for wind prediction.
The RNN Encoder-Decoder and the RNN MIMO. Both architectures use the basic RNN cell.
In this section, the objective is to understand the impact on the architecture accuracy by
using alternative cells, GRU or LSTM.

Table 8.5 RNN alternative models

Architecture Description

RNN MIMO GRU RNN MIMO architecture with GRU Units

RNN MIMO LSTM RNN MIMO architecture with LSTM units

RNN ED s2s GRU RNN ED with GRU units

RNN ED s2s LSTM RNN ED with LSTM units

RNN MIMO GRU Attention RNN Attention GRU

RNN MIMO LSTM Attention RNN Attention LSTM

In Section 3.6, we analysed the RNN architectures, describing the different cells used by
the recurrent networks. The primary three cells are; LSTM designed to avoid the vanishing
gradient with long sequences, GRU, which is a simplified version of LSTM that works better
for shorter sequences, and finally the vanilla RNN cell.

In the initial parameter exploration for RNN in Chapter 7, we used GRU cells for the
RNN architectures. In this section, we want to see how the LSTM cells impact the accuracy
of the RNN networks.

The expectation for the LSTM cells is to work better for longer and more complex
sequences, and the question is if the horizon and lag of the learning sequences can be
considered short or long. In principle, our understanding is that series of 6 to 18 steps long
(lag), or 12 steps (Horizon) are not long enough for the LSTM cell to deploy all its capabilities.
This assumption is confirmed by our experimentation (see summary Table 8.6).

Table 8.6 Mean and standard deviation of probability distributions for alternative RNN architectures

Architecture Test-mean Test-σ Val-mean Val-σ

RNN s2s GRU 7.147 ±0.798 6.822 ±0.735
RNN s2s LSTM 6.952 ±0.805 6.635 ±0.738
RNN ED s2s GRU 7.109 ±0.805 6.786 ±0.749
RNN ED s2s LSTM 6.965 ±0.807 6.652 ±0.749
RNN s2s GRU att 6.598 ±0.826 6.290 ±0.743
RNN s2s LSTM att 7.003 ±0.804 6.700 ±0.744
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8.4 Using series with a 5 minute step

The results with LSTM cells are consistently less accurate than with GRU cells, and this
confirms our hypothesis. The fact that the series are of fixed length is another element that
makes its sequence management by the recurrent network easier, explaining an additional
advantage that the GRU cells have with this problem.

Finally, we added attention capabilities to the RNN cell. Attention consists of creating a
trainable layer of weights that act as context, used by the network to improve the sequence
learning. It is used in applications where the sequences of data are long and complex to
understand (like Natural Language Processing). The mechanism implemented is based on
the attention model by Bahdanau et al. described in 2015 in [9]. This attention is additive
and considers the whole context.

During the experimentation phase with all the architectures, we observed that the optimal
input length of the sequences for the prediction is short (the lag parameter) sometimes as
short as six steps, a fact that limits the impact of mechanisms defined for longer and more
complex sequences. When applied to the wind speed prediction problem, the attention
mechanism has a little impact, not generating improvements in the algorithm accuracy.
However, we observe a better behaviour with GRU cells over LSTM.

8.4 Using series with a 5 minute step

The series used for the experimentation in this thesis have steps with one-hour period (see
Section 6.2.1). However, the original data was created with five minutes periods. Based on
previous works [80] were they observe better results from series with higher frequency, in
this section we outline several experiments intending to confirm if shorter period series have
more useful information, allowing the models to obtain better results with higher accuracy.
With this objective, we plan an experiment with series that have the original period of five
minutes.

The series sampled at five minutes have more data than when sampled at one hour (12
× times) and, if the models use this additional data, they should increase the result accuracy.
In this section, to test this hypothesis, we design an experiment with an MLP that predicts
144 steps, which is the equivalent to twelve hours (144× 5m = 12h).

The forecasting is made by an MLP with the MIMO structure (see Section 7.4), the
parameters used in this architecture are described in Table 8.7)

With these parameters, the results obtain a jump in the accuracy, as the best accuracy
obtained with a similar architecture with series at 1h is 7.254 (Test) and 6.953 (Validation).

For illustration purposes, we average the output hour per hour over the prediction
horizon, and we generated a boxplot to compare the distributions between two methods,
one applied to series sampled at one hour and the other a series with a period of five minutes
(see Figure 8.3). In this boxplot We observe that the effect of the higher frequency series is
relevant for the first steps reducing its impact as the sequence increase, this fact tells us that
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Table 8.7 Architectures with series sampled at five min forecast at 12h

Architecture Description

MLP 5m 12h

Architecture based on the basic MLP and predicts 144 steps
aggregated at 1h (12 hours ahead). It is a two-layer network
with 512 and 256 neurons, with drop connections (0.3) and
uses a Leaky activation with α = 0.3. The lag is 144 steps
(12) hours for the inputs, and the prediction is for 144 steps
ahead (12 hours)

Table 8.8 Mean and standard deviation of probability distributions for Series at 5m

Architecture Test-mean Test-σ Val-mean Val-σ

MLP 5m 12h 7.409 ±0.775 7.095 ±0.724

the increase of information, when we use a shorter period series, is more relevant for the
first hours to predict than for the last ones.

Fig. 8.3 Boxplot comparing the hourly distribution of R2 error results between the MLP of series at 5
minutes and MLP of series averaged at 1h
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8.5 Using a low-resolution weather variable

8.5 How using a low-resolution weather variable increases accu-
racy over time series of different frequencies

In commercial applications of wind energy prediction, the models use weather forecast
measures from weather services that provide this information. In these models, the accuracy
depends on the reliability of the Numerical Weather Prediction (NWT) model.

In Weather forecasting, the uncertainty of variable type differs, for instance, it is easier
to predict temperature than to predict wind speed, as the temperature is more stable over
a large area, wind, is much more difficult to forecast as it depends on many local features.
Accurate weather models require tiny grids (also defined as high-resolution grids) to model
weather with enough granularity to describe the local features. Variables that can be forecast
with larger matrixes are low resolution variables, as they are not impacted by local features as
much as wind, for example, which depends on tiny terrain features.

In this approach, we use temperature as a low-resolution variable. Temperature is more
accessible to forecast than wind, and, by adding it to the models, we can increase the accuracy
of the wind production. There are experiences in the literature that use low-quality weather
measurements to increase the accuracy of a wind speed prediction model [167]. With this

(a) Distribution plot series with step 5 minutes, we compare distribution with
weather variable in future and without

(b) Distribution plot series with step one hour, we compare distribution with
weather variable in future and without

Fig. 8.4 Comparison of distribution plots MLP with and without low resolution variable in 5m step
series (left) and 1h step series (right)

architecture, the improvement is significant, showing an almost 10% increase in the overall
accuracy (see Table 8.9). With this information, we can conclude that the use of exogenous
information from the time series, even if this information is low resolution, increases the
accuracy of the result.
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(a) Distribution plot MLP classic (b) Distribution plot classic MLP with future (c) Density plot MLP series 1h with future

(d) Density plot MLP classic 5m (e) Distribution plot MLP 5m with future (f) Density plot MLP 5m with future

Fig. 8.5 Density and Distribution Series with future weather variable and without

Table 8.9 Comparison MLP architectures using future weather variable

Architecture Test-mean Test-σ Val-mean Val-σ

MLP MIMO 7.254 ±0.792 6.954 ±0.732
MLP MIMO future 7.806 ±0.785 7.541 ±0.749

MLP 5m MIMO 7.409 ±0.775 7.095 ±0.724
MLP 5m MIMO future 8.026 ±0.754 7.748 ±0.733

Performing a boxplot comparison in series at five minutes between with or without
future we obtain a comparison where it can be observed an improvement of accuracy on all
the twelve steps for both, series at one hour and series at five minutes (see Figure 8.6).
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8.5 Using a low-resolution weather variable

Fig. 8.6 Top Boxplot shows the comparison between series at five minutes with and without future
weather variable. Bottom Boxplot compares results for series at 1h.
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8.6 Can the MLP architecture obtain better accuracy than persis-
tence for prediction one hour ahead?

This thesis designs and performs all the experimentation on a Horizon of twelve steps for
the one-hour series. However, we want to validate the MLP method for predictions made
with series with a period of 5m and one hour ahead prediction.

In the wind prediction field using time series, one hour ahead can be considered as
a short term prediction, and, in principle, the accuracy of the MLP should improve the
persistence. We designed this experiment to test if these deep learning algorithms can
outperform persistence on this prediction horizon.

First, we need to calculate the persistence method for this series as well. We can see the
architectures tested in Table 8.10.

Table 8.10 Architectures with series sampled at 5 min

Architecture Description

Persistence 5m 1h
This persistence shows the results when applied to a 1 hour
ahead prediction when done with series at 5m.

MLP 5m 1h
This architecture is a MLP with same conditions as the MLP
basic structure but with series sampled 5 minutes and pre-
dicts one hour ahead (12 steps)

TWe perform a comparison with the persistence R2 accuracy, that for this model is 10.946,
obtaining a result with the MLP slightly better with a 2% improvement over persistence. The
improvement is nonetheless relevant aligned with the expected wind short term prediction
accuracy, as we validated with previous works like [73, 219].

It is important to note that the architectures used are like the ones used for twelve
hours ahead forecasting. It is possible that by a complete exploration of the architectures-
parameters for the higher frequency series, the accuracy value improves even more. [78]

Table 8.11
Mean and standard deviation of distributions from the prediction one hour ahead using series with

five minutes period

Architecture Test-mean Test-σ Val-mean Val-σ

Persistence 5m 1h 10.946 ±0.344 10.749 ±0.436
MLP 5m 1h 11.123 ±0.267 10.951 ±0.347
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8.7 Discussion

In this chapter, we verified some hypothesis and complemented some architectures initially
described in Chapter 7. The initial experiments, based on vanilla architectures, give an idea
of the accuracy levels of the different models. We completed those basic structures in this
second phase of research, and in this Section, we want to discuss the obtained findings. We
structure this discussion in sections by families of architectures.

MLP architectures

We showed how the skip connections add stability to the network, with significant improve-
ments when the network is deeper. Skip connections have a positive impact on the vanishing
gradient issues, and it shows in the increase of stability in four or five-layer networks (see
Table 8.3).

The best performing networks still is the two-layer model, but architectures with three
layers are a very close second. We believe that the use of skip connections is convenient for
deeper networks; nevertheless, for this wind time series depth at two-layers is enough.

We wanted to go deeper into the comparison between regression models. In Section 7.3,
we identified the MIMO approach as the best regression model, compared with a multiple-
regression (12) regressions approaches, but we want to know if partial regression improves
the results. For this reason, we designed the SJOINT architecture that allows variable lengths
of regression in the model.

The results obtain an exciting conclusion, as the SJOINT approach with regressions for
every 3-4 hours is better than the MIMO approach, based on a single regression. The 3-4
hours have a physical interpretation as from the wind formation theory [117], we know that
wind changes patterns in periods of three to four hours, a conclusion can be applied in wind
forecasting to refine the best predictions, but at the cost of increasing the computing resource
consumption significantly.

RNN networks

The RNN experimentation tried to explain the differences between alternative GRU and
LSTM cells. The differences are motivated by the nature of the wind data and the forecasting
model. Firstly, the wind data has a short lag which do not require the long term memory
approach offered by the LSTM cells, this fact added to the prediction structure (fixed input
length and fixed prediction) reduces the complexity, prioritise the less complex GRU cells
over the LSTM.

135



Going Deeper with wind time series forecasting architectures

Changing the time series frequency

We analyse architectures working with the same data but, sampled with higher frequency,
five minutes in this case (five minutes is the initial step on the data). Just by using the
series at five minutes, we obtain an increase of the accuracy, as the series now contain more
information which can be used by the learning algorithms. We obtained this conclusion with
MLP models, but in Section 9.6 we perform a similar experiment with CNN network. We
can affirm that using series with more information increases the accuracy of the result.

Short term prediction

With the series sampled at 5-minute steps, we performed a forecasting experiment to model
shorter periods, in this case, one hour ahead. In the experiments with a 12-hour prediction
window, persistence obtains poor results, but at one hour ahead, the accuracy of persistence
is remarkable. However, with an MLP model, we improve the accuracy of the persistence
method by 1.5%.

The MLP architecture used is like the ones applied to 12 hours prediction. The creation
of optimised architectures for short term prediction using deep learning is a future area of
research that we address in 12.2.

Introducing weather information

Some weather variables are easier to predict (and with less uncertainty) than others, using
just a temperature prediction in the learning algorithm, the results improve accuracy signifi-
cantly, opening the door for experimentation with hybrid models with Weather prediction
and time series.
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Chapter 9

The effectiveness of CNN
architectures for wind time series

Deep learning Convolutional Neural Networks (CNN) are present in many applications.
Its versatility lies in the reduction of the size of the parameters to train (compared to fully
connected networks) while maintaining or improving the feature representation capabilities
by the application of convolutional and pooling operations. This chapter goes in-depth on
the use of convolutional networks applied to multi-step forecasting.

The separable convolutional layer has shown the best performance on the wind time
series, while other models with several variants have shown excellent performance but with
some added computing costs.

Convolutional networks used for MIMO transformations (Multiple Input Multiple Out-
put) are the right candidate for wind time series.

This chapter starts with an analysis of the different architectures designed and then,
later, analyses the complete experimentation performed with each one of them. The chapter
finalises with a summary of the results and some preliminary conclusions.

This chapter is generating a submission to a journal.
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9.1 Experiments with Convolutional Networks for time series fore-
casting

In this chapter, we analyse specifically convolutional architectures. In previous experiments
in Section 7.4, we identified the potential of the convolution operation for wind time series
representation. In the experiments, the classic CNN architecture was not the best performing,
but in some preliminary tests, by deepening into the hyperparameter search, we found out
that the CNN family of architectures has more potential to improve the accuracy. With this
hypothesis, we decided to analyse the convolution operation from diverse angles to release
all the potential of these models, in this hunt of the best forecasting approach for wind time
series.

In this chapter, we design several convolutional architectures enumerated in Table 9.1,
with a different design, features intending to find the best performing on the full wind
dataset. For the readers’ convenience, we place a summary table of this chapter results
in Table A.2 and, for comparison purpose, there is an Appendix A which gathers all the
experiments results from the different experimentation in this thesis.

Table 9.1 CNN Architectures designed for the experimentation

Model Description

Random Forest MIMO Baseline
CNN Classic CNN 1,2,3,4,5,6,7,8 layers
CNN Separable CNN sep 1,2,3,4,5,6,7,8 layers
CNN Skip CNN skip 1,2,3,4,5,6,7,8 layers
CNN Residual CNN res 1,2,3,4,5,6,7,8 layers
CNN Multi Head 2,3,4 Parallel heads
CNN GB Gradient boosting for sep and Classic
CNN 5m Classic CNN with series at 5 min
CNN sep 5m CNN sep with series at 5 min

9.2 A CNN MIMO approach

In Sections 7.3 and 2.4.3 we analysed the main MIMO approaches. In those sections, we
concluded that the MIMO approach offers better accuracy using fewer resources, and we
consider it as the right structure for a sequence to sequence learning with wind time series.
For this reason, we decided to implement a MIMO architecture for CNN networks.

The CNN MIMO implementation consists in using two blocks. The first block, based
on convolutions, performs the feature extraction, and the second block based on an MLP,
performs the regression that, using the tensor from the output of the first block with the
features extracted, uses it to regress the final forecast sequence (see Figure 9.1).
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9.2 A CNN MIMO approach

Pooling (max, average, sum)

Convolutional Architecture

MLP Architecture

Multivariate Wind Time Series 

Wind Speed Time Series Horizon H

 

Convolutional Layers

MLP layers

Fig. 9.1 MIMO approach to prediction using a convolutional architecture plus an MLP Network

The multivariate wind time series is the input for the CNN block, build up from a
combination of primary elements, like one or many convolutional layers, with or without
pooling, dropping connections or adding batch normalisation.

The combination of one or several CNN blocks with an MLP at the exit is not a novel
approach and already present in most architectures from the Imagenet Challenges [114, 196,
84, 205, 52, 183]. However, the applications for time series are more limited. A relevant
characteristic of the CNN architectures designed in this work is the use of a 1-dimensional
convolution. This convolution operates the kernels only in one axis, and not bi-dimensionally
like the standard 2D convolution used in most applications. 1-dimensional convolutions can
work with one-dimensional or two-dimensional matrixes.
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Fig. 9.2 One dimensional convolution
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The effectiveness of CNN architectures for wind time series

9.3 Baseline Methods

Usually, in wind prediction experiments, the persistence method is used as a baseline.
Persistence consists in using the last time step xt as the prediction for each one of the H
future time steps (xt+1, · · · , xt+H), for short term predictions, is accurate only for short time
predictions, and for 12 hours prediction its error is too high to be used as a comparison.

Table 9.2 Baseline Methods

Architecture Description

Persistence
Persistence consists in using the real wind speed for time step t as
prediction for all the time steps from 1 to 12. It has been discarded
as a baseline method due to its low accuracy.

RF
Random Forest (RF). Ensemble of Trees, using bootstrapping with
trees generated recursively. All the features are used on each split
and the number of trees generated is limited to 400.

For this reason, we chose Random Forest MIMO as a baseline method. Random forest
is used in wind prediction successfully [222], and we considered it the right benchmark
candidate.

Random Forest is an ensemble method based on decision trees with bootstrapping.
The training time-series sequences are transformed into a set of examples E∗, and from
this set, a random new subset Z∗ is constructed using the bootstrap technique with size
N. Bootstrapping consists of generating sets of samples from an initial set randomly with
replacement. Then decision trees are built recursively with the bootstrapped set of data Z∗,
generating an ensemble of trees {Tb}N

1 , with this approach the regression then is:

ŷ = ( f̂ )N
r f (x) =

1
N

N

∑
b=1

Tb(x) (9.1)

The bias of the forest usually is higher than the one of a simple tree, but due to the averaging
of the bootstrapped data, its variance decreases, hence generating a better learner than one
using individual trees. We obtain the best results with 400 trees, and no limit for tree depth
with an unlimited number of examples per node.

We apply the RF to the 126,692 sites. Table 9.3 compares the baseline results.

Table 9.3 Mean and standard deviation of probability distributions for baseline architectures (T): Test
data, (V): Validation data, (Dev): Deviation, (Mean): Mean value

Model Mean-T Dev-T Mean-V Dev-V

Persistence 2.699 ±1.951 2.486 ±1.919
RF 6.770 ±0.805 6.532 ±0.737
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9.4 Parameter space of the convolutional architectures

9.4 Parameter space of the convolutional architectures

In this section, we describe the parameters used in the convolutional layers, which control
the behaviour of the models and require thoughtful experimentation to obtain the best fitting
strategy.

Firstly, in all the models, we need to select the length lag that defines the length of the
input matrixes for training. We confirmed experimentally that this length influences the
results, and for this reason, we include it in the parameter list to optimise. We have obtained
as a result, not very high values (six to eighteen hours), a finding that is aligned with the
nature of wind formation as it is described in the literature [73, 117]. From this value, we can
infer that the wind now does not influence the future wind 18 hours ahead into the future.

We use two different kinds of convolutional layers, the 1-dimensional classic or vanilla
layer and the 1-dimensional separable layer. Separable convolutions perform the convolution
in two steps (see Section 3.5.2. We have not defined hybrid models with both convolutional
layers; our architectures are either separable (for all layers) or classic (for all layers).

The convolutional layers have multiple parameters that influence the inner operation
mechanism. The first parameter is the kernel_Size. A kernel is a filter that is applied by the
convolution to the input matrix, and this parameter fixes its length; the next parameter is
filters, which is an integer that defines the dimensionality of the output (number of filters).
The kernel moves in steps that jump in strides, and the parameter strides defines how the
kernel moves in the convolution.

Padding is another critical parameter (see Section 3.5.1) that controls how the convolution
behaves near the edges. The preference has been to use causal padding as this strategy
introduces time-sensitive knowledge into the convolution being more efficient when used to
predict with sequences.

Depth Multiplier is another parameter which multiplies the channels after the convolu-
tion, impacting the behaviour of the network, we have observed that has a material impact
in the accuracy obtained by the architectures.

The activation function introduces non-linearity in the operation, and we have identified
the Exponential Linear (ELU) and the Leaky Rectified linear functions (leaky ReLU) as the
better performing. Both activations use an α parameter that shapes the function. The best α,
obtained from the different hyper-parameter optimisations, is usually a value between 0.2
and 0.4.

ELU and leaky ReLU avoid the zero-dying issue [239] when there are numbers close to
zero or negatives. As the data has been z-normalised, there are negative values, which are
better captured by these two activation functions.

Dropout is another parameter associated with the layer connections. This parameter has
a significant impact on the model accuracy, and we apply it to the CNN layers, to the MLP
layers, or both.
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We find differences between a non-optimised architecture with the best architecture of
over 10%-15% of the resulting error. This percentage is a significant value that shows how
important it is to find the best parameters for a model.

However, for each experiment, there is not only a single combination with the best
result, but many parameters that generate results very close to the best, sometimes with
minimal differences. In the results table (see Table A.2), we present the best result for some
architectures, but we need to point out that there is not a single perfect parameter combination
as we obtain many quasi-optimal models, where the accuracy is just some hundredths from
the best result

9.5 Convolutional architectures

This section is devoted to experimentation. We describe the different architecture designs,
parameters and their results. We start with the basic models, and we add different modifica-
tions to the original models. We have structured this section in subsections, one, for each
group of architectures.

9.5.1 Classic Convolutional and separable layers

All the convolutions in the different models are 1D-convolutions. Each defined architecture
has a parameter space that defines the behaviour of the architecture (described in Section
9.4). The number of possible parameter combinations has required the use of a hyper-
parameter searching strategy described in Section 6.4. This strategy is relevant due to the
high sensibility of the architecture results in minor changes in parameters. We estimated
a 10% to 15% variation between a vanilla model and its optimised version, which tells the
need for a structured approach to parameter setting

The parameter space already described (see Section 9.4) has been used to obtain the most
accurate network. Possibly the most relevant exploration parameter is the number of layers
or network depth. In the experiments, we defined architectures from one to eight layers.

Table 9.4 CNN Skip and Residual Architectures overview

Architecture Description

Classic Convolutional

Persistence consists in using the real wind speed for time
step t as prediction for all the time steps from 1 to 12.
It has been discarded as a baseline method due to low
accuracy.

Separable Convolutional
These architectures use separable 1 dimensional architec-
tures
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9.5 Convolutional architectures

Table 9.5 Parameters θ for each best model (Classic CNN and Separable models from one to three
layers)

Model θ CNN-1L CNN-2L CNN-3L CNN-sep-1L CNN-sep-2L CNN-sep-3L

CNN

lag 6 12 6 12 12 18
kernel size [3] [3,1] [3,1,1] [9] [9,1] [5,3,3]
filters [128] [128,128] [512] [512] [1024,1024] [512,1024,1024]
strides [1] [1,1] [1,1,1] [3] [2,4] [3,4,4]
activation [elu,0.4] [elu,0.4] [elu,0.4] [elu,0.3] [(elu,0.3),(elu,0.4)] [elu,0.4]
dropouts [0.3] [0.3,0.2] [0.2,0.6,0.5] [0.4] [0.6,0.6] [0.6,0.6,0.7]
depth mul. [1] [1,1] [1,1,1] [5] [8,7] [4,7,4]

MLP layers [512] [512] [512] [1024] [1024] [4096]
dropout [0.2] [0.3] [0.1] [0.4] [0.1] [0.0]
activation [leaky,0.2] [leaky,0.2] [elu,0.3] [leaky,0.2] [elu,0.4] [elu,0.3]

∑(R2) [7.219] [7.226] [7.222] [7.301] [7.321] [7.302]

We build the classic convolutional models with one-dimensional convolutions. We have
implemented six architectures with a depth of one to eight sequential layers. The results
comparing the accuracy of the models with different depths is in Figure 9.7.

The most relevant parameters in these architectures are filters and strides which define
the convolution, depth multiplier which modifies the output channels, drop for each channel,
and the architecture of the MLP component, number of layers, number of neurons and drop.
The number of parameters on each architecture is very high and increases along with the
number of layers used. We show in Table 9.5 a comparison between relevant parameters θ

for the three main classic architectures and the three main separable ones, in bold the two
best performing ones.

Fig. 9.3 Accuracy of convolutional separable networks applied to the NREL dataset - blue less
accurate, dark red more accurate
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Separable models (see Section 3.5.2) perform the convolution in a two-step process. They
reduce some computational cost and have shown the best results for the experiments.

For both architectures, separable and classic, we can observe that including dropout the
accuracy increases, the dropout values vary, and the best usually are between 0.3 and 0.5. We
learnt through these experiments the importance of dropout in training these architectures,
adding dropout to the hyper-parameter search, allowed to improve the overall accuracy of
the networks significantly. Dropout improves the generalisation of the network by randomly
dropping connections during the training. This feature is considered a normalisation feature.
Another normalisation that has revealed not to be as essential and not used for parameter
setting is the kernel regularisation.

For filters and kernels length, the best values usually decrease when the layer number
increases, for the initial layers, the filters are bigger than for the deeper ones.

We use strides one in the classic convolutional network, while for the separable, strides
used are three or four which offer better results.

Regarding the activation functions, the Elu and Leaky units are superior to other func-
tions. Altogether the best models have two layers, in both; classic and separable architectures.
In Table 9.5, we present a complete analysis of the best parameters.

Finally, some parameters may seem complementary, but when we push for the best
result, become essential. Depth Multiplier is vital for the separable convolutions, as this
parameter multiplies the output channels in the convolution, increasing its dimension, its
effectiveness is another contribution to the final optimal result.

The architecture with two separable convolutional layers is the best performing from all
the different experiments, and comparing it with a baseline random forest model, shows
better accuracy for each one of the 12 predicted steps as we illustrate in Figure 9.8. This
hourly (step) comparison shows the superiority of the separable model over the baseline,
with an accuracy that increases at every step, obtaining the most significant difference at the
12th step.

The best architectures have two and three layers, but its accuracy deteriorates fast with
the addition of more layers as we illustrated in Table 9.6 that shows the results of classic and
separable architectures for comparison purposes.

The best architectures are not very deep, and this finding is common to all the deep
learning architectures designed in this work. In principle, deeper should obtain better results
than shallow, but the consistency of this behaviour shows that the wind data series available
do not have the pattern complexity that will require deeper series. State of the art (see
Section 4.3) confirms this point, as the published experiences in the literature conclude that
deep networks for wind prediction are shallow.

We can observe in Figure 9.3 how the accuracy results follow geographical areas. The
map is divided clearly between areas of high wind stability, the Pacific coastline and the
Gulf of Mexico, an area of very low accuracy that spreads over the plains from Canada to
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9.5 Convolutional architectures

Mexico and areas of with mixed high and low accuracy results showing complexity located
in Idaho, Oregon and Colorado. This map is telling us that the wind characteristics in a site
define how difficult is the forecasting of the wind speed for that location.
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Fig. 9.4 Layers and shapes of best CNN Architecture

In Figure 9.4, we can see all the different operations sequentially applied to the input
matrix to obtain the prediction. The different chained operations give us an idea of the shape
transformations and different operations that are applied to each step. Even considering
them as not very deep they have high complexity with a sizeable number of weight connec-
tions to learn, for example on this architecture the number of weights (parameters) to train
is 812,812, and for some of the models developed in this chapter, the number of trainable
elements is well over a million.

The better behaviour of the separable layers is an interesting finding. Chollet in the
article where he defined this convolution operation [34] already pointed this better capability
of separable models for image recognition applications. Separable layers combine efficiency
in their training, due to a less computationally complex operation (see Section 3.5.2), with
a higher representation capability for some applications. Our contribution lies in this
finding. We can affirm that for the wind forecasting problem, separable one-dimensional
convolutions show better accuracy over classic convolutions tested with diverse wind sites
and with several architecture structures (number of layers, input matrixes size, parameters)

9.5.2 Adding Skip and residual connections

Skip, and residual connections are used in convolutional and MLP networks. These connec-
tions have as an objective to avoid the vanishing gradient issue, a problem that happens
training the network, when the weights in a connection get very close to zero losing the
capability to transmit information to the connected layer or cell, the skip or residual con-
nections bring the input information to the intermediate layer. With skip connections, the
layer output is concatenated with the network input, and the residual connections instead of
concatenation they us the addition operation with the sequences.
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Table 9.6 Mean and standard deviation of probability distributions for classic and separable
architectures (T): Test data, (V): Validation data, (Dev): Deviation, (Mean): Mean

The best architectures are in bold typeface

Model Mean-T Dev-T Mean-V Dev-V

RF 6.770 ±0.805 6.532 ±0.737

CNN - 1l 7.185 ±0.802 6.867 ±0.754
CNN - 2l 7.226 ±0.800 6.908 ±0.736
CNN - 3l 7.222 ±0.801 6.895 ±0.734
CNN - 4l 7.190 ±0.804 6.858 ±0.733
CNN - 5l 7.152 ±0.809 6.816 ±0.735
CNN - 6l 7.106 ±0.809 6.771 ±0.733

CNN-sep 1l 7.301 ±0.798 6.991 ±0.752
CNN-sep 2l 7.321 ±0.797 6.988 ±0.745
CNN-sep 3l 7.302 ±0.796 6.988 ±0.746
CNN-sep 4l 7.270 ±0.798 6.954 ±0.754
CNN-sep 5l 7.156 ±0.811 6.848 ±0.736
CNN-sep 6l 7.116 ±0.809 6.806 ±0.736

We introduced skip and residual connections to classic convolutional models and tested
them with one to eight layers. The skip and residual connections link the layers sequentially
(see Figure 3.9),

The results are slightly worse than the ones obtained with classic and separable convolu-
tional models, but looking at the results we can observe (see Table 9.7) that these additional
connections bring stability to the networks as they show better results than the rest of
architectures from five layers onward.

The results from the depth data and the experiment results are in Tables 9.8 and 9.7,
where we can see the better stability of the skip and residuals connections. In this table, the
models with more layers perform better with the skip and residual architectures, showing

Table 9.7 Layer depth comparison between models (error calculated on Test Dataset)

Layers CNN CNN-sep CNN-skip CNN-res

1L 7.185 7.301 6.935 6.862
2L 7.226 7.321 7.223 7.136
3L 7.222 7.302 7.221 7.134
4L 7.190 7.270 7.201 7.118
5L 7.152 7.156 7.183 7.095
6L 7.106 7.116 7.157 7.076
7L 7.052 7.054 7.130 7.055
8L 5.450 5.448 7.090 7.036
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the effect of the added connection. Another finding is that skip connections behave better
than Residuals.

We believe that for shorter frequency time series or series with more variables, with more
data, the best architectures would be deeper, and in this case, the best architectures will
require this kind of connections.

Table 9.8 Model Experimentation R2 results for skip and residual architectures, (T): Test data, (V):
Validation data, (Dev): Deviation, (Mean): Mean value

The best architectures are in bold typeface

Model Mean-T Dev-T Mean-V Dev-V

CNN-skip 1l 6.935 ±0.799 6.671 ±0.730
CNN-skip 2l 7.223 ±0.798 6.904 ±0.738
CNN-skip 3l 7.221 ±0.798 6.903 ±0.738
CNN-skip 4l 7.201 ±0.806 6.871 ±0.739
CNN-skip 5l 7.183 ±0.810 6.850 ±0.738
CNN-skip 6l 7.157 ±0.813 6.820 ±0.739
CNN-skip 7l 7.130 ±0.814 6.790 ±0.739
CNN-skip 8l 7.090 ±0.818 6.751 ±0.739

CNN-res 1l 6.862 ±0.796 6.602 ±0.735
CNN-res 2l 7.136 ±0.806 6.834 ±0.739
CNN-res 3l 7.134 ±0.805 6.832 ±0.739
CNN-res 4l 7.118 ±0.804 6.807 ±0.733
CNN-res 5l 7.095 ±0.807 6.785 ±0.736
CNN-res 6l 7.076 ±0.806 6.767 ±0.734
CNN-res 7l 7.055 ±0.810 6.746 ±0.737
CNN-res 8l 7.036 ±0.809 6.728 ±0.739

9.5.3 Multi-head architectures

Multi-head architectures (see Figure 3.10) consist of combining several convolutional layers
in parallel and, after the convolutions, combining the output. We have tested three models
with parallel heads, with two, three and four heads.

Adding parallel convolutional layers, we obtain a robust architecture. These multi-head
constructions are widely used in the sophisticated Imagenet recognition approaches, and we
wanted to experiment with this model applied to wind time series.

The results (see Figure 9.9) show as the best results the multi-head architecture with three
heads. Again, the results are a bit short from those of the sequential classic or separable
architectures, but not very far away.

These results seem to confirm that with wind time series, the most complex architectures
do not outperform simpler ones; however, the three-headed model shows superior ability to
predict wind over four and two heads.
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Table 9.9 Model Experimentation R2 results for multi-head architectures, (T): Test data, (V):
Validation data, (Dev): Deviation, (Mean): Mean value

The best architectures are in bold typeface

Model Mean-T Dev-T Mean-V Dev-V

CNN-MH 2Heads 7.145 ±0.792 6.829 ±0.731
CNN-MH 3Heads 7.170 ±0.796 6.854 ±0.735
CNN-MH 4Heads 7.125 ±0.788 6.816 ±0.728

9.5.4 Adding Gradient Boosting to a CNN Architecture

Gradient Boosting is a machine learning technique, initially defined by Friedman as early
as 1999 in [61]. We introduced this ensemble method in Section 4.2.7. Gradient Boosting
has come back thanks to the actual popularity of XGBoosting (defined recently by Chen
and Guestrin in [31]) an algorithm based on the refinement of the original that has offers
excellent performance with structured data.

The main idea in this algorithm consists of training sequentially different models on the
residual value that is left by the previous iterations (see 4.1.

Our model is a pseudo implementation of gradient boosting. It is an ensemble model
that constructs the result by using a linear combination of predictions on re-weighted data.
In the canonical implementation, the weights for each step are calculated by an optimisation
algorithm (gradient descent or similar).

Ŷ(x) =
n

∑
i=1

γihi(x) + C (9.2)

γm = arg min
γ

n

∑
i=1

L(yi,Ym−1(xi))− γ▽Ym−1 L(yi,Ym−1(xi)) (9.3)

The weights γ are calculated with the equation 9.3. For our problem, we simplified the
calculation of the weight by simulating a list of successive values by using two parameters,
α and decay. The weights sequence starts at 1 one, and the successive values are generated as
follows.

w1 = 1 (9.4)

w2 = α · decay (9.5)

w3 = w2 ∗ ·decay (9.6)

w4 = · · · (9.7)
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With α = 0.3 and decay = 0.9 the weights sequence, for n = 5 is w =( 1, 0.27, 0.243, 0.219,
0.197).

We use this architecture with the classic convolution and with the separable convolution,
both with two layers. In the hyper-parameter search process, we iterated over the values of
α and decay to find out the best combination of values, and after the search, we obtained the
best behaviour of the architecture with α = 0.3 and decay = 0.9.

The results of this architecture were outstanding, as obtains the best method performance
overall with the time series at one hour (see a summary of results in Appendix A.2). This
model generalises adequately and beats all the models on the test and the validation dataset.
(See Table 9.10).

Table 9.10 Model Experimentation R2 results for CNN architectures with gradient boosting, (T): Test
data, (V): Validation data, (Dev): Deviation, (Mean): Mean value

Model Mean-T Dev-T Mean-V Dev-V

CNN - 2l GB 7.232 ±0.794 6.959 ±0.731
CNN sep 2L GB 7.341 ±0.796 7.043 ±0.753

9.6 Using CNN in series with a 5 minute step

In Section 8.4, we describe several experiments performed with series sampled at a higher
frequency. Initially we decided to average the data hourly in the experimentation (see
Section 6.2.1, but after performing the main experimentation, we want to understand which
effect can have in the accuracy to work with the original time series with 5 minute steps. We
lay the hypothesis that averaging the series imply to lose some valuable information, thus
making the algorithm to obtain inferior accuracy, in this way, if we use higher frequency
series, the accuracy will improve. We designed a new set of experiments, this time using
the series with their original period-step of 5 minutes. The immediate implication by using
these series is a multiplication of the amount of input data by twelve.

To compare in a level field, we try similar architectures with the two sets of series. We
know that with the series at 5m, deeper architectures can work better, at the expense of a
more expensive training, but this is not the point to explore. We just want to understand if
the similar architectures improve accuracy by working with more data, this being a classical
trade-off in the Machine learning field [45].

We test four architectures, a Classic CNN and a CNN-separable, both of them with
just one or two layers. We did not want to increase the depth of the architectures, but
we increased some of the parameters, like Kernel size or filters, as these increases make the
network to train smoothly with more data.
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Table 9.11 CNN Architectures with series with period 5 minutes

Architecture Description

CNN 1 Layer

CNN with 1 classic convolutional layer. The kernel size
is larger than the ones used with hourly averaged series.
kernel size and stride have similar length of 1 and 64
filters

CNN 2 Layer

CNN with 2 classic convolutional layers. The main pa-
rameters θ are Kernel size = 17 in the first layer and kernel
size = 1 in the second layer, strides are in the first layer =
9 and in the second layer = 1. Filters are 256 in first layer
and 128 in second layer

CNN separable 1 Layer
This separable architecture uses Kernel size=17 and
depth multiplier=9. Filters are 256 and strides are 9

CNN separable 2 Layers
In this case the 2 layer architecture has Kernel size [17,1],
activations [[elu,0.4], [leaky,0.2]], depth multiplier [9,9],
filters [256,128] and strides [9,1]

The experiments confirmed the hypothesis, as all the architectures obtained positive
increases in accuracy (see Table 9.12). These results reveal that there is useful additional
information in the series with shorter periods.

As usual, understanding better a problem means discovering new questions. By increas-
ing the resolution of the data, we obtained better accuracy, therefore using data with shorter
sampling steps will be even better. This opens a new exploration to understand what the
optimal sample period is. Would series sampled at seconds be more valuable?

Table 9.12 Model Experimentation R2 results for high frequency series (5minutes) architectures, (T):
Test data, (V): Validation data, (Dev): Deviation, (Mean): Mean value

The best architectures are marked in bold typeface

Model Mean-T Dev-T Mean-V Dev-V

CNN 1l series 5m 7.409 ±0.775 7.095 ±0.724
CNN 2l series 5m 7.524 ±0.761 7.212 ±0.716
CNN-sep 1l series 5m 7.524 ±0.763 7.212 ±0.718
CNN-sep 2l series 5m 7.507 ±0.766 7.211 ±0.716
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9.7 Global and local error evaluation

We want to understand how good or bad is an architecture in a specific prediction, to obtain
a single value we forecast, using a sliding window technique, the algorithm for two years,
one year is the test data, and the other year the validation data. All the forecast errors are
summarised as per time step, for a single experiment in a site we obtain twelve values, each
one being the accuracy in R2 for the step. The result is obtained by adding the twelve values,
rating the accuracy of the algorithm for a site.

The results of a whole experiment consist of a summarisation of all the individual results
from all the sites. All the summarisations form a set of values that can be considered as the
probability distribution of the errors. The final value (appearing in tables or results, in the
different chapters and the Appendix A) is the mean value of the distribution.

With this methodology, we distil an experiment into a number, valid for comparison but
unable to describe the intricacy and complexity of an experiment. To understand better this
prediction error, we have designed a tool that allows understanding the accuracy of a deep
learning architecture over a year. This representation, described in Section 7.5, is a useful
tool for visually identifying patterns and strengths or weaknesses of a specific prediction
method.

In Chapter 7, we used this representation to understand how sites differentiate between
them, comparing them with other locations with similar accuracy.

The values for the representation are obtained by subtracting the real prediction from
the real value. The Colour white represents a perfect prediction, while colour dark red is
positive deviation over 15 m/s and colour dark blue negative deviation of -15 m/s. there is
a colour bar below each plot that identifies the seasons and allows to compare seasonality if
it appears.

In this section we use the representation to compare different methods on the same site.
We can see the representation for three sites (Figures 9.5, 9.6 and 9.7).

We have chosen three sites that offer three different site typologies, the first one has an
extensive range of values between the different methods, the second one has a minimal

Table 9.13 Accuracy, mean and variance in strips representation for three sites

Measure/site 37917 31321 118728

CNN-sep-2L R2 accuracy 7.268 9.615 7.130
CNN-1L R2 accuracy 6.844 9.512 7.055
RF R2 accuracy 6.364 9.380 6.282
k-NN R2 accuracy 5.208 8.648 5.208
Persistence R2 accuracy -2.635 7.987 2.520

Mean (m/s) 7.36 8.65 8.62
Variance 15.69 7.987 15.42
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variation, and the third one has the results with accuracies evenly distributed between the
methods.

9.7.1 Site 37917 in California with average accuracy

The Site analysed in Figure 9.5 is number 37917 which is located at [35.0758, -120.0428]
in California. We compare five models, with different accuracy. The models are sorted
top-down based on the accuracy, with the best accuracy on top. The more accurate model
is a Convolutional network with two layers, followed by random forest, then a classic
convolutional with two layers, a k-NN and the bottom one is the Persistence. In this case,
Random Forest outperforms CNN 2L, which does not often happen (as Random Forest
usually under-performs the network models)

The R2 values are, from top to bottom 7.268, 6.844, 6.364, 3.8137 and -2.635. The Y-axis
represents the predictions of 12 steps (0-12) in a vertical line and the X-axis the steps (hours).
The values are calculated by subtracting the real value from the predicted.

We can observe how the patterns repeat across the models (lines with intense red or blue
colour), and higher complexity of prediction in winter compared to the summer season. The
better prediction capabilities of the top models can be visually perceived as the colours are
lighter at the top methods.
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Fig. 9.5 Graphical visualisation of prediction error for one year. Site number is 37917 located at
[35.0758, -120.0428] in California. Vertical axis represents the 12 steps in the horizon (top is first step,

bottom 12th step), horizontal axis are the hours in a year. The horizontal coloured bar illustrates
seasons (winter: blue, spring: green, summer: red, fall: brown)

153



The effectiveness of CNN architectures for wind time series

9.7.2 Site 31321 offshore with high accuracy

The Site analysed in Figure 9.6 is number 31321. It is a visualisation of the prediction error
for one year. This site is located at [34.0519, -120.4459] which is an offshore site, in the Pacific
in the California coast. We compare five models, with different accuracy. The top model
is Convolutional separable network with two layers, above there is a classic convolutional
with one layer and a Random Forest, then k-NN nearest neighbours and the bottom one is
the Persistence. The R2 values are, from top to bottom 9.615, 9.512, 9.380, 8.648 and 7.987 The
Y-axis represents the predictions of 12 steps (0-12) in a vertical line and the X-axis the steps
(hours). Red is an excess prediction, blue a short and white a perfect one with zero error,
the values are calculated by subtracting the real value from the predicted. We can observe
how the patterns repeat across the models (lines with intense red or blue colour), and higher
complexity of prediction in winter compared to the summer season season.

This site has better results in summer over winter, particularly at the end of summer
where the stationarity of the series must be quite acute. The darkness increases top-down
and can be observed plot to plot.
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Fig. 9.6 Graphical visualisation of prediction error for one year. The site number is 31321 is located
at [35.0758, -120.0428] offshore in the Pacific. Vertical axis represents the 12 steps in the horizon (top
is first step, bottom 12th step), horizontal axis are the hours in a year. The horizontal coloured bar

illustrates seasons (winter: blue, spring: green, summer: red, fall: brown)
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9.7.3 Site 118728 in Montana with average accuracy

In Figure 9.7, we see a graphical visualisation of prediction error for one year. The site
number is 118728, located at [47.3996, -105223] in Montana. We compare five models, with
different accuracy. The top model is Convolutional separable network with two layers, above
there is a classic convolutional with one layer and a Random Forest, then k-NN nearest
neighbours and the bottom one is the Persistence. The R2 values are, from top to bottom
7.130, 7.055, 6.282, 5.208, 2.520. The Y-axis represents the predictions of 12 steps (0-12) in a
vertical line and the X-axis the steps (hours). Red is an excess prediction, blue a short and
white a perfect one with zero error, the values are calculated by subtracting the real value
from the predicted. We can observe how the patterns repeat across the models (lines with
intense red or blue colour), and higher complexity of prediction in winter compared to the
summer season.

This figure shows no seasonal components. What we can observe is a sharp variance,
which tells there is a regime of changing winds, which as it is shown in the Figures.
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Fig. 9.7 Graphical visualisation of prediction error for one year. The site number is 118728, located at
[47.3996,-105223] in Montana. Vertical axis represents the 12 steps in the horizon (top is first step,
bottom 12th step), horizontal axis are the hours in a year. The horizontal coloured bar illustrates

seasons (winter: blue, spring: green, summer: red, fall: brown)

157



The effectiveness of CNN architectures for wind time series

9.8 Discussion

Wind prediction from time series is a hard problem due to the complexity of the wind time
series, and the variability of results, depending on the site characteristics, make necessary to
test the algorithms on a broad spectrum of sites. Our approach has been a single algorithm
but trained on each site. Each architecture has been tested on the total dataset or random
samples of the dataset to assure statistical robustness to the analysis. All the convolutional
methods have improved the baseline statistical method, showing the feasibility of the
application of deep learning architectures to the wind forecasting problem. We learned from
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Fig. 9.8 Comparison of R2 between different methods step by step. Steps are represented top-down.
Dark red is high error. CNN models obtain better results than persistence or Random Forest methods

across all steps, all the results are gathered in A

past work [144] that deep learning has the potential to perform accurate wind time series
forecasting and between the different approaches (MLP, CNN, RNN), the convolutional
architectures obtain the best results, motivating the execution of a set of experiments with
convolutional architectures and variants that are described in this chapter.

Regarding the convolutional networks, we observe better results with the separable
convolution over the classic (see Table 9.6). The circumstance that the use of separable
convolutions improves the classic convolutional operation is a fact already observed in
image recognition tasks [34], but there is no reference for this result for time series.

In the experimentation, we have reviewed the impact of several parameters, from depth
multiplier to the best activation functions to the length of strides or best kernel sizes, a
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parameter combination illustrated in Table 9.5 for one-hour series, and in Table 9.11 for series
at 5 minutes. We conclude that the number of parameters requires a structured approach for
hyperparameter setting as there are many combinations of parameters θ that generate results
with accuracy differences of some hundredths. In this environment, ensembles, approaches
can be useful as it shows the improvements of accuracy using a naive boosting approach, a
method that is the best overall (see Section 9.5.4).

As a collateral conclusion, we have not been able to obtain any improved accuracy using
stacked block architectures like the multi-headed models.

An initial question was how deep in the past had to be the examples for training. As
we are using a MIMO approach, the input sequence has a length lag defining how many
past values to be used for training. The conclusion is that past observations go from six to
eighteen hours. More extended periods do not add accuracy to the result. This finding is
aligned with earth sciences which describe the short time-span for wind formation [117].

The original series have a period of five minutes, but we decided to average them to one
hour for practical reasons (for a discussion on data pre-processing see Section 6.2.1). In this
way, the total length of a time series is 61,368, (divided in 43,834 for training - five years-
and 17,534 for testing and validation -two years-). We have observed that an increase in the
amount of data leads to an increase in accuracy with similar algorithms. an outcome that
appears comparing the results from the same algorithms working with the different period
series. However, we need to consider that, to obtain the accuracy gains, the data increases ×
twelve times, and the use of computing resources increases accordingly.
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Chapter 10

Wind time series forecastability

Characterising a wind site for its predictability is a useful tool for wind resource estimation.
Multi-variate time series of meteorological observations obtained from a site contain relevant
information to produce a short-mid term multi-step ahead prediction.

In this chapter, we define measures based on time series properties, like spectral, entropy
and stationarity analysis that show high correlation with prediction accuracy.

To test the correlation, we apply deep learning methods to the NREL dataset, and we
test and compare the accuracy results with the measures. The results show the correlations
of the measures with the deep learning method accuracy.

With the results, we define forecastability measures that are useful indexes of the future
applicability of the methods, introducing a new way to classify wind sites that can be
valuable for the industry.

This chapter will generate an article submission.
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10.1 Forecastability and deep learning prediction

When we evaluate the potential of a wind site, there are several features to be considered,
like the wind strength, the site accessibility, or its connectivity to the existing grid [23]. The
first, and possibly, the essential feature is the wind intensity, as this defines the amount of
energy to be generated. However, for this energy to become economically viable, it needs to
be predictable. For this reason, site predictability becomes a feature that contributes to the
value of a generation location.

Forecasting is critical for all the actors in the electricity system management which are;
the power producer, the transmission system operators (TSO)Transmission system operators,
or the commercial companies responsible for the access to electricity to consumers. The
introduction of smart grids with smart (real-time) metering capabilities, has generated
demand-response markets [223], a mechanism that allows changes of demand based on the
electricity spot price, and electricity trades by continuous bidding between generators and
consumers. In this scenario, forecasting demand and generation are critical, with relevant
economic impact. The growth of renewable energy is unstoppable. With self-generation
widespread and batteries economically viable, the electricity systems become bi-directional,
and its control based on sophisticated algorithms that assure continuous balancing of the
supply and demand in the electricity system [100].

Forecasting is an essential activity for the wind industry. We can forecast wind energy
either at a turbine level or at a wind park level [129], and for some applications, we require
prediction in a wide area (like at country level) [77]. This thesis focuses in prediction for
a single site, or turbine, and in this way, we align the prediction to a wind time series,
as predicting for a broader scope cannot be done on a single series. For this individual
prediction, the accuracy of a method is based on one time series exclusively, and then the
result of a prediction is the combination of two effects, the capability of the algorithm to
model the wind series, and the complexity of these series. In previous chapters, we work in
the accuracy of the algorithms, in this one we look into the inner structure of the series to
define its forecastability or predictability, a property determined by the inner characteristics
of the wind series which defines its prediction complexity [104, 178].

Forecastability goes far beyond the traditional statistical definitions like mean or variance,
as those simple measures do not show strong correlations with a prediction. We illustrate
this point in Figure 10.2, where we can see in three scatter-plots with measures distributed
in the map with a corresponding scatter-plot of those measures with a prediction made with
a deep learning algorithm.

Forecastability is an essential measure for two reasons, firstly it has economic value, as a
site easy to predict has more value than a difficult one, and secondly, it is a relevant measure
to evaluate the prediction outcome from forecasting algorithms. A prediction needs to be
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rated evaluating the site forecastability. The algorithm result needs to be related to the site
complexity; in this way, we can rate better the algorithm efficiency.

As new tools and algorithms appear for wind prediction, the interest in predictability
measures is growing as some recent works show [53, 54].

This thesis defines some forecastability measures based on spectral and stationarity
analysis for wind time series. The described measures have strong correlations with deep
learning multi-variate and multi-step models for 12h ahead predictions [145]. Additionally,
this article verifies the impact of terrain ruggedness in forecastability, finding a low general
correlation between ruggedness and predictability. All the experimental work has been
performed on the NREL Wind dataset, that has 126,692 wind sites across North America
[46].

This chapter is organised as follows. First we discuss the role of forecastability in wind
time series and its relationship with deep learning, then in Sections 10.4 and 10.4, we
analyse terrain complexity as a possible descriptor in Section 10.5 followed by the analysis
of decomposition and entropy-based indexes in Sections 10.6 and 10.7.

10.2 Experiment settings

To build and analyse forecastability indexes, we followed a process that is synthesised in
Figure 10.1. This process has as an objective to validate the properties of several forecastabil-
ity indexes, based on three significant methodologies with a set of predictions generated by
deep learning methods using wind speed time series from a broad sample of sites (NREL
wind dataset).

The deep learning forecasting results come from over thirty different methods that
perform a forecast with a 12h ahead horizon. The deep learning models belong to three
major categories, which are CNN, MLP and RNN, and have been analysed in previous
chapters of this thesis. The experiment results expressed as mean and variance on the test
and validation sets are in Appendix A.

We distinguish between simple statistical measures and forecastability indexes. Simple
statistical measures like the mean or the variance of the results distributions (see Figure
10.2). These measures are descriptive and can help to understand how the wind resource is
distributed geographically, thanks to the geographical distribution of the source data. Geog-
raphy is essential for wind as its formation depends on the integration of local features with
global phenomena, and by representing them in maps allows us to understand relationships
between local and global terrain features.
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Fig. 10.1 Experimentation process for forecastability indexes

10.3 Initial Testing and Pearson Correlation

We calculated the mean and variance for all the wind series in the NREL dataset. Additionally,
we added the elevation in m/s to each site. The elevation height can represent indirectly
(by relating neighbouring points) how terrain changes its slope. The changing colour in
the elevation map shows mountains. A stable colour shows flat terrains. The elevation is
required to analyse the relationship between terrain complexity and accuracy. In Figure 10.2,
we compare the three representations, mean, variance and elevation, which follow the major
orography features of the US geography. In the referred figure we accompany each measure
with a scatter-plot made with the accuracy distribution (measured in R2) of the results
from a deep learning prediction method, in this case, a two-layer CNN with separable
convolutions. The regression lines in the scatter-plots show a, albeit small, relationship
between the distributions, this relationship is more consistent in mean and elevation and
very disperse with variance. To see the correlation between the distributions, we choose the
Pearson coefficient, which is represented by:

ρX,Y =
E[(X− µX)(Y− µY)]

σXσY
(10.1)

where σ is the standard deviation of the distribution X, and E is the expectation or weighted
mean of the distribution. We calculate the correlation between four prediction methods and
the three measures, mean, variance and elevation (see Table 10.1). This table illustrates the
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relationships and confirms some of our intuitive observations previously made from the
visual interpretation of the scatter-plots. The results confirm a negative correlation of the R2

accuracy of the deep learning prediction methods with the elevation of a site.
The four methods show differences. Persistence has different dynamics than the rest as

it has the highest correlations with mean and variance and the lowest with elevation. It is
not surprising as this method must follow the series behaviour, and its results show this
closeness. Random Forest has the lowest correlation with mean and more variance than the
deep learning methods. Finally, the two deep learning methods are very similar. The best
method, the CNN separable 2 Layers, has the highest correlation with elevation and with
the mean, with an MLP 2L very close.

Table 10.1
Correlation between Simple statistical measures and five DL forecasts over the NREL dataset.
The models are: CNN separable convolution 2 layers, MLP two layers, Random Forest and

Persistence

index CNN sep 2L MLP 2L RF Persistence

Mean 0.136 0.129 0.113 0.161
Var 0.036 0.066 0.114 0.272
Elevation -0.507 -0.474 -0.423 -0.267

Our objective in this chapter is not to design another forecasting algorithm, but to
understand how the wind time series internal characteristics or some physical features, like
elevation or ruggedness, impact in the deep learning results accuracy of several algorithms.
We want to understand better the forecastability capability of a site to improve the forecasting
methods, in particular, the deep learning ones.

We classify the origin of the measures in three major group categories:

• Statistical: these are mean, variance and wind-speed variability.
• Physical: ruggedness and elevation.
• Signal analysis: Spectral Entropy, Lumpiness and Stability
• Series decomposition: From the decomposition of a series into trend, seasonality and

residual we obtain several elements that combined offer new measures that give us an
insight on the inner series structure.
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(a) Wind Speed Mean (m/s)

(b) Mean - DL scatter-plot

(c) Wind Speed Variance

(d) Variance - DL scatter-plot

(e) Site Elevations (m)

(f) Site elevation - DL scatter-plot

Fig. 10.2 Geo-spatial representation of mean, variance and site elevation for the NREL dataset, plus
its plot against the accuracy of wind speed site prediction based on a neural network with two layers

of separable 1d convolutions
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10.4 Statistical measures in wind prediction

We understand as basic characterisation measures those that define the structure of the wind
series using some simple statistical tests. In this work, for the NREL dataset, we include in
this category mean, and variance.

Wind is a very complex phenomenon because it is generated from global interactions of
the atmosphere at planetary level, like the cold weather currents from the Arctic, or the trade
winds in the Atlantic. However, these global events impact local features, in climate-related
anomalies like desserts, forests or rivers, and then act on even more local attributes, like
small hills or a canyon. For the most local qualities, the aerodynamics analysis is more
important than the climate, as minor turbulence can have a significant effect on the wind
speed. For instance, the wake effect between turbines is an essential event in wind parks
that appears a consequence of the turbulence generated by a turbine into the neighbour ones
[78].

This variability needs to be present in the data. Performing an analysis on series that are
in a local wind cluster can be extremely biased, as the data needs to be diverse and from a
wide area. For this reason, we use the NREL dataset that contains very different geographies
and wind topologies, allowing us to perform analysis using very different time series.

We have performed several tests on the NREL dataset to characterise its variability and
main characteristics (see Figure 10.2) focusing on wind speed, which is the most relevant
variable for prediction. We have drawn three maps, for mean, variance and elevation.

These time series descriptive measures have different correlations with deep learning
predictions (see Figure 9.3 that shows a distribution in a map of a deep learning prediction
accuracy R2). The application of the statistical measures on the map offers some descriptive
information. We illustrate in Table 10.1 the correlations between variance and mean, plus an
analysis of elevation with different forecasting methods.

The first conclusion is that simple statistical measures do not grasp the wind structure,
or using the new definition, they do not show good forecastability and, as a consequence,
they cannot appear as forecastability indexes. We need more robust measures to obtain
forecastability ability on the indexes.

10.5 Terrain complexity as a forecastability descriptor

Terrain complexity is considered a measure of the prediction difficulty of a specific wind site.
This idea is cited in different works in the literature in several works [104, 73]. However, a
conceptualisation of terrain complexity is not found in in a structured way.

Tabas et al. in [207] describe this complexity based on micro terrain features, topography,
forest structure and wake effects from other close turbines.
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Kariniotakis et al. in [105] displays the idea of high error related to terrain complexity.
However, in this same work, they found that off-shore sites, with no terrain complexity, had
a high prediction error, possibly due to lack of skill on the prediction task for that kind of
sites, with this finding, they question the impact of terrain complexity isolated, as it needs to
be considered associated to other elements.

400m

Fig. 10.3 Grid of points around a site (site in green)

We want to explore the ability of a ruggedness measure to correlate with prediction accu-
racy, isolated from any other circumstance. This index needs to tell if a site in a mountainous
area is more difficult to predict than a one in a non-complex or flat area.

First, we need predictions. We have performed deep learning predictions for all sites
in the NREL dataset, and the results show a prediction distribution, measured in R2. The
means and variances of all the DL methods are compiled in Appendix A.

To calculate the ruggedness first, we define a grid of points around each site as it is
displayed in Figure 10.3, then we assign to each point its elevation calculated as its height
from sea level calculated in m/s. The elevations are obtained from the US Geological
Survey’s (USGS) National Map [70].

This grid will allow implementing two two Ruggedness indexes, that we named IR1 and
IR2.

Index 1 (IR1) is designed based on the method described by Riley and Elliot in [177],
using the equation:

I1 =

√√√√ 16

∑
i=1

(ci − csite)2 (10.2)
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10.5 Terrain complexity as a forecastability descriptor

Where c is the average elevation on each grid square (average of 4 vertex elevations), and
csite is the site elevation.

Index 2 (IR2) is inspired in a work from Liu et al. in [125], They present some ideas for
the calculation of ruggedness indexes. The core idea is to calculate an angle based on the
individual normal vectors of the sub-grid planes around the site. To calculate this index, we
divide each one of the 16 grid squares in two triangles, consequently a plane. Each plane
has a normal vector that we calculate. The last step consists of obtaining the angle of each
normal vector with the vertical (90%), summarising the values of the angles we obtain the I2

index (see Equation 10.4).

c fi = e1−cos(αi) (10.3)

I2 =
32

∑
i=1

c fi (10.4)

These two indexes represent the terrain variations around every site accurately, for a very
complex site, the values are very low, close to 0 and, for flat terrain is 1. In Figure 10.5, we
can see a representation of 3 grids from different sites with flat, mountainous and inclined
terrain.

normal to surface

normal to xy plane

αi
α : angle to normal xy plane

Fig. 10.4 Grid of points around a site (site in green)

However, the correlations of these indexes with the Prediction error of the deep learning
methods is very low.
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(a) Tower is at center of the grid
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(b) Mountainous terrain
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(c) Flat terrain

(d) I1 Riley Complexity (e) I2 Angle Complexity Index (f) Elevation used as an index

Fig. 10.5 Representation of flat and mountainous terrain. Visualisation of Wind Tower in the terrain
(a), Visualisation of different terrain complexity indexes

Figure 10.5 shows, in subplots (d), (e) and (f) the scatter-plots that between three measures
I1, I2 and Elevation. In those figures, we can see how the clouds of points are not concentrated
around on the regression line, showing a low correlation.

We can conclude that ruggedness only is not a good predictor of site forecastability, and
we believe the reasons sit on the data. In the dataset there are many low-complexity (on
flat terrain) sites with high errors. This finding aligns with the already mentioned issues
with off-shore sites in [105], flat terrain is not correlated with accuracy, and this disturbs
the exploration of errors in the mountainous sites, where we find accurate and inaccurate
results. The conclusions on this analysis are that indexes only based on terrain are not good
predictors and cannot be used as forecastability indexes.

Intuitively a site can be located in a simple terrain like a plain or a sea-shore and be
subjected to easy wind patterns or, in the opposite side, it can be located in rugged terrain
with fair and stationary winds, becoming a site easy to predict. Terrain has a strong influence
in the wind, as it is described in the literature [117], but indexes only based in elevation or
ruggedness, are not suitable to establish the predictability of a specific site.

The indexes I1 and I2 of ruggedness interpret terrain very close to the site, as we consider
800-1000 meters around a geographical location. The ruggedness of a larger area may be
a better measure to understand the forecastability of a point, but we do not expect these
indexes to capture forecastability. We observe, in the US geography, that wind complex
patterns come in flat and mountainous areas and vice-versa. Level terrain can be complex
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like some coastline environments, or in the central plains, which have some of the most
variable winds (see a depiction of error complexity from a forecast in Figure 9.3). The more
difficult area to predict in the US are those flat terrain sites that form the plains from Canada
to Mexico.

As in the NREL dataset, there are over 15,000 sites in the plains. This number has an
impact when calculating the correlations, making flatness a lousy predictor for accuracy. We
observe in the dataset sites with low ruggedness and high complexity in the plains and, as
there is such a high number, it impacts the overall correlation.

In conclusion, we see that ruggedness is not a good predictor, as there are flat complex
areas and easy mountainous ones. The complexity of a site requires additional information
to ruggedness.

10.6 Time series decomposition measures

Time series can be decomposed into components using different methods. Initially, we have
used a moving averages method for decomposition.

If a wind time series repeats in cycles, it implies seasonal pattern, like a day-night flow,
or winter-summer, or seasonal modifications of wind over the years. A good predictor will
identify these patterns, and the highly seasonal sites will have good forecastability. If we can
find seasonality in a time series, most probably we will be able to correlate this seasonality
with accuracy.

An addition decomposition of a series Wt has the following structure:

Wt = St + Tt + Et (10.5)

Where St is the seasonal component, Tt the trend and Et the residual or error component.
The decomposition creates three components, where the last component, Et is a random
error with zero-mean and correlated over time.

Seasonality in a time series is defined as a pattern that repeats over time. A significant
auto-correlation coefficient identifies seasonality, that can be partial and related to the
seasonal portion.

For data with a strong trend, the seasonality adjusted data (deseasonalised data) Wt − St

has more variation than the residual component, for data without trend the two variances
would be the same. In this sense, we define the strength of trend as:

From the decomposition components, we define two indexes inspired in previous work
from [235], which are fT and fT

fT = 1− var(Et)

var(Wt − St)
(10.6)
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Strength of seasonality is defined in the same way, in this case the variance used is the
detrended data, Wt− T

fS = 1− var(Et)

var(Wt − Tt)
(10.7)

Where (Wt − Tt) is the detrended series. These indexes contain valuable information
about the inherent seasonality and trend structure in the time series (see Table 10.3). A time
series with seasonality strength fS equal to 0 has no seasonality, and when fS is close to 1, it
points to a strong seasonality [235].

Our goal is to characterise wind time series, and we apply the indexes to all the NREL
dataset series. With the results we represent the indexes on the US geography to compare
them and interpret their value Figure 10.6 shows the index values representation on the US
map and three scatter-plots comparing the index value with a deep learning prediction with
a CNN separable with two layers.

We obtain several insights from the representations.

• The strength trend fT has good correlation with the R2 results from the prediction
(CNN sep 2L). There is a set of outliers in Figure 10.6c with small strength trend. We
analysed the outliers, and they are not geographically related as they are spread on the
geography.

• Strength seasonality fS (Figure 10.6e) does not show a useful correlation, and the cloud
of points is very dispersed.

Something that we observe in the geographical representation from Figure 10.6 is that
the index values generate geographical areas, for instance, the plains and the Rockies
are highlighted while the coastlines show different values profiling different time series
characteristics.

With this finding, we want to explore the relationship between the fT index (which
has shown to be more informative) and all the US states to verify a relationship between
geographical areas and index values. We know that the states are political divisions and
not necessarily common geographical areas, but having a smaller size, they may raise
the homogeneity of the results. For this exploration, we design an experiment where we
calculate the correlation between the index fT and a forecast R2 error values state by state.
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(a) CNN separable 2L R2 accuracy results

(b) fT Strength Trend map

(c) Strength trend scatter-plot

(d) fS Strength seasonality map

(e) Strength seasonality scatter-plot

Fig. 10.6 Geographical representation of strength trend fT and strength seasonal fS
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This analysis needs to be balanced with the number of sites on each state, as there are
states with a higher density of sites, and other states are larger (example Texas, Wyoming or
South Dakota). Another point to consider is the low density of states like New Mexico (the
sites are in feasible wind generation areas outside populated urban areas).

Table 10.2 shows the results. We want to highlight a couple of findings.

• The high correlation in Wyoming and Oklahoma, both with a large number of sites.
• The low correlation with Iowa and Illinois, both with a large number of sites.
• The differences between Illinois and Indiana, two adjacent states that show significant

differences, point two different wind pattern areas (in this case, as a hypothesis,
possibly for the influence of the Great Lakes in Illinois winds).

Table 10.2
Correlation between wind speed prediction accuracy measured in R2 using a CNN separable with 2

layers with fT on all US states.

State Corr Sites State Corr Sites State Corr Sites

Alabama - AL 0.491 89 Louisiana - LA 0.791 558 Ohio - OH 0.652 2936
Alaska - AK NA 0 Maine - ME 0.947 1201 Oklahoma - OK 0.845 4303
Arizona - AZ 0.785 2376 Maryland - MD 0.921 334 Oregon - OR 0.776 2636
Arkansas - AR 0.761 823 Massachusetts - MA 0.904 676 Pennsylvania - PA 0.815 1502
California - CA 0.643 4053 Michigan - MI 0.539 3609 Rhode Island - RI 0.935 189
Colorado - CO 0.698 3652 Minnesota - MN 0.771 6372 South Carolina - SC 0.916 271
Connecticut - CT 0.813 156 Mississippi - MS 0.527 187 South Dakota - SD 0.890 6012
Delaware - DE 0.927 151 Missouri - MO 0.814 1836 Tennessee - TN 0.841 287
Florida - FL 0.675 1040 Montana - MT 0.931 4091 Texas - TX 0.793 8061
Georgia - GA 0.524 273 Nebraska - NE 0.928 3708 Utah - UT 0.789 1715
Hawaii - HI NA 0 Nevada - NV 0.622 3865 Vermont - VT 0.916 443
Idaho - ID 0.821 1451 New Hamps. - NH 0.927 409 Virginia - VA 0.814 869
Illinois - IL 0.394 5253 New Jersey - NJ 0.868 483 Washington - WA 0.853 1632
Indiana - IN 0.886 3195 New Mexico - NM 0.816 6584 West Virginia - WV 0.738 545
Iowa - IA 0.567 5253 New York - NY 0.743 3156 Wisconsin - WI 0.416 2883
Kansas - KS 0.807 4150 North Carol. - NC 0.896 849 Wyoming - WY 0.908 8201
Kentucky – KY 0.819 347 North Dakota - ND 0.789 3380

To go deeper into this analysis, we represent three states, one with a lower correlation
(Florida) another one with a very high correlation and a large number of sites (Wyoming)
and finally Maine which has a low number of sites and high correlation.

In Figure 10.7 we can see the different scatter-plots. For Florida we see a high dispersion
of the values (see Figure 10.7d), which can be explained by a site list very distributed on the
whole state, Wyoming, has a great number of sites, but concentrated in wind corridors in the
south-east part of the state (see Figure 10.7e), this explains the homogeneity of the results in
such a large state. Maine has all the sites concentrated in the north-east part of the state, in a
very homogeneous wind area 10.7f).
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10.6.1 Value of decomposition measures for wind time series

With this exploration on the application of fT and fS, we see, first that the fS index in its
actual formulation is not useful, on the contrary, the fT index shows high competence to
qualify a future prediction.

In a forecastability measures tool-set, the fT index has to be considered for its ability to
represent patterns that later influence the results of a forecast.

Table 10.3
Correlation between decomposition measures and wind speed prediction accuracy measured in R2

using a CNN separable with 2 layers

Measure Description NREL Dataset Florida Wyoming Maine

fT Trend Strength 0.841 0.726 0.936 0.906
fS Seasonality Strength 0.110 -0.619 -0.257 -0.266

(a) Map ft Florida (b) Map ft Wyoming (c) Map ft Maine

(d) ft Florida, corr: 0.726 (e) ft Wyoming, corr: 0.936 (f) ft Maine, corr: 0.906

Fig. 10.7 Trend strength ft for three states, Florida, Wyoming and Maine. The three states show high
correlation between the correlation index fT and the prediction.
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The wind time series do not show a trend, and in this case, there are many decomposition
strategies. We applied a moving averages decomposition, and created the fT and fS indexes.
However, we are currently exploring the application of Loess methods (the seasonal and
Trend Decomposition method STL) that offer alternative decomposition tools to determine a
more effective approach for determining the seasonality.

10.7 Entropy analysis applied to wind time series

Entropy is a measure of the uncertainty of a random variable. In the time series field, it is
often used as a property to qualify the inner structure of a temporal series.

For wind, we have identified some works that use entropy as support for forecast
improvement like Sun and Wang in [202] that use entropy to decompose the original series
to apply a novel method on the decomposed sub-series.

In this section, we want to identify the capabilities of indexes inspired by the entropy anal-
ysis to act as forecastability predictors. We define four indexes, sample entropy (SampEnt),
spectral entropy (SpecEnt), Lumpiness (Lump) and stability (Stab).

• Sample entropy assesses the complexity of a time series, a large value indicates high
complexity, while a small one indicates low complexity or a more regular series. It was
initially created for physiological time-series signals [176].

H(x,m,r) =−log
(

C(m + 1,r)
C(m,r)

)
(10.8)

where m is the embedding dimension (and equals to the order), r is the radius of the
neighbourhood (default = 0.2 std(x)), C(m + 1,r) is the number of embedded vectors
of length m + 1 having a Chebyshev distance inferior to r and C(m,r) is the number of
embedded vectors of length m having a Chebyshev distance inferior to r.

• Spectral Entropy
Spectral entropy is defined to be the Shannon Entropy of the Power Spectral Density
(PSD) [98] of the data:

H(x, s f ) =−
fs/2

∑
f=0

PSD( f )log2[PSD( f )] (10.9)

Where PS is the normalised PSD, and fs is the sampling frequency.
• Lumpiness looks for the series aggregation over some predefined time frame. First,

we define a period that is meaningful for recurring seasonal patterns (like day, month
or season), for daily, for instance, the period P is 24 h, then we build the series Sn with
the mean of values on each interval P. Lump then is the standard deviation of the
series.

176
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Sn =
1
P

P+n

∑
i=n

xi (10.10)

Lump =

√
∑ |Si − S̄|2

n
(10.11)

• Stability tries to define the stability of the series, is similar to Lumpiness but analysing
the variance instead of the mean. The formulation of Stab is described in Formula
10.12

Stab = ∑(Si − S̄)2

n
(10.12)

In this experiment we explore the application of the different indexes to the whole dataset,
obtaining a set of values that are illustrated in 10.4

Table 10.4
Pearson Correlations between indexes, time horizons and wind speed prediction accuracy measured

in R2 using a CNN separable with 2 layers

index global value 12h 24h 1w 1m 3m 6m

Spectral Entropy -0.835
Sample Entropy -0.641
Lumpiness 0.247 0.282 0.324 0.352 0.346 0.117
Stability -0.282 -0.058 0.110 0.075 0.038 -0.086

Applying these frequencies to the whole dataset, we can find different correlations
between the measures and the accuracy, measured in R2 of a deep learning prediction with
a CNN separable with two layers. The correlation between the spectral entropy and the
prediction accuracy is -0.835 and between sample entropy and prediction accuracy is -0.641,
both showing a strong relationship between the index and the prediction error. For Lump
and Stab analysis, as they are dependent on a determined cycle length (12 hours, 24 hours,
one week, one month, three months and six months) we obtain six results for each one. The
summary of all the outcomes is represented in Table 10.4.

An illustration of these results can be obtained by generating a scatter-plot with each
index and the prediction. In Figure 10.8 we illustrate the Spectral Entropy and Sample
Entropy compared with the prediction accuracy measured in R2 of a CNN separable with 2
Layers, In Figure 10.9 we compare the two indexes, Lumpiness and Stability, for six periods
each (12 hours, 24 hours, one week, one month, three months and six months)

If we analyse the Spectral Entropy and the Sample Entropy correlations, we observe tha
both have correlation with the prediction accuracy. In Figure 10.8a in the Sample Entropy
subplot, we observe a set of points with a low error in the original algorithm that seem off

177



Wind time series forecastability

(a) SpectEnt vs CNN sep 2L prediction R2 (b) SampEnt vs CNN sep 2L prediction R2

Fig. 10.8 Scatter-plots between wind speed prediction accuracy measured in R2 using a CNN
separable with 2 layers with indexes SampEnt and SpecEnt.

with the regression, analysing these points we see that they not correspond to an specific
area but they are distributed evenly in the geography.

Table 10.5
Correlation between wind speed prediction accuracy measured in R2 using a CNN separable with 2

layers with indexes SampEnt and SpecEnt for all the US states.

State SampEnt SpecEnt Sites State SampEnt SpecEnt Sites State SampEnt SpecEnt Sites

Alabama -0.805 -0.405 89 Louisiana -0.93 -0.84 558 Ohio -0.505 -0.65 2936
Alaska 0 Maine -0.842 -0.872 1201 Oklahoma -0.951 -0.901 4303
Arizona -0.383 -0.799 2376 Maryland -0.774 -0.888 334 Oregon -0.412 -0.808 2636
Arkansas -0.761 -0.576 823 Massachus. -0.806 -0.828 676 Pennsylvania -0.692 -0.836 1502
California -0.499 -0.716 4053 Michigan -0.297 -0.818 3609 Rhode Island -0.601 -0.909 189
Colorado -0.488 -0.863 3652 Minnesota -0.661 -0.795 6372 S.Carolina -0.777 -0.351 271
Connect -0.779 -0.955 156 Mississippi -0.886 -0.27 187 S. Dakota -0.847 -0.879 6012
Delaware -0.889 -0.619 151 Missouri -0.7 -0.842 1836 Tennessee -0.674 -0.856 287
Florida -0.651 -0.776 1040 Montana -0.664 -0.867 4091 Texas -0.635 -0.857 8061
Georgia -0.513 -0.454 273 Nebraska -0.902 -0.879 3708 Utah -0.395 -0.817 1715
Hawaii 0 Nevada -0.327 -0.721 3865 Vermont -0.833 -0.781 443
Idaho -0.518 -0.884 1451 N Hampsire -0.606 -0.709 409 Virginia -0.709 -0.761 869
Illinois -0.417 -0.538 5253 New Jersey -0.828 -0.681 483 Washington -0.042 -0.796 1632
Indiana -0.755 -0.89 3195 N Mexico -0.703 -0.872 6584 W Virginia -0.819 -0.89 545
Iowa -0.604 -0.792 5253 New York -0.708 -0.829 3156 Wisconsin -0.427 -0.749 2883
Kansas -0.92 -0.882 4150 N. Carolina -0.9 -0.55 849 Wyoming - -0.632 -0.851 8201
Kentucky -0.79 -0.617 347 N. Dakota -0.671 -0.735 3380 Off-shore -0.317 -0.463 9438

To relate the results with the geography, we experimented with analysing the values per
site. Table 10.5.

The results show that there is no correlation between the two indexes and can be com-
plementary. For instance, in Arkansas, or Alabama Sample Entropy has a better correlation
than Spectral Entropy, while the inverse happens in Utah or Wyoming, where Spectral
Entropy is much better correlated with prediction. This table can be useful to understand
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the relationships between wind typologies and the indexes, to develop a combination of
them that achieves the maximum forecastability.

Lumpiness and stability are two indexes that try to explain two properties in the wind
time series, the aggregation capability over some time and the stability of the series over
a period as well (See equations 10.11 and 10.12). In Table 10.4, we can see that both have
a much lower correlation than other indexes, with lumpiness a with better correlation. In
Figure 10.9, we illustrate how both indexes compare side by side with each other.

(a) Stab12h vs CNN sep 2l R2

prediction
(b) Lump12h vs CNN sep 2l R2

prediction
(c) Stab24h vs CNN sep 2l R2

prediction
(d) Lump24h vs CNN sep 2l R2

prediction

(e) Stab1w vs CNN sep 2l R2 prediction (f) Lump1w vs CNN sep 2l R2

prediction (g) Stab1m vs CNN sep 2l R2 prediction (h) Lump1m vs CNN sep 2l R2

prediction

(i) 9

(j) Stab3m vs CNN sep 2l R2 prediction

(k) Lump3m vs CNN sep 2l R2

prediction (l) Stab6m vs CNN sep 2l R2 prediction (m) Lump6m vs DCNN sep 2l R2

prediction

Fig. 10.9
Scatter-plots between wind speed prediction accuracy measured in R2 using a CNN separable with 2
layers with indexes stability (Stab) and lumpiness (Lump) for different periods (12h, 24h, 1w, 1m, 3m,

6m)

From the representations, we see low correlations in the scatter-plots as the points are
concentrated around a regression line. Nevertheless, lumpiness shows better ability to
characterise forecastability.
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10.8 Discussion

Forecastability is an exciting nascent area of research that can be valuable for the wind
prediction field. In this experimentation, we have analysed existing and novel measures that
can become forecastability indexes.

The fT and fS indexes come from the time series decomposition. The fT shows the
strength of the trend and fS the strength of the seasonality.

We have discarded ruggedness as an isolated measure as it is not a good predictor of the
complexity of the prediction, elevation, in the other hand, which is a physical descriptor has
some value for predictability, as its correlation with an accuracy of deep learning methods of
around 0.5.

The entropy which can be sample and spectral entropy, shows potential, especially in
the spectral entropy, that obtains a Pearson correlation of -0.835 for the whole dataset while
sample entropy has a -0.641 as overall correlation. Focusing on particular states, we can see
how the correlation increases, (for instance sample entropy in Oklahoma, with over 4,000
sites is -0.951 or spectral entropy in Indiana is -0.89). Spectral entropy is consistently higher
with fewer oscillations across the geography while sample entropy has ups and downs.

We observe that spectral entropy captures a general trend in the time series while sample
entropy does it with some specific traits, hence shows a very high correlation in specific
places, while in others it has low values.

Lumpiness and stability are two measures that have low correlation but can capture
some additional features from the time series, possibly by combination with more general
indexes.
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"The sun comes up just about as often as it goes down, in
the long run, but this doesn’t make its motion random"

1969 - Donald Knuth [111]

If one way be better than another, that you may be sure is
Nature’s way

(4th century B.C.) — Aristotle [4]

Part IV

Conclusions & Future Work
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Chapter 11

Conclusions

This research work, guided by the questions stated in chapter 1, has tried to shed some
light to the applicability of deep learning to the wind forecasting problem. After a long
and intense experimentation process, we can answer to some of the initial inquiries, but by
going in-depth into the problem, we acquired new perspectives that have generated further
questions and the definition of alternative approaches.

Research is a continuous process, not always linear, in a never-ending cycle of checking
and re-checking hypothesis with findings. We started this work with some initial questions in
mind, that have grown along the way. Now is time to wrap-up the results, and to assimilate
the lessons learnt while drafting future works for new questions.

This Chapter summarises our findings, relating them to the original questions laid out in
the introduction (see Section 1.1).
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11.1 Introduction

The primary research question for this thesis is:
Can deep learning improve the accuracy of traditional prediction methods on wind time
series for Wind forecasting? This is the central motivation for this work.

We focused the work in a specific area of research that is the multi-step prediction
on wind time series, traditionally, a prediction is based on single-step strategies, but we
believe that multi-step is an area well suited for the deep learning algorithms characteristics,
motivating us to go deeper into this area.

This thesis research tries to determine the applicability of deep learning algorithms to
forecast wind speed time series. In the current literature, we find a lack of general studies on
wind time series, as the access to real wind time series, generated from real observations, is
very difficult. The studies on this area rely only on findings from a limited set of locations
and small sets of data, generating a lack of generalisation of the results.

This work tries to avoid the anecdotal evidence bias (that comes from testing approaches
in only a few time series) and uses a collection of data that represents all the possible
wind topologies in a vast geographical area (the U.S. in this case). The sheer size of this
data increases the complexity of the experimentation and requires the use of considerable
resources, but the obtained findings from such a significant time series dataset are reliable
and consistent.

We confirmed conclusions from hypothesis laid out by other researchers in previous
works, and others from our contribution to this area, like the convolutional approach or the
comprehensive exploration of the effect of the different architectural features in the deep
learning algorithms. However, we leave some open questions that we describe in the future
work chapter (see Chapter 12)

In the next sections, we analyse all the conclusions, providing the facts and findings that
support them.

11.2 Conclusions about the deep learning architectures

In this section, we review the conclusions related to the deep learning architectures. The
findings here are related to the application of deep learning to forecasting.

11.2.1 Deep learning is more efficient than baselines

We use baselines to use them as a starting point for comparison. In wind prediction, the
first baseline to be used is persistence, which is accurate for short term prediction (up to
three hours) but highly inaccurate for more extended periods [73], a statement that we have
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11.2 Conclusions about the deep learning architectures

verified, as the results obtained in the whole dataset have been low (R2 accumulated for the
twelve steps is 2.699) (see Section 7.2.1).

The second family of algorithms applied are combinations of linear AR, MA and ARIMA
methods. The results obtained have been irregular, with irrelevant results across the whole
dataset, the conclusion, like persistence, is that they are not adequate to act as baseline
methods.

Finally, the random forest and k-NN methods have shown good results that allow them
to act as baseline methods. Random Forest, with a cumulative value of R2 of 6.770, and
k-NN with a value of 4.675. These are the values that we have considered as reference values
for baseline comparison.

Then, we can quickly observe in Appendix A that all the deep learning methods experi-
mented offer results above the baselines, which allows us to conclude the supremacy of the
deep learning models over the baseline ones.

The consistency of the results show a better prediction made by the deep learning meth-
ods than the baseline methods, showing, particularly for a prediction 12 hours ahead, better
learning capabilities than more straightforward machine learning methods like Random
Forest or k-Nearest Neighbours.
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Fig. 11.1 Accuracy depth relationship in four CNN architectures
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11.2.2 Increase of depth does not correlate with accuracy

Deep networks have better representation capabilities than shallow ones, a general rule
based on the principle that deep networks, with higher internal complexity, can represent
richer mappings of input to outputs.

However, the experimentation shows that the best architectures for wind prediction
have two or three layers, as deeper networks do not show accuracy improvements over the
shallower approaches.

In Figure 11.1, we compare the accuracy of several convolutional architectures with depth
from one layer to eight layers. The residual and skip architectures maintain the accuracy
in the deeper models, as skip and residual avoid the vanishing gradient issue, however,
with separable and standard convolutional the gradient deteriorates significantly, and the
accuracy plummets from the seventh layer.

11.2.3 Convolutional separable networks are superior for wind forecasting

After the experiments with all the different architectures, the results have shown that the
separable convolutional layers obtain better accuracy for wind prediction (see Appendix
A). These models obtain better results than any other, showing how the two-step separable
operation is the most appropriate architectures for this task.

Hyper-parameter setting optimisation obtains remarkable improvements from random
parameter setting strategies.

The experiments show the strength of the separable convolution function with significant
advantages; it offers superior representation capabilities compared to the classic convolu-
tional operation and is more efficient. In this way, the best results from the experiments
come with the application of separable one-dimensional convolutions.

These findings replicate what the creators of the separable convolution operation de-
scribed in their article [34], in this study, they defined the separable convolution operation
and applied it to images. In that research article, it was with a two-dimensional convolution.
The author, François Chollet, reports improvements in accuracy with better computing
resources efficiency.

When we started this research, we expected the RNN architectures, either with LSTM or
GRU cells to outperform other architectures in wind prediction, as they are widely used for
modelling temporal sequences. However, the results have not confirmed this hypothesis
as their results have been inferior to the convolutional approaches. One of the reasons for
this conclusion lies in the wind sequence input length, which, after the experimentation, we
have concluded that is always short.

After performing extensive hyper-parameter searching, we have concluded that the
deep learning algorithms learn wind patterns from short wind series sequences, defining
short as intervals of six to eighteen hours, using longer sequences does not increase the
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11.3 Conclusions about the wind time-series

accuracy of the results. This fact makes the sequence memory mechanism, inherent to
the RNN, ineffective, as they work better with longer sequences. As the series used for
experimentation have a step length of one hour (averaging the original five minutes series),
there is still an open question regarding the effectiveness of RNN with series with higher
frequencies. Will he RNN still perform worse than the CNN? Alternatively, with series with
more data steps, the LSTM or GRU cells will bring better representation capabilities for the
wind sequences. We offer a full discussion about wind time-series sequence length in Section
11.3.1.

11.3 Conclusions about the wind time-series

11.3.1 The wind input sequence length used for learning examples is short

The wind formation theory tells that wind is the result of global and local atmospheric
interactions, in events that show changes in the atmosphere in short cycles of three to six
hours [117].

In the experiments from Chapters 7, 8 and 9 (for a summary of the experiments results
see Appendix A) we consistently obtain as an outcome an optimal input sequence length
that was short. It varies from architecture to architecture (see Table 11.1) but is always a
length between 6 and 18 time steps (hours).

Table 11.1
Lag length training examples

Architecture length Architecture length Architecture length

CNN 1L 12 CNN-sep 1L 12 CNN-skip 1L 12
CNN 2L 12 CNN-sep 2L 12 CNN-skip 2L 12
CNN 3L 6 CNN-sep 3L 12 CNN-skip 3L 12
CNN 4L 6 CNN-sep 4L 12 CNN-skip 4L 6
CNN 5L 12 CNN-sep 5L 12 CNN-skip 5L 6
CNN 6L 12 CNN-sep 6L 12 CNN-skip 6L 6
MLP 12 MLP-rec 12 MLP-fut 12
MLP-cas 12 MLP-sjoint 12 MLP-dir-reg 12
RNN MIMO 18 RNN-ED 12 RNN-Att 12

This input length, named lag in this thesis, is a parameter adjusted in the hyperparameter
setting phase. Moreover, we can obtain the following conclusions:

• The lag used in the experiments is always between 6 and 18 steps, as longer sequences
did not improve the accuracy.

• Accuracy differences between architectures trained with sequences of different lengths
(if the lengths are between the 6 and 18 margins) are small.
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• From the experiments, we can conclude that an optimal lag length of sequences
is between six and eighteen steps. Longer sequences do not show any accuracy
improvement.

With all these facts, we can conclude that the learning algorithms, when used with wind,
learn from sequences with short lag.

11.3.2 Higher frequency measurements improve accuracy

The data used in this work came from the NREL dataset (see Chapter 5) and sampled initially
with a frequency of five minutes. For easier data handling, the data is averaged hourly and
z-standardised before being used for neural network training.

This decision was taken for practical purposes as we reduce the amount of data and the
training time for each model, however, we are aware that working with this approach we
are reducing the potential best accuracy of the models.

This improvement happens across different architectures, we have shown better results
with some MLP and CNN models (see Tables A.3 and 11.2).

Table 11.2
Comparison of Means of probability distributions of 5m series and 1h series on the test data.

Improvement calculated from the difference of means

Architecture Slice/layers 5m Avg. 1h Improvement

MLP 7.409 7.254 ↑ 2%
MLP future 8.026 7.806 ↑ 3%

CNN classic 1L 7.373 7.185 ↑ 3%
CNN classic 2L 7.524 7.226 ↑ 4%
CNN-sep 1L 7.524 7.301 ↑ 3%
CNN-sep 2L 7.507 7.320 ↑ 2%

We measured the increase of accuracy, that is, for the six experiments, around a 3%
increase, which is a relevant improvement.

With this limited experimentation, we cannot answer the general question on how much
the higher frequency series improve the prediction, but in the case of one hour to five
minutes, there is a significant improvement.

As future work, we leave the question open on which is the best-sampled period for the
series to maximise the prediction result. The limitation issue, though, is the availability of
series sampled at the different lengths and for enough different sites.
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11.3 Conclusions about the wind time-series

(a) Distribution plot MLP series at 5m (R2 = 7.409) (b) Density plot MLP series at 5m (R2 = 7.409)

(c) Distribution plot MLP series averaged at 1h (R2 = 7.254) (d) Density plot MLP series averaged at 1h (R2 = 7.254)

Fig. 11.2 Comparison of R2 results with series averaged at 1h (bottom) and with series sampled at 5
minute (top)
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11.3.3 Integrating time-series with meteorological information increases accu-
racy

The research strategy in this work is a multi-step forecasting based exclusively in time series
information, with a prediction horizon of twelve hours. Twelve hours marks a border in the
prediction window where the models can benefit using weather forecasting information (see
chapter 4.1).

(a) Distribution plot comparison 1h averaged series one with weather variable
(fut) and another without

(b) Distribution plot comparison 5m averaged series one with weather variable
(fut) and another without

Fig. 11.3 Comparison between architectures with and without a low resolution variable,
improvement of accuracy happens in series with step at five minutes and averaged at one hour

Weather forecasting offers predictions with different level of uncertainty depending on
the predicted index. Some predictions like temperature or solar radiation can be predicted
with very high accuracy as they are similar in very wide areas. In this way, the weather
forecasting methods can use a wide grid for their forecasting and obtain a precise mea-
sure, notwithstanding other indexes depend on local geographical features, like rainfall
or particularly wind, which depends on small terrain attributes. For this reason, a good
wind prediction based on weather forecast requires small grids, grids that are not yet avail-
able for the largest models requiring to use down-sampling techniques that increment the
uncertainty of the result [3].

In this way, we divide the measures to forecast between low resolution, which are the
indexes that can be predicted with large grids, like temperature or high resolution the ones
that require small grids, like wind-speed. Low resolution are easier to predict and have low
uncertainty while high resolution are more costly to predict and have higher uncertainty.

Our approach is to add to the time series a prediction like temperature, which is a low
resolution variable. In this way the networks are trained with the time series information
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plus, some additional input on the temperature prediction for the lag length, this experiment
is carried out with series averaged hourly and with series averaged every five minutes. (see
Sections 8.5).

The results (see Figure 11.3) show how the accuracy noticeably increases when adding
temperature prediction as an input variable. The accuracy improvements appear in both,
the five minutes and the hourly series with improvements of 7%-8% (see Table 8.9).

11.4 Conclusions on site forecastability

In Chapter 10, we have developed some theory and application of the notion of forecastability
measures applied to wind.

Predictors of complexity for a time series can add value to the field as they can help
to understand the expected accuracy for a method and can even be introduced into new
forecasting methods that adapt to the identified complexity features.

In our work, we have defined two different approaches to describe the series, by
analysing its decomposition elements or by applying signal processing approaches like
entropy analysis (see Sections 10.6 and 2.5).

11.4.1 Site accuracy creates clusters of sites with same wind characteristics

Plotting the accuracy R2 of the results of a deep learning method generates illustrations that
show groups of sites signalling the wind formation characteristics on the maps, we see these
distributions in these Figures 9.3, 7.7 or 6.5 of different deep learning methods applied to the
whole dataset.

The representation shows how the accuracy is related to inner time series characteris-
tics. In Section 10.7 and 10.6 we analysed, using tools from signal analysis and statistical
decomposition, several features that allow defining indexes that have a high correlation
with the accuracy of the deep learning results when applied to the wind series. Using
these techniques, we can describe the internal structure of the time series advancing in the
understanding of how to best adapt the forecasting methods to these structures.

In the maps, we see that using indexes obtained from the internal structure of the time
series. We obtain insights that describe how are the wind patterns in a wide area. These
predictor indexes can be used to define more powerful learning algorithms as they offer
information on how to approach the prediction problem before training the algorithm.

11.4.2 Ruggedness as an isolated measure is not a good predictor

Terrain complexity is commonly associated with difficult a prediction but lacking a definition
for this complexity; it is usually is associated with mountainous or steep terrain. To verify

191



Conclusions

(a) Spectral Entropy NREL (b) Strength Trend NREL

Fig. 11.4 Spectral Entropy and Strength Trend for the NREL dataset

this common understanding, we explored correlations between terrain ruggedness features
and predictability in (See Figure 10.5).

The result of the experiments did not find a correlation between isolated terrain measures
and forecastability. Site predictability cannot be defined by its ruggedness as an isolated
measure, as wind seasonality is much more relevant than the mountainous location of a
site, as sites in flat terrain can have inferior forecastability than sites in steep areas (see
Figure 11.5). Wind seasonality or local gusts are more relevant to obtain suitable or weak
predictions than isolated ruggedness measures.

Fig. 11.5 Comparison of a topographic map of Colorado with a site prediction result with a CNN separable two-layers. Blue
is less accurate and Red is more accurate. The lowest accuracy is in the East, at the plains, and in sites in the Rockies (West)

the accuracy is higher. (Topographic map source:Topography: ETOPO1; Public domain data provided by the National Atlas
of the United States of America)

192



11.5 Conclusions summary

11.5 Conclusions summary

This research that integrates the wind forecasting and the deep learning disciplines offers
several contributions.

We confirmed the relevance of deep learning methods to predict wind from time series
speed by applying the algorithms to a wide range of wind sites (see Chapters 7, 8, 9).
Through this process, we understood the impact and effect of the deep learning architectures
on wind that allowed us to design better-performing approaches (see Section 9.8) with
outcomes in areas like which are the best fitting parameters, and their impact on the accuracy
(see Section 9.4) or a better understanding of the dynamics of the architecture depth on the
wind prediction task (see Section 11.2.2).

We offer insights in the internal structure of the wind series specifically in the length that
is useful for the learning algorithms 11.3.1, and on the optimal period for the time series
data sampling (see Section 11.3.2), and we set the ground for the inclusion of inputs from
weather models in the process (see Section 11.3.3).

Altogether, this is a first step in understanding better wind and deep learning, and this
step has allowed us to define several future development areas for future work described in
the final chapter 12.
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Chapter 12

Future Work

The lessons learned from this research work allow us to foresee future lines of work. These
future developments envisioned, are based on the essential principles that this research
contributed to generate, like the application of deep learning and the search of generalisation
in the forecasting by applying it to a diverse group of wind time series.

Some of these new approaches are already catching up the attention of the scientific
community and will undoubtedly impact the wind forecasting industry in the future. In
this chapter, we review the future areas of research that we have identified during this work,
that cover different angles of the wind forecasting.
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12.1 Introduction

The problem of wind prediction using deep learning algorithms is far from solved. The
combination of the inherent complexity of wind formation, plus the demanding requirements
from the electricity generation industry increase the challenge of this activity.

For deep learning to advance in this application, we foresee future advancements in
different lines of work, either by the development of new algorithms or approaches or using
more and better data. It is common knowledge in the field that more data improves the
results of learning algorithms, and the wind forecasting problem follows this rule. We
require more extended sets of data generated at a higher frequency.

As new future lines of work, we propose the use of time series at a higher frequency, the
integration of Meteorological info as input to the models, the use of ensembles of methods,
the forecasting of local wind events (like ramps, tornadoes) and the use of neighbouring
sites to forecast in wider areas.

12.2 Use of data from real observation and higher frequency

The original time series used for the experimentation are series sampled at five-minute steps,
and to make them better suited for the experiments we have averaged them hourly creating
series with one-hour steps. We observed how the series averaged at five-minute steps help
the algorithms to increase their accuracy, a clear signal of the principle "more data generates
better accuracy" [45].

To go deeper into this point we need series with higher frequency, and with very short
periods, the series will contain sudden changes of wind, like gusts, that can be very informa-
tive to the algorithms. The work on time series with periods of two or three seconds, and
coming from unfiltered observations (without outlier smoothing) contain useful information
that can be processed by the deep learning algorithms and improve the overall accuracy at
mid and short term forecasting.

12.3 Integration of NWP values in prediction

The title of this thesis clearly defines the process followed as “multi-step time series forecast-
ing", a method that uses the past predictions to forecast future sequences in the future.

As future work, we propose to add as an input for the deep learning architectures
meteorological information from weather model forecasts. This hybrid approach will obtain
better accuracy results while increasing the complexity of the inputs in several dimensions:

• The NWP models have stochastic errors induced into the data by the model itself or by
the original measurements.
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• Meteorological models require down-sampling strategies, which consist in run the
models in large areas and then use algorithms that transform this wide Prediction into
a local one [249].

In the same way that there are applications of deep learning that can self-generate
information from a blurred origin (sharpening an image or painting an old black and white
photo) we believe that applying deep learning to down-sampled forecasts with uncertainty
can improve the accuracy of the results and apply these models to long term predictions
(over 12 hours). This is an entirely new area of research, with limited contributions [179]
and potentially with high impact in the wind prediction field.

12.4 Use of ensembles

Working with a vast dataset like the NREL wind toolkit allows the observation of the
diversity of wind patterns across sites distributed in a wide geographical area.

In this work, we have followed a one model for all strategy, which consists in developing
deep learning architectures and applying them to the whole dataset with the same set of
parameters. The best performing model is the one with the highest average accuracy over
the whole spectrum of sites. To improve this accuracy, we can use alternative strategies, to
the one model for all approach.

The first approach is to develop a specific architecture for each site, by performing a
hyper-parameter search using one site, or for a set of sites with similarities. To create the site
sets, we can use forecastability measures like the ones analysed in Chapter 10. In this way,
the individual performance and overall average will increase, by the development of deep
learning architectures that can adapt to the local features of a site to optimise its training.

12.5 Prediction of local wind events

A relevant area for future development is the application of anomaly detection to wind time
series. Several meteorological phenomena impact the industry and are characterised by the
difficulty of Prediction and for causing massive distress in generation assets.

These events are:

• Wind ramps: Strong weather events, though rare, cause sudden changes in wind
intensity, thus modifying the energy generation profile increasing the complexity of
system management by the operators. Wind ramps depend on local features and have
different ramping characteristics. Wind prediction is poor in predicting wind ramp
events, as wind ramps are a special kind of outlier when wind ramps happen, the TSO
requires using contingency generation plants to balance the grid, at a very high cost
[55, 47, 65, 66].
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• Local and sudden short meteorological phenomenon: In this category, we include
extremely local events. Hurricanes, Tropical cyclones have a much larger scope and
must be predicted at a global level. Local events can be considered a specific kind of
ramping event that is generated locally in severe weather situations. The common
characteristic is its violence that can break or distort the generation engines completely.
One feature for this Prediction is the requirement for using short frequency time series,
as long frequency series do not have the resolution to anticipate these changes that
happen in minutes [237].

• Wake effects: Wake effects is the impact on energy production in a wind park from
the wind complex interactions between turbines. The impact of wind with a turbine
generates turbulences that impacts the other turbines located downward wind. Wake
effects have more to do with aerodynamics than with meteorology but impact the
generation and must be considered when predicting the integrated energy output in a
wind park. Wake effects are complex and not fully understood, making an interesting
field for deep learning modelling [240, 216].

12.6 Prediction using neighbouring site information

This research work is based on Prediction at the site level. We use a multivariate time series,
and the algorithm is trained for each site. Practically, the wind turbines are not isolated but in
sets of towers that share a common area of wind. As we showed in Sections 9.6 and 8.4, using
data with higher frequency obtains better results, more data improves the learning process of
the algorithms. Predicting at wind park level implies using simultaneously contiguous data
points, obtaining much richer data that can help to model the output better. This prediction
approach is fully aligned with commercial requirements, but the experimental analysis is
scarce, possibly due to the lack of available data. This experimentation needs to explore the
impact on the resulting accuracy by using neighbour sites.

There is a need for research on the application of deep learning approaches to large
groups of sites to analyse its impact on accuracy, and possibly including the transformation
of wind speed into wind energy.

12.7 Wind speed probabilistic forecasting using deep learning

The development of probability forecasts for wind speed is a subject area with limited
scientific work but with interest from the industry. The International Energy Agency, in
their task-force 36, is developing a comprehensive approach for the implementation of
probabilistic Prediction in the wind generation industry [74].
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The research group assembled for task-force 36 will develop, in its sub-task 2.3, a com-
plete analysis of the uncertainty origins in wind forecasting through the whole forecasting
chain. Probabilistic studies on how the uncertainty propagates are underway to set up a best
practice recommendation for the industry forecasters.

The intersection of deep learning, uncertainty and probability forecasting is an exciting
area of research that can bring applications of immediate use for the industry. The required
tool-sets for this area of research are somehow parallel to this thesis work.

The limited existing literature about the application of deep learning to probability
forecasting is surprising due to the intense interest in the industry. However, we observe
that the number of possible sources of uncertainty in the forecasting chain increases the
complexity of this problem. Adding the inherent uncertainty of the deep learning approach
generates a whole new area for research [64].

·∼ • ·∼
It is my hope that the research work presented in this thesis will encourage new researchers
to push ahead this exciting area of study and make it a central piece in the wind forecasting
framework of the industry.
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"Machines take me by surprise with great frequency"

(1950) Alan Turing [227]

"All models are wrong, but some are useful"

(1919-2013) George E. P. Box

Part V

Appendices
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Appendix A

Summary of experiments accuracy

This appendix compiles the results of the experiments with all the different architectures.
All the values in this page are already included in the different chapter, but for an easier
access and comparison we integrated them in three tables.
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Summary of experiments accuracy

Table A.1
Mean and standard deviation of probability distributions of R2 (added for 12 time steps) for all the

referenced experiments

Architecture Slice/layers Test-mean Test-σ Val-mean Val-σ

Persistence 2.699 ±1.951 2.486 ±1.919
Random Forest 6.770 ±0.804 6.532 ±0.737
k-NN 4.675 ±1.02 4.430 ±0.941

MLP Direct Regression 6.955 ±0.787 6.650 ±0.722
MLP MIMO 2 Layers 7.254 ±0.792 6.954 ±0.732
MLP recursive 7.109 ±0.788 6.826 ±0.728
MLP future 7.806 ±0.785 7.541 ±0.749

MLP MIMO 1L 7.169 ±0.803 6.845 ±0.742
MLP MIMO 2L 7.253 ±0.793 6.953 ±0.731
MLP MIMO 3L 7.211 ±0.793 6.926 ±0.734
MLP MIMO 4L 7.181 ±0.792 6.899 ±0.732
MLP MIMO 5L 7.111 ±0.785 6.848 ±0.727

MLP skip 1L 7.170 ±0.801 6.847 ±0.737
MLP skip 2L 7.253 ±0.796 6.948 ±0.734
MLP skip 3L 7.250 ±0.801 6.940 ±0.739
MLP skip 4L 7.233 ±0.800 6.922 ±0.741
MLP skip 5L 7.216 ±0.800 6.903 ±0.744

MLP SJOINT 1 7.241 ±0.791 6.938 ±0.733
MLP SJOINT 2 7.247 ±0.790 6.943 ±0.731
MLP SJOINT 3 7.252 ±0.788 6.947 ±0.731
MLP SJOINT 4 7.255 ±0.788 6.949 ±0.730
MLP SJOINT 6 7.257 ±0.790 6.953 ±0.730
MLP SJOINT 12 7.253 ±0.792 6.951 ±0.731

CNN 2 layers 7.146 ±0.795 6.840 ±0.751

RNN MIMO GRU 7.147 ±0.798 6.822 ±0.735
RNN MIMO LSTM 6.952 ±0.805 6.635 ±0.738
RNN ED GRU 7.109 ±0.805 6.786 ±0.749
RNN ED LSTM 6.965 ±0.807 6.652 ±0.749
RNN MIMO GRU att 6.598 ±0.826 6.290 ±0.743
RNN MIMO LSTM att 7.003 ±0.804 6.700 ±0.744
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Table A.2
Mean and standard deviation of probability distributions of R2 (added for 12 time steps) for all the

Convolutional Networks experiments

Architecture Slice/layers Test-mean Test-σ Val-mean Val-σ

CNN 1L 7.185 ±0.802 6.867 ±0.754
CNN 2L 7.226 ±0.800 6.908 ±0.736
CNN 3L 7.222 ±0.801 6.895 ±0.734
CNN 4L 7.190 ±0.804 6.858 ±0.733
CNN 5L 7.152 ±0.810 6.816 ±0.733
CNN 6L 7.106 ±0.809 6.817 ±0.735
CNN 7L 7.052 ±0.808 6.750 ±0.734
CNN 8L 5.450 ±3.043 5.203 ±02.905

CNN-sep 1L 7.301 ±0.798 6.991 ±0.752
CNN-sep 2L 7.320 ±0.797 6.988 ±0.745
CNN-sep 3L 7.302 ±0.796 6.988 ±0.746
CNN-sep 4L 7.270 ±0.798 6.954 ±0.754
CNN-sep 5L 7.152 ±0.809 6.816 ±0.735
CNN-sep 6L 7.106 ±0.809 6.771 ±0.732
CNN-sep 7L 7.054 ±0.809 6.749 ±0.736
CNN-sep 8L 5.448 ±3.050 5.207 ±2.916

CNN-skip 1l 6.935 ±0.799 6.671 ±0.730
CNN-skip 2L 7.223 ±0.798 6.904 ±0.738
CNN-skip 3L 7.221 ±0.798 6.903 ±0.738
CNN-skip 4L 7.201 ±0.806 6.871 ±0.739
CNN-skip 5L 7.183 ±0.810 6.850 ±0.738
CNN-skip 6L 7.157 ±0.813 6.820 ±0.739
CNN-skip 7L 7.130 ±0.814 6.790 ±0.739
CNN-skip 8L 7.090 ±0.818 6.751 ±0.739

CNN-res 1L 6.862 ±0.796 6.602 ±0.735
CNN-res 2L 7.136 ±0.806 6.834 ±0.739
CNN-res 3L 7.134 ±0.805 6.832 ±0.739
CNN-res 4L 7.118 ±0.804 6.807 ±0.733
CNN-res 5L 7.095 ±0.807 6.785 ±0.736
CNN-res 6L 7.076 ±0.806 6.767 ±0.734
CNN-res 7L 7.055 ±0.810 6.746 ±0.737
CNN-res 8L 7.036 ±0.809 6.728 ±0.738

CNN-MH 2Heads 7.145 ±0.792 6.829 ±0.731
CNN-MH 3Heads 7.170 ±0.796 6.854 ±0.735
CNN-MH 4Heads 7.125 ±0.788 6.816 ±0.728

CNN-InceptionTime 6.841 ±0.793 6.549 ±0.743

CNN - GB 2L 7.228 ±0.796 6.951 ±0.734
CNN sep GB 2L 7.341 ±0.796 7.043 ±0.753
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Summary of experiments accuracy

Table A.3
Mean and standard deviation of probability distributions of R2 forecasting Horizon is at 1h (12 steps)

or at 12h (144 steps ahead) using 5m series experiments

Architecture Slice/layers Test-mean Test-σ Val-mean Val-σ

MLP 5m 12h 7.409 ±0.775 7.095 ±0.724
MLP 5m 12h future 8.026 ±0.754 7.748 ±0.733

Persistence 5m 1h 10.946 ±0.344 10.749 ±0.436
MLP 5m 1h 11.123 ±0.267 10.951 ±0.347

CNN classic 5m 1L 7.373 ±0.763 7.077 ±0.710
CNN classic 5m 2L 7.524 ±0.761 7.212 ±0.716
CNN-sep 5min 1L 7.524 ±0.763 7.212 ±0.718
CNN-sep 5min 2L 7.507 ±0.766 7.211 ±0.716
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Appendix B

Accuracy and error

The accuracy estimation is critical to understand the effectiveness of a forecast. In this
chapter, we analyse different error measures used in wind prediction and review some of
their main properties.
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Accuracy and error

Introduction

There is no consensus on which measure is the best to rate a wind forecast. There is a diversity
of measures found in the literature that describe the error generated by the prediction
algorithms. This diversity the difficulty of comparison between different experiments
performed in different turbines, wind parks and geographies. Based on the work of Madsen
developed in the framework of the Anemos project [135] and [119], in this section, we
describe the most widely used measures of error in the field.
the nomenclature used in the formulas is:

observations = X : ⟨x1, · · · ,xn⟩
real labels = Y : ⟨y1, · · · ,yn⟩

predictions = Ŷ : ⟨ŷn+1, · · · , ŷn+H⟩
Prediction Horizon = H

Error ei = (ŷi − yi)

mean y =
1
N

N

∑
i=1

yi

Standard deviation and variance

The dispersion of values in a time series calculated to its mean is the standard deviation (σ).

σ2 =
1
N

N

∑
i=1

(yi − y)2 (B.1)

Standard deviation determines the dispersion of a set of values. If it is required to
compare two sets of values, for instance, predictions and observations, the variance (σ2) of
the difference of means is the sum of variances of each respective mean.

Standard deviation is not a measure of error but an indicator of the dispersion of values
in a list of values.

Bias or systematic error

Model Bias is the average error over the whole period, computed for each time step [135].

BIAS = ei =
1
H

H

∑
i=1

ei (B.2)
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It is considered as the systematic error of the model. In statistical literature, there is a
distinction between observational or systematic error and random error; however, for this
work, both of them are considered systematic errors in line with [135].

For this work, we have designed a variation of this approach, as the horizon steps are
fixed across all models (H = 12), the measure used to compare the errors is the cumulative
value of errors for the 12 times steps, without averaging it, ∑H=12

i=1 ei [145].

Mean Error (ME)

Mean error is the average of errors in the prediction. It is seldom used as the negative errors
are cancelled by the positive ones and the total does not give valuable information of the
accuracy of the result [118].

ME =
1
N

N

∑
i=1

(yi − ŷi) =
1
N

N

∑
i=1

ei (B.3)

For this reason, this measure is not usually used, and it is not present in this work.

Mean Absolute Error (MAE)

Mean Absolute Error is a fundamental error measure and is the result of the average of
differences between prediction and real observations for a specific prediction outcome.

MAE =
1
N

N

∑
i=1
|(yi − ŷi)|=

1
N

N

∑
i=1
|ei| (B.4)

MAE is a good measure of the prediction quality and is widely present in many works
in the literature, however as it is not normalised, sites with larger values of wind speed
have larger MAE than sites with smaller wind intensity, as the larger values impact in the
calculation of the error more than small values.

Mean Squared Error (MSE)

Mean squared error is calculated by squaring the errors. The square operation avoids the
negatives in the results. By squaring the values penalises large values by magnifying them
and favours small values, in this way small values have more significance than with the
MAE error measurement

MAE =
1
N

N

∑
i=1

(yi − ŷi)
2 (B.5)
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Accuracy and error

Root mean squared error (RMSE)

The RMSE is the square root of the Mean Square Error (MSE) and shares the advantage of
obtaining higher error values, penalizing more significant errors compared to smaller ones.

The formulation of the RMSE (also known as RMS) is:

RMSE =
√

MSE =

√
1
n

n

∑
i=1

e2
i (B.6)

There are some recommendations [73] to use different evaluations for the same exercise
as some models may generate lower MAE than RMSE or the other way around. In some
situations, a positive RMSE can have a corresponding negative MSE.

Squared errors (RMSE, MSE) favour small differences over absolute errors (MSE, ME).
However, both measures have the issue that the errors depend on the scale of the numbers,
as the sites may have wind speed in different ranges, this affects the error measure, and
makes the error comparison between different sites difficult. For this reason, the errors are
normalised. (see Section B)

Coefficient of determination R2

An relevant measure is the R2 used to describe the degree of fitness of a regression. This
measure is an accuracy measure (higher more accurate) while MSE is an error measure
(higher more error).

This measure is in a range of [0,1] but for a regression that is outside the target can
generate negative values as well. The R2 has high semantic content as it shows how a
regression fits a function (see Figure B.1). The asymptotic variance of the prediction errors is
more significant than the mean-variance, and this can cause negative error values for wrong
predictions. For instance, in the persistence method, the variance of the prediction errors is
twice the variance of the mean prediction [158].

R2 = 1− ∑H
i=1(yi − ŷi)

2

∑H
i=1(yi − y)2

= 1− SSRES

SSTOT
(B.7)

The coefficient of determination is a useful for method comparison, but rarely used in
the wind prediction literature.
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Fig. B.1 Two Regression exercises with their R2 errors. It can be seen how the point cloud shape
influences the resultant R2 value

Mean Absolute Percentage Error (MAPE)

Very similar approach to MAE, but obtains the result as a percentage, and is defined by the
formula:

MAPE =
1
N

N

∑
i=1

|yi − ŷi|
yi

=
1
N

N

∑
i=1

|ei|
yi

(B.8)

It weights the absolute value of the error by the size of the measure, which helps for
comparison of measures. It can be found in some works in the literature, but is as not widely
used as the standard MAE and RMSE.

sMAPE: Symmetrical MAPE

MAPE is a percentage measure as it relates the error with a percentage. It can be multiplied
by 100 in order to obtain a number between −200 and +200 or just a number between 0 and
1. This measure tries to avoid the problem of significant errors when the actual wind power
values are close to zero, by dividing the error by the measures added to the average.

sMAPE =
2
N

N

∑
i=1

|yi − ŷi|
|yi|+ |ŷi|

· 100% (B.9)

This measure, corresponds to the one proposed by Makridakis and Hibon in [136], it
avoids large errors when yi is greater than ŷi or vice versa. The symmetric measure has
bounds when the non-symmetric does not have an upper or lower limit.

This measure has been used in time series forecasting but is not widely present in wind
literature.
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Accuracy and error

Normalised errors (nMAPE, nMAE, nRMSE)

Normalisation is required if we want to compare error measures that are obtained from
different sites, as each site has a range of power and wind. Normalisation requires to divide
the values by the rated wind-speed or power (depending on the nature of the measurement).
The normalisation will be then obtained by dividing the error by the rated power value or
rated wind speed value.

nMAE =
MAE

Rated value
(B.10)

nRMSE =
RMSE

Rated value
(B.11)

nMSE =
MSE

Rated value
(B.12)

As the maximum speed may be affected by some events that occur only once every two
or three years (intense hurricanes, for example), it is advisable to remove outliers in the
calculation of the rated maximum wind in a site.

Analysis of errors and its usability for wind prediction

The error/accuracy results evaluate model performance, but this analysis is not a straight-
forward task. A model can show good results with one error metric and worse results with
others.

Another problem is to compare different sites and obtain conclusions from the com-
parison. A commonly used method for this is to use a naive method as a comparison. In
the wind prediction world, this method is persistence, which is one of the most natural
methods (the actual value is the prediction for all steps). This method is accurate for short
term predictions, but after 3-4 hours its error is too high, being easy to beat [73]. For this
reason, persistence is not very useful for longer prediction horizons.

The primary metrics used are MAE, RMSE, R2, the comparison with baseline models
like persistence or others [158], or showing the error distribution as a histogram bias, MAE,
RMSE, the coefficient of determination R2, the skill score for comparison with other models,
and finally showing the error distribution graphically (as histogram or function shape) [135].

A recommendation from a paper [135] by Madsen et al. is to use normalised error metrics
(like NMAPE or NRMS) and to use the wind - power prediction is recommended to use the
installed capacity as normalisation factor and not the production average, basically because
the production average might not be known for new wind-sites. The Spanish wind energy
association punishes MAPE as error measure on the forecasts, the model miscalculations in
the power schedule are penalised based on MAPE.
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All-together, there is not a simple answer to the question of which is the best error
measure to be used in site evaluation. The behaviour of each measure differs on each site
topology, and the model applied. MAE and RMSE are the most used methods, while R2 is a
practical tool for regressions.
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Appendix C

Posters presented at conferences

The candidate has participated in several conferences where he presented the research in the
form of posters. In this appendix we show the contents of the posters displayed on the three
conferences.

(Pos-3) In energy3canada 2019 conference, (Canada conference on energy with a focus on
offshore wind), Halifax, Nova Scotia Canada, October 16-18 2019.

(Pos-2) WindEurope 2019 & Exhibition, (European Wind Industry Conference) Bilbao,
Spain, April 2-4 2019.

(Pos-1) 21st International Conference of the Catalan Association for Artificial Intelligence,
CCIA 2018 October 8-10, Roses, Girona, Spain
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Posters presented at conferences

CCIA October 2018

21st International Conference of the Catalan Association for Artificial Intelligence, October
8th-10th 2018 in Roses, Girona Spain
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Fig. C.1 Poster CCIA 2018 Conference
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Posters presented at conferences

WindEurope Conference April 2019

WindEurope 2019 & Exhibition, (European Wind Industry Conference) Conference in Bilbao,
Spain April 2nd-4th 2019
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Fig. C.2 Poster Wind2019 Conference
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Posters presented at conferences

Energy3Canada Conference October 2019

Energy3canada 2019 conference, (Canada conference on energy with a focus on offshore
wind), Halifax, Nova Scotia Canada, October 16-18 2019.
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Fig. C.3 Poster Wind2019 Conference
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Appendix D

Code and Results

There are three resources created around this thesis research work.

• Notebooks with the analysis of the experiment results
• MongoDB database with all the individual experiment results
• Code used in the experimentation

We provide a link to the code used in the thesis for replicability purposes, plus a link to
another github repository where all the experiment results cited in the theses are available,
plus most of the generated illustrations from data.

The MongoDB database contains all the individual experiment results, and is avail-
able under request. Nevertheless, is important to point the complexity to reproduce all the
experiments due to the computing requirements required. All the experiments have been per-
formed in 2018, 2019 and 2020, and have been supported by the Barcelona Supercomputing
Center.

NOTEBOOKS: https://github.com/castorgit/Articles-2020

CODE: https://github.com/castorgit/Wind_code

DATABASE: Mongodb database available under request
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