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Actor–event data are common in sociological settings, whereby one reg-
isters the pattern of attendance of a group of social actors to a number of
events. We focus on 79 members of the Noordin Top terrorist network, who
were monitored attending 45 events. The attendance or nonattendance of the
terrorist to events defines the social fabric, such as group coherence and so-
cial communities. The aim of the analysis of such data is to learn about the
affiliation structure. Actor–event data is often transformed to actor–actor data
in order to be further analysed by network models, such as stochastic block
models. This transformation and such analyses lead to a natural loss of infor-
mation, particularly when one is interested in identifying, possibly overlap-
ping, subgroups or communities of actors on the basis of their attendances to
events. In this paper we propose an actor–event model for overlapping com-
munities of terrorists which simplifies interpretation of the network. We pro-
pose a mixture model with overlapping clusters for the analysis of the binary
actor–event network data, called manet, and develop a Bayesian procedure
for inference. After a simulation study, we show how this analysis of the ter-
rorist network has clear interpretative advantages over the more traditional
approaches of affiliation network analysis.

1. Introduction. Networks are an intuitive and a powerful way to describe interactions
among individuals in many fields of application. In social sciences, for example, network
structures describe concisely the observed relationships among people, tribes, social media
accounts and so forth. A recent review about statistical methods and models used in this re-
search area can be found in Kolaczyk (2009). Most of the literature on modelling network
data can be grouped into three main branches with some natural overlapping between the cat-
egories: stochastic block models, exponential random graph models and latent space models.
Stochastic block models (SBMs) date back to the work of Holland, Laskey and Leinhardt
(1983), where the idea of modeling partitions of the network, called blocks or communities,
was first introduced. Since then, numerous extensions, such as mixed memberships and dy-
namic networks, have been proposed (Airoldi et al. (2008), Nowicki and Snijders (2001),
Wang and Wong (1987), Xing, Fu and Song (2010)). Another way to summarize a network
structure is to model the amount of substructures, in a graphical and topological sense, com-
prising the network itself. This approach has been formulated as the exponential random
graph model in the early work of Frank and Strauss (1986); see also Wasserman and Pattison
(1996) and Robins et al. (2007) for a review of some recent developments. Finally, the last
framework deals with individuals in the network and their relations by projecting them into
a latent space, where the probability of interaction between units is modeled based on their
distance in this nonobservable representation (Hoff, Raftery and Handcock (2002)). Recent
extensions of this model allow incorporating more complex features of the data, such as clus-
tering and dynamic evolution (Durante and Dunson (2014), Handcock, Raftery and Tantrum
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(2007), Raftery et al. (2012), Sewell and Chen (2017)). A thorough survey on some of the
most frequently used statistical network models is provided in Goldenberg et al. (2010).

The approaches mentioned above are mostly developed on network data where all nodes,
or actors, are of the same nature. Some network data, however, are provided in the form of
attendances of individuals, actors, to events. These data are also called two-mode networks,
bipartite graphs or affiliation networks (Wasserman and Faust (1994), Chapter 8). Examples
of these networks include people visiting movies, nations belonging to alliances and cospon-
sorships of legislative bills; see Doreian, Batagelj and Ferligoj (2004) for references. There
are only a few models that deal directly with this actor–event organization of affiliation net-
works. In Skvoretz and Faust (1999), the authors cast the problem of analyzing two-mode
networks in the framework of logistic regression, whereas in Wang et al. (2009), affiliation
network analysis with exponential random graph models is discussed. In most cases, transfor-
mation procedures are used to change actor–event data to actor–actor data. A recent example
is Signorelli and Wit (2018), who provide a penalized approach for network data representing
cosponsorships of legislative bills in the Italian Parliament.

Transforming the data has the inherent drawbacks of information loss (Neal (2014)). In
addition, in many situations it is of prime interest to identify clusters, or communities, of
individuals within the network according to their preferences to attend specific events instead
of being based on how they interact with each other. Parallel to SBMs for actor–actor data,
there is then the need of a clustering model for actor–event data, whereby an actor (unit) is
allocated into a community (cluster) based on their probability of attendance to the various
events. One recent contribution is provided by Aitkin, Vu and Francis (2017), who propose
a Rasch model approach for clustering actor–event data. Differently to their work, we expect
the communities to potentially overlap with each other, and we thus propose a model that
allows for this. Our model is defined and parameterised in such a way that the overlap between
clusters has a specific meaning, leading to parsimony and to a clear interpretation of the
results. In this sense we also depart from the literature on mixed-membership SBMs for
actor–actor data (Airoldi et al. (2008)), where the SBM is extended by allowing a degree of
membership for each unit to all the communities in the network.

To summarize the contribution of our work, this paper proposes a mixture model formu-
lation that can be applied directly to actor–event data in order to find communities of actors
on the basis of their patterns of attendance to events. Our model accommodates for the pos-
sibility of potentially overlapping groups and has a parsimonious formulation in terms of
the number of parameters needed to represent cluster-specific probabilities of attendances
to events. In particular, the parameters of the overlapping clusters are linked to the param-
eters of the originating clusters via a chosen function, leading to a clearer interpretation of
belonging–in a “hard” clustering sense–to more than one group simultaneously.

2. Motivating example: Noordin Top terrorist network. In this paper we consider the
Noordin Top terrorist network dataset, which contains information about 79 terrorists and
their activities in Indonesia and nearby areas, covering the period from 2001 to 2010 (Aitkin,
Vu and Francis (2017), Everton (2012)). The network revolved around Noordin Mohammad
Top, also known as “Moneyman,” his main collaborator Azahari Husin and their affiliates.
Data were periodically collected by the International Crisis Group (2009) in an exhaustive
qualitative format. Information was later summarized by Everton (2012) into relationships
between terrorists, attendances to events and individual data on each terrorist, such as level
of education, nationality, etc. The two-mode actor–event network focuses on the recorded
attendances of the 79 terrorists to the 45 events. These events are meetings of various type. In
particular, they have been classified into: eight organizational meeting (ORG), five operations,
that is, bombings (OPER), 11 training events (TRAIN), two financial meetings (FIN), seven
logistics meetings (LOGST) and 12 events generically categorized as “meetings” (MEET).
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FIG. 1. (a) Visualization of the attendances as black boxes for the 74 terrorists (rows) and the 45 events
(columns). A black box depicts a connection between a terrorist and an event, while a white box indicates a
terrorist not attending that event. (b) Visualization of the attendances as black lines. The width of the left rectan-
gles is proportional to the connections (attendances) of each terrorist to the 45 events, whereas the width of the
right rectangles is proportional to the number of terrorist attending each event. Terrorists attending no event are
not visualized.

One salient feature of the network is its sparse structure with not so many attendances
recorded with respect to the total number of terrorists and events, as can be seen in Fig-
ure 1(a). Figure 1(b) shows how there are some terrorists and events capitalizing most of the
connections.

It is believed that a network of terrorists often operates by communities within the network
itself, whereby the individual terrorists are organized according to their role and contribution
to the different activities of the whole group. More importantly, it is likely that individuals
do not belong to a single community but to more than one substructure in the network. The
aim of this paper is to develop a model which can identify such structures (communities)
among terrorists (actors) based on their patterns of attendances to the meetings (events). The
proposed model can be applied to any actor–event network, such as people visiting movies,
nations belonging to alliances and cosponsorships of legislative bills, when community de-
tection on the basis of participation to the events is of interest.
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3. Model formulation. The driving idea is to use a model-based clustering approach
to identify clusters of terrorists (actors) within the network, based on their attendances to
events of different nature (bombings, trainings, financial meetings and so forth), by allowing
for these communities to be potentially overlapped. We name the proposed model multiple
allocation model for network data (manet).

3.1. Traditional model-based clustering with finite mixture model. Data are organized
in an n × d matrix of observations yij , pertaining to n individuals and their attendances to
d events. Each element yij is a binary random variable, with yij = 1 if subject i attends
event j . We assume there exist K subpopulations of individuals with cluster proportions
α = (α1, . . . , αK). In the traditional setting, where clusters are mutually exclusive, this vec-
tor satisfies the conditions: (i) αk ≥ 0, for each k, and (ii)

∑K
k=1 αk = 1 (Aitkin, Vu and

Francis (2017)). The task is to group together units sharing the same preferential atten-
dance to the d events. Given the binary nature of response variables yij and assuming in-
dependence, the marginal density of an observed attendance profile can be represented by
yi |(α,π,K) ∼ ∑K

k=1 αk

∏d
j=1 Ber(yij ;πkj ), with yi = (yi1, yi2, . . . , yij , . . . , yid) the atten-

dance profile of the ith individual to the d events and cluster specific parameters for the
probability of attendance, πkj , collected in π . A hierarchical representation is available af-
ter introducing a unit-specific latent variable zi = (zi1, . . . , ziK): if unit i belongs to cluster
k, the vector is full of zeros except for the kth element zik = 1, so P(zik = 1) = αk and∑K

k=1 zik = 1, leading to the equivalent hierarchical conditional representation

zi |α ∼ Multinom(α1, . . . , αK), yi |(zi ,πk) ∼
d∏

j=1

P(yij |zik = 1,πk:zik=1).

For each individual i, the model assumes the attendances to events j and j ′ to be independent
from one another, for all j, j ′ = 1, . . . , d and j �= j ′.

3.2. Multiple allocation model for network data (manet). In many cases, one is inter-
ested in groups that are not mutually exclusive, allowing an actor to be allocated simultane-
ously to potentially more than a single cluster of the mixture model. This problem has been
addressed in the statistical literature by mixture models with overlapping clusters (Ranciati,
Viroli and Wit (2017)). In order to cluster actor–event data by allowing possible overlaps,
we relax conditions (ii) on the proportions α and the condition regarding the allocation vec-
tor,

∑K
k=1 zik = 1 for each i. Each individual will be allowed to belong to any number of

the K classes. Thus, the number of all possible group membership configurations is equal to
K� = 2K .

Instead of working with the latent variables zi , we define a new K�-dimensional allocation
vector z�

i that satisfies
∑K�

h=1 z�
ih = 1. We can establish a 1-to-1 correspondence between zi

and z�
i , by introducing a K� × K binary matrix U , with z�

ih = 1[uh=zi ], with uh denoting the
hth row of U . For example, when K = 2, individual i may be assigned to the first cluster,
zi = (1,0), the second cluster zi = (0,1), both of them zi = (1,1) or none zi = (0,0), and
we have

U =

⎛
⎜⎜⎝

0 0
1 0
0 1
1 1

⎞
⎟⎟⎠ .

We can now switch from a mixture model with K overlapping parent clusters to a finite
mixture of K� nonoverlapping heir clusters. Given our new assumptions on the proportions
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of the parent mixture model, the model formulation changes to

yi |
(
α�,π�,K

) ∼
K�∑
h=1

α�
h

d∏
j=1

Ber
(
yij ;π�

hj

)
,

where now P(z�
h = 1) = α�

h and π�
h are the attendance probabilities for the d events for units

whose distribution function is given by the nonoverlapping cluster h. We specify a conjugate
Dirichlet distribution for the proportions α�, that is, P(α�|a) = Dir(a1, . . . , aK�). From α� we
can always compute back the overlapping proportions α with αk = ∑K�

h=1 α�
huhk .

In order for the overlapping mixture model to have any use and purpose, the original parent
cluster parameters should affect the heir cluster parameters. In particular, the probability π�

hj

for heir cluster h of attending event j should depend on the parameters {πkj | uhk = 1} of the
parent clusters involved in the formation of heir cluster h. This can be done in a number of
ways which is described more in detail in the next paragraph.

Linking parent and heir cluster parameters. We define the probability to attend event j

when belonging to heir cluster h through a function ψ(π j ,uh) : RK × {0,1}K → R, so that
we can compute π�

hj by looking at which parent clusters originated h, through the vector uh

and combining their corresponding probabilities (π1j , . . . , πKj ). By changing the definition
of ψ , one can alter the interpretation of the multiple allocation clusters. We argue that in
many real world scenarios the minimum operator, defined by

π�
hj = ψ(π j ,uh) =

⎧⎪⎪⎨
⎪⎪⎩

min{πkj | uhk = 1} if
∑
k

uhk > 0,

0 if
∑
k

uhk = 0,

is particularly sensible. Real world two-mode data, such as the Noordin Top network dis-
cussed in this paper (Section 5) and the Southern Women Mississippi two-mode network (see
Supplementary Material (Ranciati, Vinciotti and Wit (2020))), often characterized by a sparse
attendance structure and multiple allocation clusters, are most naturally defined as groups of
individuals that attend only those events attended by all the associated primary clusters. For
the simple case that K = 2, an individual i belonging to both clusters, zi = (1,1), deciding
whether to attend an event j or not, will do so by following the lowest “preference” for that
specific event, that is, ψ(π1j , π2j ) = min(π1j , π2j ). The multiple allocation cluster will tend
to attract units that have generally a low probability of attendance to many events but a high
attendance probability to a small number of events that are jointly attended by units in both
primary clusters. From a Venn diagram perspective, this can be viewed as an “intersection”
of parent clusters. In the less common scenario of dense two-mode data, it is more sensible to
choose the maximum ψ = max{·} as the operator. This will tend to allocate units with a high
number of attendances into multiple allocation clusters, loosely corresponding to a union of
parent clusters.

As well as giving a clear meaning to the overlapping clusters and thus providing a more
natural interpretation of the results, the main purpose of the link function is to reduce the
number of parameters in the model. Indeed, while we pay the price of increasing the number
of proportions from K to K�, the new quantities π� are not additional parameters, and they
can be computed from the parent parameters π without increasing the parameter space’s di-
mensionality. This is key to the proposed model and distinguishes it from those presented in
the literature, with the closest competitor being the mixed-membership SBM (Airoldi et al.
(2008)) for actor–actor data. Indeed, mixed-membership SBM allows allocation to multiple
clusters, but there are some main differences. First, the current implementation is not suited to
analyzing affiliation networks (bipartite graphs). Second, mixed-membership SBM provides



OVERLAPPING MIXTURE MODEL FOR TERRORISTS NETWORK 1521

a form of “soft clustering,” where the degree of membership reflects how strongly a unit re-
sembles the others in the cluster: the degrees for each unit have to sum up to one, which means
that a unit cannot “strongly,” that is,with a high probability, belong to more than one cluster.
In our approach we work instead with an underlying “hard clustering,” thus incorporating
situations not contemplated by mixed-membership SBM. In terms of number of parameters,
mixed-membership SBM requires a number of parameters proportional to K� = 2K , on par
with a conventional (nonoverlapping) mixture of Bernoulli distributions. Instead, our model
allows for the overlap to be reflected in the parameter estimation, with the introduction of
the ψ(·) function that links the parameters of the K� heir clusters to those of the K parent
clusters, resulting in a number of parameters proportional to K . This not only leads to more
parsimonious models but also leads to a clearer interpretation of the resulting clusters.

3.3. Bayesian inference. In this section we discuss the estimation of the parameters in
our model, namely, the prior membership probabilities α and the probabilities of attendance
to events π . The updated hierarchical formulation of nonoverlapping mixture of the parent
clusters is given by

P
(
α�|a) = Dir(a1, . . . , aK�), P(π |b1,b2) =

K∏
k=1

d∏
j=1

Beta(πkj ;b1kj , b2kj ),

P
(
z�
i |α�) =

K�∏
h=1

(
α�

h

)z�
ih, P

(
yi |z�

i ,π
) =

K�∏
h=1

d∏
j=1

[
Ber

(
yij ;π�

hj

)]z�
ih .

Following this structure, the joint complete data likelihood of the nonoverlapping clusters
model is

L
(
α�,π;y,z�) =

n∏
i=1

{
K�∏
h=1

[
α�

h

d∏
j=1

Ber
(
yij ;π�

hj

)]z�
ih

}

=
K�∏
h=1

(
α�

h

)n�
h

K�∏
h=1

∏
i:z�

i =h

d∏
j=1

Ber
(
yij ;π�

hj

)

= Lz�

(
α�)Ly,z�(π),

where n�
h = ∑n

i=1 z�
ih and the product

∏
i:z�

i =h involve only units allocated to cluster h. The
second term, Ly,z�(π), is a function of the parameters π through the computed quantities
π�. In order to devise a Gibbs sampler for π , we consider the equivalent representation
for the overlapping-clusters mixture as a function of the original parent parameters, that is
L(α�,π;y,z). The first term is equivalent in both parametrization thanks to the 1-to-1 cor-
respondence between z and z�, and the computability of α from α�. We focus now on the
second term of the factorization, Ly,z(π), as it is not immediately straightforward to define an

equivalence. We introduce a new quantity s(zi ,π) = s
(j)
i , whereby s

(j)
i = zi if

∑K
k=1 zik = 1,

whereas if
∑K

k=1 zik > 1 and if we use the minimum operator, that is, ψ = min(·), then s
(j)
i

is a K-dimensional vector of zeros except for sikmin,j
= 1, with kmin,j denoting the cluster

with the lowest value among all the parameters πk for a fixed event j . In other words, if a
unit i belongs to only one cluster (let us say, k) it will fully contribute to the posterior of the
corresponding πkj , but, if the unit i is allocated into more than one group its contribution
will be given only to the lowest parameter πkmin,j

among all the relevant attendance proba-
bilities {πkj | uh(i)k = 1} for that j th event. This definition is compatible with the minimum
operator ψ . For other operators, one needs to consider other solutions.
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This leads to a convenient factorization of the complete data likelihood of the mixture in
the K space,

L(π , s;y,z) =
K∏

k=1

d∏
j=1

π

∑n
i=1 yij s

(j)
ik

kj (1 − πkj )
∑n

i=1 s
(j)
ik −∑n

i=1 yij s
(j)
ik .

A sketch of our sampling scheme is the following. For each unit i and heir cluster h, we
compute the posterior probabilities of allocation conditional on the observations and other
parameters, according to

P
(
z�
i = h|y,α�,π

) = α�
h

∏d
j=1 Ber(yij ;π�

hj )∑K�

h′=1 α�
h′

∏d
j=1 Ber(yij ;π�

h′j )
,

and we sample new latent allocation values for z�
i . The proportions α� are updated through

the corresponding full conditional distribution, α� ∼ Dir(n�
1 +a1, . . . , n

�
K� +aK�). Thanks to

the prior-likelihood conjugacy, each of the πkj are updated via a Gibbs sampler with

πkj ∼ Beta

(
n∑

i=1

yij s
(j)
ik + b1kj ;

n∑
i=1

s
(j)
ik −

n∑
i=1

yij s
(j)
ik + b2kj

)
.

We implement all the samplers in an MCMC algorithm. The latter is also part of the R package
manet, available on CRAN.

3.4. Selecting the number of clusters and criterion to allocate units. We select the De-
viance Information Criterion (DIC) (Spiegelhalter et al. (2002)) as the model selection cri-
terion. This criterion has the property of being the large sample (robust) version of the AIC
(Claeskens and Hjort (2008), Chapter 3.5). In the DIC, two quantities are balanced, namely,
the goodness-of-fit and the complexity of the model. In this paper we rely on the version
DIC3 proposed in Celeux et al. (2006), as the original version does not deal properly with
latent variables,

DIC(K) = −4Eα�,π
[
log P

(
y|α�,π

)] + 2 log P̂(y),

where both terms can be computed starting from the values sampled at each iteration t =
1, . . . , T of the MCMC algorithm. In particular,

Eα�,π
[
log P

(
y|α�,π

)] = 1

T

T∑
t=1

n∑
i=1

log

{
K�∑
h=1

α�(t)

h

d∏
j=1

Ber
(
yij ;π�(t)

hj

)}

and

P̂(y) =
n∏

i=1

P̂(yi ) where P̂(yi ) = 1

T

T∑
t=1

{
K�∑
h=1

α�(t)

h

d∏
j=1

Ber
(
yij ;π�(t)

hj

)}
.

In a set of competing models, differing from one another only by K , we select the one with
the lowest associated DIC(K) value.

After the choice of K and, implicitly, K�, units are allocated into clusters according to
their average posterior probabilities and using the Maximum-A-Posteriori (MAP) rule. That
is, individual i will be assigned to cluster h showing the highest value for P̄(z�

i = h|y,α,π) =
T −1 ∑T

t=1 P(z�
i = h|y,α�(t)

π (t)), computed after the initial burn-in window.
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3.5. Quantifying clustering uncertainty. As a measure of uncertainty about the clustering
provided by the algorithm, we define a quantity called Posterior Confusion Matrix (PCM),
whose entry PCMhk stands for the average number of actors with maximum posterior alloca-
tion for cluster h that will be allocated to cluster k. The PCM is a nonsymmetrical K� × K�

matrix and is computed as follows. For each MCMC iteration t = 1, . . . , T and summed
across all units i = 1, . . . , n, we do the following steps:

1. Order the posterior probabilities P(z�
i = h|y,α�(t)

π (t)), from highest to lowest, and

collect them in a vector τ
(t)
i ;

2. Define r(t)
i as the vector of cluster labels associated to τ

(t)
i , so that r

(t)
i,1 is the label of

the cluster with highest posterior probability (which is τ
(t)
i,1 ) for unit i at iteration t among all

the K� possible ones;
3. Add posterior probability τ

(t)
i,1 to the PCM at position (r

(t)
i,1 , r

(t)
i,1), so that the diagonal

element of the matrix account for the first choice of allocation of unit i at iteration t ;
4. While keeping row r

(t)
i,1 fixed as a pivotal quantity of this step, add the remain-

ing probabilities, τ
(t)
i,2 , τ

(t)
i,3 , . . . , τ

(t)
i,K� to the corresponding positions in the PCM matrix

(r
(t)
i,1 , r

(t)
i,2), (r

(t)
i,1 , r

(t)
i,3), . . . , (r

(t)
i,1 , r

(t)
i,K�).

To average the cumulative sums at each position of the matrix, we divide the PCM by the total
number of MCMC iterations T . The nonrescaled version of the matrix has row sums equal
to the number of units in each corresponding cluster. When rescaled by these row sums,
the benchmark matrix for comparison is the identity matrix of order K�, corresponding to a
situation with no uncertainty in the classification.

A well-known issue of mixture models in the Bayesian paradigm is the so-called “label
switching” problem, that is, the likelihood of a mixture model is symmetrical with respect to
permutation of the clusters’ labels. This trait is inherited by the posterior distribution, unless
specific constraint are applied to the prior, for example, in order to break the symmetry, but,
in general, the resulting posterior density will have K! different modes. Although sampler
should be encouraged to visit all the potential high-density regions of the posterior, in prac-
tice, the MCMC chains could jump unpredictably between the modes and thus hindering the
computation of summaries, such as posterior means and posterior standard deviations. Many
authors in the literature have studied this specific issue: for a review of some techniques to
deal with label switching, we refer the reader to Stephens (2000).

4. Simulation study. In this section we perform a simulation study where we com-
pare the following algorithms: (i) the proposed model, manet, which uses a finite mix-
ture of Bernoulli distributions with overlapping components (as implemented in the package
manet); (ii) a finite mixture model of Bernoulli distribution with K = K� nonoverlapping
components, named mixtbern; (iii) a variational method implementing the MixNet model
of Daudin, Picard and Robin (2008), implemented in the R package mixerwhich is a special
case of the binary SBM proposed by Nowicki and Snijders (2001) and (iv) blockmodels,
proposed by Leger (2015).

To measure the performance of the four models, we apply the MAP rule to the estimated
probabilities of allocation, and we cluster units accordingly. After the classification is per-
formed, we compute the average misclassification error rate and the adjusted Rand index
(Rand (1971)) for each of the four models across the independently replicated datasets. The
misclassification error rate measures the fraction of units wrongly allocated with respect to
the true allocations used to generated the data, whereas the adjusted Rand index (ARI) is a
measure between 0 and 1, representing similarity between two different clustering, where we
take one of the two to be the true allocation in the data.
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4.1. Synthetic data generated from manet. For the scenarios considered in this section,
we generate data according to our model with varying values for the number of actors n and
the number of events d . We consider K = 3 (i.e., K� = 8) and set the components weights
to be α� = (0.1,0.25,0.20,0.1,0.15,0.1,0.05,0.05). We set the probabilities of attendances
for the first event equal to π ·1 = (0.2,0.5,0.9), and we define the remaining vectors to be all
the possible (K!− 1) permutations of the values in π ·1 by stacking the same values a number
of times depending on the value of d chosen.

Since blockmodels and mixer only work on actor–actor data, for these two methods
we transform the data to this structure by calculating the number of events attended by any
two actors. This is sufficient for blockmodels which accounts for weighted edges. Since
mixer requires a binary input, we further dichotomize the network by setting a cutoff on the
number of events. For this we select the threshold that leads to the best results for each of the
methods.

4.1.1. Classification performance. For this simulation we set n = 300 and consider three
possible values for the number of events, namely, d = {6,18,38}. For each of the three values
of d , we generate 25 independent datasets. We then run the algorithm by setting the true num-
ber of clusters, that is, K = 3 for our model or K� = 8 for the competitors. Table 1 reports the
results of this simulation in terms of the ability of allocating the actors into the eight heir clus-
ters. In each subgroup defined by the value of d , our model achieves simultaneously lower
(better) average misclassification error rate and higher (better) average adjusted Rand index
with respect to the other competitors. The closest in terms of performance is mixtbern
which, however, exhibits less stability. It is worth noticing that as the number of events, d ,
increases so does the performance improvement in the classification task: this is true for all
the models with the exception of mixer. The loss of performance for models blockmod-
els and mixer is partially expected due to the loss of information after transformation of
the data into a one-mode network.

4.1.2. Convergence of parameters’ posterior distributions. For this simulation, we focus
on the convergence behavior of the posterior distributions of the attendance probabilities πkj

to the true values of the data generating model. In particular, we use a fixed setting with
K = 3, d = 18, letting the sample size vary as n = {100,250,500}. We set the true values

TABLE 1
Misclassification error rate and adjusted Rand index, averaged over 25

replicated datasets, for three values of d = {6,18,36} and four competing
models; standard errors are reported between brackets. Models are

categorized on the type of structure they analyze (actor–actor or actor–event);
best results are highlighted in bold

Actor–actor Actor–event

Num. of events mixtbern manet mixer blockmodels

Misclassification error rate (in %)
d = 6 42.67 (5.96) 35.05 (3.99) 52.16 (2.23) 55.49 (3.11)

d = 18 20.89 (2.97) 15.33 (2.42) 46.89 (5.87) 43.07 (4.49)

d = 36 13.67 (4.14) 6.91 (1.53) 54.32 (7.32) 30.28 (4.76)

Adjusted Rand index (ARImax = 1)
d = 6 0.34 (0.08) 0.45 (0.06) 0.15 (0.03) 0.22 (0.04)

d = 18 0.73 (0.05) 0.79 (0.04) 0.31 (0.08) 0.40 (0.06)

d = 36 0.85 (0.05) 0.93 (0.02) 0.27 (0.08) 0.60 (0.06)



OVERLAPPING MIXTURE MODEL FOR TERRORISTS NETWORK 1525

for the {πkj }, as described in Section 4.1. For each sample size we simulate 25 replicated
datasets, and we collect all posterior samples (after burn-in) of the same n from each MCMC
into one single chain. While this inevitably introduces some additional Monte Carlo error, the
increased amount of available information should dampen this aggregation effect. Results are
visualized in Figure 2. Rows of the plot correspond to events (specifically, we are reporting
j = {1,9,18}) and columns to the attendance probabilities of those events for the three dif-
ferent primary clusters. As expected, with increasing sample size (from n = 100, red curve,
to n = 500, blue curve) the posterior distribution exhibits less variability, contracting around
the true value, that is, the vertical dashed line used for the simulations. The same behavior is
observed for the posterior distributions of the other πkj and the posterior distribution of α�,
the proportions of the mixture model (not shown).

4.1.3. Accuracy of model selection criterion. To show the behaviour of the DIC selec-
tion criterion discussed in Section 3.4, we simulate 25 replicated datasets with the following
configuration: Ktrue = 3, d = 18, increasing sample sizes n = {25,75,150,300}. For each
dataset we run the algorithm and provide three different values of K = {2,3,4}. We compute
the corresponding DIC values and select the value of K that achieves the lowest one. When
n = 25, we select K̂ = Ktrue = 3 in 80% of the replicated datasets; for the remaining sample
sizes (n = {75,150,300}), the DIC achieves its lowest value with K̂ = Ktrue = 3 in all the
datasets.

4.2. Synthetic data generated from a misspecified model. The previous section showed
simulations on data generated by our proposed model. For the scenarios considered in this
section, we consider misspecified cases. In particular, we simulate attendances for n = 300
units to d events, where d = {6,18,36}, from a mixture of independent Bernoulli distribu-
tions (mixtbern) with K = 8 nonoverlapping components. The weights for the mixture are
set to α = (0.1,0.25,0.20,0.1,0.15,0.1,0.05,0.05), while the probabilities of attendances
{πkj } are defined as follows:

• π1· = (0.9,0.8,0.7,0.6,0.5,0.1);
• π2· = (0.3,0.2,0.1,0.9,0.3,0.2);
• π3· = (0.7,0.6,0.5,0.9,0.3,0.2);
• π4· = (0.2,0.1,0.7,0.6,0.3,0.1);
• π5· = (0.2,0.1,0.9,0.8,0.3,0.6);
• π6· = (0.4,0.5,0.5,0.7,0.3,0.1);
• π7· = (0.3,0.2,0.1,0.9,0.8,0.7);
• π8· = (0.4,0.5,0.6,0.7,0.8,0.1).

The results, in terms of misclassification error rate (MCR) and Adjusted Rand Index (ARI),
are visualized in Figure 3.

The figure is separated into three blocks, corresponding to the number of events (d =
{6,18,36}). The plots are vertically separated according to the two measures of performance,
MCR and ARI, respectively, which are computed on 25 replicated datasets and for five com-
peting models: blockmodels, mixer, mixtbern, and manet with K = 3 → K� = 8
and K = 4 → K� = 16 clusters. When d = 6 all models exhibit poor performance which is
due to the difficult clustering task posed by the small number of events. For d = 18, the true
model mixtbern and manet (both K = 3 and K = 4) show lower error rates for the clas-
sification and a better agreement with the true cluster labels. In the scenario where d = 36,
manetwith K = 3 clusters performs worse than mixtbern. However, if we fit manetwith
K = 4, the model has enough flexibility to accommodate eight nonempty clusters, while be-
ing (more) parsimonious in the number of estimated parameters than mixtbern, and thus
allowing it to perform on par with, if not slightly better than, mixtbern.
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FIG. 2. Posterior distributions of πk,j for three events j = {1,9,18} and all the clusters, for varying sample sizes n = {100,250,500}. Each curve collects all posterior samples
(after burn-in) from the 25 replicated datasets. The grey shading in the plots (A–I) is: white, n = 100; light grey, n = 250; medium grey, n = 500. True values of πk,j are reported
as dashed vertical lines.
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FIG. 3. Results for the simulation study on data from a misspecified model and 3 different values for the total
number of events d = {6,18,36}. The violin plots report misclassification error rate (top) and ARI (bottom)
across the 25 replicated datasets. For each value of d , the five boxplots in each section refer to (from left to right):
mixtbern, manet (K = 3), manet (K = 4), mixer, blockmodels.
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TABLE 2
Computational times: Total elapsed times are reported in minutes, while the

cost per iteration is measured in milliseconds per iteration (mpi)

Execution times

Sample size n # clusters K # of events d Total elapsed time mpi

300 3 6 5.33 64
18 15.42 185
36 32.63 391

4 6 9.72 116
18 31.95 383
36 56.13 674

4.3. Computational times and storage. At the current stage of the implementation of
our proposed method in the R package manet, the algorithm requires to store: (i) posterior
probabilities of allocation p(z|y, . . . ) at each MCMC iteration in an n×K� matrix; (ii) com-
ponents’ weights in a vector of length K�; (iii) sampled probabilities of attendances πkj in
K vectors of length d . Among these quantities, only (i) and (ii) scale with K�. As far as
execution times are concerned, the computational burden scales exponentially in the number
of parent clusters K only for the sampling of the components’ weights, whereas it is linear
in terms of K and d because of the parsimonious formulation of the model. Nevertheless,
we generally expect the number of overlapping cluster K to be rather small in most applica-
tions, implying no need to run manet with large K and thus longer CPU times. To provide a
numerical comparison, Table 2 reports the computational times for the scenarios explored in
the simulation studies (Section 4.2) as milliseconds per iteration (mpi), that is, the execution
time in seconds divided by the number of MCMC iterations.

5. Noordin Top terrorist network analysis. We analyze the terrorist dataset with infor-
mation pertaining to n = 79 terrorists (actors) and their attendance behavior to d = 45 events
of various nature, such as trainings, operations, bombings, financial and logistics meetings,
together with their affiliations to a number of organizations associated with the leader of the
Indonesian terrorist network Noordin Top (Everton (2012)). Rather than leaving out the five
lone wolf terrorists, we include them into the analysis.

We run our manet algorithm for 30,000 iterations with a generous burn-in window of
15,000, to ensure convergence. Raftery and Lewis’ diagnostic check from the R package
coda (Plummer et al. (2006)) supports this choice, by returning a suggested number of
MCMC iterations ranging from 3500 to 8000. Convergence is further investigated and sup-
ported by the MCMC traceplots and via the Heidelberg and Welch’s stationary test (with p-
values above 0.50 for all the chains). Posterior quantities are computed on the samples after
burn-in. These were not affected by label-switching and thus did not need any postprocess-
ing. The lowest computed DIC value for three possible values of K = {2,3,4} corresponds to
DIC(2) = 1822.93, and we therefore select K = 2 parent clusters, corresponding to K� = 4
heir clusters.

The results are reported in Table 4. The first heir cluster, identifying units belonging to no
parent cluster, contains five units who are the “lone wolves,” that is, the terrorists attending
no event and who were discarded from the analysis of Aitkin, Vu and Francis (2017). Only
two units are allocated into the second heir cluster: these two individuals are Noordin Top
and Azhari Husin, the leader and his main collaborator of the terrorists network, respectively.
They form a separate cluster because of their peculiar behavior of participating to most of the
45 events, having the highest raw number of attendances, respectively 23 and 17, and being
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involved in many of the logistic, financial, and decision-making meetings. The third heir
cluster is formed by six individuals sharing the same pattern of attendances and, in particular,
being terrorists affiliated to a specific subgroup called “KOMPAK.” Finally, in the fourth heir
cluster we find the rest of the terrorists, such as trainees, henchmen, and religious leaders,
who attend the 45 events with a pattern that is an overlap between the two parent clusters.
These results are found using a uniform prior allocation to clusters. The same allocation is
robustly found also with a Dirichlet prior specification that discourages units to belong to too
many clusters, that is, by setting a�

h = K� if
∑

h uh = 1, and a�
h = 1 otherwise.

Figure 4 visualizes the two-mode (actor–event) Noordin Top network: red square ver-
texes are the events, with corresponding labeling; round vertexes are the terrorists, with a
color scheme representation based on the clustering obtained with manet and labelled with
progressive numbers. Figure 5 provides a graphical representation of the posterior proba-

FIG. 4. Bipartite (two-mode) representation of Noordin Top terrorists network dataset. Each square node is
an event, with corresponding label, while each circle node is a terrorist (labelled with a progressive number).
Sizes and grey-shading scheme for circle nodes reflects terrorists allocation into clusters obtained by our model
manet: 2 medium shaded nodes for cluster z = (0,1); 6 heavy shaded nodes for cluster z = (1,0); 66 small
sized, light shaded nodes for multiple allocation cluster z = (1,1); medium sized, medium shaded unconnected
nodes {75,76,77,78,79} are the ‘lone wolves’, attending no event.



1530 S. RANCIATI, V. VINCIOTTI AND E. C. WIT

FIG. 5. Ternary plot for the (average) posterior probabilities of allocation of each terrorist to each clusters from
our manet model, conditioning on not being in cluster z = (0,0). The ‘lone wolves’ cluster is omitted for ease
of visualization.

bilities averaged across the MCMC iterations (after burn-in). Each dot represents one of
the 79 terrorists (the “lone wolves” are removed for visualization purposes): lower—from
left to right—axis of the ternary plot depicts the posterior probability to be allocated into a
multiple allocation cluster zi = (1,1); similarly, the other two axes (left and right) measure
the posterior probability to be allocated into cluster zi = (0,1)—top to bottom—or cluster
zi = (1,0)—bottom to top. We can see almost all units bear no uncertainty about their mem-
bership to the clusters, except for two terrorists, row 25 and 55 of the matrix. In order to report
the uncertainty of the classification for all the groups, we provide the (PCM) in Table 3. As
we see from the table, the results are close to a situation with no confusion in the classifica-
tion, except for cluster zi = (0,0). This is partially expected because the data matrix is very
rarefied, and units in the multiple allocation cluster zi = (1,1) attend very few events. This
means that the attendance profile and the cluster-specific vector of event probabilities πh, for
cluster h = 1 and h = 4, are indeed very similar, pushing the algorithm to distinguish less

TABLE 3
Rescaled posterior confusion matrix of the classification for 79
terrorists; the benchmark for comparison (best case scenario)

is the identity matrix of order 4

Cluster z = (0,0) z = (0,1) z = (1,0) z = (1,1)

Rescaled PCM with K = 2 (K� = 4)
z = (0,0) 0.66 0.00 0.00 0.34
z = (0,1) 0.00 1.00 0.00 0.00
z = (1,0) 0.00 0.00 0.94 0.06
z = (1,1) 0.01 0.00 0.01 0.98
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TABLE 4
Posterior allocation of the 79 terrorists into K� = 4 heir clusters from our

manet model, according to the MAP rule. First column shows the
corresponding latent representation in the original parametrization

Clusters

parent cluster heir cluster
Num. of

individuals Qualitative description

z = (0,0) h = 1 5 “Lone wolves”
z = (0,1) h = 2 2 Noordin Top and Azhari Husin
z = (1,0) h = 3 6 KOMPAK subcell group
z = (1,1) h = 4 66 Trainees and henchmen

79

the two groups. However, as we saw in Table 4, the “lone wolves” are classified into cluster
zi = (0,0), without any additional unit attending a low number of events.

For comparison, we explore results from our direct competitor mixtbern and consider
both the case of K = 4 and K = 8 nonoverlapping clusters. In both models only three clusters
are nonempty, and the partitioning of the units into these mutually exclusive groups allocates
Noordin Top and his main collaborator (Azhari Husin) into two separate singletons, whereas
all the remaining terrorists are allocated into one of the other clusters. Table 5 reports the
number of allocated units in each cluster, and the corresponding PCM, for the case K = 4
(similar results for K = 8 are reported in the Supplementary Material (Ranciati, Vinciotti and
Wit (2020))). The results suggest that allowing for and modelling the potential overlaps of the
terrorists groups in attending events, as is done in manet, helps in better identifying the sub-
groups in the network. In addition, we can find similarities and differences with the analysis
in Aitkin, Vu and Francis (2017). First, in both analyses, aside from the “lone wolves,” data
seem to point toward a three-groups structure. Second, while the “lone wolves” are removed
in the analysis of Aitkin, Vu and Francis (2017), we are able to naturally account for terror-
ists belonging to the network but showing no attendances to the events considered. Finally,
Azhari Husin and Noordin Top are allocated together into a two-units group in both analyses,
but terrorists’ memberships to the other two remaining clusters are more confused in Aitkin,
Vu and Francis (2017) than with our model in terms of posterior allocations (see Figure 10
of their manuscript).

As a final analysis, given that the events have a natural grouping structure, we compare
the full model with a collapsed version of manet, where columns—events—are gathered
according to their nature (financial meetings, organizations, etc). In this case the number of
parameters is smaller than the original formulation, as we only have d̂ = 6 groups of events
instead of d = 45. The lowest value for the DIC is obtained again with K = 2, and it is equal
to DIC(2) = 1884.34. Comparing this with the earlier result (DIC(2) = 1822.93) suggests
that the information about the grouping of the events, based on their category, is only partly
explaining the clustering structure of the terrorists.

6. Conclusions. In this paper we have presented a novel finite mixture model and have
shown its applicability to the clustering of actor–event data. We have formulated the model
in a way that the actor–event data can be modeled directly without transforming it to the
more traditional actor–actor network data with the inherent loss of information. The general
formulation of the model, with potentially overlapping clusters, allows for actors to belong to
multiple communities on the basis of their pattern of attendances to events. The model itself
allows to define the meaning of overlap, leading to a reduction in the number of parameters
as well as a clearer interpretation of the results.
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TABLE 5
Modelling the Noordin Top network using a

nonoverlapping mixture model (mixtbern) with
K = 4 clusters. (top) Posterior allocation of the 79

terrorists into the four clusters according to MAP rule.
(bottom) Rescaled posterior confusion matrix of the

cluster allocation for the 79 terrorists

Num. of
Clusters individuals Qualitative description

k = 1 1 Noordin Top
k = 2 1 Azhari Husin
k = 3 77 All other terrorists
k = 4 0 –

79

Cluster k = 1 k = 2 k = 3 k = 4

Rescaled PCM with K = 4
k = 1 1.00 0.00 0.00 0.00
k = 2 0.00 1.00 0.00 0.00
k = 3 0.00 0.00 1.00 0.00
k = 4 0.00 0.00 0.00 1.00

Using our model on the Noordin Top actor–event network, we discovered three distinct
subgroups out of the 79 terrorists on the basis of their mode of attendance to 45 meetings:
the first group consisted of five suicide bombers who did not attend any meeting, the second
group consisted of six members of the KOMPAK terrorist organization and the third group
consisted of the two leaders, namely, Top and Husin. This view of the terrorist network gives a
more layered understanding of the mode of operation and allegiances within the organization.

We proposed a Bayesian inference procedure for deriving the posterior distribution of the
parameters in the model. By selecting appropriate conjugate prior distributions, the MCMC
sampler is efficient and convergence is typically fast. The proposed model is currently imple-
mented in the R package manet, available on CRAN. The package contains the Noordin Top
terrorist network, used for this paper, as well as the Southern U.S. Mississippi women dataset
and the larger synthetic dataset discussed in the Supplementary Material (Ranciati, Vinciotti
and Wit (2020)).

The Bayesian formulation of the model lends itself naturally to an extension of the model
to include also individual level covariates, either at the level of group membership or event
attendance probabilities. This would, on the one hand, adjust for node degree/hetereogeneity
and, on the other hand, enhance the interpretability of the resulting clusters. In applications
where the second mode does not have a known grouping structure, as it was the case for
the Noordin Top network and the grouping of events, future work will develop extensions
to biclustering with overlap. Finally, possible extensions could consider introducing depen-
dency among events, thus relaxing the local independence assumption currently used, and
addressing the case of weighted and dynamic networks.
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Software. The algorithm described in this manuscript is implemented in an R package
called manet, available on CRAN. The package contains the data analyzed in Section 5 as
well as the datasets described in the Supplementary Material (Ranciati, Vinciotti and Wit
(2020)).

SUPPLEMENTARY MATERIAL

Supplement to “Identifying overlapping terrorist cells from the Noordin Top actor–
event network” (DOI: 10.1214/20-AOAS1358SUPP; .pdf). The supplementary material
contains two additional toy examples, the sketch of the algorithm, and further results on
the application discussed in the main manuscript.
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