402 research outputs found

    Data Fusion for Overtaking Vehicle Detection Based on Radar and Optical Flow

    Get PDF
    Trustworthiness is a key point when dealing with vehicle safety applications. In this paper an approach to a real application is presented, able to fulfill the requirements of such demanding applications. Most of commercial sensors available nowadays are usually designed to detect front vehicles but lack the ability to detect overtaking vehicles. The work presented here combines the information provided by two sensors, a Stop&Go radar and a camera. Fusion is done by using the unprocessed information from the radar and computer vision based on optical flow. The basic capabilities of the commercial systems are upgraded giving the possibility to improve the front vehicles detection system, by detecting overtaking vehicles with a high positive rate.This work was supported by the Spanish Government through the Cicyt projects FEDORA (GRANT TRA2010- 20225-C03-01) and D3System (TRA2011-29454-C03-02). BRAiVE prototype has been developed in the framework of the Open intelligent systems for Future Autonomous Vehicles (OFAV) Projects funded by the European Research Council (ERC) within an Advanced Investigation Gran

    Characterizing driving behavior using automatic visual analysis

    Full text link
    In this work, we present the problem of rash driving detection algorithm using a single wide angle camera sensor, particularly useful in the Indian context. To our knowledge this rash driving problem has not been addressed using Image processing techniques (existing works use other sensors such as accelerometer). Car Image processing literature, though rich and mature, does not address the rash driving problem. In this work-in-progress paper, we present the need to address this problem, our approach and our future plans to build a rash driving detector.Comment: 4 pages,7 figures, IBM-ICARE201

    Sensor fusion methodology for vehicle detection

    Get PDF
    A novel sensor fusion methodology is presented, which provides intelligent vehicles with augmented environment information and knowledge, enabled by vision-based system, laser sensor and global positioning system. The presented approach achieves safer roads by data fusion techniques, especially in single-lane carriage-ways where casualties are higher than in other road classes, and focuses on the interplay between vehicle drivers and intelligent vehicles. The system is based on the reliability of laser scanner for obstacle detection, the use of camera based identification techniques and advanced tracking and data association algorithms i.e. Unscented Kalman Filter and Joint Probabilistic Data Association. The achieved results foster the implementation of the sensor fusion methodology in forthcoming Intelligent Transportation Systems

    Overview of Environment Perception for Intelligent Vehicles

    Get PDF
    This paper presents a comprehensive literature review on environment perception for intelligent vehicles. The state-of-the-art algorithms and modeling methods for intelligent vehicles are given, with a summary of their pros and cons. A special attention is paid to methods for lane and road detection, traffic sign recognition, vehicle tracking, behavior analysis, and scene understanding. In addition, we provide information about datasets, common performance analysis, and perspectives on future research directions in this area

    Integrating motion and appearance for overtaking vehicle detection

    Full text link
    Abstract — The dynamic appearance of vehicles as they enter and exit a scene makes vehicle detection a difficult and compli-cated problem. Appearance based detectors generally provide good results when vehicles are in clear view, but have trouble in the scenes edges due to changes in the vehicles aspect ratio and partial occlusions. To compensate for some of these deficiencies, we propose incorporating motion cues from the scene. In this work, we focus on a overtaking vehicle detection in a freeway setting with front and rear facing monocular cameras. Motion cues are extracted from the scene, and leveraging the epipolar geometry of the monocular setup, motion compensation is performed. Spectral clustering is used to group similar motion vectors together, and after post-processing, vehicle detections candidates are produced. Finally, these candidates are combined with an appearance detector to remove any false positives, outputting the detections as a vehicle travels through the scene. I

    Target Trailing With Safe Navigation With Colregs for Maritime Autonomous Surface Vehicles

    Get PDF
    Systems and methods for operating autonomous waterborne vessels in a safe manner. The systems include hardware for identifying the locations and motions of other vessels, as well as the locations of stationary objects that represent navigation hazards. By applying a computational method that uses a maritime navigation algorithm for avoiding hazards and obeying COLREGS using Velocity Obstacles to the data obtained, the autonomous vessel computes a safe and effective path to be followed in order to accomplish a desired navigational end result, while operating in a manner so as to avoid hazards and to maintain compliance with standard navigational procedures defined by international agreement. The systems and methods have been successfully demonstrated on water with radar and stereo cameras as the perception sensors, and integrated with a higher level planner for trailing a maneuvering target

    Robust Vehicle Detection and Distance Estimation Under Challenging Lighting Conditions

    Get PDF
    Avoiding high computational costs and calibration issues involved in stereo-vision-based algorithms, this paper proposes real-time monocular-vision-based techniques for simultaneous vehicle detection and inter-vehicle distance estimation, in which the performance and robustness of the system remain competitive, even for highly challenging benchmark datasets. This paper develops a collision warning system by detecting vehicles ahead and, by identifying safety distances to assist a distracted driver, prior to occurrence of an imminent crash. We introduce adaptive global Haar-like features for vehicle detection, tail-light segmentation, virtual symmetry detection, intervehicle distance estimation, as well as an efficient single-sensor multifeature fusion technique to enhance the accuracy and robustness of our algorithm. The proposed algorithm is able to detect vehicles ahead at both day or night and also for short- and long-range distances. Experimental results under various weather and lighting conditions (including sunny, rainy, foggy, or snowy) show that the proposed algorithm outperforms state-of-the-art algorithms
    corecore