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Abstract. Statistical models in time series forecasting have long been challenged 

to be superseded by the advent of deep learning models. This research proposes 

a new hybrid ensemble of forecasting models that combines the strengths of 

several strong candidates from these two model types. The proposed ensemble 

aims to improve the accuracy of forecasts and reduce computational complexity 

by leveraging the strengths of each candidate model.  

1   Introduction 

The task of forecasting research is a crucial part of academia and forecasting 

practitioners. Over the years, various forecasting models have been developed, ranging 

from traditional statistical models to the more advanced deep learning models that have 

broadened the landscape in forecasting research. 

An in-depth empirical evaluation was conducted recently on the top 

performers from the M3 competition organized by Spyros Makridakis (Makridakis et 

al., 2022a). The M3 competition was a large-scale forecasting competition conducted 

in 2000 that involved 3,003 time series realizations from different domains including 

industry, finance, and demography. The focus of the competition was to identify the 

most accurate forecasting models across the different time series and their domains 

rather than on the technicalities of the models used. One of its key findings was that no 

single model outperformed other models cnsistently among the time series realizations. 

This finding confirms the need for developing a combination of models that can target 

both the strengths and weaknesses of multiple models in the attempt of pushing the 

forecasting accuracy even further. 

To address this, the best performing forecasting models from each type of 

statistical and deep learning models are considered in this research. Statistical models 

can be generalized to easily capture linear relationships in time series data, require 

different distribution assumptions, and be computationally fast and easily interpreted. 

Deep learning models, however, do not require specific distribution assumptions, but 

can be generalized to capture both linear and non-linear relationships. Additionally, 

they are more computationally complex, require big data to perform efficiently, and are 

harder to interpret. 

This research uses the same dataset from the M3 competition, specifically the 

1,428 monthly realizations from the total of 3,003. Each of the realizations have lengths 

that varies from 66 to 144 observations and comes from six of the following domains: 
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Micro, Macro, Finance, Industry, Demographic, and Other. The forecasts are 

generated with statistical and deep learning models on horizons of 2 through 18, or 

rather 2-step-ahead through 18-step-ahead, which are then evaluated using the 

symmetric mean absolute percentage error, or sMAPE, a comparison metric used 

extensively by Makridakis et al. (2022a). See Appendix Section 4 for sMAPE 

definition. 

Components of both trend and seasonality are exhibited throughout the 1,428 

monthly realizations. Satisfactory performance may not be guaranteed when 

implementing some models on realizations with these components. There are many 

ways to determine the exhibiting realizations and transform them appropriately. Most 

of the models in this research may not require prior transformations, since those models 

have internal tests and calculations to handle these exhibiting components. Conversely, 

the model Autoregressive Integrated Moving Averages, or ARIMA, requires the 

evaluation of these components before its parameters are properly estimated. 

Woodward et al. (2022) recommended the Cochrane-Orcutt estimation as an efficient 

way to determine trends. And once the trend is determined, a simple differencing of the 

data is performed followed by the parameter estimation of ARIMA. However, this 

method has inflated type I error rates, which tend to increase as the ARIMA model 

stumbles across realizations with lesser observations. 

Statistical models are among the most widely used applications for time series 

forecasting. This is often due to their use of mathematical formulas that can easily be 

simplified and interpreted. Exponential smoothing, another simple and effective 

statistical model, is also under this umbrella together with ARIMA. Exponential 

smoothing can be used to effectively estimate the level, trend and seasonality of a time 

series realization, as well as effectively produce short-term forecasts. On the other hand, 

ARIMA is especially useful for non-stationary data, or rather data that have means and 

variances that change over time; such data is unpredictable and can produce incorrect 

forecasts when used for modeling. To reiterate, statistical models can be useful for 

capturing linear relationships between variables; however, they often rely on certain 

distribution assumptions and struggle to capture more complex relationships in the data. 

Additionally, statistical models are known to be sensitive to outliers which produce 

forecasts that may misrepresent the data. 

Deep learning models are designed to work for data with higher complexity 

such as images, speech, and video processing applications. Examples include recurrent 

neural networks, or rather RNN, which can be quite effective when used for time series 

data. RNNs are designed to handle sequences of inputs with various lengths where the 

order of the inputs is most crucial. DeepAR is a sophisticated deep learning model that 

is designed specifically for time series forecasting and using RNNs. It can handle 

difficult pre-modeling problems such as multiple seasonal components, missing data, 

and non-linear trends, making it well-suited for the M3 data. According to Makridakis 

et al. (2022a), only in certain cases DeepAR is shown to outperform the other models 

in their study. The focus of this research is to utilize DeepAR and attempt to reproduce 

the how and why the realizations are affected by it. 

As mentioned earlier, by using ensembles that combine the satisfactory 

forecasts of multiple models, the forecasting accuracy can be improved even further. 

This research aims to ensemble various high-performing statistical and deep learning 

models to potentially achieve greater forecasting ability. 
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2   Literature Review 

The literature review focuses on four principal areas: Statistical models, 

DeepAR, the performance capacities of statistical and deep learning models, and the 

ensemble schemes and their dynamic performances. 

2.1 Statistical Models 

2.2.1 Simple Exponential Smoothing 

Exponential smoothing was first pioneered by Robert G. Brown in 1944 

(Gardner, 2006). Brown's model produces the forecast for the next period as a weighted 

average of the previous forecast and observation. It uses only one parameter alpha (α) 

to smooth the data; for any α between 0 and 1, the weights attached to the more distant 

(previous) observations decrease exponentially, hence the name "exponential 

smoothing." if α is closer to 1, more weight is given to more recent observations, and 

conversely if α is closer to 0, more weight is given to the more distant past observations. 

However, this model does not correctly handle trends and seasonality that 

might be present in some time series. For example, the annual passenger numbers for 

Australian airlines from 1990 to 2009, namely the ausair dataset from the R package 

fpp, plotted in Fig. 1 shows clear evidence of a trend. The application of simple 

exponential smoothing (SES) shows a constant range of forecasted values over a five-

year period, plotted in blue, with prediction intervals that are increasing exponentially.  

The constant range of forecasts are the results of SES only using information 

from the past to make forecasts. Specifically, the forecast for the next period is based 

on the last observed and forecasted values. With the 5-step-ahead forecast shown in 

Fig. 1, the subsequent forecasts after the first one can only be based on the first forecast, 

namely the 2010 forecast, hence the constant range of forecasts. 

The prediction intervals in pink here show that, given the constant forecasts 

not providing much information, there is still significant uncertainty in the future values 

of Australian airline passengers over the five-year forecast period. 
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Figure 1. ausair Dataset. Simple exponential smoothing (red) implemented for 5-step-ahead, where the 

prediction intervals (pink) show an exponentially increasing uncertainty. 

2.2.2 Holt-Winters' Method 

Charles Holt and his student Peter Winters are well known for their 

contributions to exponential smoothing. In 1957, Charles Holt created Holt's linear 

method as an extension to simple exponential smoothing, which allows forecasting time 

series data with trends. This method involves using another parameter beta (β) that is 

used as the smoothing constant for the trend. Simply put, with this new parameter the 

forecasts are no longer flat but trending, essentially making the forecasts a linear 

function of the forecast period. With that said, the trend displayed in Holt's linear 

method is indefinite and can potentially overfit. The damped trend method introduced 

by Gardner & McKenzie (1985) solves this problem by involving another parameter 

phi (ϕ) that dampens the trend to a flat line. Both applications of Holt's linear and 

damped trend on the ausair dataset can be seen in Fig. 2, plotted in green and red, 

respectively. While the 15-step-ahead forecast can be seen here instead of a 5-step-

ahead forecast, it is not practical to forecast so far in the future. The 15-step-ahead 

forecast was done only to showcase the curvature behavior over time of the damped 

trend method. 
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Figure 2. ausair Dataset. Simple exponential smoothing (red), Holt’s method (green), and damped Holt’s 

method (blue) applied for 15-step-ahead. This longer forecast is done instead of 5-step-ahead to clarify the 

difference between Holt’s method (green) and damped Holt’s method (blue). 

 

In 1960, Charles Holt and his student Peter Winters created the Holt-Winters 

method (HW) to extend Holt's linear method which allows forecasting time series data 

with seasonality. The user can choose two variants of HW to handle seasonality within 

a time series. If the seasonal effects are constant over time (imagine a waves plot with 

the same amplitude throughout the x-axis, and the average level is either constant or 

changing), the additive variant of Holt-Winters is most appropriate. If the seasonal 

effects are proportional in size to the average level or change at the same rate as the 

trend (imagine a waves plot that increase in amplitude as the average level increases), 

then the multiplicative variant is most appropriate. "The user must decide whether to 

use the additive or multiplicative seasonal model or a non-seasonal model. … As each 

new observation becomes available, the local mean, the trend and the seasonal factors 

are all updated by exponential smoothing using three smoothing constants which we 

will denote by α, β, γ respectively" (Chatfield, 1978). 

An example of a time series data that is most appropriate for additive HW is 

the quarterly austourists dataset from the R package fpp. This data can be seen in Fig. 

3, along with an additive HW model for 8-step-ahead, or 8 quarters (2 years), applied 

to it. On the other hand, the monthly AirPassengers dataset from the R package datasets 

is a good example of a time series most appropriate for multiplicative HW. This dataset, 

which displays a growing and multiplicative seasonality, can be seen in Fig. 4, along 

with a multiplicative HW model for 24-step-ahead, or 24 months (2 years) applied to 

it. 
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Figure 3. austourists Dataset (1999-2010). Holt-Winters' method with additive seasonality (red) applied 

for 8-step-ahead, or rather 8 quarters (2 years) into the future. The prediction intervals (pink) show a 

constant amount of uncertainty throughout the horizons for both upper and lower intervals. 

 

Figure 4. AirPassengers Dataset. Holt-Winters' method with multiplicative seasonality (red) is applied for 

24-step-ahead, or rather 24 months (2 years) into the future. The prediction intervals (pink) show a constant 

amount of uncertainty throughout the horizons for both upper and lower intervals. 

2.2.3 State Space Exponential Smoothing and the Theta method 

"A state space is the set of all configurations that a given problem and its 

environment could achieve" (Sutcliffe, n.d., para. 1). In 2002, a new approach to 

exponential smoothing was proposed that allows the automation of forecasting using 

state space models and exponential smoothing methods (Hyndman et al., 2002). The 

authors explore different exponential smoothing models and argue that this framework 
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provides a more flexible and robust way to generate forecasts that can adapt to the 

changing patterns in the data. The authors used the M3 data, a standard benchmark 

dataset widely used in the forecasting community (Makridakis & Hibon, 2000). Their 

goal is to investigate the advantages of different smoothing models and their effects on 

different horizons, time series types (monthly, yearly, etc.), and domains that are 

apparent in the M3 dataset.  

Simply put, they developed 12 different models by combining different types 

of exponential smoothing methods with various specifications of the state space 

framework. Additionally, they have assumed that a time series can possess both the 

additive and the multiplicative error assumptions. These two model assumptions give 

equivalent forecasts despite different prediction intervals and likelihoods. Ultimately, 

this results in 24 total models considered and evaluated before being chosen as the best 

exponential smoothing model for a particular time series.  

Empirical evaluations in the research suggest that this state space framework 

surpasses the Theta method (Assimakopoulos & Nikolopoulos, 2000), the top 

performer in the M3 competition in 2000, especially for the seasonal series in the 

shorter forecast horizons, namely horizons 1 to 4, and the Micro domain (Makridakis 

& Hibon, 2000). However, the same cannot be said for the other time series frequencies 

and other domains in the M3 dataset. Conversely, the Theta method produces forecasts 

using a weighted average of the two components resulting from the classical 

multiplicative decomposition method. It requires the estimation of a single parameter θ 

based on the trend and seasonality present in the data, hence the two components, as 

opposed to the multiple parameters required in the state space exponential smoothing 

framework. Despite its lack of complexity, the Theta method offers a wide range of 

practical applications as opposed to the state space exponential smoothing framework, 

however, the latter would still be useful in some cases with seasonal data and domain-

specific cases like the Micro domain. 

2.2.4 Complex Exponential Smoothing 

Complex Exponential Smoothing (CES) was proposed by Svetunkov et al. 

(2022) to address the challenging task of identifying the underlying trend of a given 

time series data that significantly impacts forecasting accuracy. It does not exhibit 

model selection and uses only two parameters that derive from complex numbers. The 

given historical data is modeled using complex numbers, which helps capture both the 

trend and seasonal patterns of the time series data, to which exponential smoothing is 

used to make forecasts with the complex numbers. The reason for processing complex 

numbers in this way is solely to link the actual value to the forecast error. This gives 

the model extra insights into possible errors, rather than only modeling the observed 

value of the time series data and breaking it down into different components. 

The authors also used the M3 data as a benchmark dataset. They were aware 

of the three popular statistical models: State space exponential smoothing, ARIMA and 

the Theta method. They had shown that CES can outperform those three models 

separately in terms of median values of root mean squared scaled error (RMSSE) used 

in the M5-Competition (Makridakis et al., 2022b), mean absolute scaled error (MASE; 
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Hyndman & Koehler, 2006), and mean scaled interval score (MSIS), but not the mean 

values of MASE and MSIS. Additionally, Svetunkov included his own work as another 

scope of benchmark, namely his contributions to SCUM (Petropoulos & Svetunkov, 

2020), and found that while comparing between SCUM without CES and SCUM with 

CES that it originally did, the latter performed better in terms of median values of the 

same 3 metrics but bested by the prior only in average MSIS.  

In general, including CES in ensembles can lead to improvements in accuracy. 

Compared to other exponential smoothing methods, CES can better capture long-term 

relationships as argued by the authors, as well as capture non-linear trends without the 

need to creating separate components to capture level and trend. 

2.2 DeepAR 

In "DeepAR: Probabilistic Forecasting with Autoregressive Recurrent 

Networks," Salinas et al. (2020) explained the mathematical foundation behind the 

DeepAR method. It is a supervised learning algorithm that leverages recurring neural 

networks (RNN) and the concept of autoregression. In this model, the researchers 

included two sets of data: first a sequential time series and second a set of covariates 

that should be constant for the given time series. Covariates can be time dependent and 

item dependent. Item dependent covariates bring in the related data concept in the 

model. For example, a shoe is a part of the shoe category and should show similar time 

series characteristics. So, shoe category could be related data for shoe time series 

forecasting. However, the data used in the mentioned DeepAR study is univariate, 

which aligns with this paper's objective.  

2.3 Performance Capacities of Statistical and Deep Learning Models 

Statistical techniques, such as auto-regressive (AR), auto-regressive moving 

average (ARMA), auto-regressive integrated moving average (ARIMA), and vector 

auto-regressive (VAR) have been dominating the landscape of forecasting. However, 

these statistical models assume stationarity and linearity in forecasting, simplifying the 

understanding but overlooking the complexity built into the information. Machine 

learning brings solutions such as support vector machine (SVM), random forest (RF), 

and gradient boosting to deal with non-linearity in the data which can be used as 

additional tools to time series forecasting. Recently, with larger amounts of data and 

better computing power availability, deep learning models are producing higher 

forecasting performance using their complex techniques. 

Khalil et al. (2022) compared statistical, machine learning, and deep learning 

forecasting results on energy consumption based on multiple attributes such as 

modeling functionality, characteristics, location, occupancy, system, and control 

operational data. The study noted that the mean absolute percentage error (MAPE) is a 

widely used comparison metric for performance, to which Makridakis et al. Had also 

used in their study. Khalil et al. emphasized the use of temporal granularity, 

encompassing horizon, which consists of short, medium, and long-term forecasting, 

and interval, which consists of daily, monthly, and weekly. This research team will treat 

intervals as time series frequencies. 
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Suradhaniwar et al. (2021) investigated the performance between a one-step-

ahead forecast and a multi-step-ahead forecast across statistical, machine learning, and 

deep learning models. They discovered that the performance of a one-step-ahead 

forecast is superior to a multi-step ahead forecast, given that the one-step delivers the 

next observation before making another prediction. Their research achieved to present 

which family of models generates better forecasts for one-step-ahead, particularly in 

multi-step-ahead scenarios. Their research concludes that ARIMA and support vector 

regression (SVR) perform well in both scenarios, but MLP and RNN falter badly in 

multi-step scenarios. Additionally, the paper illustrates that root mean square error 

(RMSE) and sMAPE produce similar results for both one-step-ahead and multi-step-

ahead forecasting horizons. 

Makridakis et al. (2018) conducted research using the M3-Competition 

monthly data to understand the efficacy of recent machine learning and deep learning 

models vis-à-vis traditional statistical models. In this ongoing research, the researchers 

expanded their scope by adding two additional deep learning models, namely the Multi-

layer Perceptron (MLP) and Bayesian Neural Network (BNN), as well as five machine 

learning models. Two accuracy measures, sMAPE and MASE, were introduced to 

compare performances among all three of the model types mentioned. Research 

concluded that simple statistical models outperformed machine learning and deep 

learning models. Interestingly, their conclusion held steady even when the computation 

complexity and the good of fit were considered. 

Two years later, the deep learning approach by Makridakis et al. (2022) was 

quite monumental. Aside from deep learning models, they also created an ensemble 

consisting of the best performing statistical models via the median, called Ensemble-S, 

as one of the competing methods in their study. Forecasts from multiple deep learning 

models, precisely 50 models, for each of the four deep learning model types DeepAR, 

Feed-Forward, Transformer and WaveNet were ensembled via the median to enhance 

the forecasting accuracy. In other words, there is one final forecasted single value (or 

set of values), depending on the forecasted horizon of either 1, or 2 and greater, for each 

of the 3,003 time series that represents the calculated median forecasted single value 

(or set of values) of the 50 different deep learning models, identified by their own initial 

conditions, hyperparameters or random seeds that are trained and validated on the same 

time series. Additionally, they considered an even larger ensemble of 200 deep learning 

models, called Ensemble-DL, done via the median the same way that the 50 deep 

learning models mentioned earlier had contributed from each of the four deep learning 

model types. This ensemble ended up majorly outperforming all the models from all 

three method categories, only losing to Ensemble-S in the shorter forecasted horizons 

by around 2% for horizons lower than 5 and 8.1% for horizon 1, which consists of the 

combination via the median forecasts produced by the statistical models ARIMA and 

State Space Exponential Smoothing (ETS). This approach by Makridakis et al. (2022) 

is intricate and well thought out but ultimately carries the burden of being too 

computationally intensive. Ensemble-DL was reported to take 345 hours (about 2 

weeks) to conduct, not to mention the time it took to optimize the numerous amounts 

of hyperparameters required, as well as the time required to conduct each of the four 

deep learning model types. Despite being groundbreaking at the time, an approach like 

this is impractical and unwieldy to the average forecasting practitioner. In contrast, 

Ensemble-S was mentioned to resemble the ensemble that won 6th place out of 61 
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competing methods in the M4-Competition in 2018. Compared to its top five 

competitors, this Simple Combination of Univariate Models (SCUM; Petropoulos & 

Svetunkov, 2020), which is a combination via the median of the forecasts of four 

models, namely ARIMA, ETS, Complex Exponential Smoothing (CES) and Theta. 

Petropoulos & Svetunkov claims that this ensemble would be the simplest forecasting 

approach in the M4-Competition to tackle its 100,000 time series realizations, 

supplying a balance between algorithm runtime and forecasting accuracy. 

Therefore, this research aims to build and analyze the performance of a 

combination of ARIMA, ETS, CES, Theta, Multi-layer Perceptron (MLP), LSTM and 

DeepAR, via an appropriate ensemble scheme, on the 1,428 monthly time series from 

the M3-Competition monthly data, where it will be evaluated against the comparison 

metric sMAPE. 

2.4 Ensemble Schemes 

In 2019, hourly air quality data from an Italian city had been analyzed using 

ARIMA, SVM and ANN models (Li & Ngan, 2019). The time series contained 93,578 

observations that represent the hourly average carbon monoxide levels from multiple 

sensors in the vicinity. Using a rolling-window on a horizon of length 1, forecasts were 

generated for each window. Taking various combinations of the three proposed models, 

a weight was applied to each model based on the proportion of absolute distance of 

forecasts from the actual of a model over the sum of absolute distance from all models 

for each ensemble. In general, the results across ensembles show an increase in mean 

absolute error (MAE) and MAPE metrics when SVM and ANN weights are heavily 

favored and ARIMA is penalized. 

Another weighted-ensembling approach between statistical, machine learning 

and deep learning models involved 34,616 observations of 15-minute power 

consumption frequencies in the ICC building in Hong Kong (Fan et al., 2014). Out of 

the eight different models used in the ensembling process, there are three of interest: 

ARIMA, multiple linear regression (MLR), and MLP. Using a combination of forecasts 

generated from multiple univariate and multivariate models, ensembles were produced 

using the genetic algorithm as a weighting scheme. The efficacy of the forecasts was 

evaluated using RMSE, MAE and MAPE. These results showed an increase in 

performance amongst the ensembled models that penalized ARIMA, MLR and MLP. 

There are common themes among the research conducted by both Li et al. and 

Fan et al. Both studies utilize a single realization over 30,000 instances, perform the 

one-step ahead forecasting and use a weighting scheme to construct ensembles that 

penalized statistical models. While these papers provide some evidence against the use 

of statistical models in the ensembling process, they do not provide a baseline of 

univariate ensembles based on the mean, median and mode operators.  

These measures of central tendency are widely used in various ensembling 

methods, yet there is scant literature on their effectiveness in ensembling statistical and 

deep learning models. Kourentzes et al. partially addresses the issue by comparing the 

mean, median and mode on an ensemble of neural networks (Kourentzes et al., 2014). 

The research examined 3000 realizations from the Federal Reserve and applied the 

mean, median and mode operators to the forecasts. The modes of the forecasts are 
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calculated through kernel density estimation, while the means and medians of the 

forecasts are calculated in the standard fashion. The means and medians were affected 

by outliers, albeit the median less so and the mode showed the most resistance. In other 

words, the use of both the median and mode operators for ensembles is suggested.  

These simple ensemble operators will act as a base before exploring other 

weightings schemes. An ensemble of nine different statistical and deep learning models 

was proposed on the NN5 Competition dataset (Andrawis et al., 2011). There were 115 

realizations of daily ATM withdrawals in the UK over a period of 2 years that were 

forecasted for 56 days (about 2 months) into the future. The researchers produced 140 

models from nine different types such as ARMA, MLP, HW and simple moving 

average. To select nine models from those that are used in the study, the researchers 

simply took an average of the models that individually produced the lowest sMAPE. 

The researchers concluded that the ensembled model is the best performing model in 

terms of sMAPE. 

This research will extend statistical and deep learning ensembles from single 

realizations to 1,428 monthly realizations in the M3-Competition data as well as 

explore and compare combinations via the mean and median.  

3   Methods 

The M3-Competition (Makridakis & Hibon, 2000) was the most eventful "M" 

competition organized by Spyros Makridakis, since the data from this competition is 

still being used to test the performance of new forecasting models. The data source for 

this research is a subset of the 3,003 time series data from this competition, particularly 

the 1428 monthly time series. The subset contains six domains, namely the Micro, 

Macro, Finance, Industry, Demography, and Other domains.  

 
Table 1. General Statistics of M3 Monthly Data. 

 Micro Macro Finance Industry Demography Other 

Number of 

Series 
474 312 145 334 111 52 

Max Length 126 144 144 144 138 120 

Min Length 68 66 68 96 71 71 

 

To prepare the data for modeling, the general statistics of the M3-Competition 

monthly data are calculated and recorded in Table 1. Observations were drawn from 

market driven indicators, though it is not clear which indicators were used for each 

domain to construct the data. Indices of these domains do not move in tandem, even 

though these data are from related fields. This research team aims to pay close attention 

to the behavior of the individual domains, and in that pursuit, the mean and standard 

deviation of the Micro and Macro domains are calculated and plotted in Fig. 5 and Fig. 

6. Since the lengths of series are asymmetric, the last 60 months (about 5 years) 

observations for each realization are considered for these plots. To declutter the plots, 

only 10 random samples are culled for presentation along with the realization mean and 

the standard deviation, though the realization means, and the standard deviation are 
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computed from all realizations from respective domains. Fig. 5 and Fig. 6 represent 

Micro and Macro domains, respectively.  

Realization is a particular instance of time series and in this case, multiple 

realizations are provided, which form an ensemble of realizations. Mean is the expected 

value of all possible realizations in each time, and similarly, standard deviation tracks 

the variation of all possible realizations in each time. For time series to be stationary, 

both the realization means, and the standard deviation must be constant for each unit in 

time. In Fig. 5, the realization means, and the standard deviation are observed to change 

with time but oscillate around the same levels without displaying any upward or 

downward trend. On the other hand, in Fig 6, most series are exhibiting an upward 

trend, indicating that many in the Macro Domain are non-stationarity, though the 

realization standard deviation tends to display the stationary behavior given that it 

moves around the same level.  

 

Figure 5. Micro Domain. Realization means and standard deviation with 10 sample realizations. 

 

Figure 6. Macro Domain. Realization means and standard deviation with 10 sample realizations. 

 

At individual time series, only one realization exists, and that realization 

constitutes the entire time series. However, the base assumptions of constant mean and 
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standard deviation still hold. Mahdy et al. (2020) leveraged the rolling mean and the 

rolling standard deviation to calculate and test the stationarity of individual series. On 

a similar note, one sample realization each from Micro (N1407) and Macro (N2480) is 

picked up, and the rolling mean and the standard deviation for each series are calculated 

using a rolling window of 12, given the interval of the dataset is monthly and the 

financial data such as Micro and Macro is assumed to have a yearly cycle. Fig 7 and 

Fig 8 illustrate the rolling mean, the rolling standard deviation, and the actual series for 

Micro (N1407) and Macro (N2480) respectively. Macro series (N2480) seems to be 

non-stationary as the rolling mean and the rolling standard deviation display downward 

trend. From an overall and an individual sample time series perspective, the Micro 

domain is more stable as both tests illustrate stationarity. On the other hand, the Macro 

domain hints at non-stationarity as both tests point to non-stationarity. Both displays 

suggest that the mean and the standard change with time. 

 

Figure 7. Micro Time Series N1407. Rolling mean, Rolling standard deviation and actual Micro series 
(N1407). 

 

Figure 8. Macro Time Series N2480. Rolling mean, rolling standard deviation and actual Macro series 
(N2480). 
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To build contrast, the yearly dataset can be used to compare to the monthly 

dataset. The yearly dataset has 645 series across six domains. Table 2 provides a general 

statistic of the yearly dataset. The Demographic domain has a higher proportion of 

series than that of monthly data. The series maximum length and minimum length of 

Micro and Macro data are almost equal, highlighting the quality of data. The maximum 

length and minimum length are identical across Finance, Industry, Demography, and 

Other domains, meaning data collection happened simultaneously for these domains. 

 
Table 2. General Statistics of M3 Yearly Data. 

 Micro Macro Finance Industry Demography Other 

Number of 

Series 
146 83 58 102 245 11 

Max Length 20 22 47 47 47 47 

Min Length 20 23 20 21 20 20 

 

For modeling, multiple forecasting models will be trained and tested 

separately, before combining them together via an appropriate ensemble scheme like 

taking the median of the forecasts. 

 

Figure 9. The Forecasting Approach Workflow. 

 

According to the forecasting approach depicted in Fig. 9, actual values of 1428 

time series are represented in y1, y2, y3, to yn. In this sample workflow, Model A, which 

could be any method such as ARIMA, MLP etc., generates forecast of horizon 3, which 

3 units of time into the future using multi-step forecasting. The forecasted values for 

horizon 3 are represented by ŷ1, ŷ2, ŷ3. The sMAPE for all 1428 series are calculated 

using these forecasted values. The average of these sMAPE values of the 1428 series 

is reported in the cell for Horizon 3 of Model A. The same process is repeated for Model 

A for each horizon, starting from 2 through 18.   

ARIMA is a classical linear time series method developed by George Box and 

Gwilym Jenkins in the 1970's. These models are used to model out data that exhibits 

serial correlation among its points (Woodward et al., 2022). The AR or Autoregressive 

is comparable to linear regression except for the explanatory variables are the response 
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variables lagged in time. The MA or moving average is representative of modelling a 

moment of time as a combination of error terms. Any moving average part of a model 

can be written in terms of strictly an AR portion, however adding an MA component 

simplifies the model. The final portion is the integrated or I term. This in essence 

represents the number of times a realization has been differenced with itself. In 

addition, these models can handle seasonality; This can be performed by differencing 

the data at the frequency it exists. There are 3 assumptions that must be met for an 

ARIMA model to be valid: all windows of the realization have a constant mean, all 

windows of the realization have a constant variance, and the correlation between a point 

and its lagged variables is constant at all points in the realization.  

A preprocessing step of removing trend was performed before evaluating phis 

(ϕ) and thetas (θ) for the ARIMA models. Two separate ARIMA models were built 

using two different methodologies for trend identification. The first trend method was 

born by Nelson et al. (1999) who suggested that deseasonalization on non-seasonal data 

bore little consequence while non deseasonalization on seasonal data can be detrimental 

to performance. This line of reasoning was extended to trend removal by simply 

differencing all the 1,428 series. Suggested by Woodward et al. (2022), the second trend 

identification, Cochrane-Orcutt method is statistical in nature. If identified, trend was 

removed with a simple differencing of the data. In the tables below, ‘ARIMA 

Differenced’ and ‘ARIMA Cochrane’ will represent these methodologies respectively.  

ETS is a state space model that selects from 24 exponential smoothing models 

that exhibit two components: a trend component that divides into 4 categories no trend, 

additive trend, multiplicative trend and damped trend, as well as a seasonal component 

that divides into 3 categories no seasonality, additive seasonality and multiplicative 

seasonality. The first set of three models with no trend component consist of SES 

(denoted as NN), exponential smoothing with additive seasonality (NA) and 

exponential smoothing with multiplicative seasonality (NM). The second set of three 

models with an additive trend component consists of Holt's linear method (AN), 

additive Holt-Winters' method (AA) and multiplicative Holt-Winters' method (AM). 

The third set of three models with a multiplicative trend component consist of 

multiplicative trend no seasonality (MN), multiplicative trend additive seasonality 

(MA), multiplicative trend multiplicative seasonality (MM). And finally, the fourth set 

of models with damped trend, created to tackle the fact that the trend estimated from 

historical data may not continue in the same way in the future and continuing to use the 

final estimate for the growth rate at the end of the historical data would lead to 

unrealistic forecasts, the trend is gradually dampened as the length of the forecast 

horizon increases, consist of damped trend no seasonality (DN), damped trend additive 

seasonality (DA) and damped trend multiplicative seasonality (DM). According to 

Hyndman et al. (2002), a time series can possess both the additive error assumption and 

the multiplicative error assumption. Therefore, a total of 24 models are considered and 

evaluated via AIC before being chosen as the best exponential smoothing model. 

CES is a 2022 extension to exponential smoothing that also uses both trend 

and seasonality components to make forecasts; however, it uses a complex number to 

represent the smoothed value of the time series data. The real part of the complex 

number represents the smoothed value of the time series, while the imaginary part 

represents the rate of change of the time series. The smoothing factor is applied to both 

the real and imaginary parts, and the resulting complex number is used to forecast future 

values. This would translate to two smoothing factors that CES uses. The first 

smoothing factor is alpha, which determines the weight given to the most recent 

observation in the time series data. The second smoothing factor in CES is beta, which 
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determines the weight given to the trend component of the time series data. CES first 

separates the input time series into two components: the level component which 

represents the average value of the series, and the trend component which represents 

the direction and speed at which the series is moving over time. Next, CES applies 

exponential smoothing to each component separately using the estimated alpha and beta 

to calculate the weight given to each observation; the level component is updated using 

alpha, and the trend component is updated using both the alpha and beta. Finally, CES 

combines the resulting level and trend components to generate the forecasts, which is 

done by adding the level component to the trend component multiplied by the forecast 

horizon. 

The Theta method is a very strong candidate among the statistical models that 

performed exceptionally well in the M3 competition, particularly for the monthly series 

and the Micro domain (Assimakopoulos & Nikolopoulos, 2000). The authors state that 

a time series can be decomposed into two Theta lines, a trend component and a seasonal 

component, which identify as θ = 0 and θ = 2 respectively. With that said, five stages 

are created to work with these two components, consisting of validating the need for 

and performing the classical multiplicative decomposition method (via a comparison 

between the t-statistic value, or standard normal distribution z-score, for a 90% 

confidence interval and the lag one year autocorrelation function value, that is 12 

observations for monthly timeseries and 4 observations for quarterly timeseries) into 

two components: a trend component, which is extrapolated as a normal linear 

regression line, and a seasonal component, which is extrapolated using SES. The next 

step is to combine the two components using equal weights, in other words, multiply 

both the first and second component's forecasts by .5 then summing them up to get the 

overall forecasts for the time series. Then the final step is to multiply the overall 

forecasts by the respective seasonal indices found in the validation stage, only if 

decomposition was necessary earlier. 

Multi-layered Perceptron (MLP) is a general-purpose deep learning model that 

introduces non-linearity to the data relationships and can model complex trend and 

seasonality within a realization (Andrawis et al., 2011). The general structure of an 

MLP consists of k number of layers with n number of hidden nodes. Each layer consists 

of a unique activation function, such as ReLu that introduces the nonlinearity to the 

current weighted sum. The layers may have any number of nodes and consist of many 

types of activation functions. These layers are called the 'hidden' layers. The final layer, 

however, consists of a single activation function appropriate for the task at hand. A 

single pass through all the data is called an epoch, and a model may be trained on as 

many epochs as desired. After each pass, the results from the final activation layer are 

evaluated and a correction to the model weights are found via a gradient-descent type 

method; This process is called backpropagation.  

The MLP algorithm from the R package nnfor has been used to generate the 

forecasts. All preprocessing for trend/seasonality and lags has been automatically 

selected by the MLP function in this package. The model for each series for each 

horizon is determined by taking the median value of 10 individual models built at said 

series/horizon. There are cases where the auto selection for trend/seasonality as well as 

the number of models built had to be adjusted to produce results.  These cases have 

been noted in Appendix 1.  

Long short-term memory (LSTM) is a gradient based deep learning method 

proposed by Hochreiter et al. (1997) that is constructed using Recurrent Neural 
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Network (RNN) and contains memory units for closer and farther observations from 

the present time. The LSTM is designed to mitigate ‘forgetting’ distant observations 

from the current time point as is typical with a traditional RNN. This is accomplished 

by having a long-term memory unit that updates its value more slowly when given new 

points in the sequence. This allows for more influence from points in time from farther 

lags in the past. LSTM utilizes sigmoid and tanh activation functions to update its long 

and short-term memory units. More specifically, the tanh function determines the 

degree to which the current value is retained, while the sigmoid functions determine the 

proportion of that degree. The result is a model that may be used on sequential data to 

forecast future values.  

The LSTM algorithm from TensorFlow for Python was used to calculate the 

forecasts on the monthly time series. The full list of hyperparameters may be seen in 

section 3 of the Appendix. The modelling of LSTM consisted of running 3 repetitions 

for each series on each horizon and taking the median value of each.  This process was 

performed to offset situations where the initial starting weights caused the model to not 

update quickly enough and therefore produce poor results.  

DeepAR, as explained by Salinas et al. (2020), uses RNN with a component 

of autoregression, which utilizes covariates and brings in the notion of time series 

having related covariates will behave similarly. Covariates are computed using 

appropriate lags so that the correlation between data points becomes time independent. 

In RNN, the sequential data are fed conditioned to the previous sequence, but in 

DeepAR, the sequential data are supplied conditioned to the previous sequence and the 

covariate. Amazon implemented DeepAR in 2017 for commercial use. Other deep 

learning frameworks, such as MXNET, GluonTS and TensorFlow, offer packages for 

DeepAR implementation. This study will use GluonTS package (deepar.estimator) 

built on Apache MXNET framework for DeepAR implementation. The 

deepar.estimator are trained using multiple hyperparameters (Mahdy et al., 2020) such 

as num_layers, which represents the number of RNN layers, hidden_size, which 

denotes the number of RNN cells for each layer, dropout_rate, learning rate, batch_size, 

epoch and so forth. The loss function used for optimization of the process is 

negativeloglikelyhood, which converts product of likelihood function to a sum of log 

functions for mathematical convenience. Thereby, minimizing the 

negativeloglikelyhood function is equivalent to maximizing loglikelihood function. 

After training the estimator, the GluonTS leverages a probabilistic approach to generate 

several prediction paths for forecasting. The forecasting values of multiple predictions 

are captured in the list and the median point out of forecast sample values is considered 

for our forecasting. Monthly data are univariate time series and mostly clean, besides 

29 rows of 71 observations from the Other domain miss the starting year and the starting 

month values, which are needed for building the time series model in GluonTS. In 

deepar.estimator, the starting time with month, day and year format are the required 

values. Similar series are observed, and the corresponding starting month and year are 

picked to populate these values for 29 rows of the Other domain. The High-

Performance Computing (HPC) environment (M3) of SMU is used for a high 

computing intensive workload of the DeepAR processing. With 128 CPUs and 500 GB 

memory, 128 parallel processing are initiated, and forecasting for all 1428 rows for a 

single horizon takes 3 hours on average. 
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4   Results 

The research has focused on the statistical models ARIMA, HW Additive and 

Multiplicative, Theta, CES, and ES and the deep learning models MLP, LSTM and 

DeepAR. To avoid inconsistencies in forecasting across models, the common forecast 

approach is adopted and delineated in the method section. A static script is coded in R 

to calculate the sMAPE values for all models. The generated model forecasts are loaded 

into respective folders. These forecasts are read and the sMAPE values are computed 

for each horizon, ranging from 2 to 18, and shown in Table 3 and Fig.10. The lowest 

sMAPE values for each horizon have been highlighted in gold. 

Two different types of ARIMA models are generated; one where all series are 

differenced to remove trend (All Differenced) and the other for Cochrane-Orcutt which 

finds evidence of trend before differencing. Both variations produced consistent results 

with low variability. However, All Differenced performed better than Cochrane-Orcutt 

because the sMAPE of Cochrane-Orcutt stayed consistently below that of All 

Differenced, and it is the best performing individual model. On the other hand, the HW 

multiplicative model fails to generate lower sMAPE throughout prediction horizons 

and produces an inconsistent prediction with a wide range of sMAPE. The MLP model, 

like ARIMA, exhibits a narrower range of sMAPE values across different horizons, 

despite having higher overall sMAPEs. The CES model beats the ARIMA models in 

the short range, but in the mid and long range, the ARIMA takes over the CES. HW 

Multiplicative and Additive have demonstrated similar patterns in forecasting, but the 

additive dominates over the multiplicative in all ranges. The ARIMA models 

outperformed both the Additive and Multiplicative HW models, except for one case. 

At horizon 12, the HW models sMAPE values have a noticeable dip. The research team 

ranks individual models in the following order: ARIMA All Differenced, ARIMA 

Cochrane-Orcutt, HW Additive and HW Multiplicative, Theta, CES, ES, MLP, 

DeepAR, and LSTM. 

 
Table 3: sMAPES of Horizons 2 to 18 or Individual Models. The values from this table have been plotted 

in Fig.10 to better showcase the change in sMAPE values for each model as the horizon increases. 
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Figure 10. Performance of Individual Models Visualized. 

 

Table 4. Individual Models Key. This table acts as a key to identify the implemented individual models and 
the corresponding color code. 

Key 

- ARIMA (Cochrane-Orcutt) 

- ARIMA (All Differenced) 

- Holt-Winters (Multiplicative) 

- Holt-Winters (Additive) 

- ES 

- CES 

- Theta 

- MLP 

- DeepAR 

 

The requirements for an ensemble to be built were at least one statistical and 

one deep earning method be used; however, this is only a minimum requirement with 

many ensembles containing more models. Using a randomized number and selection 

of models, 200 total ensembles were created using either the mean or median operator. 

In determining which ensembles performed the best, a simple sum of each ensemble 

mean sMAPES for horizon 2-18 was calculated. The best ensembles are determined to 

be the ones with the lowest sum of mean sMAPEs, thereby giving equal weight to all 

the horizons. The results may be seen in Table 5 and Fig. 11. 
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Table 5. sMAPES of Horizons 2-18 for Top Ensembles. The values from this table have been plotted in 

Fig. 11 to better showcase the change in sMAPE values for each model as the horizon increases. 

 
 

 
Figure 11. Performance of Top Ensembles Visualized. 

 
Table 6. Ensembles Key. This table acts as a key to identify which ensembling scheme and models are used 

in the top 4 ensembles. 

Ensemble Name Models Used Scheme 

- Ensemble 1 DeepAR + ARIMA (All Differenced) + CES + Theta Median 

- Ensemble 2 
DeepAR + ARIMA (All Differenced) + CES + Theta Mean 

- Ensemble 3 
DeepAR + ARIMA (All Differenced) + ARIMA (Cochrane-Orcutt) 

+ ETS + CES 
Median 

- Ensemble 4 
DeepAR + ARIMA (All Differenced) + ARIMA (Cochrane-Orcutt) 

+ ETS + CES 
Mean 

 

All four top performing ensemble methods have DeepAR, ARIMA (All 

Differenced) and CES in common. Ensembles 1 and 2 share the same individual 

models while only differing in ensemble schemes. This is the same pattern for 

ensembles 3 and 4. 

Ensemble 1 exhibited the lowest sMAPES across a majority of the horizons 

and therefore is deemed the top performing ensemble overall. This ensemble is 

comprised of 3 individual models (CES, ARIMA All Differenced, and Theta) that 

produced at least 3 of the lowest sMAPES on any horizon. DeepAR as an individual 

model did not perform well across all the horizons, however it does appear in 

Ensemble 1. 
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Table 7. sMAPES for Horizons 2-18 for Top Individual Models and Ensembles. The values from this 

table have been plotted in Fig. 12 for purposes of clarity, namely the change in sMAPE values for each 
model as the horizon increases.

 
 

Figure 12. Performance of Top Individual Models and Ensembles Visualized. 

 

Table 8. Top Individual Models and Ensemble Key. This table acts as a key to identify which ensembling 

scheme and models are used in the top 4 ensembles. 

Key Models Used Scheme 

- ARIMA (All Differenced)   

- CES   

- Theta   

- Ensemble 1 DeepAR + ARIMA (All Differenced) + CES + Theta Median 

- Ensemble 2 DeepAR + ARIMA (All Differenced) + CES + Theta Mean 

- Ensemble 3 
DeepAR + ARIMA (All Differenced) + ARIMA 

(Cochrane Orcutt) + ETS + CES 
Median 

- Ensemble 4 
DeepAR + ARIMA (All Differenced) + ARIMA 

(Cochrane Orcutt) + ETS + CES 
Mean 

 

Of the top ensembles, the median ensemble scheme generally produces a 

lower sMAPE than the mean ensemble scheme. This implies that some realizations are 
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producing high sMAPE values making the distribution skewed. However, without 

comparison to other mean/median ensemble scheme pairs, it is difficult to say whether 

this pattern extends beyond these examples. 

The individual top ensembles have been identified and now may be compared 

to the top individual models. Table 7 and Fig. 12 below combine the top performers 

from these categories for comparison. 

In Fig. 12, the performance of the top four ensemble methods and top 3 

individual models re plotted together to compare performances of ensemble models 

with those of individual models. It is evident that the ensemble methods are clear 

winners as ensemble methods dominated across all horizons besides horizon 2 where 

CES method beats all ensemble methods. The result exhibits that individual models 

may perform better in some horizons, but ensemble models prove to be superior in the 

overall performance. 

A question remains on the extent to which domain influences each model’s 

performance and how the ensembling may balance out poor individual domain 

performance. Two models, CES and DeepAR from the top ensemble have had their 

mean sMAPES across the horizons delineated by domain for comparison below in Fig. 

13 and 14. ARIMA All Differenced and Theta delineated by domain may be seen in 

section 2 of the Appendix. 

In Fig. 13, the performance of CES method is broken by domains: 

Demography, Finance, Industry, Micro, Macro and Other. The worst performer is the 

Other domain and the second to the worst is the Micro domain, whereas the top 

performer is the Macro domain. And in Fig. 14, the performance of DeepAR method is 

broken by domains. Here, the worst performer is the Micro domain and the third to the 

worst is the Other domain; however, the top performer is the Macro domain. So, it is 

evident from this result that the performance of separate domains varies with different 

models. 

 

 
Figure 13. CES sMAPE Performance by Domains. 
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Figure 14. DeepAR sMAPE Performance by Domains. 

 

 
Figure 15. Ensemble 1 sMAPE Performance by Domains 

 

In Fig. 15, the performance of the ensemble 1, the best ensemble model, is 

broken down by domains. In this case, the worst performer is the Micro domain and the 

second to the worst performer is the Other domain. The Other domain performed the 

worst in the CES method and the third to the worst in the DeepAR method. But these 

models are ensembled, the performance of the Other domain has moved to the second 

to the worst, meaning that the ensemble methods neutralize the bias of the separate 

models, in this case DeepAR and CES, and produce a balanced result. It also tames 

down the variability and generates a stable model. In other words, the ensemble 

generalizes the performance of individual models.  

In addition to model performance, the computational runtime is also an 

important consideration. All models have their own data processing, model training and 

testing, and prediction. In addition, different models are trained on different computer 

engines as shown in Table 9. 
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Table 9: Models, Time Taken, and System Used.  

Method Hours  System Specifications 

HW 0.00027  AMD Ryzen™ 7 5800X3D CPU @ 3.4GHz 64GB RAM 

ETS 68  AMD Ryzen™ 7 5800X3D CPU @ 3.4GHz 64GB RAM 

CES 1 AMD Ryzen™ 7 5800X3D CPU @ 3.4GHz 64GB RAM 

Theta 0.04 AMD Ryzen™ 7 5800X3D CPU @ 3.4GHz 64GB RAM 

ARIMA 0.33 Intel® Xeon® W-1290P CPU @ 3.7GHz 32GB RAM 

MLP 13 Intel® Xeon® W-1290P CPU @ 3.7GHz 32GB RAM 

LSTM 25 NVIDIA® Quadro RTX™ 4000 GPU @ 1GHz 8GB GPU Memory 

DeepAR 54 
AMD EPYC™ 7763 Server @ 2.45GHz 1.5GB Server Memory (Single 

Node, 128 CPUs, and 500GB Memory) 

5   Discussion 

The monthly M3 time series demonstrated trends, which statistical models 

tackled by detrending a particular series as appropriate, and some cases, the entire series 

while some deep earning models overlook trend and seasonality as these models 

inherently handle it. However, the ensembling of statistical and deep learning models 

generates superior results. Multi-step forecasting is used, and the shorter horizons 

performed better results than the longer ones. From the domain perspective, the Micro 

domain was the worst performer, because many Micro indices lumped to form the 

Micro dataset, whereas the Macro domain was the best performer because the series 

follow a predictable pattern. 

The research team expected that the ensemble models would perform better 

than separate models because the ensemble method brings in diversified information 

and counters the bias of separate models to generate a stable and better performance. 

Therefore, the variation in ensemble methods is consistently lower than that of any 

individual model. 
This paper furthers the work done by Makridakis and explores other 

combinations of ensemble to corroborate the notion that in time series the ensemble 

method produces superior performance. Secondly, the team investigated the domain 

level performance to see how different models performed in different domains. 

Interestingly, the simpler model handles irregular time series such as the Micro domain 

better than the sophisticated models such as DeepAR. In addition, the ensemble method 

counters the bias of individual domain performance.  

It should be noted that since the ensembles are forced to have a minimum of 

one statistical and one deep learning, this research does not provide any ensembles that 

are only statistical or only deep learning. The top performing ensembles all only include 

one deep learning method yet are composed of multiple statistical models. The 

statistical models in the top ensembles are all included in the top performers for 

individual models. It is therefore difficult to say whether the improvement in 

ensembling is derived from deep learning models without more comparisons. 
This research invokes the ethical dilemma that is the effectiveness of training 

complex, computationally heavy deep learning models because it consumes so much 

power without yielding a meaningful better result and outweighs the benefits of 
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undertaking such time and energy consuming endeavor. Therefore, data scientists 

should ponder to some extent before training a complex model.   

The research realized that the performance of different varies based on models 

used.  Therefore, a good opportunity to improve the overall results by training different 

domains such as Micro, Macro, etc... separately and finally combining them.  

Future research should also include other deep learning, statistical and 

machine learning models for ensembling. Recognizing that there is no one size fits all 

solutions, the exploration of ensemble combinations can offer insights into improving 

the generalizability of forecasting accuracy. 

The models selected play a prominent role in the results, yet different 

ensembling schemes that involve weighting methods based on past performance is 

another area that warrants attention. There is potential to optimize the ensemble’s 

predictive capabilities if able to determine prior performance through methods such as 

a Rolling Window to adapt the weighting scheme. 

Furthermore, examining the impact of different series lengths on the 

ensembles sMAPE values across the horizons is another area of future research. This 

would shed light on how the length of the time series influences the forecasting 

performance and effectiveness of the ensemble approaches to specific domains. 

6   Conclusion 

    The research findings indicate that ensembling forecasts with multiple 

statistical and deep learning models using median or mean schemes leads to better 

performance in variability and sMAPE values across all horizons. Although individual 

models may occasionally produce lower sMAPE values at some horizons, there is 

greater confidence in the consistency of the results when models are ensembled. When 

it comes to the individual models, statistical models demonstrated superiority, but the 

model performance is derivative of the data. It is observed that the performance of 

separate domains varies considerably by model. So, instead of encompassing the entire 

dataset in a single frame, the dataset should be broken down to domain levels where 

deep learning models may bring forth a better result in some domains.  
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Appendix 

1. 

These adjustments were made to fine-tune the MLP models and facilitate the model 

building process.  

• For series 689: 

 

o For sub-series 4 and 7, the auto seasonality selector was turned off 

and the number of repetitions was set to 1. 

o For sub-series 8, both the auto seasonality selector and lag selector 

were turned off, and the reps were set to 1. 

o The remaining sub-series of 689 had the reps set to 1. 

• For series 1201: 

 

o For sub-series 7, 13, 14, and 16, the reps were set to 1, and both the 

seasonality selector and lag selector were turned off. 

• For series 369: 

 

o For the sub-series with a forecast horizon of 15, the reps were set to 

1. 

 

 

2. 
 

Theta and ARIMA All Differenced sMAPES delineated by domain. 
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3. 

 
LSTM Hyper Parameters 

 

Ensemble Name Value 

N_steps 25 

Cells 512 

Learning Rate 0.35 

Epochs 1000 

Patience 10 

Min_Delta 0.01 

Dropout Rate 0.071 

Batch Size 32 

 

4. 
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5. 
 

Code Base Repository 

 

https://github.com/HybridELM/HELM 
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