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Zusammenfassung

Die Analyse von Netzwerkdaten hat sich in den letzten Jahren zu einem anspruchsvollen
und aufstrebenden Bereich der Statistik entwickelt. In diesem Zusammenhang ist das so-
genannte Exponential Random Graph Model (ERGM) ein vielversprechender Ansatz für
die Modellierung von Netzwerkdaten. Allerdings erweist sich die Parameterschätzung als
schwierig, nicht nur aufgrund von Berechnungs- und Stabilitätsproblemen, insbesondere bei
großen Netzwerken, sondern auch wegen des unbeobachteten Vorhandenseins der Knoten-
heterogenität im Netzwerk.

Diese Dissertation beginnt mit einer allgemeinen Einführung in die Graphentheorie, der
eine ausführlichen Diskussion über Exponential Random Graph Modelle und die konven-
tionellen Parameterschätzungsansätze folgt. Zudem werden die Vorteile dieser Modellklasse
präsentiert und das Problem der Modelldegeneration diskutiert.

Der erste Beitrag der Dissertation schlägt einen neuen iterativen Schätzansatz für Ex-
ponential Random Graph Modelle mit knotenspezifischen Zufallseffekten in unipartiten
Netzwerken vor, der die unbeobachtete Knotenheterogenität berücksichtigt und sowohl
Maximum-Likelihood- als auch Pseudolikelihood-Schätzverfahren zur Schätzung der Net-
zwerkstatistiken beziehungsweise der knotenspezifischen Zufallseffekte kombiniert, um eine
stabile Parameterschätzung zu gewährleisten. Außerdem wird eine Modellauswahlstrategie
entwickelt, um das Vorhandensein von Knotenheterogenität im Netzwerk zu bewerten.

Im zweiten Beitrag wird der Ansatz der iterativen Schätzung auf bipartite Netzwerke aus-
gedehnt, wobei die Schätz- und Bewertungstechniken erläutert werden. Darüber hinaus
wird eine gründliche Untersuchung und Interpretation von zufälligen knotenspezifischen
Zufallseffekten in bipartiten Netzwerken für das vorgeschlagene Modell diskutiert.

Simulationsstudien und Datenbeispiele illustrieren beide Beiträge. Alle entwickelten Meth-
oden sind mit der Open-Source-Statistiksoftware R implementiert.





Summary

The analysis of network data has become a challenging and growing field in statistics in
recent years. In this context, the so-called Exponential Random Graph Model (ERGM) is a
promising approach for modeling network data. However, the parameter estimation proves
to be demanding, not only because of computational and stability problems, especially in
large networks but also because of the unobserved presence of nodal heterogeneity in the
network.

This thesis begins with a general introduction to graph theory, followed by a detailed
discussion of Exponential Random Graph Models and the conventional parameter
estimation approaches. In addition, the advantages of this class of models are presented,
and the problem of model degeneracy is discussed.

The first contribution of the thesis proposes a new iterative estimation approach for
Exponential Random Graph Models incorporating node-specific random effects that
account for unobserved nodal heterogeneity in unipartite networks and combines both
maximum likelihood and pseudolikelihood estimation methods for estimating the structural
effects and the nodal random effects, respectively, to ensure stable parameter estimation.
Furthermore, a model selection strategy is developed to assess the presence of nodal
heterogeneity in the network.

In the second contribution, the iterative estimation approach is extended to bipartite
networks, explaining the estimation and the evaluation techniques. Furthermore, a
thorough investigation and interpretation of nodal random effects in bipartite networks
for the proposed model is discussed.

Simulation studies and data examples are provided to illustrate both contributions. All
developed methods are implemented using the open-source statistical software R.
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1 Introduction

The analysis of network data is of great interest in many scientific fields. Typical examples
can be found in social sciences, where friendship networks play an essential role, or in
political sciences, where, for instance, international arms trade networks are of importance.
In financial mathematics, one tries to achieve an optimal portfolio composition with the
help of network analysis, among other things. In computer science, medicine, and biology,
statistical methods of network data analysis are also used to investigate networks.
The unique feature of networks is their dependency structure since their observations,
also called actors, are related to each other, which is vital in the analysis. Accordingly,
networks are not limited to variables that affect individual actors but primarily map their
relationships. Thus, the actors in a network cannot be regarded as independent of each
other. Ordinary statistical analyses, however, assume that observations are independent of
each other. Consequently, alternative methods of statistical modeling are needed for the
analysis of networks. Kolaczyk (2009) gives a considerate and thorough introduction to
the field of statistical network analysis. The survey articles of Goldenberg et al. (2010),
Fienberg (2012), Hunter et al. (2012), and Salter-Townshend et al. (2012), discuss recent
statistical approaches, challenges, and advancements in this field.

The Exponential Random Graph Model (ERGM) is one such alternative method suitable
for modeling networks. ERGMs are a class of stochastic models that use network local
structures and, if available, actor/edge specific covariates to model the formation of an
edge for a network with a fixed number of nodes. Lusher et al. (2013) give a general
introduction to ERGMs and their properties.

This dissertation is structured as follows: The introductory chapter begins with a general
analysis of unipartite and bipartite networks. Section 1.2 introduces some pre-ERGMmodel
specifications, followed by the definition and properties of ERGMs in Section 1.3. Network
simulation and a brief introduction to available algorithms are discussed in Section 1.4.
The estimation framework in ERGMs is presented in Section 1.5 with a detailed discussion
of the estimation methods, followed by a summary demonstrating the advantages and
disadvantages of the introduced methods. The degeneracy issue in network data analysis is
addressed in Section 1.6; the ways of dealing with this problem are reflected in Section 1.7,
where alternative network specifications are presented. A general discussion on ERGMs,
challenges, limitations, and drawbacks is given in Section 1.8. Chapter 2 introduces the first
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1 Introduction

contribution of this thesis, which proposes a new iterative estimation approach for ERGMs,
incorporating node-specific random effects that account for unobserved nodal heterogeneity
in unipartite networks and combines both maximum likelihood and pseudolikelihood
estimation methods to ensure stable parameter estimation. In addition, a model selection
strategy is developed to assess the presence of nodal heterogeneity in the network (Kevork
and Kauermann, 2021). The iterative estimation idea is extended to bipartite networks
in Chapter 3, which is the second contribution of this dissertation, demonstrating the
estimation and the evaluation techniques. Furthermore, a thorough investigation and
interpretation of nodal random effects in bipartite networks for the proposed model are
discussed (Kevork and Kauermann, 2022).

1.1 Analyzing Networks

1.1.1 Analyzing Unipartite Networks

A unipartite or one-mode network is a group or a system of interconnected actors (vertices,
nodes), whereby an actor can be many things, such as a person or a city. Therefore,
unipartite network data is relational data as it represents the relationships (edges, ties)
between the individual actors. Regarding networks in general, one has to distinguish
between directed and undirected networks. Undirected networks focus on any relation
between two actors, whereas directed networks consider the direction of the relation between
two actors. In this dissertation, we focus on undirected unipartite networks since the data
examples in the contributed manuscript are of this type.

A graph G = (V,E) is the mathematical description of a unipartite network. It consists
of a node-set V and an edge set E. A node embodies an actor of a network. Usually, it is
assumed that the number of nodes Nv = |V | is less than infinity. Edge {i, j} is an element
of the set E and connects two actors. It describes the relationship between the nodes i and
j. If an edge exists between the nodes i and j, it denotes a relationship between them (see
Kolaczyk 2009).

The structure of a graph is determined by its adjacency matrix. The adjacency matrix
Y of a graph is a matrix of Nv × Nv whose elements Yij indicate the number of edges
between nodes i and j. For a simple graph, these elements are either 0 or 1. If there is
an edge between node i and node j, Yij = 1, otherwise Yij = 0 with i, j ∈ {1, . . . , Nv} and
i 6= j. For simplicity we assume undirected edges, that is Yij = Yji. An example of such an
adjacency matrix with its associated graph is shown in Figure 1.1. Moreover, node-specific
covariates (e.g., gender) or dyad-wise covariates (e.g., indicators for the same gender) can
be available. We should bear in mind that the link variables Yij, which are of interest for
i, j ∈ {1, . . . , n}, are treated as random, while the nodes i = 1, . . . , n are fixed.
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1.1 Analyzing Networks

Figure 1.1 Schematic representation of a unipartite network.

1.1.2 Analyzing Bipartite Networks

A bipartite network can be represented as a triple Y = (R,C,E) where R and C, also
often called first- and second-mode nodes, are two disjoint sets of nodes, and E ⊆ R × C
is the set of edges of the network. This representation can be demonstrated as an n ×m
rectangular matrix Y (see Figure 1.2), where n and m are the number of nodes in R

(mode-1 nodes) and C (mode-2 nodes) respectively, and with elements Yij = 1 if there
is an edge between i and j and Yij = 0 otherwise. Bipartite networks are also known as

Figure 1.2 Schematic representation of a bipartite network.

affiliation or two-mode networks. Some widely used examples of this type of network are
citation networks, collaboration networks, actor-film networks, or patent networks. We
often encounter two unipartite network representations that are derived from a bipartite
network. For instance, in a patent network, one set of nodes represents the patents filed to
the patent office, and the other set represents the inventors, with ties representing inventors
filing a patent to the patent office. Therefore, an inventor to inventor network can be derived

3



1 Introduction

such that if two inventors share a filed patent, there is an edge between them; a patent to
patent network can be constructed in a similar way to form an inventor sharing network.
Figure 1.3 illustrates the projection of a toy bipartite patent network example (center) to
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Figure 1.3 Projection of a toy bipartite patent network example to two unipartite networks.

a patent to patent network projection (left) and an inventor to inventor network projection
(right). Using projection techniques, one may analyze a bipartite network by looking at
two unipartite networks. However, by projecting a bipartite network and ignoring the edge
values, we lose information about the number of nodes in the other set acting as edges
between connected pairs in the unipartite networks. In this dissertation, we seek to analyze
unprojected bipartite networks to avoid information loss and focus on the global structures
of bipartite networks.

Borgatti and Everett (1997) provide a general overview of the basic ideas of bipartite
network analysis and discuss ways of applying and interpreting traditional network analytic
techniques to two-mode network data. More recently, Latapy et al. (2008) propose
extensions of basic tools for analyzing large one-mode networks (the classical case) to
the two-mode case. A general survey of different approaches for bipartite network data
is provided in Shi et al. (2017).

1.2 Model Specifications

Social scientists have studied social networks since the 1930s. The sociogram, a
mathematical graph in which a group of individuals is represented as nodes and the
relationship between pairs of individuals is represented by an edge, was first developed by
Moreno and Jennings (1938). The Bernoulli Random Graph Model introduced by Gilbert
(1959), also referred to as the simplest ERGM, assumes that each actor (node) in the
network has the same probability of forming an edge, where the only network statistic is
the count of edges. Mathematically speaking, the probability of an edge between nodes i
and j has the following form:

P
(
Yij = 1

)
= p, ∀ i, j ∈ {1, . . . , n}, and j > i,with p ∈ (0, 1). (1.1)
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1.2 Model Specifications

However, the independence assumption of this model is too unrealistic or nonsensical for
all but the simple of cases. Therefore, this model may be most useful as a “null” model,
although it is arguably too simple even for this.
Holland and Leinhardt (1981) addressed the independence assumption for directed networks
(digraphs) with their p1 model, focusing on two empirical observations from sociometric
studies, namely reciprocation (mutual relationships) and attractivity/productivity (in- and
out-degrees of the nodes). They then constructed a family of distributions with parameters
that allow controlling the probability of observing different values of mutual relationships
and in-/out-degrees. After some algebraic manipulation, the model can be written as:

logit
[
P
(
Yij = 1

)]
= log

 P
(
Yij = 1

)
1− P

(
Yij = 1

)
 = αi + αj + ztijβ, (1.2)

where αi and αj are fixed nodal effects, and zij is a set of covariates related to i and j.
The early steps of ERGMs are introduced by Frank and Strauss (1986) with their
implementation of the Markov dependence assumption (Markov model) in which two dyads
are independent, conditional on the rest of the graph if they do not have a node in common.
The Markov graph model in an undirected network consists of three configurations, edges,
stars, and triangles, which has the following form:

P
(
Y = y

)
= 1
κ
(
θ, σk, τ

) exp
{
θE + σkSk + τT

}
, (1.3)

where θ, σk, and τ are the edge, k-stars and triangle parameters respectively, E = ∑
i<j yij

denotes the total number of edges, Sk represents the number of k−stars (S2 would
therefore be a 2-star with S2 = ∑

i<j<k yijyik representing the total number of 2-stars),
T = ∑

i<j<k yijyjkyik denotes the total number of triangles in a network, and κ(θ, σk, τ) is
the normalizing constant to ensure that (1.3) is a legitimate probability distribution.
Although the Markov model is a promising approach, the probability for all possible edges
across the graph is assumed to be homogeneous since node-specific covariates, such as
gender or age, are not incorporated in the model, which limits the utility of the model.
About ten years later, Wasserman and Pattison (1996) extend the Markov model and
introduce the so-called p? model, which assumes a more general conditional dependence
among edges. To be more specific, two edges are conditionally independent if, given all
other network edges, the conditional probability that both edges exist does not equal the
product of their marginal conditional probabilities (Wasserman and Pattison, 1996). The
generalization of this assumption allows ERGMs with most dependence assumptions to be
considered p? models.
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1 Introduction

1.3 Definition of Exponential Random Graph Model

The Exponential Random Graph Model describes the probability distribution for all graphs
or networks with a fixed number of nodes. Let Y be a matrix-valued random variable
representing the adjacency matrix of a network. The probability distribution of the random
variable Y can be expressed in the following form:

P
(
Y = y|θ

)
= exp{θT s(y)}

κ(θ) , (1.4)

where θ =
(
θ0, . . . , θp

)T
is the vector of model parameters and s(y) =

(
s0(y), . . . , sp(y)

)T
is

the vector of network statistics, such as edges, 2-stars, and triangles which can be extended
to s(y,X) if covariates X such as gender or age are included in the model, see, e.g., Snijders
et al. (2006) for more details. Note that there is no general answer to which network
statistics should be included in (1.4) to capture the structural properties, as Figure 1.4
illustrates some of the possible network configurations in an undirected network.

Figure 1.4 Examples of network statistics: edge, 2-star, triangle, and gwesp.

The denominator κ(θ) in (1.4) represents the normalizing factor to ensure that (1.4) is a
legitimate probability mass function

κ
(
θ
)

=
∑
y∈Y

exp
{
θTs(y)

}
,

where Y is the set of all possible n×n adjacency matrices. An exact calculation of κ
(
θ
)
is

problematic except for tiny networks, since the normalizing constant sums over all possible
expressions of the random variable Y . For instance, for an undirected network with n

nodes, 2
n(n−1)

2 potential networks are possible. With only 15 nodes, there are already
1.57·1057 possible expressions of the random variable Y . Therefore, it is usually infeasible to
determine the normalizing constant numerically. Thus, handling the normalization constant
becomes the crucial dilemma of the ERGM (Hummel et al., 2012a) because a calculation
of the normalizing constant is inevitable for a classical maximum likelihood estimation.
Since (1.4) belongs to exponential family type distributions, we use the properties of those
types of distributions to overcome the computational burden of κ(θ). Eventually, for the
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1.3 Definition of Exponential Random Graph Model

log normalizing constant, we get

∂

∂θ
log
(
κ (θ)

)
= E

(
s(Y )|θ

)
(1.5)

which can be approximated using simulation-based approaches (see Snijders 2002). More
details on network simulation are given in Section 1.4.

Frequently, one also encounters (1.4) in its conditional form, clarifying also the
interpretation of the model parameters, which has the following form:

logit
[
P(Yij = 1|Y−ij = y−ij,θ)

]
= θT∆ijs(y), (1.6)

where Yij is a binary random variable, indicating whether an edge between the nodes i and
j exists or not. Y−ij denotes the state of all remaining edges from Y , i.e., all edges except
the one between nodes i and j, and ∆ijs(y) = s(yij = 1, y−ij)−s(yij = 0, y−ij) is the vector
of so-called change statistics. Hence, θ in (1.6) can be interpreted as the increase in the
full conditional log-odds of a connection between actors i and j induced by the formation
of the edge, conditional on all other edges remaining unchanged.
To provide a better understanding of the change statistics ∆ijs(y) in (1.6), we look
exemplarily at the number of edges and triangles, where a triangle corresponds to three
nodes that are directly connected. Consider the change from a network with no edge
between nodes i and j to a network with an edge between them, given that the rest of
the network is identical for both. Therefore, the change statistics for the number of edges
always takes the value 1 since adding an edge between i and j increases the number of
edges by precisely 1. On the other hand, the triangle change corresponds to the number
of two-paths between i and j; for instance, in a friendship network, this is the number of
mutual friends of i and j given the rest of the network; the two red nodes in Figure 1.5
represent nodes i and j. To determine the change statistics for the number of triangles, we
need to determine how many new triangles are created by adding the red dashed edge to
the network; in this case, this would be exactly three. Note that some network statistics

Figure 1.5 Visualization of change statistics for the number of triangles.

are much harder to interpret. An overview with some examples is discussed in Section
1.7. More detailed discussions on properties of Exponential Random Graph Models are
presented in Robins et al. (2007a), Robins et al. (2007b), and Lusher et al. (2013).

7



1 Introduction

1.4 Simulating Random Networks

Network simulation is an essential ingredient in the inference of ERGMs. Although the
normalizing constant in (1.4) is usually intractable, network simulation in ERGMs can be
handled easily, since evaluating the conditional probability of an edge, given the rest of the
network, the normalizing constant cancels out. The Markov Chain Monte Carlo algorithm
(Metropolis et al. 1953; Hastings 1970) allows generating networks efficiently. The goal is to
generate a sequence ofM networks y(0), y(1), . . . , y(m), . . . , y(M) from the target distribution,
that are updated sequentially by small changes; see also Hunter et al. (2008a) and Lusher
et al. (2013). Convergence is ensured on the Markov chain with a large M , resulting in a
draw from the target distribution. Some common approaches for network simulation are
presented below.

1.4.1 Gibbs Sampling

The Gibbs sampling approach begins by selecting a pair of nodes (i, j) uniformly at random
from all possible pairs in the network. Given (1.6), we can define the conditional distribution
of Yij given the rest of the network Y−ij as follows

P(Yij = 1|Y−ij = y−ij,θ) = exp{θT∆ijs(y)}
1 + exp{θT∆ijs(y)}

.

We then set Yij either to 1 or 0 according to the conditional probabilities P(Yij = 1|Y−ij =
y−ij,θ) and P(Yij = 0|Y−ij = y−ij,θ), respectively, as described in Hunter et al. (2008b).
We repeat this process until the desired number of networks is obtained.

1.4.2 Metropolis Algorithm

In the Metropolis algorithm approach, as the Gibbs sampling approach, we select a pair of
nodes (i, j) uniformly at random from all possible pairs in the network. Then we calculate
the acceptance ratio π as

π =
P(Y changes

ij |Y−ij = y−ij)
P(Y stays the same

ij |Y−ij = y−ij)
= exp{±θT∆ijs(y)}.

If the current state of Yij = 1, then the acceptance ratio π = P(Yij=0|Y−ij=y−ij)
P(Yij=1|Y−ij=y−ij) =

exp{−θT∆ijs(y)}, whereas if the current state Yij = 0, then the acceptance ratio
π = P(Yij=1|Y−ij=y−ij)

P(Yij=0|Y−ij=y−ij) = exp{θT∆ijs(y)}. We accept the change of Yij with probability
min{1, π}. Finally, this process is repeated until the desired number of networks is obtained

8



1.4 Simulating Random Networks

(see Hunter et al. 2008b).

In both approaches described above, a dyad, which is simply pair of nodes connected or
not, is uniformly selected at random to be toggled. However, in sparse networks, edges exist
only between a small proportion of all possible dyads. Selecting a pair of nodes uniformly
at random therefore suggests switching an edge rather than removing an existing one. The
low density in sparse networks will cause the Markov chains to be stuck in the same state
for many iterations.

1.4.3 TNT (Tie/No Tie) Sampler

The TNT (tie/no tie) sampler, introduced by Morris et al. (2008), is one way to overcome
this problem by selecting connected dyads more frequently than would be the case with
uniform random selection. Thus, the TNT sampler moves more efficiently across the space
of possible networks than the other two methods mentioned above.

The TNT sampler is a Metropolis-Hastings algorithm implemented in the ergm package,
which begins by choosing a connected dyad with a probability ω = 0.5 to toggle. We
calculate the Hastings factor ρ based on the current state of the selected dyad (i, j). If
yij = 1 is chosen,

ρ =


1

ω×ndyads+(1−ω) if nedges = 1

1 +
(

ω
1−ω

)(
ndyads

nedges+1

)
if nedges > 1

and if yij = 0 is chosen,

ρ =


ω × ndyads + (1− ω) if nedges = 0
1 +

(
ω

1−ω

)(
ndyads

nedges+1

)
if nedges > 0

with ndyads denoting the number of all possible dyads in the network and nedges the total
number of edges in the network in the current state. We then calculate the acceptance
probability π as

π =

exp{−θT∆ijs(y)} × ρ if yij = 1
exp{θT∆ijs(y)} × ρ if yij = 0

and we accept the change of Yij with probability min{1, π}. Subsequently, we repeat this
process until the desired number of networks is obtained.

After a sufficiently large number of iterations, the result is a random network, which can
be seen as a draw from the target distribution of an ERGM. All previous draws are called
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1 Introduction

burn-in and are disregarded. This burn-in is necessary so that the Markov chain no longer
depends on its arbitrarily chosen initial state because only with a sufficiently large burn-in
is a drawn network independent of the starting point. Each subsequently drawn network
can also be considered as a draw from the target distribution, which is why multiple random
networks can be drawn from the same chain. However, two networks drawn directly after
each other are highly correlated since, at most, one edge in the network is changed in each
iteration. Therefore, one omits t iterations between each of the drawn networks. The value
of t is called “thinning” and should be as large as possible to minimize the autocorrelation
between the drawn networks; see, e.g., Koskinen and Snijders (2013) and Lusher et al.
(2013).

1.5 Estimation of Exponential Random Graph Models

For an ERGM as given in (1.4), the maximum likelihood estimator (MLE) for the vector
of model parameters θ is defined as θ̂ = argmaxθ l(θ), where l(θ) is the log-likelihood

l(θ) = θTs(y)− log(κ(θ)). (1.7)

However, such direct maximization of the log-likelihood is essentially impossible due to the
intractable normalization constant κ(θ) in the log-likelihood.

As a result, several different approaches for model parameter estimation in the context of
ERGMs are introduced. The major challenge for all alternative methods mentioned below
is to find a solution for dealing with the normalization constant. We refer to Hunter et al.
(2012) and Koskinen and Snijders (2013) for more detailed discussion.

1.5.1 Maximum Pseudolikelihood Estimation

Probably the most straightforward and least computationally expensive approach to
estimating the ERGM parameters is the maximum pseudolikelihood estimation (MPLE)
presented in Strauss and Ikeda (1990). This approach is based on the so-called
pseudolikelihood, which is defined as follows:

∏
i,j∈{1,2,...,Nv}

j>i

P(Yij = yij|Y−ij = y−ij,θ).

Accordingly, for each potential edge of the network the conditional probability is calculated
given the rest of the network. The product of these individual conditional probabilities
yields the pseudolikelihood. The maximum pseudolikelihood estimator maximizes the
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1.5 Estimation of Exponential Random Graph Models

following log pseudolikelihood

lpseudo(θ) =
∑

i,j∈{1,2,...,Nv}
j>i

log[P(Yij = yij|Y−ij = y−ij,θ)] .

Hence, the maximum pseudolikelihood estimator is defined as:

θ̂ = argmaxθ lpseudo(θ). (1.8)

The maximization of the log pseudolikelihood can be done by simple logistic regression, as
shown by Strauss and Ikeda (1990). The advantage of MPLE in the context of ERGMs
is that even more complicated models can be fitted without significant problems and with
comparatively little computational effort, as described in Robins et al. (2007a).

Note that logistic regression assumes that the observations (nodes) are independent of
each other. However, this assumption is fundamentally not given for network data as
these are relational. Consequently, the estimates of the parameters in a MPLE may be
biased because the dependence structure of the data is ignored. Only if the variables are
conditionally independent for the existence of an edge Yij, the maximum pseudolikelihood
estimator is unbiased. If even only weak dependence structures are present, the estimates
could provide reasonably good approximations for the maximum likelihood estimator; see,
for instance, Kolaczyk (2009). Subsequently, if, on the other hand, strong dependence
structures are present in the network, the maximum pseudolikelihood estimator may be
significantly biased.

1.5.2 Markov Chain Monte Carlo Maximum Likelihood Estimation

Maximizing the true log-likelihood (1.7) is, of course, preferable to maximizing the
pseudolikelihood since the behavior of the MPLE is hard to evaluate (Hummel et al.
2012b). However, due to the normalization constant, the maximization of the log-likelihood
is impossible. Hunter and Handcock (2006) introduced the Markov Chain Monte Carlo
Maximum Likelihood Estimation (MCMC-MLE) procedure to tackle this problem, which
originates from Geyer and Thompson (1992), where an arbitrary parameter θ0 is specified,
and then the following log-likelihood formulation is considered:

l(θ)− l(θ0) = θTs(y)− log(κ(θ))− [θT0 s(y)− log(κ(θ0))]

= (θ − θ0)Ts(y)− log
{
κ(θ)
κ(θ0)

}
= (θ − θ0)Ts(y)− log(Eθ0 [exp{(θ − θ0)Ts(Y )}])

(1.9)

11
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The maximum pseudolikelihood estimator from (1.8) is suitable as an initial value for θ0.
As described in Hunter and Handcock (2006), the log-likelihood (1.9) can be exploited by
generating random networks Y (0), Y (1), . . . , Y (m) from the target distribution by the MCMC
algorithm to approximate l(θ)− l(θ0) as follows:

l(θ)− l(θ0) ≈ (θ − θ0)Ts(y)− log
[ 1
m

m∑
i=1

exp{(θ − θ0)Ts(Y (i))}
]

(1.10)

and for m → ∞ the law of large numbers guarantees the convergence of the expectation
term in (1.9) to

1
m

m∑
i=1

exp{(θ − θ0)Ts(Y (i))}.

Therefore, by simulating m random graphs, the true parameter can be approximated by
the sample mean, and thus an approximation for the maximum likelihood estimator θ̂ is
obtained.

As mentioned in Geyer and Thompson (1992), the log-likelihood approximation in (1.9)
performs best if θ0 is close to the true parameter vector θ. On the other hand, if θ0 is not
close enough to θ, this approach yields only inaccurate or even no estimates. This problem
can be alleviated by applying the so-called Importance Sampling according to Geyer and
Thompson (1992). However, this approach also relies on how well θ0 is chosen; see, e.g.,
Hummel et al. (2012b).

1.5.3 Stepping Algorithm

The so-called stepping algorithm, introduced by Hummel et al. (2012a), offers a solution to
the significant problem of the MCMC-MLE procedure. As already noted, the MCMC-MLE
procedure only provides reasonable estimates if θ0 is close to the true MLE.

Therefore, the goal of the stepping algorithm is to gradually approximate θ0 to the unknown
MLE θ. Hummel et al. (2012a) define the ERGM parameterization in (1.4) as a canonical
parameterization with a mean-value

ξ(θ) = E(s(y)|θ)

to approach the MLE stepwise by pretending that the MLE is not s(y), but some random
point between s(y) and the estimate of ξ(θ0), which we call pseudo-observation. In doing so,
the stepping algorithm repeatedly switches stepwise from a canonical parameterization to
a mean-value parameterization, and vice versa. To be more specific, the stepping algorithm
consists of several steps. Step one is executed only at the start of the very first run of the

12



1.5 Estimation of Exponential Random Graph Models

stepping algorithm, where the MPLE is usually used as the initial value for θt, with t = 0.
In step two, random networks Y (0), Y (1), . . . , Y (m) are generated from the target distribution
by the MCMC algorithm, calculating the sample mean ξ̄t = 1

m

∑m
i=1 s(Y (i)). Consequently,

a new pseudo-observation ξ̂t is determined taking the parameters s(y), ξ̄t, and γt into
account

ξ̂t = γts(y) + (1− γt)ξ̄t with γt ∈ (0, 1] .

We choose γt as close to 1 as possible while not leaving the convex hull of
s(Y (1)), . . . , s(Y (m)). This modification allows the stepping algorithm to counteract
degeneracy and be stable, whereas other algorithms may be unstable due to potential
degeneracy. Finally, the parameter vector θt+1 is determined by updating (1.10) and we
get

θt+1 = argmaxθ
{

(θ − θt)T ξ̂t − log
[ 1
m

m∑
i=1

exp{(θ − θt)Ts(Y (i))}
]}
.

We set t = t + 1 and repeat this procedure. However, as soon as it is possible for γt = 1
without leaving the convex hull, the stepping algorithm is considered to be converged.

1.5.4 Stochastic Approximation (Robbins-Monro)

Another way to circumvent the problem of the intractable normalization constant is the so-
called stochastic approximation, as suggested by Snijders (2002), which utilizes the Robbins-
Monro algorithm (Robbins and Monro, 1951).

This approach aims to center the distribution of the simulated networks’ statistics over the
observed network’s statistics. The distribution of the statistics of the simulated networks
is considered centered if s(y) − E(s(Y )|θ) = 0. Note that, taking the derivative of the
log-likelihood in (1.7) along with property (1.5), we obtain the same result

∂l(θ)
∂θ

= s(y)− ∂

∂θ
log(κ(θ))

= s(y)− ∂

∂θ
log

( ∑
y∈Y

exp
{
θTs(y)

})
= s(y)−

∑
y∈Y

s(y) · P(y|θ)

= s(y)− E(s(Y )|θ).

We can now exploit ∂
∂θ

log(κ(θ)) to approximate the score function by simulating random
graphs from the target distribution. To do this, we draw an MCMC-based single random
network y(t) from the target distribution for each iterative update step t. Accordingly, the
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network y(t) is based on the current estimate of θt. Furthermore, as in the MCMC-MLE
procedure, an initial value must be specified, which can be obtained using, for instance, the
MPLE. We now generate a sequence of parameters θ0,θ1, . . . ,θN using a Newton-Raphson-
type procedure. An update of the sequence from θt to θt+1 is done by

θt+1 = θt − atD−1
0

(
s(y(t))− s(y)

)
,

where D0 is a scaling matrix determined in an initialization phase as the diagonal of an
estimated covariance matrix of the network statistics based on network samples using θ0.
The term at denotes the so-called gain factor, which controls the size of the update steps.
The gain factor is a positive value, which becomes smaller in each iteration step and
eventually converges to 0 as discussed in Snijders (2002). Thus, the changes within the
sequence become smaller and smaller as s(y(t)) approaches s(y(t+1)) and at converges to 0.
Consequently, if θt+1 is the true MLE, then for a sufficiently large sample of networks we
obtain E(s(Y )|θt+1) = s(y). A more detailed discussion on the stochastic approximation
is provided in Koskinen and Snijders (2013).

1.5.5 Summary of Estimation Methods

Table 1.1 summarizes the advantages and disadvantages of the estimation methods
discussed above. The question of which estimation method is preferable is difficult to
answer. We conclude that the performance of simulation-based estimation techniques
depends on whether and how well the ERGM captures the structure of the observed
network. In the numerous simulation studies, we notice that the ERGM generally faces
convergence issues as nodal heterogeneity in the network increases; more on this topic
in Section 1.8. That being said, MCMC-MLE is the method most likely to experience

Table 1.1 Summary of the estimation methods in ERGMs.

Methods Advantages Disadvantages 

MPLE + Simplicity 
+ Speed, via logistic regression

- Maximizes the pseudo-likelihood, not the  
  likelihood

MCMC-MLE + Theoretical guarantee of convergence to    
   MLE

- Highly sensitive to starting point 
- May require enormous MC samples 
- May require several iterations 

Stepping Algorithm
+ Theoretical guarantee of convergence to    
   MLE 
+ Degeneracy counteraction & stability 

- Sensitive to starting point 
- Requires setup expertise 
- May require several iterations

Stochastic
Approximation 

+ Theoretical guarantee of convergence to    
   MLE 
+ Simple updates 

- May converge too slowly to be practical 
- Non-practical implementation of                
  convergence conditions 
- Requires trial-and-error calibration
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1.6 Degeneracy

convergence problems. These problems occur less frequently with the other simulation-
based estimation methods, whereby it tends to be the stepping algorithm for which
we observe convergence problems least frequently. Therefore, in our proposed iterative
estimation algorithms introduced in Chapters 2 and 3, we use the stepping algorithm as
part of our algorithm for estimating the network parameters.

1.6 Degeneracy

A useful stochastic model should, among other things, place most of its probability mass
on those networks that have a high probability of being generated by the actual underlying
emergence process. On the other hand, if a model allocats an inappropriately large
proportion of its probability mass on only a very few of the possible networks, it is called
a degenerate model, see, for instance, Snijders et al. (2006), Schweinberger (2011), and
Chatterjee and Diaconis (2013). More specifically, in this case a large part of the probability
mass is often placed on unrealistic networks such as empty or full networks. While some
real-world networks may be nearly empty or nearly full, they are unlikely to be the subject
of network analysis, as discussed in Handcock (2003).

Furthermore, some models show a so-called near-degenerate behavior. These models place
a large portion of their probability mass on either full, empty, or a mixture of both
networks. A near-degenerate model is where E(s(Y )|θ) lies near the edge of the convex
hull of all possible network statistics. In an Exponential Random Graph framework many
introductory models are usually appealing because of the easy-to-interpret effects, e.g.,
models containing only 2-stars or triangles; however, these models often lead to degeneracy.
For such models, adding a single edge can enormously increase the value of the change
statistics for other edges, causing a chain reaction.

Therefore, most ERGMs are prone to the problem of degeneracy (Snijders et al. 2006,
Schweinberger 2011), which leads to a very poor approximation of the true likelihood. This
is mainly because degenerate models are unstable, and even minimal changes in parameter
values can cause significant changes in the simulated networks. Moreover, degenerate
models may prevent the convergence of the simulation-based estimation methods. In such
a case, the simulation-based estimation methods fail to find the MLE. Consequently, this
can disrupt the algorithm’s convergence in that full or empty networks are generated during
the simulation of random networks.

Accordingly, stable and far-from-degeneracy models are desired. A model is stable if small
changes in parameter values cause only minor changes in the probabilistic structure of
the model. In contrast, even minimal changes in parameter values can lead to significant
differences in network structures for an unstable model. Thus, very similar parameter
values may represent significantly different network structures. Therefore, to mitigate the
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degeneracy problem by avoiding large changes in triangles and k-stars (k ≥ 2) statistics,
Snijders et al. (2006) propose a set of new alternative specifications. Hunter and Handcock
(2006), Goodreau (2007), Robins et al. (2007a) and Robins et al. (2007b) provide further
discussions on the new specifications in the ERGM framework.

1.7 Specifications of Network Statistics

As mentioned before, there is no blanket answer to which statistics must be included to
obtain a good model. Among other things, this depends heavily on the nature and structure
of the network.

However, a vital statistic in ERGMs is the number of edges in a network. This statistic
mimics the role of the intercept, and gives the basic probability of an edge formation in
the network. Since the change statistic for the number of edges is always equal to 1, the
associated parameter affects each network similarly. The k-stars parameter in the model
accounts for the number of k-stars in a network. A k-star is a node that has an edge to
k other nodes. It is worth noting that k-star(1) in an undirected network corresponds to
the edge statistic. Since all k-stars up to size (n− 1) can be modeled by this parameter, it
can also be regarded as a parameter for degree distribution. The transitivity effect in the
network is captured by the triangle parameter corresponding to three directly connected
nodes. Moreover, as already noted, in ERGMs, we can also include explanatory covariates
as exogenous network statistics. There are several possibilities to include these covariates,
depending, for instance, on the research question and the scale level. For example, suppose
we are interested in studying social homophily, i.e., the tendency to be more likely to form
friendships with individuals similar to oneself. In that case, the similarity of the actors
concerning criteria such as gender, ethnicity, or education level could be of interest.

Nevertheless, the traditional network statistics, such as k-stars, or triangles, despite their
easy-to-interpret effects, lead to degeneracy issues, as discussed in Section 1.6. Although
the new specifications, such as alternating k-stars, alternating k-triangles, and alternating
k-two-paths, handle the degeneracy problem and stabilize the model, their interpretation
is challenging.

The following subsections provide an overview of the new specifications for ERGMs in
unipartite networks and their extensions to bipartite networks. Pattison and Robins (2002)
and Morris et al. (2008) provide a more detailed discussion on this matter.
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1.7.1 Alternating Statistics

Alternating k-stars

In ERGMs, we can model k-stars up to size (n− 1), which leads to a model putting large
weights on big stars or on nodes with a high degree, resulting in model degeneracy. The
number of k-stars in a network can be expressed as follows:

Sk(y) =
n∑
i=1

(
yi+
k

)
,

where yi+ is the degree of node i. The new specification, alternating k-star statistics, short,
AKS, introduces a weight parameter λ, λ ≥ 1, which numbs the effect of large changes
in the statistics of large stars. This is achieved by alternating the signs of the weights of
the k-star statistics so that negative weights of odd-k-star statistics balance the positive
weights of even-k-star statistics. This is expressed as:

AKS = S2 −
S3

λ
+ S4

λ2 − . . .+ (−1)n−2Sn−1

λn−3

=
n−1∑
k=2

(−1)k Sk
λk−2 .

As can be seen, the parameter λ is a decreasing weight of the k-star statistics, and this
prevents particularly assigning dense networks a higher probability. The alternating k-star
statistics are intended for modeling the degree distribution. A positive parameter value
for this statistic suggests a skewed degree distribution. On the other hand, a negative
parameter value suggests a homogeneous degree distribution.

For a bipartite network Y of size (n×m), where n and m denote the number of nodes in R
(first mode) and C (second mode), respectively, the alternating k-star statistics are defined
as:

AKSR =
n−1∑
k=2

(−1)k SRk

λk−2

AKSC =
m−1∑
k=2

(−1)k SCk

λk−2 ,

which have the same properties as the alternating k-stars in unipartite networks.
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Alternating k-triangles

According to Snijders et al. (2006), using statistics such as the triangle statistic, it is nearly
impossible to model networks with a high degree of transitivity but still have a relatively
low density. In a friendship network, a high degree of transitivity would mean that forming
a friendship between two individuals who have several friends in common is more likely than
forming a friendship between two individuals with no friends in common. However, networks
with a rather low density despite a high degree of transitivity can often be observed.

Usually, triangles in social networks form cliques, where many triangles are formed within
a small subgroup of nodes. The new specification of alternating k-triangles is therefore
defined as k triangles sharing a common edge {i, j}, as demonstrated in Figure 1.6. The

i

j

i

j

i

j

triangle k-triangle, k = 2 k-triangle, k = 3

Figure 1.6 Examples of alternating k-triangles.

number of k-triangles for k ≥ 2 can be expressed as

Tk =
∑
i<j

yij

(
L2ij

k

)
,

where

L2ij =
∑
h6=i,j

yihyhj

corresponds to the number of two-paths between i and j. Furthermore, it is evident that
a k = 3-triangle contains three k = 2-triangles. Hence, a k = 1-triangle corresponds to a
triangle. The number of k = 1-triangles in a network is given by:

T1 = 1
3
∑
i<j

yijL2ij .
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1.7 Specifications of Network Statistics

For the alternating k-triangle statistic, decreasing weights with alternating signs are used,
as in the case of the alternating k-stars statistic:

AKT = 3T1 −
T2

λ
+ T3

λ2 − . . .+ (−1)n−3Tn−2

λn−3

=
∑
i<j

yij
n−2∑
k=1

−1
λ

k−1(
L2ij

k

)

= λ
∑
i<j

yij

1−
1− 1

λ

L2ij
 .

Triangles cannot be formed in bipartite networks as edges within the two modes are not
defined. Therefore, the alternating k-triangles statistic cannot be applied. The most minor
local closure in a bipartite network is a four-cycle, a two-path closed by another two-path.
A more detailed discussion is given below.

Alternating k-two-paths

A two-path can be considered as the same as a 2-star; consequently, four nodes with two-
paths form a four-cycle or 2-two-path. Therefore, a k-two-paths statistic is a pair of nodes
(i, j) with k shared neighbors, as illustrated in Figure 1.7. The alternating k-two-paths
statistic principle is the same as the alternating statistics presented earlier. Accordingly,

i

j

i

j

i

j

two-path k-two-path, k = 2 k-two-path, k = 3

Figure 1.7 Examples of alternating k-two-paths.

the number of k-two-paths can be expressed as follows:

Uk =


∑
i<j

(
L2ij

k

)
if k > 2

1
2
∑
i<j

(
L2ij

2

)
if k = 2 due to symmetry .
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The resulting alternating k-two-paths statistic can be determined by

AKTP = U1 −
2U2

λ
+

n−2∑
k=3

(
−1
λ

)k−1

Uk

= λ
∑
i<j

1−
1− 1

λ

L2ij
 .

When λ = 1, this statistic diminishes to the number of dyads that are indirectly connected
by at least one two-path.

AKTP =
∑
i<j

IL2ij>0 ,

where I is a binary indicator function.

The most minor closure, which is not a dyad, is a four-path in a bipartite network.
Therefore, the parameter value for alternating k-two-paths in bipartite networks indicates
the likelihood of forming a social circuit. As bipartite networks have two disjoint sets of
nodes R and C, two different k-two-paths structures or closures can be formed, as shown
in Figur 1.8. The circle and square nodes indicate the nodes in R and C, respectively. In

k-ClosureR , k = 3 k-ClosureR , k = 2 Closure k-ClosureC , k = 3k-ClosureC , k = 2

Figure 1.8 Examples of alternating k-two-paths in bipartite networks.

bipartite networks, L2ij defines the number of two-paths between nodes i and j, where both
belong to the same set of nodes. Accordingly, the alternating k-two-paths statistics can be
expressed as

AKTPR = λ
∑
i<j

1−
1− 1

λ

L2ij


AKTPC = λ
∑
i<j

1−
1− 1

λ

L2ij
 .

1.7.2 Geometrically Weighted Statistics

Hunter (2007) proposed alternative representations for the alternating statistics and
implemented them in the ergm package (Hunter et al., 2008a). However, from the modeling
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point of view, these proposed representations are equivalent to the alternating statistics
(Goodreau, 2007; Hunter, 2007). For the alternating k-stars, Hunter (2007) introduced the
geometrically weighted degree (GWD) statistic

eθs

n−1∑
i=1

{
1−

(
1− e−θs

)i}
Di(y),

where Di(y) denotes the number of nodes with degree i, and the parameter θs is a constant,
i.e., usually set to a fixed value. For the alternating k-triangles and alternating k-two-paths,
geometrically weighted edgewise shared partners (GWESP)

eθt

n−2∑
i=1

{
1−

(
1− e−θt

)i}
EPi(y),

and geometrically weighted dyadic shared partners (GWDSP) statistics are introduced,
respectively

eθp

n−2∑
i=1

{
1−

(
1− e−θp

)i}
DPi(y),

where EPi(y) denotes the number of edges with i shared partners, and DPi(y) denotes the
number of dyads with i shared partners. The parameters θt and θp are, as before, some fixed
values. All these statistics use an exponential down-weighting of the icorporated counts.
However, these statistics stabilize the entire model fitting framework, their interpretation
proves to be challenging.

The geometrically weighted statistics except for the GWESP statistic are also available
for bipartite networks, which are defined as the alternating statistics for each mode of a
bipartite network, and are implemented in the ergm package.

1.8 Discussion

Conventional ERGMs are static, i.e., suitable for cross-sectional networks. This means
that if the underlying network generating process is dynamic, ERGMs cannot be applied.
However, extensions are available for modeling longitudinal/dynamic networks, see, e.g.,
Snijders et al. (2010a), and for a general overview, Snijders and Koskinen (2013). Hanneke
et al. (2010), for example, introduced the time-discrete temporal ERGM (TERGM),
postulating an exponential family model for the transition probability from a network
at time t to a network at time t + 1, in which the network at time t is a single draw
from an ERGM conditional on the network at time t− 1. Krivitsky and Handcock (2014)
proposed a separable version of TERGM (STERGM), assuming that the processes of edge
formation and dissolution are separable from each other within a time step. Another widely
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used modeling approach for longitudinal networks is the stochastic-actor-oriented model
(SAOM); see, e.g., Snijders (2001) and Snijders et al. (2010b), which are not edge-oriented
like the ERGMs, but focus on the edge changes during two-time steps. However, dynamic
extensions will not be discussed any further since the focus of this dissertation is on static
ERGMs in both unipartite and bipartite networks.

Another limitation of ERGMs is that they are restricted to modeling only binary edge
variables. For instance, in social networks, if we are interested in the strength of social
relationships, which can be seen as a function of their duration and intimacy, rather than
just whether there is a relationship between two actors, this may cause information loss.
Desmarais and Cranmer (2012), Krivitsky (2012) and Krivitsky and Butts (2015) propose
some possible approaches for dealing with such valued networks.

As already noted, modeling network data proves to be particularly challenging due to the
prevailing complex dependency structure in many real networks. One of the modeling
challenges is the assumption of nodal homogeneity. In ERGMs, two networks have the
same probability if they coincide in s(y), the vector of network statistics. This means that
exogenous covariates, if available, explain all possible node-specific heterogeneity in the
network. This assumption is more than questionable. For instance, friendships between
individuals in social networks are driven by many factors. Some individuals tend to attract
more connections than others, and such phenomena cannot be fully explained by covariates
like age and gender of the individuals.

Thiemichen et al. (2016) proposed a Bayesian estimation framework incorporating node-
specific heterogeneity to account for nodal heterogeneity in networks; however, it proved to
be infeasible for large networks, i.e., networks with more than 100 nodes. This approach
forms the basis for our extensions. Note that incorporating an n dimensional vector of
random node-specific coefficients u = (u1, u2, . . .) in ERGM, with u ∼ N (0, σ2

u In), where
σ2
u is the variance and In the n dimensional identity matrix, leads to a mixed model

with fixed and random coefficients. Therefore, the conditional model for a single edge Yij
conditional on the rest of the network Y−ij can be defined as

logit
[
P(Yij = 1|Y−ij,θ,u)

]
= θT ∆ij s(y) + ui + uj . (1.11)

The terms ui and uj account for unobserved nodal heterogeneity in the network not captured
by ∆ijs(y), the vector of change statistics. Assuming normality for u, the conditional
model (1.11) resembles a mixed logistic regression model. In Chapter 2, we dive in more
depth into this strategy and introduce an iterative estimation approach for the fixed and
random coefficients. Although time-consuming in some cases, the iterative estimation
approach ensures stable estimates. The scalability of our approach is demonstrated in
Chapter 3, where the iterative estimation approach is extended for bipartite networks,
where u = (u1, u2, . . .) and v = (v1, v2, . . .), with u ∼ N (0, σ2

u In), and v ∼ N (0, σ2
v Im),

22



1.8 Discussion

are n and m dimensional vectors of random node-specific coefficients for first- and second-
mode nodes, respectively, resulting in a conditional model defined as

logit
[
P(Yij = 1|Y−ij,θ,u,v)

]
= θT ∆ij s(y) + ui + vj .

The connection between the predicted nodal random effects and nodal degrees is apparent
in our approaches, as demonstrated in Chapters 2 and 3. Hence, the nodal random effects’
estimated variance can be interpreted as the unobserved nodal heterogeneity level of the
underlying network. Our approach and the model extensions are explained and discussed
in detail in the following two chapters.
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Abstract
The presence of unobserved node-specific heterogeneity in exponential random graphmodels (ERGM) is a
general concern, both with respect to model validity as well as estimation instability.We, therefore, include
node-specific random effects in the ERGM that account for unobserved heterogeneity in the network.
This leads to a mixed model with parametric as well as random coefficients, labelled as mixed ERGM.
Estimation is carried out by iterating between approximate pseudolikelihood estimation for the random
effects and maximum likelihood estimation for the remaining parameters in the model. This approach
provides a stable algorithm, which allows to fit nodal heterogeneity effects even for large scale networks.
We also propose model selection based on the Akaike Information Criterion to check for node-specific
heterogeneity.

Keywords: exponential random graph models; random effects; generalized linear mixed models; network data analysis

1. Introduction
The analysis of network data has become a challenging and emerging field in statistics in the
last years. Goldenberg et al. (2010), Hunter et al. (2012) and Fienberg (2012) provide compre-
hensive articles on statistical approaches, challenges and developments in network data analysis.
We also refer to Kolaczyk (2009) and Kolaczyk and Csárdi (2014) for a general introduction and
the related routines for network data analysis in R. In this study, we concentrate on exponen-
tial random graph models (ERGM) originally introduced in Frank and Strauss (1986) and more
deeply discussed e.g. in Lusher et al. (2013). Unless node-specific covariates are included in the
ERGM, the probability for all possible edges across the graph is assumed to be homogeneous,
which also means that any permutation of the node labels will yield the same probability. This is a
questionable assumption, in particular in large networks, which also contributes towards stability
problems for estimation as discussed e.g. in Schweinberger (2011) or Schweinberger et al. (2017).
We follow Thiemichen et al. (2016) and extend the ERGM by incorporating node-specific hetero-
geneity effects to overcome the homogeneity assumption of ERGM and capture the unobserved
heterogeneity in the network.

Consider a network of n actors for which some dyadic relationships have been recorded.
These relations can be represented in the form of an n× n adjacency matrix Y , with ele-
ments Yij = 1 if an edge from i to j exists and Yij = 0 otherwise. In undirected networks, we
have Yij = Yji ∀ i �= j, which we assume throughout this paper. We consider the probability of
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observing a given network conditional on a set of (sufficient) network statistics is given by
the ERGM

P
(
Y = y|θ) = exp{θT s(y)}

κ(θ)
(1)

Here, s(y) is the vector of network statistics and θ is the vector of model coefficients. Vector s(.)
includes any structural characteristics of the network and we refer to Snijders et al. (2006) for a
general discussion on network statistics, see also Hunter and Handcock (2006). The denomina-
tor κ(θ) in (1) represents the normalizing factor to ensure that (1) is a legitimate probability mass
function. In general, κ(θ) is numerically intractable unless forminiature networks. Estimation of θ
in model (1) needs therefore to be carried out simulation based. An early reference for estimation
of ERGMs is Snijders (2002). For a general discussion, we refer to Hunter et al. (2012). A numeri-
cal stable routine has been proposed in Hummel et al. (2012) using a so-called stepping algorithm.
Bayesian estimation is proposed in Caimo and Friel (2011). An important property resulting from
equation (1) is that s(y) is a vector of sufficient statistics for the network. This means, two net-
works, which coincide in s(y), have the same probability. In particular, this means that all possible
node-specific heterogeneity in the network is explained by exogenous effects, which may also be
included in model (1). This can be seen as questionable assumption. For instance, in a friendship
network, we may believe that the formation of friendships (edges) between individuals (nodes) is
driven by many factors, observable as well as unobservable. We may suspect that there are quan-
tities, intangible factors specific to each individual (node) that are difficult if not impossible to
measure. It seems therefore, advisable to include node-specific heterogeneity to capture possible
unobserved heterogeneity of the nodes.

An early model that incorporates node-specific heterogeneity is the so-called p1 model pro-
posed inHolland and Leinhardt (1981). Themodel includes parametric sender and receiver effects
but no network statistics (except of reciprocity). Random nodal heterogeneity was proposed by
Duijn et al. (2004) or Zijlstra et al. (2006) which led to the so-called p2 model. Thiemichen et al.
(2016) combined the approach with ERGMs and proposed Bayesian estimation, which however
is infeasible for large networks, i.e. networks with more than about 100 actors. We follow the
approach of Thiemichen et al. (2016) and extended the ERGM towards

P
(
Y = y|θ , u) = exp

{
θTs(y)+ uTt(y)

}
κ
(
θ , u

) (2)

where s(y)= (s0(y), s1(y), . . . ) is, as above, the p dimensional vector of network statistics with
s0(y)= ∑

i
∑

j>i yij as intercept and t(y)= (∑
j�=1 y1j,

∑
j�=2 y2j, . . .

)
is the n dimensional vector

of node degrees. The normalization now equals κ(θ , u)= log
∑

y∈Y exp
(
θTs(y)+ uTt(y)

)
, where

Y is the set of n by n networks. Conditional on u, we obtain node-specific heterogeneity, which
can be seen as follows. We assume now that θ ∈Rp is a p dimensional parameter vector while
u= (u1, u2, . . . ) is a n dimensional vector of random node-specific coefficients with

u∼N (0, σ 2
u In) (3)

with σ 2
u as variance and In as n dimensional identity matrix. This leads to a mixed model with

fixed and random coefficients, termed in the following as mixed ERGM, or in short mERGM. The
reasoning behind the model structure can be seen through the conditional model for a single edge
Yij conditional on the rest of the network denoted as Y−ij. From (2), we obtain

log
{P(Yij = 1|y−ij, θ , u)
P(Yij = 0|y−ij, θ , u)

}
= θT �ij s(y) + ui + uj (4)
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Here, �ijs(y)= s(yij = 1, y−ij)− s(yij = 0, y−ij) is the so-called change statistics where y−ij is
the network except of edge yij. The terms ui and uj are the random node-specific coefficients
accounting for heterogeneity not captured with�ijs(y). If we assume normality for coefficients ui,
formula (4) resembles a mixed logistic regression model as extensively discussed e.g. in Breslow
and Clayton (1993). A similar model to (4) has been proposed by Box-Steffensmeier et al. (2018)
taking the coefficients u in (4) as random normal variable with mean zero and unknown variance.
For estimation, they apply a pseudolikelihood approach. Though this circumvents the numerical
burden of estimation in ERGM, it comes for the price of biased estimation of the paramteric
coefficients θ . In other words, their estimation approach is biased even if the random node effects
are close or equal to zero. We refer to Schmid and Desmarais (2017) for a general discussion
on pseudolikelihood estimation in ERGMs, see also Strauss and Ikeda (1990) or Desmarais and
Cranmer (2012).

Model (2) combined with the probability model (3) can also be seen as special case of the
exponential-family random network model as proposed in Fellows and Handcock (2012). They
propose simulation-based estimation, which is restricted to small network sizes. The restriction
to small networks is also pointed out in Thiemichen et al. (2016). Hence, even though model (2)
can be considered as ERGM with some prior structure on coefficients u given in (2), estimation
based on simulation based methods (see Snijders 2002) becomes infeasible for larger networks.
We therefore, propose a different estimation strategy, which is motivated in the next paragraph.
At this point, we also note that several approaches to capture unobserved heterogeneity were
introduced in network data analysis, for instance, Koskinen (2009) introduced binary latent class
indicators, Schweinberger and Handcock (2015) examined local dependence using a Bayesian
framework in random graph models and Henry et al. (2020) developed a modeling framework
to capture unobserved heterogeneity in the effects of nodal covariates.

The first goal of this paper is to provide an iterative estimation strategy, combining both maxi-
mum likelihood and pseudolikelihood estimation techniques. To be more specific, we take model
(4) as starting point and make use of pseudolikelihood estimation for the random coefficients
u while for estimation of θ we use the steplength MCMC-MLE approach proposed in Hummel
et al. (2012) and the corresponding stepping algorithm Hummel et al. (2012), implemented in
the ergm package in R (see Hunter et al. 2008). These two steps are used iteratively, leading to
feasible estimation. Our estimation strategy allows us to fit large scale networks, and we observe
that the inclusion of the nodal effects works towards numerical estimation stability, as demon-
strated through examples and simulations. Moreover, as the second goal of this paper, we propose
a simple model selection strategy to evaluate nodal heterogeneity. To be specific, we use Akaike’s
Information Criterion (see Akaike 1974) to select a model with or without nodal effects. The latter
is calculated numerically by employing a Laplace approximation.

This paper is organized as follows. In Section 2, we discuss the estimation for the underlying
model in detail and introduce our algorithm. Furthermore, in Section 3, we present a simulation-
based method for evaluating our model, which allows us to calculate the AIC value for the
mERGM and compare it with the AIC value of a corresponding ERGM. In Section 4, we present a
simulation-based study with the corresponding results, in Section 5, we then apply our approach
to three data examples. Finally, Section 6 closes with a discussion.

2. Model and estimation
We considermodel (2) where the nodal heterogeneity effects u1, . . . , un are assumed to be random
with σ 2

u as variance and In as n dimensional identity matrix. The aim is to fit parameter θ taking
nodal heterogeneity into account. Moreover, we need to estimate σ 2

u , which in fact quantifies the
amount of nodal heterogeneity.
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In principle, we need to maximize the marginal log-likelihood

l(θ , σ 2
u )= log

∫ exp
{
θTs(y)+ uTt(y)

}
κ
(
θ , u

) · 1
(2πσ 2

u )
n
2

· exp
(
−1
2
uTu
σ 2
u

) n∏
i=1

dui

= θTs(y)− n
2
log (2π)− n

2
log (σ 2

u )+ log
∫

exp
(
g(u, θ , σ 2

u )
) n∏

i=1
dui (5)

where

g(u, θ , σ 2
u )= uTt(y)− log (κ(θ , u))− 1

2
· u

Tu
σ 2
u

(6)

We may approximate the integral in (5) using a Laplace approximation. Let therefore û be
the maximizer of g(u, θ , σ 2

u ), which apparently depends on both, θ and σ 2
u . This leads to the

approximate log-likelihood

l(θ , σ 2
u )≈ θTs(y)+ ûTt(y)− log (κ(θ , û))− 1

2
· û

Tû
σ 2
u

− n
2
log (2π)− n

2
log (σ 2

u )

− 1
2
log

∣∣∣∣∂
2g(û, θ , σ 2

u )
∂u ∂u

∣∣∣∣ (7)

Note that the likelihood can be considered as profile likelihood, where u is “estimated” through
maximizing (6). If we now treat û as given, then maximization of l(θ , σ 2

u ) with respect to θ

corresponds to maximizing the likelihood of the probability model

P
(
Y = y|θ , û) = exp

{
θTs(y)+ ûTt(y)

}
κ
(
θ , û

)
where ûTt(y) is fixed as given offset. The terminology offset means here that the quantity ûTt(y) is
treated as fixed. In other words, setting the random coefficients to û simplifies the estimation of θ
to Maximum Likelihood estimation in an ERGM with offset ûTt(y). This is numerically available
with standard software packages (e.g. Hunter et al. 2008) and the stepping algorithm proposed in
Hummel et al. (2012). Let us therefore first look in more detail how to obtain û if we keep θ as
fixed. Note that û results by solving

∂ g(u, θ , σ 2
u )

∂u
= 0

Apparently, this is numerically problematic, since κ(θ , u) is numerically intractable.
Differentiation yields

∂ log κ(θ , u)
∂u

=E(t(y)|u)
which in principle can be approximated using simulation based approaches (see Snijders 2002).
However, this is a numerically challenging task, since u is high dimensional, namely n dimen-
sional. We therefore propose to approximate the estimation step of u by pseudolikelihood
estimation. To do so, we look at the model for a single edge given the rest of the network. That is
to say we take model (4), but now we fix oij:= θT �ij s(y) as offset and ignore the dependence on
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y. This leads to a pseudolikelihood approach as discussed for instance in van Duijn et al. (2009).
The pseudo-log-likelihood thereby equals

lpseudo(u)=
∑
i

∑
j>i

yij{oij + ui + uj} − log{1+ exp (oij + ui + uj)} (8)

where a priori coefficient u follows a normal distribution as given in (3). The pseudo-log-
likelihood (8) together with (3) leads to (pseudo) generalized linear mixed effects model, so that
we can borrow estimation strategies from this field. In particular, we make use of Breslow and
Clayton (1993) who propose to approximate the resulting marginal likelihood using a Laplace
approximation, similar to (7) above. This allows to estimate the a priori variance σ 2

u and predict
the random coefficients u. Note, if oij is independent of y−ij, then the Laplace approach (7) is equal
to the estimation proposed in Breslow and Clayton (1993). Apparently, this is the case for the so-
called p2 model (see Duijn et al. 2004). To be specific, the Laplace approximated pseudolikelihood
with oij = (o1 2, o1 3, . . . , on−1 n) as offset and constant terms omitted results through

lpseudo(σ 2
u )≈ −1

2
· ǔ

Tǔ
σ 2
u

− n
2
log (σ 2

u ) (9)

where ǔ is the maximizer of

ǧ(u, σ 2
u ;o)= uTt(y)−

∑
i

∑
j

log{1+ exp (oij + ui + uj)} − 1
2

· u
Tu
σ 2
u

We call ǔ an estimate subsequently, even though of course it is a predictor given that u is
considered as random. This is implemented in multiple R packages, see e.g. Faraway (2016). To
be specific, for estimation of u we use the mgcv package (see Wood 2011). Denoting with ǔ=
(ǔ1, . . . , ǔn) the resulting estimates, we set ǔTt(y) in (2) as offset and estimate parameter θ using
simulation based techniques. For this step we use the ergm package (see Hunter et al. 2008). Both
estimation steps are used iteratively until convergence. That is we take the current estimate θ̂ (t) and
update ǔ with pseudolikelihood leading to ǔ(t+1). This in turn allows to update θ̂ after replacing
the offset by ǔT(t+1)t(y). Our algorithmic steps work in detail as follows:

Algorithm 1: Fit ERGM with nodal random effect components
Step 0: Obtain a prediction for u and estimate σ 2

u :
a. Fit the model logit P(yij = 1|y−ij, θ , u)= θ(0) + ui + uj to the data, where

1≤ i< j≤ n
b. extract the vector of the predicted random effects ǔ(0) as offset and set t = 0

Step 1: Estimate θ with ERGM and take ǔT(t)t(y) as an offset parameter:
a. Fit the model P(Y = y|θ)∝ exp{θT(t+1)s(y)+ ǔT(t)t(y)︸ ︷︷ ︸

offset

} using maximum likelihood

and simulation based methods
b. extract oij = θT(t+1)�ijs(y) as new offset for 1≤ i< j≤ n

Step 2: Update ǔ(t+1) and σ̂ 2
u(t+1) now taking oij as offset parameter:

a. Fit the model logit P(yij = 1|y−ij, θ , u)= oij + ui + uj with priori structure (3)
to the data

b. extract the vector of the predicted random effects ǔ(t+1) as new offset
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Set t = t + 1 and iterate between step 1 and 2 until θ (t) converges. Convergence is achieved if
|θ (t) − θ (t+1)| ≤ ε = 0.05.

We need to mention that pseudolikelihood estimation in network data analysis is biased, in
particular, if dyadic statistics are involved. Our setting here, however, is slightly different since
we use pseudolikelihood estimation only for the degree statistics t(y). Moreover, we consider the
coefficients u not to be fixed but random so that in general, we are more interested in the vari-
ance of coefficients ui and less interested in their true value. We refer to Schmid and Desmarais
(2017) or Cranmer and Desmarais (2011) for further discussion on pseudolikelihood estimation
in network data analysis.

3. Inference throughmodel selection and variance estimation
The central question in network data analysis is to explain the dominating factors in the network,
i.e. the sufficient statistics describing the network structure. If we allow for node-specific hetero-
geneity, we are additionally faced with the problem of model selection. In other words, we need to
describe whether the network data at hand shows evidence with respect to heterogeneous nodes or
whether the homogeneity assumption of ERGM seems valid. We tackle this question by approx-
imate calculation of the Akaike Information Criterion (AIC). To do so, we assume for simplicity
that the determinant component in (7) depends only weakly on θ so that we can ignore it subse-
quently. This is in line with the arguments proposed in Breslow and Clayton (1993) who suggest
the use of Laplace approximation in generalized linear mixed models. Note that

∂2 g(u, θ , σ 2
u )

∂u ∂uT
= −Var(t(Y) |θ , u)− 1

σ̂ 2
u
In (10)

Hence, ignoring the determinant component in (7) is justified if we assume that the variance
matrix of the degree vector t(Y) depends only weakly on θ . We refer to Breslow and Clayton
(1993) for a deeper discussion and motivation which justifies to pursue this simplification.
Generally, the variance is difficult to calculate or even infeasible for large networks, so that we
make use of simulations to estimate (10). To do so, we simulate networks in order to obtain a
simulation based approximation for κ(θ̂ , ǔ). We make further use of the simulated networks to
obtain a simulation based approximation of Var(t(y)|θ̂ , ǔ). To be specific, let y	(1), . . . , y	(N) be a
set of (independent) network simulations derived from model (2) with θ set to θ̂ and u set to ǔ.
We estimate Var(t(y) | θ̂ , ǔ) through

1
N

N∑
j=1

[
t(y	(j))− t̄(y	)

] [
t(y	(j))− t̄(y	)

]T

where t̄(y	) is the arithmetic mean of the simulated values.
With these prerequisites, we can now approximate all quantities in (7). This also holds for the

normalization constant, which is estimated through

κ̂(θ̂ , ǔ)= 1
N

N∑
j=1

exp
(
θ̂
T
s(y	(j)) + ǔTt(y	(j))

)

Model comparison can now be carried out with the AIC. Setting p as the number of parameters in
θ the AIC results to

AICmERGM = −2 l(θ̂ , σ̂ 2
u ) + 2 · (p+ 1) (11)

Note that (11) resembles the marginal AIC, that is after integrating out u. We refer to Greven
and Kneib (2010) or Vaida and Blanchard (2005) for a deeper discussion of applying AIC
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in random effects models. In our case, formula (11) serves as approximation, relying on the
pseudolikelihood estimation for u.

We compare the AIC in the mERGM to the resulting AIC in the case of node homogeneity,
that is by setting σ 2

u = 0. This is carried out in a similar way, but we set u= 0.
In other words, we use the likelihood in (1) by calculating κ(θ) simulation based fromN draws

y	(1), . . . , y	(N) from model (1) with θ set to the ML estimate in model (1). We call this

AICERGM = −2 lERGM(θ̂) + 2p (12)

where lERGM is the log-likelihood in the ERGM resulting when u≡ 0.
Though the focus of the paper lies on model comparison, we shortly discuss how to calculate

the variance of the estimate if the algorithm above is used. In the ERGM, we obtain the Fisher
information matrix

I(θ)=Var(s(Y)|θ) (13)

This can be estimated simulation based, that is we simulate from model (1) and calculate
Var(s(Y)) based on the simulated values. For the mERGM, we need to take into account that
coefficients u are considered to be random so that in principle, we need to calculate the (inverse)
Fisher information of the log-likelihood. Assuming that the determinant in (7) does depend only
weekly on θ and ignoring for simplicity the dependence of ǔ on θ we obtain again (13). This is,
of course, an approximation since we ignored the dependence of ǔ and θ as well as estimation
variability of σ 2

u . In other words, exact variance calculation in the mERGM is complicated and
we here provide a rough approximation only. However, inference can be carried out by model
selection via the AIC, which is what we pursue in simulations and data examples below. Still, we
can make use of the simulations from above to obtain an estimate of the Fisher information and
hence a variance estimate for the estimates.

4. Simulation study
In our simulation study, we want to explore the estimation results of the model parameters and
the model selection step based on two network sizes. Small networks with 50 nodes, and large
networks with 500 nodes. For each network size, we use network settings with different levels of
nodal heterogeneity σ 2

u . For each network setting and network size, we simulate 50 networks using
the simulation routines from the ergm package (Hunter et al., 2008). Each network setting has the
same structural effects θ , where θ = (θedges, θgwesp, θ2−stars)= (−1, 0.2, −0.3), but the nodal het-
erogeneity takes six different levels σ 2

u = (0, 0.1, 0.2, 0.5, 0.8, 1), where u is randomly drawn for
each simulated network and setting from a normal distribution following (3). For each network
size of these six heterogeneity levels, we fit an ERGM and amERGM to the 50 simulated networks.
Note that the tuning parameters for the θgwesp term are the same for both ERGMs and mERGMs
with (decay = 0.8, fixed = TRUE). Additionally, we provide the results of two more simu-
lation studies as supplementary material, where we perturb the parameter vector θ with different
configurations for both small and large networks. Furthermore, we also provide supplementary
material illustrations of how well σ 2

u is recovered in the simulation study.
Our first focus is on the performance of the estimates. In Tables 1 and 2, we summarize the

results of our simulation study for small (50 nodes) and large (500 nodes) networks respectively,
distinguishing all six different levels of nodal heterogeneity. Let us first look at the case σ 2

u = 0,
the fitted parametric coefficients of the ERGMs in both cases, small and large networks, show
a stable estimation performance; however, this stability is more evident in large networks. The
mERGMs, on the other hand, show some estimation variability and are outperformed by ERGMs
concerning parameter estimation. The trend changes increasingly in favour of mERGMs, with
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Table 1. Resulting means, standard deviations, the medians, 0.1 and 0.9 quantiles of the estimated coeffi-
cients of network size 50 nodes and for all six σ 2u levels

Network size: 50 Nodes

σ 2u Model type Parameter Real value Mean SD Q 0.1 Median Q 0.9

0 ERGM
θedges –1 –0.71 0.79 –1.65 –0.74 0.37

θgwesp 0.2 0.06 0.78 –0.06 0.17 0.38

θ2−stars –0.3 –0.35 0.13 –0.50 –0.34 –0.20
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 mERGM
θedges –1 0.52 1.18 –0.89 0.39 0.31

θgwesp 0.2 0.06 0.81 –0.06 0.17 0.38

θ2−stars –0.3 –0.58 0.19 –0.86 –0.57 –0.35
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.1 ERGM
θedges –1 –1.11 0.77 –2.13 –1.12 –0.15

θgwesp 0.2 0.16 0.16 0.03 0.19 0.34

θ2−stars –0.3 –0.25 0.12 –0.39 –0.24 –0.10

0.1 mERGM
θedges –1 0.06 0.89 –0.96 –0.03 0.98

θgwesp 0.2 0.16 0.16 –0.02 0.19 0.34

θ2−stars –0.3 –0.45 0.14 –0.60 –0.44 –0.28
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.2 ERGM
θedges –1 –1.63 0.52 –2.21 –1.72 –0.88

θgwesp 0.2 0.17 0.21 –0.06 0.17 0.39

θ2−stars –0.3 –0.17 0.08 –0.31 –0.16 –0.06

0.2 mERGM
θedges –1 –0.73 0.61 –1.44 –0.85 0.21

θgwesp 0.2 0.18 0.21 –0.07 0.19 0.40

θ2−stars –0.3 –0.33 0.11 –0.49 –0.31 –0.20
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.5 ERGM
θedges –1 –2.05 0.43 –2.51 –2.10 –1.47

θgwesp 0.2 0.21 0.12 0.03 0.21 0.37

θ2−stars –0.3 –0.07 0.06 –0.13 –0.06 –0.01

0.5 mERGM
θedges –1 –0.71 0.62 –1.35 –0.77 0.03

θgwesp 0.2 0.21 0.12 0.03 0.22 0.36

θ2−stars –0.3 –0.26 0.08 –0.38 –0.26 –0.17
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.8 ERGM
θedges –1 –2.90 0.27 –3.17 –2.93 –2.58

θgwesp 0.2 0.21 0.14 –0.01 0.21 0.34

θ2−stars –0.3 0.02 0.04 –0.04 0.03 0.07

0.8 mERGM
θedges –1 –1.02 0.22 –1.33 –1.04 –0.74

θgwesp 0.2 0.20 0.16 –0.03 0.23 0.37

θ2−stars –0.3 –0.39 0.14 –0.49 –0.33 –0.29
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 ERGM
θedges –1 1123.83 9739.40 –186.45 –12.76 4.27

θgwesp 0.2 –1112.36 4651.95 –737.19 –15.23 0.36

θ2−stars –0.3 785.38 10336.06 –2118.73 –3.77 104.20

1 mERGM
θedges –1 –1.23 0.40 –1.68 –1.23 –0.74

θgwesp 0.2 0.26 0.18 0.01 0.30 0.49

θ2−stars –0.3 -00.37 0.10 –0.49 –0.35 –0.26

increasing heterogeneity. At a heterogeneity of σ 2
u = 0.8, the mERGMs excel with better results in

small and large networks than the ERGMs, which show substantial variability in the results. At
a heterogeneity of σ 2

u = 1, the results indicate severe stability problems of the ERGM estimates,
especially in the small networks, but the more the size of the network increases, the less unstable
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Table 2. Resulting means, standard deviations, the medians, 0.1 and 0.9 quantiles of the estimated coeffi-
cients of network size 500 nodes and for all six σ 2u levels

Network size: 500 nodes

σ 2u Model type Parameter Real value Mean SD Q 0.1 Median Q 0.9

0 ERGM
θedges –1 –0.96 0.29 –1.31 –0.98 –0.55

θgwesp 0.2 0.19 0.05 0.12 0.20 0.27

θ2−stars –0.3 –0.30 0.03 –0.34 –0.30 –0.27
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 mERGM
θedges –1 0.18 0.51 –0.53 0.27 0.81

θgwesp 0.2 0.19 0.05 0.13 0.20 0.27

θ2−stars –0.3 –0.16 0.04 –0.21 –0.16 –0.11

0.1 ERGM
θedges –1 –1.99 0.24 –2.34 –1.99 –1.73

θgwesp 0.2 0.19 0.05 0.13 0.20 0.25

θ2−stars –0.3 –0.22 0.02 –0.23 –0.21 –0.18
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.1 mERGM
θedges –1 –0.13 0.07 –0.22 –0.14 –0.04

θgwesp 0.2 0.19 0.05 0.14 0.20 0.25

θ2−stars –0.3 –0.16 0.09 –0.28 –0.17 –0.03

0.2 ERGM
θedges –1 –2.59 0.29 –2.93 –2.63 –2.16

θgwesp 0.2 0.19 0.06 0.12 0.20 0.26

θ2−stars –0.3 –0.16 0.02 –0.19 –0.15 –0.13
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.2 mERGM
θedges –1 –0.57 0.26 –0.92 –0.54 –0.22

θgwesp 0.2 0.19 0.07 0.12 0.19 0.27

θ2−stars –0.3 –0.45 0.04 –0.49 –0.45 –0.42

0.5 ERGM
θedges –1 –3.65 0.16 –3.82 –3.68 –3.45

θgwesp 0.2 0.19 0.04 0.14 0.20 0.25

θ2−stars –0.3 –0.06 0.01 –0.08 –0.06 –0.05
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.5 mERGM
θedges –1 –0.48 0.28 –0.79 –0.48 –0.19

θgwesp 0.2 0.19 0.05 0.14 0.18 0.25

θ2−stars –0.3 –0.34 0.02 –0.37 –0.35 –0.32

0.8 ERGM
θedges –1 –4.29 0.11 –4.41 –4.29 –4.15

θgwesp 0.2 0.19 0.04 0.14 0.20 0.24

θ2−stars –0.3 –0.01 0.01 –0.02 –0.01 –0.001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.8 mERGM
θedges –1 –1.45 0.24 –1.77 –1.45 –1.16

θgwesp 0.2 0.20 0.04 0.15 0.20 0.24

θ2−stars –0.3 –0.26 0.02 –0.28 –0.26 –0.23

1 ERGM
θedges –1 –4.58 0.08 –4.67 –4.57 –4.48

θgwesp 0.2 0.19 0.04 0.15 0.19 0.23

θ2−stars –0.3 0.01 0.01 0.01 0.01 0.02
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 mERGM
θedges –1 –1.22 0.21 –1.84 –1.41 –1.29

θgwesp 0.2 0.19 0.05 0.14 0.19 0.24

θ2−stars –0.3 –0.26 0.02 –0.26 –0.25 –0.23

the estimates of the ERGMs become. This fact is not surprising since a heterogeneity of σ 2
u = 1 in

a network with 50 nodes is a different claim than in a network with 500 nodes. Nevertheless, the
mERGMs in both cases, small and large networks, show an appropriate and stable performance.
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Figure 1. Resulting log AIC ratios of mERGM and ERGM for each network setting and size. Orange boxplots indicate small
networks (50 nodes), blue boxplots large networks (500 nodes).

Hence, including nodal heterogeneity in the model increases the stability of the mERGM fit. This
is a welcome effect of the model extension from ERGM to mERGM.

As a second point, we consider the performance of the model selection based on the AIC. To
do so, we calculate for each of the 50 simulations in each setting the log ratio

log
(AICmERGMk

AICERGMk

)
k= 1, . . . , 50

If the log ratio is positive, it speaks in favour of a model without nodal heterogeneity. In con-
trast, if the log ratio is negative, there is an indication of model heterogeneity. Figure 1 visualizes
the log AIC ratio for different strengths of nodal heterogeneity and both network sizes. In small
(50 nodes) and large (500 nodes) networks, the ERGMwas correctly preferred in the case of miss-
ing nodal heterogeneity, that is σ 2

u = 0. With increasing nodal heterogeneity level in the network,
the mERGM becomes more appropriate, and from a heterogeneity level of σ 2

u = 0.5 and σ 2
u = 0.8

for small networks and large networks, respectively, the mERGM gets clearly selected based on the
AIC. We, therefore, can conclude that the AIC allows for model selection in case of node-specific
heterogeneity.

Additionally, we compare our approach with the approach proposed by Box-Steffensmeier
et al. (2018) (FERGM) to illustrate the point of biased estimation of the parametric coefficients
θ we mentioned in Section (1). We apply the same simulation approach as above, distinguishing
the size of the networks and compare the results of the mERGM with them of FERGM fitted to
the 50 simulated networks with setting σ 2

u = 1. The results of our comparison are given in Table 3.
As we can conclude from Table 3, regardless of the network size, the performance of FERGM is
worse. Nevertheless, we have to note that Box-Steffensmeier et al. (2018) also points out that their
approach might only be suitable for certain research questions or certain network types.
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Table 3. Resulting estimated means, standard deviations, the medians, 0.1 and 0.9 quantiles of the parameters for
network setting with nodal heterogeneity σ 2u = 1

Network size Model type Parameter Real value Mean SD Q 0.1 Median Q 0.9

50 Nodes mERGM
θedges –1 –1.23 0.40 –1.68 –1.23 –0.74

θgwesp 0.2 0.26 0.18 0.01 0.30 0.49

θ2−stars –0.3 –0.37 0.10 –0.49 –0.35 –0.26
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50 Nodes FERGM
θedges –1 37.99 6.51 35.29 38.89 42.06

θgwesp 0.2 0.12 0.19 –0.11 0.10 0.38

θ2−stars –0.3 -7.58 1.23 –8.43 –7.65 –7.08

500 Nodes mERGM
θedges –1 –1.22 0.21 –1.84 –1.41 –1.29

θgwesp 0.2 0.19 0.05 0.14 0.19 0.24

θ2−stars –0.3 –0.26 0.02 –0.26 –0.25 –0.23
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

500 Nodes FERGM
θedges -[1 -[5.18 0.04 -[5.24 -[5.18 -[5.12

θgwesp 0.2 0.18 0.04 0.14 0.19 0.23

θ2−stars -[0.3 0.06 0.01 0.05 0.06 0.06

Table 4. Models with sufficient network statistics for the Facebook network data

Model type Model θedges θgwesp θ2−stars θgwnsp Nodal effects

ERGM
1 3 3 3

2 3 3 3

mERGM
3 3 3 3 3

4 3 3 3 3

5. Examples
5.1 Facebook network
As a first data example, we look at Facebook (undirected) network data, which is publicly accessi-
ble (McAuley and Leskovec, 2012). The entire network comprises 4039 nodes.We analyze a subset
of 250 nodes to demonstrate the performance of our routine, e.g. we take the first 251 nodes of the
network and remove the “center” node (the “ego”). Figure 2 gives a visual impression of the net-
work. Just by looking at the network we can easily conclude that an ERGM which assumes nodal
homogeneity is more than questionable. The mERGM, therefore, appears as a possible alternative.
The aim of our analysis is to evaluate and compare the two models: the mERGM and the standard
ERGM, with the intention to quantify the evidence for the presumed favour of the mERGM.

We fitted four models to the data, twomERGMs and two ERGMs. Table 4 describes the models
by listing the sufficient network statistics. As network statistics, we included the number of edges,
the number of two-stars and two weighted statistics, i.e. geometrically weighted edgewise shared
partners (gwesp) and geometrically weighted nonedgewise shared partners (gwnsp). For the exact
definitions of the weighted statistics, we refer to Snijders et al. (2006). The number of iterations
for the mERGMs was set at 50 to ensure convergence.

Table 5 shows the resulting estimates for the models. Note that the standard deviations given
for the mERGM estimates result from the ERGM fit taking the random effects as fixed. As noted
above, these estimates are not reliable as they ignore the uncertainty of the estimated random
effects. We, therefore, give these values for completeness only but do not interpret them. We see
that the gwesp coefficient is always positive, indicating that the probability for an edge between
two partners increases with the number of shared partners for the considered edge. The effect
is however generally smaller in the mERGM, that is, if node-specific heterogeneity is taken into
account. To make the models comparable, we calculated the AIC values for both the ERGMs and
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Table 5. Model fitting results for the Facebook network data. Standard errors listed in
the mERGM are not accurate since they ignore the variability resulting through node
heterogeneity

Model type Model Parameter Estimate SE AIC

ERGM
θedges –7.178 0.091

1 θgwesp 1.875 0.046 6049.086

θ2−stars 0.052 0.094
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ERGM
θedges –5.973 1.698

2 θgwesp 2.076 0.881 70977.08

θgwnsp –0.034 1.211

mERGM
θedges –6.021 0.468

3 θgwesp 1.186 0.192 4260.723

θ2−stars –0.008 0.001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mERGM
θedges –3.943 0.698

4 θgwesp 0.486 0.305 2867.874

θgwnsp –0.053 0.008

Figure 2. Facebook Network Data. Large nodes indicate nodes with high degrees.

the mERGMs according to the proposed approach as described in Section 3. For the calculation
of the AIC values, we used 1000 simulations for both ERGMs and mERGMs, respectively.

Looking at the AIC values of the four models in Table 5, we see that both mERGMs outper-
form the ERGMs. This gives clear evidence of existing node-specific heterogeneity, and hence the
proposed models with nodal random effects are preferable. This is also apparent in the goodness-
of-fit plots. For instance, in Figure 3, we can see that model 3 fitted with mERGM gives a better
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Figure 3. Goodness-of-fit diagnostics for model 1 fitted with ERGM (top row) and for model 3 fitted with mERGM (bottom
row) for the Facebook network data.

fit compared to model 1 fitted with ERGM, which is in line with the corresponding AIC val-
ues. Furthermore, the AIC value of model 2 in Table 5 fitted with ERGM is exceptionally huge
compared tomodel 4 fitted withmERGM, andwe observe this issue well reflected in the goodness-
of-fit plots in Figure 4, where model 2 struggles with huge convergence issues. Overall, model 4
appears to be the most suitable among the four fitted models to describe the data.

5.2 Zachary’s Karate club network
As a second data example, we look at a well known dataset, the Zachary’s karate club (Zachary,
1977). This undirected network data represents the friendship among 34 members of a university
karate club. Figure 5 shows the network graph of Zachary’s Karate Club. One can easily see that in
this network, there are few nodes with high degree, while the remaining nodes have only few edges,
so again, we assume that the mERGM should be a suitable approach to capture the unobserved
nodal heterogeneity in the network. We fitted three different ERGMs and three mERGMs to this
data. To make the models comparable, we included the same network statistics. Table 6 gives an
overview of the different models. In Table 7, we summarize the results of our models including
the AIC values. The iteration steps for the mERGMs was set to 50. For the calculation of the AIC
values, we used 1000 simulations for both ERGMs and mERGMs.

We can see that model 1 fitted with ERGM struggles with convergence issues. This is mirrored
in invalid variance estimates, resulting from a badly conditioned Fisher matrix. We, therefore,
indicate this as “	′′ in Table 7, which also means, of course, that the estimate itself is not reliable
at all. We refer to Hunter et al. (2008) for further explanations. On the other hand, model 4 fitted
with mERGMwith the same model parameters as model 1 does not show any convergence issues,
which also means that the mERGM can deal with estimation degeneracy issues. The inclusion of
node-specific heterogeneity works towards numerical stabilization. To explore this in more depth,
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Table 6. Models with sufficient network statistics for the Zachary network data

Model type Model θedges θgwesp θ2−stars θgwnsp θgwdegree Nodal effects

ERGM
1 3 3 3

2 3 3 3

3 3 3 3

mERGM
4 3 3 3 3

5 3 3 3 3

6 3 3 3 3
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Figure 4. Goodness-of-fit diagnostics for model 2 fitted with ERGM (top row) and for model 4 fitted with mERGM (bottom
row) for the Facebook network data.

we look in Figure 6 at the goodness-of-fit plots for model 1 fitted with ERGM. Figure 6 shows
the same diagnostics results for model 4 fitted with mERGM. Remember that these two models
include the same sufficient network statistics. Boxplots of the distributions of degree, edge-wise
shared partners and minimum geodesic distance for the resulting simulated networks are shown
in the plots where the bold line indicates the values of the original karate club dataset. In the
diagnostics plots of model 1 in Figure 6, we can clearly see that ERGM fails to fit the model,
whereas the diagnostics plots of model 4 in Figure 6 gives a good evidence of an appropriate fit.

We extend the model exploration to the other models. Figure 7 shows the goodness-of-fit diag-
nostics plots of both model 2 fitted with ERGM andmodel 5 fitted with mERGM, respectively. For
model 2, we see some problems in Figure 7 concerning all the three diagnostics, the degree dis-
tribution, the edgewise-shared partners distribution and the minimum geodesic distance, which
indicate the poorness of the model. For model 4, in contrast, we can see in Figure 7 again a much
better performance of the fit.

Finally, Figure 8 shows the diagnostics plots of model 3 fitted with the ERGM, this model
is the best ERGM fitted to this data according to the AIC value and also the diagnostics plots
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Table 7. Model fitting results for the Zachary network data. Standard errors listed in
the mERGM are not accurate since they ignore the variability resulting through node
heterogeneity

Model type Model Parameter Estimate SE AIC

ERGM
θedges –4.893 	 	 	

1 θgwesp 0.642 	 	 	 	 	 	

θ2−stars 0.689 	 	 	

ERGM
θedges –3.635 0.241

2 θgwesp 0.596 0.117 496.351

θgwnsp 0.153 0.026

ERGM
θedges –3.183 0.513

3 θgwesp 0.716 0.181 442.883

θgwdegree –0.519 0.8990

mERGM
θedges –1.214 0.386

4 θgwesp 0.236 0.174 311.304

θ2−stars –0.159 0.042

mERGM
θedges –1.776 0.366

5 θgwesp –0.144 0.109 337.894

θgwnsp –0.089 0.043

mERGM
θedges –4.464 0.724

6 θgwesp 0.213 0.176 303.217

θgwdegree 4.427 1.341

Figure 5. Zachary’s Karate Club Network Data. Large nodes indicate nodes with high degrees.

are reasonable. On the other hand, model 6 fitted with mERGM, including the same sufficient
network statistics as model 3, is the best mERGM fitted to this data according to the AIC value.
However, the goodness-of-fit of model 6 shown in Figure 8 visually looks better than of model 3,
which also justifies with a smaller AIC value.

5.3 High school friendship network
As a third data example, we investigate a real-world dataset, a high school friendship network
in Marseilles, France, provided by Mastrandrea et al. (2015). This network data represents the
friendship among 134 high school students of specific classes. These specific classes, unique to
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Figure 6. Goodness-of-fit diagnostics for model 1 fitted with ERGM (top row) and for model 4 fitted with mERGM (bottom
row) for the karate club data.
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Figure 7. Goodness-of-fit diagnostics for model 2 fitted with ERGM (top row) and for model 5 fitted with mERGM (bottom
row) for the karate club data.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/nws.2021.22
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 25 Jan 2022 at 17:17:20, subject to the Cambridge Core terms of use, available at



494 S. Kevork and G. Kauermann

Table 8. Number of students according to the types of the classes in the data

Classes MP MP*1 MP*2 PC PC* PSI* 2BIO1 2BIO2 2BIO3

No. of Students 21 3 7 21 10 15 10 19 28
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Figure 8. Goodness-of-fit diagnostics for model 3 fitted with ERGM (top row) and for model 6 fitted with mERGM (bottom
row) for the karate club data.

the French educational system, gather students for studies that last two years after completing
the usual high school studies. These classes are in a different part of the building, so the students
are somehow isolated from the “regular” high school students. As a result, they form an almost
closed population with little contact with the outside world, at least during schooldays. At the
end of these 2 years, these students take competitive exams to gain admission to various higher
educational institutions. The classes have different specializations: “MP” classes focus more on
mathematics and physics, “PC” classes on physics and chemistry, “PSI” classes on engineering,
and “BIO” classes on biology. Furthermore, there are three classes of type “MP”, two of type “PC”,
one of type “PSI” and three of type “BIO”. Due to the class sizes in the dataset, as demonstrated in
Table 8, we decided to merge the types of classes to get an appropriate fit for our models, e.g., we
do not distinguish between the types of the classes.

Additionally, we also have the gender information of the students in the data, with 79 female
and 55 male students. Figure 9 shows the friendship network graph, the colour of the nodes
represents the different classes, where the shape of the nodes the gender of the students. Assuming
that there might be unobserved nodal heterogeneity, which can not be captured exclusively by
the nodal covariates, the mERGM could be a reasonable approach.

We fit an ERGM and a mERGM to this data, including dyad-dependent network statistics such
as the GWESP (geometrically weighted edgewise shared partner distribution) with a fixed decay
parameter equal to 0.25 and dyad-independent terms such as the nodefactor and nodematch
parameters. The nodematch is the homophily parameter in ERGM, where we also allow for each
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Table 9. Model estimates for the high school friendship network. Standard errors listed in the mERGM are not
accurate since they ignore the variability resulting through node heterogeneity

Model type Parameter Estimate SE Model type Parameter Estimate SE

Edges –7.606 0.403 Edges –9.021 0.415
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GWESP (0.25) 2.026 0.165 GWESP (0.25) 0.538 0.215
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Male 0.157 0.052 Male –0.494 0.068
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gender match 0.226 0.089 Gender match 0.813 0.099
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MP 0.627 0.272 MP 2.355 0.238
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ERGM PC 0.309 0.272 mERGM PC 1.253 0.238
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PSI 1.054 0.276 PSI 3.042 0.221
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BIO class match 2.562 0.402 BIO class match 4.403 0.295
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MP class match 1.547 0.337 MP class match 2.814 0.349
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PC class match 2.279 0.393 PC class match 3.572 0.379
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PSI class match 1.504 0.379 PSI class match 2.047 0.355

AIC 3880.681 AIC 1097.836

Gender F M Class ● ● ● ●BIO MP PC PSI

Figure 9. High School Friendship Network Data. The Colour of the nodes represents the different classes. The shape of the
nodes describes the gender of the students.

class to have a unique propensity for within-class ties, we refer to Morris et al. (2008) for instance,
for more details regarding the ERGM terms and their specifications. The iteration steps for the
mERGMs was set to 50. For the calculation of the AIC values, we used 1000 simulations for both
ERGMs and mERGMs. In Table 9, we summarize the results of the fitted models. Comparing the
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Figure 10. Goodness-of-fit diagnostics for the model fitted with ERGM (top row) and for the model fitted with mERGM
(bottom row) for the high school friendship network data.

AIC values of the two models, the model fitted with mERGM is preferred, which is not very sur-
prising since the mERGM additionally takes the “unobserved” nodal-heterogeneity into account,
which is not captured by dyad-dependent or independent terms, aka network statistics. For the
sake of interpretation, we look, for instance, at the log-odds of a hypothetical tie between twomale
students attending the MP class that does not close a triangle. In ERGM, the log-odds of such a tie
would be −4.264; in mERGM, the interpretation is slightly different since it should be only in the
conditional sense. This means, given two male students that attend the MP class, the conditional
log-odds of such a tie is −1.671. In Figure 10, we show the diagnostic plots of the two models, we
can clearly see that the model fitted with the mERGM performs much better, which is also clear
evidence to the corresponding AIC values.

6. Discussion
Inmost cases, nodal heterogeneity in the network is explained by including known or well-studied
nodal covariates, see e.g. Robins et al. (2001). However, the node-specific covariates cannot fully or
sufficiently account for unobserved heterogeneity in the network. Our extensions towards mixed
ERGMs can therefore be a meaningful approach to model network data by just adding nodal
random effects to the model to capture the unobserved nodal heterogeneity.

Our proposed model (4) can in principle also be extended to directed networks, where u(s)i
and u(r)j would be treated as random sender and random receiver node-specific coefficients,
respectively. We consider it beyond the scope of the current paper.

Though the calculation of the AIC value is computationally intensive, our proposed method
of estimating and calculating the AIC values allows us to compare the mERGM with the conven-
tional ERGM. Furthermore, as we can see in our simulation study, the mERGM can always be a
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reasonable approach for modelling networks even if we observe small nodal heterogeneity in the
network. Overall, the mERGM works towards stabilizing the fitting routine without adding too
much numerical effort.

In this study, neither in the simulation study nor in the examples, we investigate assortative
mixing parameters. Therefore, a more thorough investigation in this regard is worth pursuing in
future work.
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A B S T R A C T

We examine the inclusion of specific nodal random effects for first- and second-mode nodes towards an
ERGM for bipartite networks. The inclusion of such node-specific random effects in the ERGM accounts for
unobserved heterogeneity in the bipartite network and ensures stable estimation results, especially for large-
scale bipartite networks. Moreover, The predicted nodal random effects deliver reasonable interpretation to
understand the network behavior. The estimation is carried out by an iterative estimation technique, iterating
between pseudolikelihood estimation for the nodal random effects and maximum likelihood estimation for the
network parameters.

1. Introduction

A bipartite network can be represented as a triple 𝑌 = (𝑅,𝐶,𝐸)
where 𝑅 and 𝐶, also often called first- and second-mode nodes, are
two disjoint sets of nodes, and 𝐸 ⊆ 𝑅 × 𝐶 is the set of edges of the
network. This representation can be demonstrated as a 𝑛×𝑚 rectangular
matrix 𝑌 (see Fig. 1), where 𝑛 and 𝑚 are the number of nodes in 𝑅
(mode-1 nodes) and 𝐶 (mode-2 nodes), respectively, and with elements
𝑌𝑖𝑗 = 1 if there is an edge between 𝑖 and 𝑗 and 𝑌𝑖𝑗 = 0 otherwise.
Bipartite networks are also known as affiliation or two-mode networks.
Some of the widely used examples of this type of network are citation
networks, collaboration networks, actor–film networks, or patent net-
works. Borgatti and Everett (1997) provide a general overview of the
basic notions of bipartite network analysis and discuss ways of applying
and interpreting traditional network analytic techniques to two-mode
network data. More recently, Latapy et al. (2008) propose extensions
of basic tools to analyze large one-mode networks (the classical case)
to the two-mode case. A general survey of different approaches for
bipartite network data is provided in Shi et al. (2017).

A central model for unipartite networks is the Exponential Random
Graph Models (ERGM) introduced by Frank and Strauss (1986). This
model class allows to explain local network structures, see Lusher et al.
(2013). The ERGM has been extended in the last years to bipartite, aka
two-mode network analysis. Agneessens and Roose (2008) and Wang
et al. (2013) proposed a set of new local network configurations (statis-
tics) for ERGM specifications that are relevant to bipartite networks and
allow to study or explain bipartite network structures, see also Wang
et al. (2013) or Wang et al. (2016). The key ingredient of the model
is that the probability of observing a bipartite network depends on a

∗ Corresponding author.
E-mail addresses: sevag.kevork@stat.uni-muenchen.de (S. Kevork), goeran.kauermann@stat.uni-muenchen.de (G. Kauermann).

set of (sufficient) network statistics, similar to unipartite networks, and
can be defined as

P
(
𝑌 = 𝑦|𝜽) = exp{𝜽𝑇 𝒔(𝑦)}

𝜅(𝜽)
, (1)

where 𝒔(𝑦) is the vector of network statistics and 𝜽 is the vector of
model coefficients. Vector 𝒔(.) includes any structural configurations of
the bipartite network, which can be extended to 𝒔(𝑦,𝑋) if covariates 𝑋
are included in the model as well, as discussed in Handcock and Gile
(2010). The denominator 𝜅(𝜽) in (1) represents the normalizing factor
to ensure that (1) is a legitimate probability mass function. Usually,
𝜅(𝜽) is numerically intractable unless for small-scale networks. Estima-
tion of 𝜽 in (1) needs, therefore, to be carried out simulation-based.
An early reference for the estimation of ERGMs in standard networks
is Snijders (2002). For a general discussion, we refer to Hunter et al.
(2012). A stable numerical routine has been proposed in Hummel et al.
(2012) using a so-called stepping algorithm.

A resulting consequence of the model (1) is that the structure of
a given network is completely explained by the endogenous network
statistics defined in 𝒔(𝑦), or, if covariates are included, by 𝒔(𝑦,𝑋). For
simplicity of notation, we omit exogenous covariates 𝑋 for the moment
and consider model (1). The model formulation implies that networks
with the same network statistics 𝑠(𝑦) have the same probability. As
a consequence, it follows that both first- and second-mode nodes are
considered to be exchangeable. In many applications, this assumption
is questionable. It seems, therefore, advisable to allow for node-specific
heterogeneity in the model. In unipartite network, this can be done
by the inclusion of node-specific random effects in the style of a so-
called 𝑝2 model (see Duijn et al., 2004 and Zijlstra et al., 2006); see
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Fig. 1. Schematic representation of a bipartite network. The circles represent the nodes in R, and the squares represent the nodes in C.

also Thiemichen et al. (2016) for Bayesian estimation. A numerically
faster estimation was proposed in Box-Steffensmeier et al. (2018) and
Kevork and Kauermann (2019) using a combination of pseudolikeli-
hood and maximum likelihood estimation. This paper aims to extend
the inclusion of node-specific random effects in ERGMs for bipartite
networks for first- and second-mode nodes. Moreover, through our
extension, the interpretation of the predicted nodal random effects
allows us to explain the bipartite network structure in more depth. We
demonstrate both interpretability as well as numerical feasibility of our
model extensions with several data examples. The proposed model can
also be seen as an extension to a classical Rasch model (Rasch, 1961) by
considering the bipartite matrix as an item response matrix for multiple
items asked to several units.

This paper is organized as follows. In Section 2 we introduce our
model and present our algorithm steps in detail. We also discuss
methods of model evaluation. In Section 3 we present a simulation
study and introduce the estimation results and a detailed analysis of
the random coefficients of our proposed model. In Section 4 we apply
our approach to three data examples of different sizes. Finally, Section 5
closes with a discussion.

2. Model estimation and evaluation

2.1. Approximate iterative estimation

We extend model (1) by including bipartite degree statistics. To be
specific, we assume

P
(
𝑌 = 𝑦|𝜽, 𝒖, 𝒗) = exp

{
𝜽𝑇 𝒔(𝑦) + 𝒖𝑇 𝒓(𝑦) + 𝒗𝑇 𝒄(𝑦)

}

𝜅
(
𝜽, 𝒖, 𝒗

) , (2)

where 𝜽 ∈ R𝑞 is a 𝑞 dimensional parameter vector, 𝒔(𝑦) = (𝑠0(𝑦),
𝑠1(𝑦),…) is a 𝑞 dimensional vector of network statistics with 𝑠0(𝑦) =∑

𝑖
∑

𝑗 𝑦𝑖𝑗 and 𝒓(𝑦) =
(∑𝑚

𝑗=1 𝑦1𝑗 ,
∑𝑚

𝑗=1 𝑦2𝑗 ,…
)

is the 𝑛 dimensional vector
of node degrees in 𝑅 and 𝒄(𝑦) =

(∑𝑛
𝑖=1 𝑦𝑖1,

∑𝑛
𝑖=1 𝑦𝑖2,…

)
is the 𝑚

dimensional vector of node degrees in 𝐶. The normalization now equals
𝜅(𝜽, 𝒖, 𝒗) = log

∑
𝒚∈ exp

(
𝜽𝑇 𝒔(𝑦) + 𝒖𝑇 𝒓(𝑦) + 𝒗𝑇 𝒄(𝑦)

)
, where  is the set

of all 𝑛 by 𝑚 bipartite networks. Note that 𝒖 is 𝑛 dimensional and 𝒗
is 𝑚 dimensional, so that model (2) is parameterized by a 𝑞 + 𝑛 + 𝑚
parameters. This makes estimation rather infeasible, so that some kind
regularization is required. We follow a Bayesian viewpoint here and
assume that both 𝒖 = (𝑢1, 𝑢2,…) and 𝒗 = (𝑣1, 𝑣2,…) are unobserved
vectors of random coefficients with prior structure

𝒖 ∼  (0, 𝜎2𝑢 𝑛) and 𝒗 ∼  (0, 𝜎2𝑣 𝑚), (3)

where 𝜎2𝑢 and 𝜎2𝑣 are the corresponding variances and 𝑛 and 𝑚 are
𝑛 and 𝑚 dimensional identity matrices, respectively. This leads to a
model with fixed and random coefficients. We, therefore, call (2) in
combination with (3) in the following a bipartite mixed ERGM or,
in short, biMERGM. The reasoning for the model becomes clear by
looking at the conditional distribution of a single edge 𝑌𝑖𝑗 given the rest
of the network 𝑌−𝑖𝑗 . This conditional distribution follows a Bernoulli
distribution with log-odds resulting from (2) through

log

{
P(𝑌𝑖𝑗 = 1|𝑦−𝑖𝑗 ,𝜽, 𝒖, 𝒗)
P(𝑌𝑖𝑗 = 0|𝑦−𝑖𝑗 ,𝜽, 𝒖, 𝒗)

}
= 𝜽𝑇 𝛥𝑖𝑗 𝒔(𝑦) + 𝑢𝑖 + 𝑣𝑗 . (4)

Here, 𝛥𝑖𝑗𝒔(𝑦) = 𝒔(𝑦𝑖𝑗 = 1, 𝑦−𝑖𝑗 ) − 𝒔(𝑦𝑖𝑗 = 0, 𝑦−𝑖𝑗 ) is the so called change
statistics. Assuming normality as given in (3), the resulting conditional
logit model (4) mimics a generalized mixed regression model (GLMM)
as broadly discussed in Breslow and Clayton (1993). We take the
conditional model (4) and the full model (2) as starting points for our
estimation algorithm and propose to fit the model with an iterative
combination of simulation-based routines and pseudolikelihood estima-
tion. To be specific, we make use of pseudolikelihood estimation for
predicting the random coefficients 𝒖 and 𝒗, while for estimation of 𝜽,
we use a MCMC-MLE based approach as suggested in Hummel et al.
(2012). These two steps are used iteratively, leading to numerically
feasible estimation even for large networks, as will be demonstrated.

To be specific, we aim to maximize the following marginal log-
likelihood

𝑙(𝜽, 𝜎2𝑢 , 𝜎
2
𝑣 ) ∝ log∫

exp
{
𝜽𝑇 𝒔(𝑦) + 𝒖𝑇 𝒓(𝑦) + 𝒗𝑇 𝒄(𝑦)

}

𝜅
(
𝜽, 𝒖, 𝒗

) 1
(𝜎2𝑢 )

𝑛
2

× 1
(𝜎2𝑣 )

𝑚
2
exp

(
−𝒖𝑇 𝒖
2𝜎2𝑢

− 𝒗𝑇 𝒗
2𝜎2𝑣

) 𝑛∏
𝑖=1

𝑚∏
𝑗=1

𝑑𝑢𝑖 𝑑𝑣𝑗

= 𝜽𝑇 𝒔(𝑦) + log∫ exp
(
𝑔(𝒖, 𝒗,𝜽, 𝜎2𝑢 , 𝜎

2
𝑣 )
) 𝑛∏

𝑖=1

𝑚∏
𝑗=1

𝑑𝑢𝑖 𝑑𝑣𝑗 (5)

where

𝑔(𝒖, 𝒗,𝜽, 𝜎2𝑢 , 𝜎
2
𝑣 ) ∝ 𝒖𝑇 𝒓(𝑦) + 𝒗𝑇 𝒄(𝑦) − log(𝜅(𝜽, 𝒖, 𝒗)) − 𝒖𝑇 𝒖

2𝜎2𝑢
− 𝒗𝑇 𝒗

2𝜎2𝑣
− 𝑛

2
log(𝜎2𝑢 ) −

𝑚
2
log(𝜎2𝑣 ). (6)

The integral in (5) can be approximated by Laplace approximation,
which requires to maximize (6) with respect to 𝒖 and 𝒗. Let �̂� and �̂�
denote the corresponding maximizers. If we now treat �̂� and �̂� as given,
then the maximization of the log-likelihood corresponds to maximizing
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the likelihood of the probability model

P
(
𝑌 = 𝑦|𝜽, �̂�, �̂�) = exp

{
𝜽𝑇 𝒔(𝑦) + �̂�𝑇 𝒓(𝑦) + �̂�𝑇 𝒄(𝑦)

}

𝜅
(
𝜽, �̂�, �̂�

) ,

where �̂�𝑇 𝒓(𝑦) and �̂�𝑇 𝒄(𝑦) are fixed as given offsets. This implies that
with given �̂� and �̂�, we can simplify the estimation of 𝜽 to (profile)
maximum likelihood estimation in an ERGM with two offset param-
eters. This is numerically feasible, as long as 𝑞, the dimension of 𝜽
is reasonably small, which we assume. The computational challenge
is that maximizing Eq. (6) with respect to 𝒖 and 𝒗 is a numerically
demanding if not infeasible due to the high dimension of 𝒖 and 𝒗. Bear
in mind that these are 𝑛 and 𝑚 dimensional so that simulation-based
techniques are proposed in Snijders (2002) are not suitable for large
networks. We, therefore, propose to replace the estimation of 𝒖 and
𝒗 with pseudolikelihood estimation. That is to say, we fix the quantity
𝑜𝑖𝑗 ∶= 𝜽𝑇 𝛥𝑖𝑗 𝒔(𝑦) in model (4) as offset and ignore the dependency on 𝒚.
This leads to a pseudolikelihood approach similar to Duijn et al. (2009)
but with random components. To be specific, for estimation of 𝒖 and 𝒗
we assume the likelihood

𝑙(𝜎2𝑢 , 𝜎
2
𝑣 ;𝒐) = ∬

𝑛∏
𝑖=1

𝑚∏
𝑗=1

P(𝑌𝑖𝑗 = 𝑦𝑖𝑗 |𝑢𝑖, 𝑣𝑗 , 𝑜𝑖𝑗 ) 1
(𝜎2𝑢 )

𝑛
2

× 1
(𝜎2𝑣 )

𝑚
2
exp

(
−𝒖𝑇 𝒖
2𝜎2𝑢

− 𝒗𝑇 𝒗
2𝜎2𝑣

)
𝑑𝑢𝑖 𝑑𝑣𝑗

= ∬ exp
(
�̃�(𝒖, 𝒗; 𝜎2𝑢 , 𝜎

2
𝑣 ,𝒐)

) 𝑛∏
𝑖=1

𝑚∏
𝑗=1

𝑑𝑢𝑖 𝑑𝑣𝑗 , (7)

where 𝒐 = (𝑜1 1, 𝑜1 2,… , 𝑜𝑛 𝑚) is treated as offset with 𝑜𝑖𝑗 = 𝜽𝑇 𝛥𝑖𝑗𝒔(𝑦) and

�̃�(𝒖, 𝒗; 𝜎2𝑢 , 𝜎
2
𝑣 ,𝒐) = 𝑦𝑖𝑗 (𝑢𝑖 + 𝑣𝑗 + 𝑜𝑖𝑗 ) − log(1 + exp(𝑢𝑖 + 𝑣𝑗 + 𝑜𝑖𝑗 ))

− 𝑛
2
log(𝜎2𝑢 )

𝑚
2
log(𝜎2𝑣 ) −

𝒖𝑇 𝒖
2𝜎2𝑢

− 𝒗𝑇 𝒗
2𝜎2𝑣

is the log-likelihood of a binomial model with normal prior on the
coefficients 𝒖 and 𝒗.

The pseudolikelihood approach transfers the estimation problem to
settings extensively discussed in the context of generalized linear mixed
models. To be specific, the integral on (7) can again be approximated
by Laplace approximation, as proposed in Breslow and Clayton (1993).
To do so, we now denote with �̂� and �̂� the maximizer of �̃�(𝒖, 𝒗, 𝜎2𝑢 , 𝜎2𝑣 ,𝒐)
which allows us to approximate the integral and in turn provides
estimates for 𝜎2𝑢 and 𝜎2𝑣 by maximizing the Laplace approximated
log-likelihood (7). This corresponds to a well established estimation
strategy for generalized linear mixed models.

We can combine the two simulation steps in an iterative manner
using implemented routines as for instance in R. In fact, we can use
the mgcv package (see Wood, 2011) for estimation of 𝒖 and 𝒗 and for
the estimation of 𝜽 we use the ergm package (see Hunter et al., 2008).
Our algorithmic steps work as follows:

Algorithm: Fit bipartite ERGM with nodal random effects

Step 0: Obtain a prediction for 𝒖 and 𝒗 and estimate 𝜎2𝑢 and 𝜎2𝑣 :

(i) Fit the model logit P(𝑦𝑖𝑗 = 1|𝑦−𝑖𝑗 ,𝜽, 𝒖, 𝒗) = 𝜃(0) + 𝑢𝑖 + 𝑣𝑗
to the data

(ii) extract the vector of the predicted random effects 𝒖(0) and
𝒗(0) as offset and set 𝑡 = 0

Step 1: Estimate 𝜽 with ERGM and take 𝒖𝑇(𝑡)𝒓(𝒚) and 𝒗𝑇(𝑡)𝒄(𝒚) as offset
parameters:

(i) Fit the model P(𝑌 = 𝑦|𝜽) ∝ exp{𝜽𝑇(𝑡+1)𝒔(𝑦)+𝒖
𝑇
(𝑡)𝒓(𝑦) + 𝒗𝑇(𝑡)𝒄(𝑦)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
offset

}

using maximum likelihood and simulation-based methods
(ii) extract 𝑜𝑖𝑗 = 𝜽𝑇(𝑡+1)𝛥𝑖𝑗𝒔(𝑦) as new offset

Step 2: Update 𝒖(𝑡+1), 𝒗(𝑡+1) and �̂�2𝑢(𝑡+1), �̂�2𝑣(𝑡+1) now taking 𝑜𝑖𝑗 as offset
parameter:

(i) Fit the model logit P(𝑦𝑖𝑗 = 1|𝑦−𝑖𝑗 ,𝜽, 𝒖, 𝒗) = 𝑜𝑖𝑗
⏟⏟⏟

offset

+𝑢𝑖 +

𝑣𝑗 to the data
(ii) extract the vector of the predicted random effects 𝒖(𝑡+1)

and 𝒗(𝑡+1) as new offset

Set 𝑡 = 𝑡 + 1 and iterate between step 1 and 2 until 𝜽(𝑡) converges.
Convergence is achieved if |𝜽(𝑡) − 𝜽(𝑡+1)| ≤ 𝜖 = 0.05.

2.2. Model evaluation

After fitting the model using the algorithm above, it is advisable
to evaluate the model. One of the major aims in modeling networks
is to capture specific network structures of the observed data with the
specified and estimated model. A common way to evaluate how well
a network model fits the data is to sample several networks from the
estimated model and compare those sampled networks to the original
observed network by looking at specific characteristics and network
statistics. In our application case, we follow Hanneke et al. (2010) and
fit our proposed model (2) to the observed bipartite network. Based
on this model, we sample 𝐵 networks and calculate various network
statistics. We then compare the distribution of the network statistics
of the sampled networks with the network statistics on the actually
observed network. With this approach, we can evaluate whether the
simulated networks from the fitted model yield similar networks, which
would infer stable estimations of the model parameters.

Furthermore, to evaluate the estimates obtained from our fitted
models in Section 4 we follow Snijders and Van Duijn (2002) and
provide the t -ratio of the estimates, which is defined as follows

𝑡𝑘 =
𝑠𝑘(𝑦) − 𝑚𝑘(�̂�)

𝜎𝑘(�̂�)

where 𝑠𝑘(𝑦) is the 𝑘th observed network statistic, 𝑚𝑘(�̂�) is the mean of
the 𝑘th network statistic over 𝐵 = 1000 network samples, and 𝜎𝑘(�̂�)
is the standard deviation. To be more specific, from these 𝐵 = 1000
network samples we compute the mean and the standard deviation of
the 𝑘th network statistic and calculate the t -ratio in absolute value. As
a criteria for good convergence the t -ratio should be less than 0.1 in
absolute value for the 𝑘th network statistic included in the model.

3. Simulation study

Before applying our model and the proposed estimation routine
to real-world networks, we run some simulation studies to check and
evaluate the performance of our algorithm. In the subsequent sim-
ulation study, we aim to verify our proposed estimation approach
and evaluate the estimation results of the model parameters based on
network settings with different nodal heterogeneity levels in both first-
and second-mode nodes. For each network setting, we simulate 100 net-
works using the simulation techniques from the ergm package (Hunter
et al., 2008), with fixed structural effects and randomly drawn 𝒖 and 𝒗
for each simulated network and setting. We define our simulation study
configurations as follows:

• 𝑛 = 160 and 𝑚 = 100, denoting the number of nodes in 𝑅 and 𝐶
respectively.

• 𝜽 = (𝜃𝑒𝑑𝑔𝑒𝑠 = −2, 𝜃𝑔𝑤𝑏1𝑑𝑠𝑝 = 0.2, 𝜃𝑔𝑤𝑏2𝑑𝑠𝑝 = −0.2) where
gwb1dsp and gwb2dsp are bipartite network statistics denoting
the geometrically weighted dyadwise shared partner distribution
for dyads in the first/second bipartition respectively, see Hunter
and Handcock (2006) for more details.

• 𝜎2𝑢 ∈ (0, 0.5, 1) and 𝜎2𝑣 ∈ (0, 0.5, 1) denoting different heterogene-
ity levels in 𝑅 and 𝐶 respectively. The different heterogeneity
levels for 𝑅, and 𝐶 lead to nine possible combinations.
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Table 1
Resulting means, medians and the standard deviations of the estimated coefficients for
all simulation settings.

Heterogeneity level (𝜎2
𝑢 , 𝜎

2
𝑣 ) Parameter Real value Mean Median SD

(0, 0)
𝜃𝑒𝑑𝑔𝑒𝑠 −2 −2.142 −2.161 0.577
𝜃𝑔𝑤𝑏1𝑑𝑠𝑝 0.2 0.270 0.257 0.408
𝜃𝑔𝑤𝑏2𝑑𝑠𝑝 −0.2 −0.207 −0.217 0.329

(0, 0.5)
𝜃𝑒𝑑𝑔𝑒𝑠 −2 −2.185 −2.211 0.550
𝜃𝑔𝑤𝑏1𝑑𝑠𝑝 0.2 0.161 0.179 0.401
𝜃𝑔𝑤𝑏2𝑑𝑠𝑝 −0.2 −0.218 −0.237 0.347

(0, 1)
𝜃𝑒𝑑𝑔𝑒𝑠 −2 −2.112 −2.104 0.322
𝜃𝑔𝑤𝑏1𝑑𝑠𝑝 0.2 0.217 0.225 0.445
𝜃𝑔𝑤𝑏2𝑑𝑠𝑝 −0.2 −0.219 −0.232 0.314

(0.5, 0)
𝜃𝑒𝑑𝑔𝑒𝑠 −2 −2.306 −2.284 0.372
𝜃𝑔𝑤𝑏1𝑑𝑠𝑝 0.2 0.172 0.198 0.429
𝜃𝑔𝑤𝑏2𝑑𝑠𝑝 −0.2 −0.175 −0.166 0.303

(0.5, 0.5)
𝜃𝑒𝑑𝑔𝑒𝑠 −2 −1.948 −1.947 0.205
𝜃𝑔𝑤𝑏1𝑑𝑠𝑝 0.2 0.216 0.197 0.305
𝜃𝑔𝑤𝑏2𝑑𝑠𝑝 −0.2 −0.188 −0.187 0.201

(0.5, 1)
𝜃𝑒𝑑𝑔𝑒𝑠 −2 −2.108 −2.115 0.213
𝜃𝑔𝑤𝑏1𝑑𝑠𝑝 0.2 0.204 0.198 0.165
𝜃𝑔𝑤𝑏2𝑑𝑠𝑝 −0.2 −0.197 −0.205 0.213

(1, 0)
𝜃𝑒𝑑𝑔𝑒𝑠 −2 −2.137 −2.150 0.238
𝜃𝑔𝑤𝑏1𝑑𝑠𝑝 0.2 0.190 0.181 0.238
𝜃𝑔𝑤𝑏2𝑑𝑠𝑝 −0.2 −0.228 −0.252 0.316

(1, 0.5)
𝜃𝑒𝑑𝑔𝑒𝑠 −2 −1.981 −1.953 0.179
𝜃𝑔𝑤𝑏1𝑑𝑠𝑝 0.2 0.204 0.219 0.103
𝜃𝑔𝑤𝑏2𝑑𝑠𝑝 −0.2 −0.190 −0.174 0.327

(1, 1)
𝜃𝑒𝑑𝑔𝑒𝑠 −2 −2.016 −2.027 0.131
𝜃𝑔𝑤𝑏1𝑑𝑠𝑝 0.2 0.198 0.194 0.093
𝜃𝑔𝑤𝑏2𝑑𝑠𝑝 −0.2 −0.202 −0.216 0.131

Table 2
Resulting correlation means, medians and the standard deviations between the random
effects and the predicted values.

(𝜎2
𝑢 , 𝜎

2
𝑣 ) Mean Median SD (𝜎2

𝑢 , 𝜎
2
𝑣 ) Mean Median SD

𝜌𝒖,�̂�

(0.5, 0) 0.899 0.896 0.028

𝜌𝒗,�̂�

(0, 0.5) 0.881 0.882 0.025
(0.5, 0.5) 0.906 0.904 0.019 (0.5, 0.5) 0.901 0.902 0.020
(0.5, 1.0) 0.915 0.913 0.0250 (1.0, 0.5) 0.918 0.917 0.029
(1.0, 0) 0.907 0.904 0.022 (0, 1.0) 0.916 0.914 0.029
(1.0, 0.5) 0.917 0.920 0.025 (0.5, 1.0) 0.908 0.916 0.031
(1.0, 1.0) 0.938 0.942 0.027 (1.0, 1.0) 0.929 0.925 0.030

In Table 1, we give the results of the estimated coefficients for
all possible network settings. Overall, we see an appropriate behav-
ior of the estimates for all settings, which becomes more noticeable,
especially when the heterogeneity levels in both modes increase.

Additionally, we look in Table 2 at the correlation results between
the random effects 𝒖, 𝒗 and the predicted values �̂�, �̂�. This is only done
for 𝜎2𝑢 > 0 and/or 𝜎2𝑣 > 0 because otherwise, the coefficients are equal
to zero. We note a high positive correlation between the random effects
and the predicted values in all possible settings. This can be quite
an impactful point concerning the interpretability of the coefficients,
especially concerning the degrees of the nodes in the two modes.

4. Examples

4.1. Southern Women data

As a first data example, we look at a well-known benchmark dataset
in bipartite network analysis, the Southern Women data set (Davis
et al., 1941), which is discussed and examined in various topics of
bipartite network data analysis, see, for instance, Aitkin et al. (2014),
and Wang et al. (2009) in more detail regarding the choice of model
parameters in the Southern Women network data. This data set consists
of 18 women observed over nine months period. During that period,
these women met in a series of 14 informal social events. The data

Fig. 2. Southern Women network data. The red (circle) nodes indicate the women in
the network, and the blue (square) nodes the 14 different events. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 3
Model fitting results and the t -ratios for the Southern Women network data. Standard
errors listed in the biMERGM are not accurate since they ignore the variability resulting
through node heterogeneity.

Parameter Estimate SE |𝑡 − ratio|
Edge −2.118 0.267 0.073
2-star (1 woman, 2 events) 0.113 0.082 0.088
2-star (2 women, 1 event) 0.238 0.055 0.009
Closure (2 women, k events) −0.122 0.093 0.095

record which women met during which events. Fig. 2 shows the bi-
partite network graph of Southern Women network data. We can see
that in this bipartite network, there are few blue nodes representing
the events that have high degrees, and some red nodes representing
the women that have high degrees, while the remaining nodes have
few ties. Therefore, the presence of nodal heterogeneity seems to be
a reasonable assumption. A typical ERGM for bipartite networks will
include local configurations as shown in Fig. 3, which mostly satisfy
the dependence assumption as discussed in Pattison and Robins (2004)
for bipartite networks specifically and Hunter and Handcock (2006) in
general. The labels 2-star and 3-star in Fig. 3 represent the ‘‘event-
stars’’ and ‘‘woman-stars’’, respectively. The label 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 denotes the
geometrically weighted dyadwise shared partner distribution for actors
and events, which can also be seen as local closure configuration.
Considering that a dependence structure for the Southern Women
bipartite network assumes that the attendance of woman 𝑖 at event
𝑗 is conditionally dependent on the attendance of woman 𝑖 at other
events 𝑘, as well as on the attendance of other women 𝑙 at event 𝑗, we,
therefore, fit a model to reveal or understand the attendance tendency
of the southern women taking the attractivity of the women and the
events explicitly into account.

In Table 3 we summarize the result of the fitted model to this data
along with the associated t -ratios (in absolute value) for the estimated
parameters as discussed in Section 2, whereby convergence is reached
after six iteration steps. The parameters of the model suggest that
while there is a tendency for women to attend multiple events and
a tendency for many women to be in attendance at a given event,
there is a descending tendency for two women to attend many events
if they have already attended one of the events together. Additionally,
in Table 4 and in Table 5 we give the prediction results of attractive-
ness for women and events, respectively. The predicted values can be
interpreted as follows: the higher the predicted values are, the more
likely is it for a woman to attend and for a meeting to be attended.
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Fig. 3. Configurations for bipartite graph models.

Fig. 4. Distribution of network characteristics and statistics for 𝐵 = 1000 networks, sampled from the estimated model. Network statistics of the observed network in red. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
Predicted attractivity of the women resulting from the model fit.

Woman Predicted attractivity Woman Predicted attractivity

BRENDA 0.251 LAURA 0.251
CHARLOTTE −0.094 MYRNA −0.117
DOROTHY −0.361 NORA 0.367
ELEANOR −0.129 OLIVIA −0.305
EVELYN 0.363 PEARL −0.246
FLORA −0.304 RUTH −0.134
FRANCES −0.110 SYLVIA 0.235
HELEN 0.002 THERESA 0.355
KATHERINE 0.138 VERNE −0.137

Table 5
Predicted attractivity of the events resulting from the model fit.

Event Predicted attractivity Event Predicted attractivity

1 −0.567 8 1.268
2 −0.573 9 0.973
3 −0.043 10 −0.225
4 −0.373 11 −0.344
5 0.264 12 −0.065
6 0.259 13 −0.572
7 0.579 14 −0.572

There is a strong correlation between the node degrees and the fitted
random effects resulting from the model. For instance, we predicted for
Dorothy an attractivity of �̂�Dorothy = −0.361 and for Nora �̂�Nora = 0.367;
looking at the graph in Fig. 2, we can see that Dorothy attended only
two events, while Nora attended many events. On the other hand, we
predicted event 1 as one of the most unattractive events and event 8 as
the most attractive one, which is also consistent with the graph. The
fitted random women effects �̂�, and the event effects �̂� are provided in
Tables 4 and 5, respectively.

Fig. 4 visualizes the results of the described model evaluation ap-
proach in Section 2 based on 𝐵 = 1000 network samples. We computed
for each of the sampled and the observed networks selected network
characteristics and statistics as stated in Fig. 3. The distribution of the
statistics of the sampled networks is presented by boxplots; the network
statistics on the observed networks are presented by a red line. In
general, it seems that sampling from our proposed models produces
networks that show a very similar structure to the true, observed ones.

4.2. World City Network

As a second data example, we consider the ‘‘World City Network’’
data introduced in Taylor et al. (2002), consisting of 100 global ser-
vice firms distributed across 315 cities worldwide. All firms in this
network supply advanced producer services (accountancy, advertis-
ing, banking/finance, insurance, law, and management consultancy)
through offices in at least 15 cities (including at least one in Pacific
Asia, western Europe, and northern America). An edge in this network
represents the presence of a given firm in a given city. Fig. 5 provides
a visual impression of the network. Since additional nodal attributes
are available as the type of the firms, we investigate whether an
edge formation in this network exhibits homophilic behavior. In other
words, we want to fit a model which answers questions like, given the
attractiveness of cities and firms, do firms of the same type tend to
co-locate in the same cities more or less often than we would expect by
chance? This question will be answered with our proposed biMERGM
model, for which we take the heterogeneity of the nodes, aka the
random effects (which counts for the attractiveness of the cities and
firms) and the homophily network statistics, aka the attributes of the
firms (which counts for the co-location of the same firm types in the
same cities) into account. Additionally, we include a dyad-dependent
endogenous network statistic such as the closure of two firms in 𝑘
different cities as in the example before. In Table 6, we summarize
the results of the fitted model, whereby convergence is reached after
11 iteration steps. The network statistic nodematch (see Handcock
et al., 2017) can be obtained, for instance, by summing 𝑦𝑖𝑘𝑦𝑗𝑘 for all
firm nodes of the same type 𝑖 and 𝑗 and all city nodes 𝑘.

nodematch(𝑦) = 1
2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑚∑
𝑘=1

𝑦𝑖𝑘𝑦𝑗𝑘𝐼{𝑖 matches 𝑗, 𝑖 ≠ 𝑗} (8)

The indicator function in the formula above is one iff 𝑖 and 𝑗 are
from the same mode and share the same type of node; for instance,
this is one for firms 𝑖, and 𝑗 of type let us say ‘‘Accountancy’’, and
zero otherwise. With some adjustments, we can look at the matching
nodes of each firm type separately. Each of these statistics in our model
gives half the sum of the number of edges that are part of at least
one two-path joining two firms of the same type. For instance, the
conditional log-odds of an accountancy firm locating in a particular
large city in the world where no closure between firms and cities exists
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Fig. 5. World City Network graph. The red (circle) nodes indicate the 315 cities in
the network, while the blue (square) nodes the 100 firms. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 6
Model fitting results and the t -ratios for the World City Network data. Standard
errors are not accurate since they ignore the variability resulting through node
heterogeneity.

Parameter Estimate SE |𝑡 − ratio|
Edge −1.976 0.037 0.0564
Closure (2 firms, 𝑘 cities) 0.079 0.018 0.096
Nodematch (firmtype: Accountancy) 0.274 0.092 0.055
Nodematch (firmtype: Advertising) 0.488 0.101 0.082
Nodematch (firmtype: Banking/Finance) 0.201 0.090 0.066
Nodematch (firmtype: Insurance) −0.051 0.111 0.083
Nodematch (firmtype: Law) 0.441 0.101 0.097
Nodematch (firmtype: Management, Consultancy) 0.562 0.090 0.084

is −1.976+ (0.274 × 0.5) = −1.839 if another firm is already there. There
is also a slight tendency for firms to locate in different cities if these
firms have a pre-existing location in a given city. In Fig. 6 we present
the predicted attractivity values �̂�𝑖 of the cities visualized on a world
map. We can identify significant clusters of attractive cities in central
Europe and the eastern USA and some very attractive cities in east Asia
and Australia. We demonstrate the predicted attractivity of the firms
�̂�𝑗 in Fig. 7. Each firm is categorized according to its corresponding
type. For instance, some accounting firms have high attractiveness,
whereas law firms generally have low attractiveness. Additionally,
we provide distribution comparisons of predicted attractivity and the
firms’ degree, distinguishing between their corresponding categories as
supplementary material.

Finally, we run a simulation-based model evaluation as proposed
in Section 2. Fig. 8 presents the results based on 𝐵 = 1000 network
samples. The performance of our model is convincing across many
network statistics and characteristics.

4.3. Patent data

We now consider a rather extensive network resulting from patent
data. This data includes patent applications filed to the European Patent
Office (EPO) and the German Patent and Trademark Office (DPMA),
respectively, in 2015 in the main area of electrical engineering. The

Table 7
Frequency of patents according to the areas in the data.

Area Frequency Area Frequency

Audiovisual 631 Communication process 271
Computer technology 937 Digital communication 578
Electrical energy 3969 IT methods 134
Semiconductors 903 Telecommunication 783

Table 8
Model fitting results and the t -ratios for the Patent Network data. Standard errors listed
in the biMERGM are not accurate since they ignore the variability resulting through
node heterogeneity.

Parameter Estimate SE |𝑡 − ratio|
Edge −7.213 0.031 0.097
Closure (2 inventors, 𝑘 patents) 0.942 0.082 0.110
Nodematch (area: Audiovisual) 1.251 0.099 0.092
Nodematch (area: Computer Technology) 1.810 0.068 0.236
Nodematch (area: Electrical Energy) 2.377 0.166 0.096
Nodematch (area: Semiconductors) 1.288 0.182 0.092
Nodematch (area: Communication Process) 0.633 0.101 0.065
Nodematch (area: Digital Communication) 0.519 0.173 0.077
Nodematch (area: IT Methods) 0.129 0.671 0.124
Nodematch (area: Telecommunication) 0.969 0.181 0.092

data includes patents that listed at least one inventor residing in Ger-
man territory. We observe a total of 10 251 inventors who have applied
to 8206 different patents in the field of electrical engineering, which
itself can be divided into eight sub-areas. Table 7 gives the frequency
of patents in these eight sub-areas. Despite the computational intensity,
we are able to fit the proposed model (see Table 8) to this extensive
bipartite network. The computation is carried out on a Linux cluster
with eight nodes and 28 tasks per node. Convergence is achieved after
21 iterations. The computation time for one iteration was about three
hours, i.e., it took approximately three days for 21 iterations. The
research question that we aim to answer is the following: which of the
sub-areas is most seclusive in the sense that inventors with multiple
patents tend to have them in the same sub-area. We, therefore, include
nodematch statistics comparable to (8), but this time the nodematch
is the other component, i.e. on the patents, i.e. two patents submitted
by one or more joint inventors in the same sub-area. The estimated
coefficients are shown in Table 8, although some structural effects have
a t -ratio slightly above the 0.1 threshold, we decided to keep these
structural effects due to the size of the network and its’ computational
expensiveness. The model’s coefficients point out a strong presence of
seclusiveness, which means inventors with more than one patent tend
more likely to file their patents in the same sub-area, i.e. all coefficients
are positive. The effect is strongest for the sub-area ‘‘Electrical Energy’’
while for ‘‘IT Methods’’, the effect is small and not even significantly
positive. Hence, the sub-area of ‘‘IT Methods’’ is hardly seclusive,
meaning that inventors having a patent there are likely to have another
patent in some other sub-area.

Since we also know the location of the inventors, we can visualize
in Fig. 9 the predicted attractivity �̂�𝑖 of the inventors according to
the location of each inventor. We can conclude that the huge cluster
in southern Germany is not surprisingly in the south of Germany,
which is the driving force of the economy in Germany with many
large firms and excellent universities, and this pattern seems to be
valid for inventors who locate in large cities in Germany. Since the
patents filed in the main area of electrical engineering are categorized
into eight different areas, we visualize the predicted attractiveness of
the patents �̂�𝑗 according to their area in Fig. 10. We identify the area
of ‘‘Semiconductors’’ as one of the most attractive patent areas in the
data based on our model prediction. Similar to the examples before,
we evaluate our model based on 1000 network samples for different
network characteristics and statistics, as in Fig. 11 demonstrated. The
overall evaluation of the model is very promising.
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Fig. 6. Predicted attractivity of the cities. Big transparent nodes indicate cities with high attractivity.

Fig. 7. Predicted attractivity of the firms, categorized according to the type of each firm.
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Fig. 8. Distribution of network statistics for 𝐵 = 1000 networks sampled from the estimated model. Network statistics of the observed network in red. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Predicted attractivity of the inventors. Big transparent nodes indicate inventors
with high attractivity.

5. Discussion

The inclusion of node-specific covariates usually explains the het-
erogeneity in bipartite networks see, e.g., Lusher et al. (2013). How-
ever, in this paper, we argue that often heterogeneity cannot be fully
explained by covariates. Therefore, our model allows for the inclusion

of random heterogeneity effects, and the proposed algorithm is scalable
towards the analysis of large bipartite networks, which is demonstrated
through simulations and examples.

While the model, as well as its estimation, provide promising results,
some open issues remain. As pursued in this paper, model evaluation
is simple and could be extended towards more sophisticated routines,
for instance, based on the Akaike Information Criterion. This, however,
would require several approximations to make it numerically feasible
so that we consider this beyond the scope of this paper. Secondly,
the standard errors given are approximate based on the model where
coefficients �̂� and �̂� are treated as offsets. Exact calculations are theo-
retically as well as numerically demanding, so that further research is
required. For instance, a proper numerically efficient bootstrap would
be desirable to obtain appropriate standard errors. Overall, we conclude
that the biMERGM proposed and fitted in this paper can provide a
valuable and numerically feasible tool for analyzing large bipartite
networks.
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Fig. 10. Predicted attractivity of patents, categorized according to each patent’s area.

Fig. 11. Distribution of network statistics for 𝐵 = 1000 networks sampled from the estimated model. Network statistics of the observed network in red. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.socnet.2021.11.002.
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Appendix

Further Simulation Results

In the simulation study of Chapter 2, we construct our simulation setting with fixed θ values
where θ = (θedges, θgwesp, θ2−stars) = (−1, 0.2,−0.3), and looking at six different hetero-
geneity levels σ2

u = (0, 0.1, 0.2, 0.5, 0.8, 1) for both network sizes small (50 nodes) and large
(500 nodes). However, to demonstrate the scalability/flexibility of the model, we provide
the results of two more simulation studies, where first we perturb just the θgwesp parameter
changing its value from 0.2 to 0.5, and second, we perturb the whole parameter vector
θ setting the values to θ = (θedges, θgwesp, θ2−stars) = (−1.5,−0.3,−0.4). Furthermore,
we also provide illustrations of how well σ2

u is recovered in the simulation study of Chapter 2.

Predicted Attractivity Versus Degree Distribution Comparison

We illustrate distribution comparisons of predicted attractivity and the firms’ degree,
distinguishing between their corresponding categories from the “World City Network”
example in Chapter 3. With this plot, we demonstrate the predicted random effects’
performance compared with the actual degrees of the nodes (firms).
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Network Size: 50 Nodes

σ2
u Model type Parameter Real Value Mean SD Q 0.1 Median Q 0.9

0 ERGM
θedges -1 -0.79 0.23 -1.06 -0.77 -0.53
θgwesp 0.5 0.20 0.19 -0.02 0.19 0.45
θ2−stars -0.3 -0.25 0.14 -0.42 -0.26 -0.07

0 mERGM
θedges -1 -0.78 0.17 -0.97 -0.81 -0.59
θgwesp 0.5 0.13 0.17 -0.05 0.11 0.32
θ2−stars -0.3 -0.23 0.22 -0.47 -0.27 -0.08

0.1 ERGM
θedges -1 -1.38 0.42 -1.93 -1.39 -0.91
θgwesp 0.5 0.33 0.30 -0.08 0.35 0.73
θ2−stars -0.3 -0.24 0.27 -0.55 -0.32 0.16

0.1 mERGM
θedges -1 -0.68 0.15 -0.87 -0.68 -0.49
θgwesp 0.5 0.38 0.25 0.04 0.36 0.67
θ2−stars -0.3 -0.21 0.23 -0.52 -0.18 -0.04

0.2 ERGM
θedges -1 -1.49 0.41 -1.98 -1.5 -0.93
θgwesp 0.5 0.39 0.22 0.12 0.33 0.72
θ2−stars -0.3 -0.17 0.16 -0.43 -0.14 0.04

0.2 mERGM
θedges -1 -0.75 0.11 -0.89 -0.76 -0.61
θgwesp 0.5 0.42 0.11 0.28 0.43 0.56
θ2−stars -0.3 -0.35 0.12 -0.49 -0.36 -0.23

0.5 ERGM
θedges -1 -1.84 0.38 -2.24 -1.85 -1.31
θgwesp 0.5 0.37 0.08 0.24 0.37 0.48
θ2−stars -0.3 -0.01 0.14 -0.17 -0.01 0.19

0.5 mERGM
θedges -1 -0.86 0.08 -0.96 -0.86 -0.78
θgwesp 0.5 0.46 0.05 0.40 0.45 0.52
θ2−stars -0.3 -0.31 0.02 -0.34 -0.31 -0.28

0.8 ERGM
θedges -1 -3.1 0.53 -3.78 -3.07 -2.45
θgwesp 0.5 0.47 0.11 0.36 0.47 0.61
θ2−stars -0.3 0.05 0.26 -0.12 0.05 0.41

0.8 mERGM
θedges -1 -0.97 0.02 -1.01 -0.98 -0.95
θgwesp 0.5 0.49 0.03 0.43 0.48 0.53
θ2−stars -0.3 -0.31 0.02 -0.34 -0.31 -0.28

1 ERGM
θedges -1 -6385.68 25525.91 -162.93 -21.29 3.61
θgwesp 0.5 -14204.17 56808.78 -698.11 -13.01 1.21
θ2−stars -0.3 298.89 1678.24 -2099.88 -2.89 98.56

1 mERGM
θedges -1 -1.09 0.02 -1.12 -1.09 -1.06
θgwesp 0.5 0.51 0.04 0.45 0.50 0.56
θ2−stars -0.3 -0.31 0.01 -0.33 -0.32 -0.30

Resulting means, standard deviations, the medians, 0.1 and 0.9 quantiles of the estimated
coefficients of network size 50 nodes and for all six σ2

u levels. In this setting, only the GWESP
parameter is manipulated compared to the setting in the manuscript.



Network Size: 500 Nodes

σ2
u Model type Parameter Real Value Mean SD Q 0.1 Median Q 0.9

0 ERGM
θedges -1 -1.08 0.19 -1.26 -1.01 -0.75
θgwesp 0.5 0.48 0.19 0.23 0.48 0.74
θ2−stars -0.3 -0.31 0.01 -0.32 -0.30 -0.29

0 mERGM
θedges -1 -0.70 0.15 -0.90 -0.70 -0.51
θgwesp 0.5 0.46 0.02 0.43 0.46 0.50
θ2−stars -0.3 -0.18 0.14 -0.36 -0.18 -0.001

0.1 ERGM
θedges -1 -1.30 0.25 -1.61 -1.31 -0.97
θgwesp 0.5 0.45 0.08 0.34 0.45 0.57
θ2−stars -0.3 -0.23 0.15 -0.42 -0.23 -0.03

0.1 mERGM
θedges -1 -0.77 0.19 -1.01 -0.77 -0.53
θgwesp 0.5 0.46 0.03 0.41 0.46 0.50
θ2−stars -0.3 -0.20 0.12 -0.35 -0.20 -0.05

0.2 ERGM
θedges -1 -1.54 0.21 -1.81 -1.54 -1.27
θgwesp 0.5 0.45 0.08 0.33 0.45 0.56
θ2−stars -0.3 -0.20 0.09 -0.33 -0.20 -0.07

0.2 mERGM
θedges -1 -0.70 0.16 -0.92 -0.70 -0.48
θgwesp 0.5 0.44 0.08 0.34 0.44 0.54
θ2−stars -0.3 -0.38 0.12 -0.54 -0.38 -0.23

0.5 ERGM
θedges -1 -1.88 0.35 -2.34 -1.87 -1.43
θgwesp 0.5 0.48 0.07 0.39 0.47 0.56
θ2−stars -0.3 -0.09 0.20 -0.34 -0.07 0.18

0.5 mERGM
θedges -1 -0.67 0.10 -0.80 -0.68 -0.54
θgwesp 0.5 0.51 0.05 0.44 0.51 0.58
θ2−stars -0.3 -0.32 0.01 -0.34 -0.32 -0.31

0.8 ERGM
θedges -1 -3.90 0.43 -4.47 -3.87 -3.36
θgwesp 0.5 0.45 0.17 0.20 0.44 0.68
θ2−stars -0.3 -0.001 0.16 -0.21 -0.005 0.20

0.8 mERGM
θedges -1 -1.24 0.04 -1.29 -1.24 -1.19
θgwesp 0.5 0.48 0.01 0.45 0.48 0.50
θ2−stars -0.3 -0.32 0.01 -0.34 -0.32 -0.31

1 ERGM
θedges -1 -5.11 0.14 -5.30 -5.10 -4.93
θgwesp 0.5 0.43 0.06 0.33 0.42 0.52
θ2−stars -0.3 -0.004 0.10 -0.13 -0.006 0.12

1 mERGM
θedges -1 -0.98 0.01 -0.99 -0.98 -0.96
θgwesp 0.5 0.51 0.03 0.46 0.50 0.55
θ2−stars -0.3 -0.32 0.009 -0.33 -0.31 -0.30

Resulting means, standard deviations, the medians, 0.1 and 0.9 quantiles of the estimated
coefficients of network size 500 nodes and for all six σ2

u levels. In this setting, only the GWESP
parameter is manipulated compared to the setting in the manuscript.



Network Size: 50 Nodes

σ2
u Model type Parameter Real Value Mean SD Q 0.1 Median Q 0.9

0 ERGM
θedges -1.5 -1.34 0.11 -1.48 -1.35 -1.20
θgwesp -0.3 -0.24 0.18 -0.47 -0.26 -0.004
θ2−stars -0.4 -0.36 0.13 -0.52 -0.37 -0.17

0 mERGM
θedges -1.5 -1.30 0.17 -1.49 -1.33 -1.11
θgwesp -0.3 -0.24 0.25 -0.52 -0.28 0.04
θ2−stars -0.4 -0.38 0.22 -0.61 -0.41 -0.14

0.1 ERGM
θedges -1.5 -1.18 0.42 -1.72 -1.18 -0.71
θgwesp -0.3 -0.32 0.31 -0.742 -0.31 0.071
θ2−stars -0.4 -0.37 0.22 -0.63 -0.44 -0.02

0.1 mERGM
θedges -1.5 -1.11 0.23 -1.41 -1.11 -0.81
θgwesp -0.3 -0.22 0.11 -0.36 -0.22 -0.08
θ2−stars -0.4 -0.36 0.12 -0.53 -0.34 -0.22

0.2 ERGM
θedges -1.5 -1.17 0.41 -1.66 -1.18 -0.61
θgwesp -0.3 -0.27 0.13 -0.43 -0.31 0.07
θ2−stars -0.4 -0.17 0.15 -0.40 -0.15 0.02

0.2 mERGM
θedges -1.5 -1.61 0.10 -1.74 -1.62 -1.47
θgwesp -0.3 -0.24 0.15 -0.42 -0.24 -0.05
θ2−stars -0.4 -0.44 0.12 -0.59 -0.44 -0.31

0.5 ERGM
θedges -1.5 -0.56 0.35 -0.93 -0.56 -0.07
θgwesp -0.3 -0.35 0.06 -0.43 -0.35 -0.26
θ2−stars -0.4 -0.68 0.13 -0.83 -0.68 -0.49

0.5 mERGM
θedges -1.5 -1.62 0.07 -1.72 -1.63 -1.54
θgwesp -0.3 -0.36 0.02 -0.39 -0.36 -0.33
θ2−stars -0.4 -0.34 0.03 -0.38 -0.34 -0.30

0.8 ERGM
θedges -1.5 0.26 0.51 -0.41 0.26 0.85
θgwesp -0.3 -0.20 0.04 -0.24 -0.20 -0.14
θ2−stars -0.4 0.04 0.19 -0.23 0.04 0.30

0.8 mERGM
θedges -1.5 -1.54 0.03 -1.58 -1.54 -1.50
θgwesp -0.3 -0.27 0.02 -0.32 -0.27 -0.22
θ2−stars -0.4 -0.38 0.01 -0.40 -0.38 -0.37

1 ERGM
θedges -1.5 -4637.406 3354.11 -8562.84 -4337.4 -498.63
θgwesp -0.3 24081.52 65130.7 -56617.06 31760.1 99770.83
θ2−stars -0.4 19111.89 3275.97 14506.83 19131 23475.23

1 mERGM
θedges -1.5 -1.52 0.01 -1.54 -1.52 -1.49
θgwesp -0.3 -0.32 0.01 -0.34 -0.32 -0.30
θ2−stars -0.4 -0.39 0.08 -0.51 -0.38 -0.29

Resulting means, standard deviations, the medians, 0.1 and 0.9 quantiles of the estimated
coefficients of network size 50 nodes and for all six σ2

u levels. In this setting, the whole parameter
θ is manipulated compared to the setting in the manuscript.



Network Size: 500 Nodes

σ2
u Model type Parameter Real Value Mean SD Q 0.1 Median Q 0.9

0 ERGM
θedges -1.5 -1.46 0.08 -1.58 -1.46 -1.35
θgwesp -0.3 -0.27 0.11 -0.42 -0.27 -0.12
θ2−stars -0.4 -0.37 0.09 -0.50 -0.37 -0.25

0 mERGM
θedges -1.5 -1.38 0.19 -1.63 -1.38 -1.14
θgwesp -0.3 -0.25 0.21 -0.54 -0.25 0.01
θ2−stars -0.4 -0.36 0.09 -0.48 -0.35 -0.23

0.1 ERGM
θedges -1.5 -1.26 0.32 -1.66 -1.27 -0.84
θgwesp -0.3 -0.27 0.09 -0.39 -0.27 -0.14
θ2−stars -0.4 -0.34 0.11 -0.49 -0.35 -0.20

0.1 mERGM
θedges -1.5 -1.25 0.24 -1.56 -1.26 -0.95
θgwesp -0.3 -0.22 0.14 -0.39 -0.23 -0.03
θ2−stars -0.4 -0.32 0.10 -0.45 -0.33 -0.20

0.2 ERGM
θedges -1.5 -1.00 0.31 -1.39 -1.01 -0.60
θgwesp -0.3 -0.26 0.09 -0.39 -0.26 -0.13
θ2−stars -0.4 -0.31 0.11 -0.45 -0.30 -0.17

0.2 mERGM
θedges -1.5 -1.20 0.11 -1.35 -1.21 -1.05
θgwesp -0.3 -0.23 0.10 -0.36 -0.23 -0.10
θ2−stars -0.4 -0.21 0.11 -0.35 -0.20 -0.07

0.5 ERGM
θedges -1.5 -2.03 0.41 -2.57 -2.02 -1.50
θgwesp -0.3 -0.33 0.09 -0.45 -0.33 -0.22
θ2−stars -0.4 -0.71 0.21 -0.97 -0.69 -0.42

0.5 mERGM
θedges -1.5 -1.69 0.11 -1.85 -1.71 -1.56
θgwesp -0.3 -0.33 0.05 -0.40 -0.33 -0.26
θ2−stars -0.4 -0.37 0.02 -0.40 -0.37 -0.34

0.8 ERGM
θedges -1.5 -3.67 0.49 -4.32 -3.65 -3.07
θgwesp -0.3 -0.21 0.07 -0.31 -0.21 -0.10
θ2−stars -0.4 -0.02 0.27 -0.36 -0.02 0.32

0.8 mERGM
θedges -1.5 -1.44 0.03 -1.47 -1.43 -1.39
θgwesp -0.3 -0.33 0.02 -0.36 -0.33 -0.29
θ2−stars -0.4 -0.36 0.02 -0.39 -0.36 -0.33

1 ERGM
θedges -1.5 -4.56 0.61 -5.36 -4.53 -3.82
θgwesp -0.3 -0.34 0.07 -0.45 -0.35 -0.24
θ2−stars -0.4 -0.03 0.74 -0.99 -0.05 0.89

1 mERGM
θedges -1.5 -1.47 0.09 -1.58 -1.47 -1.35
θgwesp -0.3 -0.31 0.01 -0.33 -0.31 -0.28
θ2−stars -0.4 -0.43 0.05 -0.50 -0.42 -0.34

Resulting means, standard deviations, the medians, 0.1 and 0.9 quantiles of the estimated
coefficients of network size 500 nodes and for all six σ2

u levels. In this setting, the whole parameter
θ is manipulated compared to the setting in the manuscript.



Based on the manuscript’s simulation study
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Distribution of Estimated σu
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Distribution of Estimated σu
2 = 0.5 (50 Nodes, 50 Simulations)
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2 = 0.8 (50 Nodes, 50 Simulations)
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Recovery of σ2
u in the simulation study for small (50 nodes) networks.
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Distribution of Estimated σu
2 = 0 (500 Nodes, 50 Simulations)
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Distribution of Estimated σu
2 = 0.1 (500 Nodes, 50 Simulations)

0.18 0.20 0.22 0.24

σ̂u
2

Distribution of Estimated σu
2 = 0.2 (500 Nodes, 50 Simulations)

0.49 0.50 0.51

σ̂u
2

Distribution of Estimated σu
2 = 0.5 (500 Nodes, 50 Simulations)

0.78 0.79 0.80 0.81 0.82

σ̂u
2

Distribution of Estimated σu
2 = 0.8 (500 Nodes, 50 Simulations)

0.98 0.99 1.00 1.01 1.02 1.03

σ̂u
2

Distribution of Estimated σu
2 = 1 (500 Nodes, 50 Simulations)

Recovery of σ2
u in the simulation study for large (500 nodes) networks.
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