1,614,803 research outputs found

    Social Network Analysis on Food Web and Dispute Data

    Get PDF
    Several social science disciplines, especially anthropology and sociology, have long engaged in social network analyses. Social Network Analysis (SNA) uses network theory to analyse social networks – a network that often involves individual social actors (people) and relations between them. Social network analysis aims at understanding the network structure by description, visualization, and statistical modeling. In this research, the illustration of the use of SNA is done on two different datasets: food web data and militarized interstate dispute data

    Missing data in multiplex networks: a preliminary study

    Full text link
    A basic problem in the analysis of social networks is missing data. When a network model does not accurately capture all the actors or relationships in the social system under study, measures computed on the network and ultimately the final outcomes of the analysis can be severely distorted. For this reason, researchers in social network analysis have characterised the impact of different types of missing data on existing network measures. Recently a lot of attention has been devoted to the study of multiple-network systems, e.g., multiplex networks. In these systems missing data has an even more significant impact on the outcomes of the analyses. However, to the best of our knowledge, no study has focused on this problem yet. This work is a first step in the direction of understanding the impact of missing data in multiple networks. We first discuss the main reasons for missingness in these systems, then we explore the relation between various types of missing information and their effect on network properties. We provide initial experimental evidence based on both real and synthetic data.Comment: 7 page

    An Analysis of the Consequences of the General Data Protection Regulation on Social Network Research

    Get PDF
    This article examines the principles outlined in the General Data Protection Regulation in the context of social network data. We provide both a practical guide to General Data Protection Regulation--compliant social network data processing, covering aspects such as data collection, consent, anonymization, and data analysis, and a broader discussion of the problems emerging when the general principles on which the regulation is based are instantiated for this research area

    Modeling unobserved heterogeneity in social network data analysis

    Get PDF
    The analysis of network data has become a challenging and growing field in statistics in recent years. In this context, the so-called Exponential Random Graph Model (ERGM) is a promising approach for modeling network data. However, the parameter estimation proves to be demanding, not only because of computational and stability problems, especially in large networks but also because of the unobserved presence of nodal heterogeneity in the network. This thesis begins with a general introduction to graph theory, followed by a detailed discussion of Exponential Random Graph Models and the conventional parameter estimation approaches. In addition, the advantages of this class of models are presented, and the problem of model degeneracy is discussed. The first contribution of the thesis proposes a new iterative estimation approach for Exponential Random Graph Models incorporating node-specific random effects that account for unobserved nodal heterogeneity in unipartite networks and combines both maximum likelihood and pseudolikelihood estimation methods for estimating the structural effects and the nodal random effects, respectively, to ensure stable parameter estimation. Furthermore, a model selection strategy is developed to assess the presence of nodal heterogeneity in the network. In the second contribution, the iterative estimation approach is extended to bipartite networks, explaining the estimation and the evaluation techniques. Furthermore, a thorough investigation and interpretation of nodal random effects in bipartite networks for the proposed model is discussed. Simulation studies and data examples are provided to illustrate both contributions. All developed methods are implemented using the open-source statistical software R

    A Relational Hyperlink Analysis of an Online Social Movement

    Get PDF
    In this paper we propose relational hyperlink analysis (RHA) as a distinct approach for empirical social science research into hyperlink networks on the World Wide Web. We demonstrate this approach, which employs the ideas and techniques of social network analysis (in particular, exponential random graph modeling), in a study of the hyperlinking behaviors of Australian asylum advocacy groups. We show that compared with the commonly-used hyperlink counts regression approach, relational hyperlink analysis can lead to fundamentally different conclusions about the social processes underpinning hyperlinking behavior. In particular, in trying to understand why social ties are formed, counts regressions may over-estimate the role of actor attributes in the formation of hyperlinks when endogenous, purely structural network effects are not taken into account. Our analysis involves an innovative joint use of two software programs: VOSON, for the automated retrieval and processing of considerable quantities of hyperlink data, and LPNet, for the statistical modeling of social network data. Together, VOSON and LPNet enable new and unique research into social networks in the online world, and our paper highlights the importance of complementary research tools for social science research into the web

    Identifying overlapping terrorist cells from the Noordin Top actor-event network

    Get PDF
    Actor-event data are common in sociological settings, whereby one registers the pattern of attendance of a group of social actors to a number of events. We focus on 79 members of the Noordin Top terrorist network, who were monitored attending 45 events. The attendance or non-attendance of the terrorist to events defines the social fabric, such as group coherence and social communities. The aim of the analysis of such data is to learn about the affiliation structure. Actor-event data is often transformed to actor-actor data in order to be further analysed by network models, such as stochastic block models. This transformation and such analyses lead to a natural loss of information, particularly when one is interested in identifying, possibly overlapping, subgroups or communities of actors on the basis of their attendances to events. In this paper we propose an actor-event model for overlapping communities of terrorists, which simplifies interpretation of the network. We propose a mixture model with overlapping clusters for the analysis of the binary actor-event network data, called {\tt manet}, and develop a Bayesian procedure for inference. After a simulation study, we show how this analysis of the terrorist network has clear interpretative advantages over the more traditional approaches of affiliation network analysis.Comment: 24 pages, 5 figures; related R package (manet) available on CRA

    Multivariate Spatiotemporal Hawkes Processes and Network Reconstruction

    Full text link
    There is often latent network structure in spatial and temporal data and the tools of network analysis can yield fascinating insights into such data. In this paper, we develop a nonparametric method for network reconstruction from spatiotemporal data sets using multivariate Hawkes processes. In contrast to prior work on network reconstruction with point-process models, which has often focused on exclusively temporal information, our approach uses both temporal and spatial information and does not assume a specific parametric form of network dynamics. This leads to an effective way of recovering an underlying network. We illustrate our approach using both synthetic networks and networks constructed from real-world data sets (a location-based social media network, a narrative of crime events, and violent gang crimes). Our results demonstrate that, in comparison to using only temporal data, our spatiotemporal approach yields improved network reconstruction, providing a basis for meaningful subsequent analysis --- such as community structure and motif analysis --- of the reconstructed networks
    • …
    corecore