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Overview of Environment Perception for Intelligent
Vehicles

Hao Zhu, Ka-Veng Yuen, Lyudmila Mihaylova and Henry Leung, Fellow, IEEE

Abstract—This paper presents a comprehensive literature re-
view on environment perception for intelligent vehicles. The
state-of-the-art algorithms and modeling methods for intelligent
vehicles are given, with a summary of their pros and cons. A
special attention is paid to methods for lane and road detection,
traffic sign recognition, vehicle tracking, behavior analysis, and
scene understanding. In addition, we provide information about
datasets, common performance analysis, and perspectives on
future research directions in this area.

Index Terms—Intelligent vehicles, environment perception and
modeling, lane and road detection, traffic sign recognition, vehicle
tracking and behavior analysis, scene understanding.

I. I NTRODUCTION

RESEARCH and development on environmental percep-
tion, advanced sensing, and intelligent driver assistance

systems aim at saving human lives. A wealth of research has
been dedicated to the development of driver assistance systems
and intelligent vehicles for safety enhancement [1], [2]. For
the purposes of safety, comfortability, and saving energy, the
field of intelligent vehicles has become a major research and
development topic in the world.

Many government agencies, academics, and industries in-
vest great amount of resources on intelligent vehicles, such
as Carnegie Mellon University, Stanford University, Cornell
University, University of Pennsylvania, Oshkosh Truck Corpo-
ration, Peking University, Google, Baidu, and Audi. Further-
more, many challenges have been held to test the capability
of intelligent vehicles in a real world environment, such as
DARPA Grand Challenge, Future challenge, and European
Land-Robot Trial.
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Fig. 1. Four fundamental technologies of intelligent vehicle [3].

Intelligent vehicles are also called autonomous vehicles,
driverless vehicles, or self-driving vehicles. An intelligent ve-
hicle enables a vehicle to operate autonomously by perceiving
the environment and implementing a responsive action. It com-
prises four fundamental technologies: environment perception
and modeling, localization and map building, path planning
and decision-making, and motion control [3], as shown in
Fig. 1.

One main requirement to intelligent vehicles is that they
need to be able to perceive and understand their surroundings
in real time. It also faces the challenge of processing large
amount of data from multiple sensors, such as camera, radio
detection and ranging (Radar), and light detection and ranging
(LiDAR). A tremendous amount of research has been dedi-
cated to environment perception and modeling over the last
decade. For intelligent vehicles, data are usually collected by
multiple sensors, such as camera, Radar, LiDAR, and infrared
sensors. After pre-processing, various features of objects from
the environment, such as roads, lanes, traffic signs, pedestrians
and vehicles, are extracted. Both static and moving objects
from the environment are being detected and tracked. Some
inference can also be performed, such as vehicle behavior and
scene understanding. The framework of environment percep-
tion and modeling is given in Fig. 2. The main functions
of environment perception for intelligent vehicles are based
on lane and road detection, traffic sign recognition, vehicle
tracking and behavior analysis, and scene understanding. In
this paper, we present a comprehensive survey of the state-
of-the-art approaches and the popular techniques used in
environment perception for intelligent vehicles.

This paper is organized as follows. Vehicular sensors for
intelligent vehicles are presented in Section II. In Section III, a
survey on lane and road detection is given. The technology on
traffic sign recognition is summarized in Section IV. Then, the
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Fig. 2. The framework of environment perception and modeling [3].

survey of vehicle tracking and behavior analysis is presented
in Section V. A review of scene understanding technologies
is given in Section VI and discussions are presented in
Section VII. Finally, conclusions and open questions for future
work are presented in Section VIII.

II. V EHICULAR SENSORS

A significant progress has been made in the research of
intelligent vehicles in recent years. Intelligent vehicles tech-
nologies are based on the information of the ego vehicle and
its surroundings, such as the lanes, roads, and other vehicles,
using the sensors of intelligent vehicles [4], [5]. The sensors in
intelligent vehicles can be divided into internal and external
sensors. The information of an ego vehicle can be obtained
by internal sensors, such as engine temperature, oil pressure,
battery and fuel levels. External sensors measure objects of
the ego vehicle’s surroundings, such as lanes, roads, other
vehicles, and pedestrians. External sensors includes Radar,
LiDAR, and Vision. In the Internet of vehicles, these sensors
can communicate with other vehicles and road infrastructure.
The communication among sensors, actuators and controllers
is carried out by a controller area network (CAN). It is a serial
bus communication protocol developed by Bosch in the early
80s [4], [6].

A. Global Positioning System

The Global Positioning System (GPS) is a space-based
navigation system that provides time and location information.
However, there is no GPS signal in an indoor environment.
Other systems are also under development or in use. Typical
examples are the Russian Global Navigation Satellite System,
the Indian Regional Navigation Satellite System, the planned
European Union Galileo positioning system, and the Chinese
BeiDou Navigation Satellite System.

B. Inertial navigation system

The Inertial Navigation System (INS) is a self-contained
navigation system. It can be used to track the position and
orientation of an object without external references.

C. Radar

Radar is an object detection system. Using the signal of
radio waves, it can be used to determine the range, angle, or
velocity of objects. Radar is consistent in different illumination
and weather conditions. However, measurements are usually
noisy and need to be filtered extensively [7].

D. LiDAR

LiDAR has been applied extensively to detect obstacle in
intelligent vehicles [8]. It utilizes laser light to detect the
distance to objects in a similar fashion as Radar system.
Compared with Radar, LiDAR provides a much wider field-
of-view and cleaner measurements. However, LiDAR is more
sensitive to precipitation [7].

E. Vision

Vision sensors are suitable for intelligent vehicle. Compared
with Radar and LiDAR, the raw measurement of vision sensor
is the light intensity [9]. Vision sensor can be grouped as
camera, lowlight level night vision, infrared night vision, and
stereo vision. It can provide a rich data source and a wide
field of view.

III. L ANE AND ROAD DETECTION

Lane and road detection is an active field of research for
intelligent vehicles. Some surveys on recent developments in
lane and road detection can be found in [10], [11], [12].
We summarized some lane detection systems in Fig. 3. The
characteristics of these systems are given as follows:

(1) Lane departure warning: By predicting the trajectory of
the host vehicle, a lane departure warning system warns for
near lane departure events.

(2) Adaptive cruise control: In the host lane, the adaptive
cruise control follows the nearest vehicle with safe headway
distance.

(3) Lane keeping or centering: The lane keeping or centering
system keeps the host vehicles in the lane center.

(4) Lane change assist: The lane change assisting system
requires the host vehicle to change the lane without danger of
colliding with any object.

The difficulty of a lane and road detection system is condi-
tion diversity, such as lane and road appearance diversity, im-
age clarity, and poor visibility. Therefore, in order to improve
the performance of lane and road detect, various algorithms
have been proposed according to different assumptions on the
structured road. These assumptions are summarized as follows
[11]:

(1) The lane/road texture is consistent.
(2) The lane/road width is locally constant.
(3) Road marking follows strict rules for appearance or

placement.
(4) The road is a flat plane or follows a strict model for

elevation change.
Existing algorithms apply one or more of these assumptions.

Furthermore, the lane and road detection system usually con-
sists of three components: pre-processing, feature extraction,
and model fitting.
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Fig. 3. Some lane detection systems [11]: (a) Lane departure warning (b)
Adaptive cruise control (c) Lane keeping or centering (d) Lane change assist.

A. Pre-processing

Pre-processing is important for feature extraction in a lane
and road detection system. The objective of pre-processing
is to enhance feature of interest and reduce clutter. Pre-
processing methods can be categorized into two classes: re-
moving illumination-related effects and pruning irrelevant or
misleading image parts [12].

Due to the effects of time of a day and weather conditions,
vehicles face illumination-related problems. A robust lane and
road detection system should be able to handle the illumination
changes, from a sunny day to a rainy night. Information fusion
methods from heterogeneous sensors are effective to solve this
problem. Other weather-free methods have also been proposed.
In [13], a perceptual fog density prediction model was pro-
posed by using natural scene statistics and fog aware statistical
features. Observations and modeling of fog were studied by
cloud Radar and optical sensors in [14]. Furthermore, the cast
shadow is another major illumination-related issue. In a sunny
day, the shadow of trees can be casted on the road. Many color

space transformations to Hue Saturation Lightness (HSL),
Lightness and A and B for the color-opponent dimensions
(LAB), and others, which are not affected by illumination
changes, were proposed to eliminate the shadow effect [15],
[16], [17]. In [18], three different shadow-free images (1D, 2D,
and 3D) were investigated according to simple constraints on
lighting and cameras.

Vehicles, pedestrians, and other objects can be treated as
obstacles for the lane and road detection task. Many meth-
ods have been studied for pruning parts of the image. The
traditional approach is Regions of Interest (ROI) and feature
extraction is performed only on the ROI. A two-stage method,
including ROI extraction and lane marker verification, was
proposed for robust detection of pedestrian marked lanes at
traffic crossings. ROI extraction was performed by using color
and intensity information [19]. In [20], a set of Regions of
Interests (ROIs) was detected by a Motion Stereo technique
to improve the pedestrian detector’s performance. Using dense
stereo for both ROIs generation and pedestrian classification, a
novel pedestrian detection system for intelligent vehicles was
presented in [21].

B. Feature extraction

1) Lane feature:In general, a lane feature can be detected
by appearance of shape or color [12]. The simplest approach
of lane feature extraction assumes that the lane color is known.
Using the median local threshold method and a morphological
operation, lane markings can be extracted [22]. An adaptive
threshold method was proposed to lane markings detection in
[23].

Lane shape or color can be used to represent different
types of lanes on the road, such as solid line, dashed line,
segmented line, and circular reflector. Some colors can be used
for lane detection, such as white, yellow, orange and cyan.
Other lane feature extraction methods were based on one or
more assumptions [11], [23].

The detection methods are based on differences in the
appearance of lanes compared with the appearance of the
whole road. With this assumption, gradient-based feature
extraction methods can be applied. In [11], a steerable filter
was developed by computing three separable convolutions to
a lane tracking system for robust lane detection.

In [24], [25], [26], the lane marks were assumed to have
narrower shape and brighter intensity than their surroundings.
Compared with the steerable filter, a method with fixed vertical
and horizontal kernels was proposed with the advantage of fast
execution and disadvantage of low sensitivity to certain line
orientations [24]. In [27], the scale of kernel can be adjusted.

Furthermore, some practical techniques ([28], [29], [30],
[31]) were applied using mapping images to remove the per-
spective effect [12]. However, the inverse perspective mapping
(IPM) assumes that the road should be free of obstacles.
In order to resolve this problem, a robust method based on
multimodal sensor fusion was proposed. Data from a laser
range finder and the cameras were fused, so that the mapping
was not computed in the regions with obstacles [32].

By zooming into the vanishing point of the lanes, the lane
markings will only move on the same straight lines they are
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on [33]. Based on this fact, a lane feature extraction approach
was presented [33], [34].

2) Road feature:Roads are more complicated than lanes
as they are not bounded by man-made markings. Under
different environments, different cues can be used for road
boundaries. For example, curbs can be used for urban roads
and barriers can be found in highway roads [12]. Different
road features should be extracted in different environments
based on different assumptions.

Roads are assumed to have an elevation gap with its
surrounding [24], [35], [36], [37]. Stereo vision-based methods
were applied to extract the scene structure [35]. In [24], [36],
[38], a road markings extraction method is proposed based
on three dimensional (3-D) data and a LiDAR system. In
[37], a method was proposed to estimate the road region in
images captured by vehicle-mounted monocular camera. Using
an approach based on the alignment of two successive images,
the road region was determined by calculating the differences
between the previous and current warped images.

Another method for road feature extraction is based on road
appearance and color, where it is assumed that the road has
uniform appearance. In [17], a region growing method was
applied to road segmentation. In [11], the road appearance
constancy was assumed. Some methods based on road color
features were considered in [39], [40]. A road-area detection
algorithm based on color images was proposed. This algorithm
is composed of two modules: boundaries were estimated using
the intensity image and road areas were detected using the full
color image [40].

Texture is also used as road feature [41], [42]. Using
Gabor filters, texture orientations were computed. Then an
edge detection technique was proposed for the detection of
road boundaries [42]. In order to improve the performance of
road detection, methods incorporating prior information have
been proposed, such as temporal coherence [43] and shape
restrictions [39]. Temporal coherence is averaging the results
of consecutive frames. Shape restrictions mean the modeling
of the road shape and restricting the possible road area [44].
Using geographical information systems, an algorithm was
proposed to estimate the road profile online and prior to
building a road map [44].

C. Model fitting

The lane and road model can be categorized into three
classes: parametric models, semi-parametric models, and non-
parametric models [12].

1) Parametric models:In the case of short range or high-
way, straight line is the simplest model for path boundaries.
For curved roads, parabolic curves and generic circumference
arcs were proposed in the bird’s eye view. Hyperbolic polyno-
mial curves and parabolic curves were applied to handle more
general curved paths in the projective headway view [12].

Many methods were developed to fit the parametric mod-
els, such as random sampling consensus (RANSAC), Hough
transform, vanishing point, and Kalman filter. RANSAC has
the ability to detect outliers and to fit a model to inliers
only. It has been investigated for all types of lane and road

models. In [29], a Kalman filter-based RANSAC method was
found to lane detection. In [45], a parabolic lane model was
proposed and the parameters of the lane model were obtained
by the randomized Hough transform and genetic algorithm.
By assuming a constant path width, vanishing points can be
applied as texture for linear boundaries. In [46], the Hough
transform and a voting method were utilized to obtain the
vanishing points and the road boundaries.

2) Semi-parametric models:In contrast to parametric mod-
els, semi-parametric models do not assume a specific global
geometry of the path. Therefore, it is necessary to consider
the problem of over-fitting and unrealistic path curvature [12].

Splines are piecewise-defined polynomial functions [12]. A
cubic-spline curve enables fast fitting since the control points
are on the curve. A lane-boundary hypothesis was represented
by a constrained cubic-spline curve in [47]. A B-Spline can
describe any arbitrary shape using control points. Using a B-
Snake to perform lane marking detection, a lane tracking algo-
rithm was proposed in [48]. Cubic Hermite splines ensure the
continuity of the extracted features. In [24], the cubic Hermite
spline was proposed to extract features, which represents the
underlying lane markings. In all spline models [12], the curves
were parameterized using a set of control points either on [47]
or near [48] the curve. In [49], a Catmull-Rom spline was
proposed for lane detection. One major advantage of splines
is that small changes in the parameters lead to small changes
in the appearance of the curves they model [12].

3) Non-parametric models:Non-parametric models require
only continuity but not differentiability of the curve. In [50],
an ant colony optimization method was proposed to solve
the road-borders detection problem. In [51], a hierarchical
Bayesian network method was used to detect off road driv-
able corridors for autonomous navigation. Considering only
constrained relations among points on the left and right lane
boundaries, a lane model was proposed in [28]. Table I
summarizes various methods for lane and road detection.

D. Evaluation

In order to compare the performance of different methods,
it is necessary to establish benchmark and evaluate algorithms
for lane and road detection. Some datasets are available, such
as the Caltech Lanes dataset and Road markings dataset. Cal-
tech Lanes dataset1 was built from streets in Pasadena, CA at
different times of day. It includes 1225 individual frames. Road
markings dataset2 includes more than 100 original images of
diverse road scenes.

We performed experiments on the Caltech Lanes dataset and
1224 frames have been used. Each frame has640×480 pixels.
A RANSAC line fitting-based method [56], a feature pattern-
based method [58], a Hough transform-based method3, and a
B-Snake-based method [59] are compared. In the RANSAC

1The data set is publicly available at
http://www.vision.caltech.edu/malaa/datasets/caltech-lanes/

2The data set is publicly available at
http://www.lcpc.fr/english/products/image-databases/article/roma-road-
markings-1817

3http://cn.mathworks.com/help/vision/examples/lane-departure-warning-
system.html
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TABLE I
VARIOUS METHODS IN LANE AND ROAD DETECTION

Research
study

Feature ex-
traction

Model fitting Accuracy reported in the original paper Processing time reported
in the original paper

Comment

Li et al.,
2003 [23]

color infor-
mation

curve fitting Not given the numerical performance N/A using an adaptive thresh-
old method without being
predefined, only consider
the color information fea-
ture

Lee et al.,
2001 [52]

transformation
modules

piecewise linear
• Dataset: real expressway
• Results: 58 lane changes of total 61 lane changes are successfully

detected

Mean alarm triggering
time: 0.643 seconds at
15Hz

lane departure warning.
sensor fusion algorithm is
proposed to estimate lane
geometry

Jung et al.,
2016 [53]

Hough
transform

cubic curve
• Dataset: Borkar’s dataset [54], Yoo’s dataset [55], and Jung’s dataset
• Performance evaluate: Lane detection rate
• Results:

– Borkar’s dataset: 95.72%
– Yoo’s dataset: 97.68%
– Jung’s dataset: 88.70%

0.117 seconds for a 1-
second video

alignment of multiple
consecutive scanlines

McCall et
al., 2006
[11]

steerable fil-
ters

parabolic approximation
• Dataset: scenes from dawn daytime, dusk, and nighttime data
• Performance evaluate: mean absolute error in position, standard devi-

ation of error in position, and standard deviation of error in rate of
change of lateral position

• Results:

– mean absolute error in position: 8.2481 cm (average)
– standard deviation of error in position: 13.1377 cm (average)
– standard deviation of error in rate of change of lateral position:

0.29595 cm/s (average)

N/A robustness to complex
environment

Aly et al.,
2008 [56]

filtering
with
Gaussian
kernels

RANSAC spline fitting
• Dataset: 1224 labeled frames containing 4172 marked lanes
• Performance evaluate: the correct detection rate, the false positive rate,

and the false positive/frame rate
• Results:

– 2-lanes mode: detecting only the two lane boundaries of the current
lane

∗ the correct detection rate: 96.34%
∗ the false positive rate: 11.57%
∗ the false positive/frame rate: 0.191

– all lanes mode: detecting all visible lanes in the image

∗ the correct detection rate: 90.89%
∗ the false positive rate: 17.38%
∗ the false positive/frame rate: 0.592

N/A generating a top view of
the road using inverse
perspective mapping

Wang et al.,
2012 [33]

global shape
information

parallel parabolas on the
ground plane • Dataset: several video sequences

• Performance evaluate: ER value means parameter estimation error
• Results:

– scene 1 ER: 0.11 (parameter a), 0.27 (parameter b1), 0.38 (parameter
b2), and 0.71 (parameter c)

– scene 2 ER: 0.36 (parameter a), 0.99 (parameter b1), 0.27 (parameter
b2), and 0.80 (parameter c)

– scene 3 ER: 1.06 (parameter a), 0.41 (parameter b1), 0.19 (parameter
b2), and 1.01 (parameter c)

N/A based on the fact that by
zooming into the vanish-
ing point of the lanes,
the lane markings will
only move on the same
straight lines they are on

Yamaguchi
et al., 2009
[37]

shape infor-
mation

road region boundary is
represented by a single
line

Not given the numerical performance N/A road have an elevation
gap with its surrounding

Rasmussen
et al., 2004
[42]

texture
information

vanishing point Not given the numerical performance N/A designed for ill-
structured roads

Cui et al.,
2016 [57]

color and
shape
information

white bars of a particu-
lar width against a darker
background

• Dataset: different urban traffic scenes
• Performance evaluate: the mean absolute error of the lane marking

detection accuracy
• Results: about 3 pixels

N/A shape registration algo-
rithm between the de-
tected lane markings and
a GPS-based road shape
prior for localization

line fitting-based method [56], a top view of the image was
obtained by IPM, then some selective oriented Gaussian filters
were proposed, and a RANSAC spline fitting algorithm was
used to detect lanes. In feature pattern-based method [58], lane
features were detected by HSV color spaces, and the Hough
transform algorithm was proposed to detect the lanes. In
Hough transform-based method, the lane features was detected
by color thresholding. Then, Hough transform algorithm was
applied. In the B-Snake-based method [59], a B-Snake model

was proposed to detect the lane boundaries. Lane detection
samples by these four algorithms are given in Fig. 4. The
measures of correct rate and false positive rate are utilized to
evaluate these four algorithms. For simplicity, the results only
focus on the two lane boundaries of the current lane. The
detection results are given in Table. II. The RANSAC line
fitting-based method has the highest correct and false positive
rates.
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Fig. 4. Lane detection samples by these four algorithms. The first column
is the RANSAC line fitting-based method results, the second column is the
feature pattern-based method results, the third column is the Hough transform-
based method results, and the fourth column is the B-Snake-based method
results. The first row is the frame=65, the second row is the frame=67, the
third row is the frame=201, and the fourth row is the frame=222.

TABLE II
THE RESULTS OF LANE DETECTION

Method Correct rate
(%)

False positive
rate (%)

The RANSAC line fitting-
based method

96.39 11.25

The Feature pattern-based
method

95.33 6.44

The Hough transform-based
method

95.49 8.40

The B-Snake-based method 94.22 10.63

IV. T RAFFIC SIGN RECOGNITION

Traffic signs are used on roads to represent different traffic
situations. Most traffic signs are encoded as visual language,
which can be quickly interpreted by drivers. Traffic signs
can be divided into ideogram-based signs and text-based
signs. Ideogram-based signs express the sign meaning through
graphics. The text-based signs contain text or other symbols
[60]. Therefore, the text-based signs usually contain more
information than the ideogram-based signs, but recognition of
the text-based signs is more time-consuming. As a result, most
research works were dedicated to ideogram-based signs.

Traffic signs give warning to drivers, show the danger and
special attention around them, and help them navigate [61].
Some traffic signs of China, United States and Europe are
given in Table III. Even though the traffic signs of most
countries are conformed to the Vienna Convention, some
traffic signs are country-dependent.

The first paper on sign recognition was published in Japan in
1984 [61]. In the following decades, a large volume of research
works on traffic sign recognition were conducted. However,
as traffic signs are placed in complex outdoor conditions,
traffic sign recognition is a nontrivial problem. The influencing
factors are summarized as follows [60]:

TABLE III
SOME TRAFFIC SIGNS OFCHINA , AMERICA, AND EUROPE

Road
Sign

Interpretation Color Shape Region

Prohibition Red, White Octagon China

Prohibition Red, White Octagon Europe

Prohibition Red, White Octagon U.S.

Prohibition Red, White, Black Circle China

Prohibition Red, White, Black Circle Europe

Prohibition Red, White, Black Circle U.S.

Warning Red, White, Black Circle China

Warning Red, White, Black Circle Europe
SPEED

LIMIT

Warning Red, White, Black Circle U.S.

Obligation Blue, White Circle China

Obligation Blue, White Circle Europe
KEEP

LEFT Obligation Blue, White Circle U.S.

(1) lighting conditions: such as sunny, shady, rainy, cloudy,
and windy;

(2) background: such as freeways, expressways, highways,
boulevards, streets, and country roads;

(3) the presence of other objects in the scene: such as cars,
pedestrians, and fog;

(4) varied appearance of traffic signs: the size, angle, and
position of traffic signs may be different in different images;

(5) long exposure: under long exposure, the color of traffic
sign may be faded;

(6) measurement: the image of traffic sign suffers from
motion blur using a moving measured platform.

Other noteworthy works on recent developments in traffic
sign recognition are given in [60], [62], [63], [64]. The system
of traffic sign recognition can be partitioned into three steps:
segmentation, feature selection and detection.

A. Segmentation

The purpose of the segmentation process is to obtain the
location of the traffic sign. Some of the previous works
bypassed this step and started directly with detection [65],
[66], [67], [68]. Most of them were based on color and a
threshold of images in some color space. The RGB color space
is a popular representation modality for images, but the RGB
space is sensitive to changes in lighting. As a result, Hue,
Saturation, and Intensity (HSI) space and Hue, Saturation, and
Value (HSV) space were proposed [69], [70], [71]. HSI color
space is similar to human perception of colors [70]. A color
appearance model CIECAM97 was used to measure color
appearance under various viewing and weather conditions [72],
[73]. In [74], the authors demonstrated that a good approach
to image segmentation should be normalized with respect to
illumination, such as RGB or Ohta normalization.

In addition to these color-based threshold methods, other
methods were also proposed. In [75], a cascaded classifier
trained with AdaBoost was proposed for traffic sign detection.
In [76], a color-based search method was developed with
a discrete-color image representation. In [77], it generated
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ROIs with possible traffic sign candidates using a biologically
motivated attention system.

B. Shape features

The methods of feature selection for traffic sign recognition
can be divided into color-based approaches and shape-based
approaches. The color of traffic sign includes yellow, black,
red, blue, and white while the shape of traffic sign includes
triangle, circle, and octagon. The color-based feature selection
methods are the same as the methods for segmentation.

For the shape-based methods, the most popular one is
based on edges. Using the Canny edge detection or other
variations, the edges can be detected [78], [79], [80], [81].
The histogram of oriented gradients (HOG) method was also
proposed. A traffic sign detection approach was developed by
use of visual saliency and HOG feature learning [82]. Two
new HOG features, namely the Single Bin HOG feature and
Fishers discriminant analysis linearized HOG feature, were
proposed in [83]. The HOG feature with color information
was proposed to obtain a more robust feature [67]. A Haar
wavelet-like feature for traffic sign is another alternative [68],
[84]. Furthermore, some other methods were proposed, such
as distance to bounding box [85], fast Fourier transform (FFT)
of shape signatures [86], tangent functions [71], simple image
patches [70], and combinations of various simple features
[77]. In [64], integral channel features and aggregate channel
features were proposed to detect U.S. traffic signs.

C. Detection

As the detection step is coupled with the feature extraction
step, the choice of detection method depends on the features
from the previous stage [63]. The Hough transform was
proposed to process the edge features [87], [88]. A radial
symmetry detector was proposed for sign detection [89], [90].
In [79], a fast radial symmetry transform was proposed to
detect triangular, square or octagonal road signs.

A Support Vector Machine (SVM) was proposed to process
the HOG feature [67], [82]. A cascaded classifier was also used
to classify HOG features [83], [91]. A multilayer perceptron
neural networks was also proposed to detect road sign in
[70]. Genetic algorithms for sign road detection was presented
in [92]. An overview of traffic sign detection methods is
summarized in Table IV.

D. Evaluation

Public traffic sign datasets with ground truth are available
at the German TSR Benchmark4, KUL Belgium Traffic Signs
Data set5, Swedish Traffic Signs Data set6, RUG Traffic Sign
Image Database7, Stereopolis Database, and LISA Dataset

4The data set is publicly available at
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset

5The data set is publicly available at http://www.vision.ee.ethz.ch/t̃imofter/
6The data set is publicly available at

http://www.cvl.isy.liu.se/research/datasets/traffic-signs-dataset/
7The data set is publicly available at http://www.cs.rug.nl/

ĩmaging/databases/trafficsign database/trafficsign database.html

TABLE V
RESULTS OF COMPARISON TRAFFIC LIGHT RECOGNITION SYSTEMS

Segmentation Feature Classification Precision
(%)

Recall
(%)

Color
thresholding

HSV Color
thresholding

68 62.8

Color
thresholding

RGB Color
thresholding

65 68

RGB Color
thresholding

HOG SVM 80.6 82

RGB Color
thresholding

Local binary
pattern

SVM 83 83.3

RGB Color
thresholding

Gabor
wavelet

Linear
discriminant
analysis

79 82.1

8. Results for detection with these data sets and tracking
are presented in [63], [64]. The performance evaluation is
performed with important measures such as detection rate and
false positives per frame.

We performed experiments on traffic light recognition. The
dataset of La Route Automotive at Mines ParisTech9, Paris,
was chosen. We used a set of 200 red lights, 200 green lights,
100 yellow lights for training and 200 red lights, 200 green
lights, 100 yellow lights for testing. Each frame has640 ×

480 pixels. To evaluate traffic light recognition systems, the
common measures precision and recall were chosen. They are
defined as:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

whereTP , FP , and FN denotes true positives, false pos-
itives, and false negatives, respectively. The results of the
performance comparison of the considered methods are given
in Table V. From this table, the method of SVM with local
binary patterns is found to provide the the best performance.

V. V EHICLE DETECTION, TRACKING AND BEHAVIOR

ANALYSIS

Although there have been substantial developments in the
field of vehicle tracking and behavior analysis, the field is
still at its infancy stage. The framework of vehicle tracking
and behavior analysis is illustrated in Fig. 5. From this
figure, some features can be used to perform vehicle detection
from numerous vehicular sensors. Vehicles can be tracked by
many multi-sensor multi-target tracking algorithms. Then, the
behavior of vehicles can be inferred.

A. Vehicle detection

Research on vehicle detection faces the problem of outdoor
complex environments, such as illumination and background
changes and occlusions. Key developments on vehicle detec-
tion were summarized in [9], [101]. The vehicle detection
methods can be categorized into appearance-based and motion-
based [9].

8The data set is publicly available at http://cvrr.ucsd.edu/LISA/datasets.html
9http://www.lara.prd.fr/benchmarks/trafficlightsrecognition
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TABLE IV
AN OVERVIEW OF TRAFFIC SIGN DETECTION METHODS

Research
study

Segmentation Features Detection methods Real-time
implementa-
tion

Sign type Accuracy reported in the original paper Processing time reported
in the original paper

Maldonado-
Bascn et al.,
2007 [85]

HSI thresh-
olding

distance to bounding box Shape classification
based on linear SVMs

No Circular, rectangular, tri-
angular, and octagonal

the recognition success probabilities are 93.24%, 67.85%, and 44.90% for the small, medium-sized,
and large masks, respectively

1.77s per frame on a 2.2
GHz Pentium 4M, where
the frame dimensions are
720*576 pixels

Keller et al.,
2008 [93]

Radial sym-
metry voting

Haar wavelet features Cascaded classifier Yes Rectangular
• Dataset: a videos consists of 16826 frames with 80 different speed sign instances
• Performance evaluate: Detection rate, classification rate, and recognition rate
• Results:

– Detection rate: 98.75%
– Classification rate: 97.5%
– Recognition rate: 96.25%

N/A

Gao et al.,
2006 [72]

LCH thresh-
olding

HOG Comparison with tem-
plate

No Circular and Rectangular
• Dataset: several real road sign databases
• Performance evaluate: Detection rate, classification rate, and recognition rate
• Results:

– Detection rate: 98.75%
– Classification rate: 97.5%
– Recognition rate: 96.25%

From 0.2 up to 0.7 sec-
onds per image on a PC
with Pentium.III

Barnes et
al., 2008
[80]

None Edges Radial symmetry voting Yes Circular
• Dataset: real data collected on public roads around Canberra, Australian
• Performance evaluate: Detection rate
• Results: 93% successful detection with around 0.5 false positive per sequence

N/A

Gonzalez
et al., 2011
[88]

None Edges Hough shape detection No Any sign
• Dataset: real data collected on Spanish road
• Performance evaluate: detection signs ratio and valid signs ratio
• Results: detection signs ratio: 98.10% and valid signs ratio: 99.52%

N/A

Xie et al.,
2009 [82]

Saliency de-
tection

HOG SVM N/A Circular and square
• Dataset: real images
• Results:

– Detection ratio: 98.30% (average)
– False positive rate: 4.71% (average)

10 seconds for a 400x300
image

Zaklouta et
al., 2012
[94]

Color HOG and distance trans-
forms

K-D trees, random
forests, and SVM

Yes Red color sign
• Dataset: German TSR Benchmark
• compare the performance of the k-d trees, the random forests, and the SVM classifiers

N/A

Yuan et al.,
2014 [95]

None Color global and local
oriented edge magnitude
pattern

SVM N/A Any sign
• Dataset: Spanish Traffic Sign Set, German TSR Benchmark, and Authors data set
• Results:

– Detection results

∗ Precision: 94.45% (Spanish Traffic Sign Set) 87.34% (Authors data set)
∗ Recall: 88.02% (Spanish Traffic Sign Set) 91.60% (Authors data set)

– Classification results: accuracy rate

∗ Authors data set:97.24%
∗ German TSR Benchmark: 97.26%

4 frames per seconds,
where the frame is
1360*1024

Yuan et al.,
2015 [96]

Multithreshold
segmenta-
tion

Color, saliency, spatial,
and contextual

SVM N/A Any sign
• Dataset: Spanish Traffic Sign Set, German TSR Benchmark, and Swedish Traffic Signs Data set
• Results:

– Detection results

∗ Spanish Traffic Sign Set: Precision (91.46%), Recall (96.57%), and F-measure (93.95%)
∗ German TSR Benchmark: Precision (89.65%), Recall (87.84%), and F-measure (88.73%)
∗ Swedish Traffic Signs Data set: Precision (96.30%), Recall (96.21%), and F-measure

(96.25%)

– Classification results: accuracy rate

∗ Spanish Traffic Sign Set: 100%
∗ German TSR Benchmark: 97.63%
∗ Swedish Traffic Signs Data set: 95.49%

3 frames per seconds,
where the frame is
1280*960

Yang et al.,
2016 [97]

None color probability model
and HOG features

SVM and convolutional
neural network

No Any sign
• Dataset: German TSR Benchmark and Chinese Traffic Sign Dataset
• Results:

– Detection results: Recall

∗ German TSR Benchmark: 99.47%
∗ Chinese Traffic Sign Dataset: 99.51%

– Classification results: accuracy rate

∗ German TSR Benchmark: 98.24%
∗ Chinese Traffic Sign Dataset: 98.77%

165 ms per image of
1360*800 pixel using a
PC with a 4-core 3.7 GHz
CPU

Liu et al.,
2016 [98]

High
contrast
region
extraction

Voting of neighboring
features

Split-flow cascade tree
detector and extended
sparse representation
classification

No Any sign
• Dataset: German TSR Benchmark
• Results: Classification results

– Accuracy: 94.81%
– False alarm rate: 4.10%

115 ms per image of
1360*800 pixel using a
PC with a 4-core 3.19
GHz CPU

Chen et al.,
2016 [99]

Saliency
model

Color, shape, and spatial
location information

AdaBoost and support
vector regression

Yes Any sign
• Dataset: German TSR Benchmark, Spanish Traffic Sign Set, and KUL Belgium Traffic Signs

Data set
• Performance evaluate: area under curve, precision, and recall
• Results:

– German TSR Benchmark: area under curve 99.96%
– KUL Belgium Traffic Signs Data set: area under curve 97.04%
– Spanish Traffic Sign Set: precision 94.52% recall 80.85%

0.05-0.5 seconds per im-
age

Hu et al.,
2016 [100]

None Spatially pooled features
and aggregated channel
features

Normalized spectral clus-
ter

N/A Any sign
• Dataset: German TSR Benchmark and KITTI Dataset
• Performance evaluate: precision-recall curve and average precision

about 0.6 seconds per im-
age

1) Appearance-based methods:Many appearance features
have been proposed to detect vehicles, such as: color, symme-
try, edges, HOG features, and Haar-like features. Using color
information, vehicles can be segmented from the background.
In [102], multivariate decision trees for piecewise linear non-
parametric function approximation was used to model the
color of a target object from training samples. In [103], an
adaptive color model was proposed to detect the color features

of the objects around the vehicles. In [104], symmetry as
a cue for vehicle detection was studied. In [105], a scheme
of symmetry axis detection and filtering based on symmetry
constraints was proposed.

More recently, simpler image features (e.g., color, symme-
try, and edges) have been transformed to robust feature sets.
In [106], vehicles were detected based on their edges of HOG
features and symmetrical characteristics. In [107], HOG sym-
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Fig. 5. The framework of vehicle tracking and behavior analysis [9].

metry vectors were proposed to detect vehicles. Haar features
are sensitive to vertical, horizontal, and symmetric structures
[9]. In [108], Haar and Triangle features were proposed for
vehicle detection systems. HOG and Haar features were used
to detect vehicle in [109].

After generating the hypothesis of locations of possible
vehicles, verification is necessary for the presence of vehicles.
SVM and AdaBoost methods are widely used for vehicle
detection. A system of integrated HOG feature and SVM clas-
sification has been studied in [106], [110]. The combination
of edge feature and SVM classification was given in [111].
AdaBoost was proposed to classify the symmetry feature and
edge feature in [112] and [113], respectively. The Haar-like
feature and AdaBoost classification has been applied to detect
vehicles [114], [115].

2) Motion-based methods:In motion-based vehicle detec-
tion methods, optical flow and occupancy grids have been
widely used. In [116], optical flow was proposed to detect
any type of frontal collision. In [117], the optical flow method
was applied to a scene descriptor for classifying urban traffic.
The optical flow was also proposed to analyze road scenes [9],
[118]. Occupancy grids are proposed for scene segmentation
and understanding. In [119], occupancy grids were filtered
both temporally and spatially. In [120], an occupancy grid
tracking solution was proposed based on particles for tracking
the dynamic driving environment.

B. Vehicle tracking

The aim of vehicle tracking is to reidentify and measure dy-
namics and motion characteristics and to predict and estimate
the upcoming position of vehicles [9]. The major problems
include: measurement error uncertainty, data association, and
necessity to fuse efficiently data from multiple sensors.

1) Measurement uncertainty:In the tracking on platform
of intelligent vehicles, the measurement noise is the main
issue of measurement uncertainty. The Kalman filter is the

optimal algorithm in a linear system under Gaussian noises.
However, in Radar-based tracking non-Gaussian distributions
are often observed [121]. Many methods have been proposed
to deal with this non-Gaussian nature of the noises. They
can be classified as recursive and batch approaches [122].
The recursive approaches are performed online [123], such
as the Masreliez filter, multiple model (MM) approaches,
Sequential Monte Carlo (SMC) approaches, and interacting
multiple model (IMM) filters. The batch approaches are with
offline implementations. In [124], an expectation maximization
(EM) algorithm and an IMM algorithm were developed. In
[125], a variational Bayesian (VB) algorithm was proposed
to estimate the state and parameters in non-Gaussian noise
systems.

2) Data association:Data association plays an important
role in the multi-sensor multi-target systems. The algorithms
of data association can be divided into explicit data association
algorithms and implicit data association algorithms [126].
Methods for explicit data association tracking vary widely:
from the nearest neighbor (NN) algorithm [127], the multi-
hypothesis tracking (MHT) approach [128], the probabilistic
data association (PDA) approach [129], to the joint probability
data association (JPDA) algorithms [130], [131]. In contrast
to explicit data association, implicit data association tracking
approaches output a set of object hypotheses in an implicit
way, such as particle filter approaches [132], probability
hypothesis density (PHD) filtering [133], multi-target multi-
Bernoulli (MeMBer) filtering [134], [135], and labeled multi-
Bernoulli filtering [136].

3) Fusion: The architectures for sensor data fusion can be
divided into centralized and decentralized fusion. Combining
the overall system measurements, most of the data and infor-
mation processing steps are performed at the fusion center
in centralized fusion. In [137], a multitarget detection and
tracking approach for the case of multiple measurements per
target and for an unknown and varying number of targets
was proposed. In [138], [139], a joint sensor registration and
fusion approach was developed for cooperative driving in
intelligent transportation systems. In [140], [141], a multi-
sensor and multitarget surveillance system was developed
based on solving jointly the registration, data association and
data fusion problems.

For the decentralized fusion architecture, the fusion of tracks
can be performed at the tracks level. In [142], based on
equivalent measurements, a joint sensor registration and track-
to-track fusion approach was proposed. In [143], using a
pseudo-measurement approach, a joint registration, association
and fusion method at distributed architecture was developed.
In [144], using information matrix fusion, a track-to-track
fusion approach was presented for automotive environment
perception. Therefore, many heterogeneous sensor data can
be fused for vehicle tracking [145].

4) Joint lane, vehicle tracking, and vehicle classification:
The performance of vehicle tracking can be improved by
utilizing the lane information and vehicle characteristics to
enforce geometric constraints based on the road information.
The lane tracking performance can be improved by exploiting
vehicle tracking results and eliminating spurious lane marking
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TABLE VII
THE RESULTS OF VEHICLE TRACKING

Method Distance
The tracking by detection method 68.78
The scene flow-based method 18.12
The L1-based tracker method 0.95
The compressive tracking method 2.40

filter responses from the search space [146]. Vehicle character-
istics can be used to enhance data association in multi-vehicle
tracking. However, few works have explored simultaneous
lane, vehicle tracking and classification. A joint lanes and
vehicles tracking system was proposed by a PDA filter using
camera in [147]. In [148], simultaneous lane and vehicle
tracking method using camera was applied to improve vehicle
detection. In [146], a synergistic approach to integrated land
and vehicle tracking using camera was proposed for driver
assistance. In [149], using lane and vehicle information, a
maneuvering target was tracked by Radar and image-sensor-
based measurement. In [150], an integrated system for vehicle
tracking and classification was presented. Table VI highlights
key representative works in vehicle detection and tracking.

We performed experiments on KITTI datasets. A total of
278 frames were used and results are obtained with the
tracking by detection method10, the scene flow-based method
[158], an L1-based tracking method [159], and a compressive
method [160]. These algorithms were applied to tracking
single vehicle and comparative results from separate video
frames results are given in Fig. 6. A measure of the distance
between the true centerline and the estimated centerline is used
to evaluate these algorithms. The tracking results are given in
Table. VII. It is observed that the L1-based tracker method
has the best performance.

C. Behavior analysis

Using the results from the vehicle detection and tracking
system, an analysis of the behaviors of other vehicles can be
performed. Four characteristics of vehicle behavior are pre-
sented, namely context, maneuvers, trajectories and behavior
classification [146].

1) Context: The role of context is important for vehicle
behavior analysis. In [117], modeling the driving context,
the driving environment was classified. In [161], a dynamic
visual model was designed to detect critical motions of nearby
vehicles. In [154], the behavior of on-coming vehicles was
inferred by motion and depth information.

2) Maneuvers:An overtaking monitoring system was pre-
sented in [162]. In [163], combining the information pro-
vided by Radar and camera, an optical flow method was
implemented to detect overtaking vehicles. In [154], an IMM
was evaluated for inferring the turning behavior of oncoming
vehicles. In [149], a Markov process was constructed to model
the behavior of on-road vehicles.

3) Trajectories: In [164], a long-term prediction method
of vehicles was proposed. In [165], highway trajectories were

10http://www.cvlibs.net/software/trackbydet/

clustered using hidden Markov model. In [166], vehicle track-
ing in combination with a long term motion prediction method
was presented.

4) Behavior classification:Efficient models such as Gaus-
sian mixture models, Markov models, and Bayesian networks
have been validated for vehicle behavior classification. In
[164], the vehicle behavior was classified by a Gaussian
mixture model. In [167], the vehicle behavior was modeled by
Markov model before their future trajectories was estimated.
In [168], the behavior of vehicles was classified by a Bayesian
network.

VI. SCENE UNDERSTANDING

Scene understanding is very useful for intelligent vehicles.
The procedure of scene understanding can be broadly subdi-
vided to semantic segmentation and scene classification.

A. Semantic segmentation

Semantic segmentation is the first step towards scene un-
derstanding. It is mainly based on low-features, such as color,
edges, and brightness. The methods for feature selection have
been reported in the above subtasks of lane and road detection,
traffic sign recognition, and vehicle detection. Furthermore,
contextual information is important for semantic segmentation.
Using contextual information, the widely applied models of
scene understanding can be categorized as graphical models,
convolutional networks, cascaded classifiers, and edge detec-
tion [169].

1) Graphical models:Markov Random Fields (MRF) and
Conditional Random Fields (CRF) are the most popular ap-
proaches. In [170], an inference technique was presented for
MRF to minimize a unified energy function. In [171], a
CRF method was proposed for labeling images. In [172], a
hierarchical Dirichlet process was developed to model visual
scenes.

2) Convolutional networks:Convolutional networks are
widely used [169]. In [173], a convolutional network was
trained for scene parsing. In [174], a deep convolutional
network in combination with CRF was shown to improve the
semantic segmentation performance.

3) Cascaded classifiers:In [175], a different architecture
for combining multiple classifiers into a cascaded classifier
model was performed for scene understanding. In [176], a
feedback enabled cascaded classification model was developed
to jointly optimize several subtasks in scene understanding.
Since each classifier is considered in series, the training
process of a cascaded classifier model is substantially simpler
than convolutional networks [169].

4) Edge detection:Various unsupervised methods have
been applied for edge detection. In [177], an efficient edge
detector was introduced and able to learn different edge
patterns. In [169], a contextual hierarchical model was used to
distinguish between “patches centered on an edge pixel” and
“patches centered on a non-edge pixel”.
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TABLE VI
SOME REPRESENTATIVE WORKS IN VEHICLE DETECTION AND TRACKING

Research
study

Detection Tracking Accuracy reported in the original paper Processing time reported
in the original paper

Sensor type

Liu et
al.,2007
[151]

Contour
symmetry

Template
matching • Dataset: real-world video sequences

• Performance evaluate: tracking continuity
• Results:

– Urban road 97.9%
– Narrow road 93.6%
– High way 100%
– Mountain road 80.5%

25 frames per second us-
ing PC machine (Pentium
IV 2.8GHz and 512M of
RAM)

Monocular
vision

Haselhoff
et al.,2009
[152]

Haar-like
features

Kalman fil-
ter • Dataset: real-world video sequences

• Performance evaluate: overlap factor
• Results: around 90%

N/A Monocular
vision

Sivaraman
et al.,2009
[153]

Haar-like
features

Particle filter
• Dataset: LISA-Q Front FOV data set
• Performance evaluate:

– True positive rate: 95%(set 1) 91.7%(set 2) 99.8%(set
3)

– False detection rate: 6.4%(set 1) 25.5%(set 2) 8.5%(set
3)

– Average false positives/frame: 0.29(set 1) 0.39(set 2)
0.28(set 3)

– Average true positives/frame: 4.2(set 1) 1.14(set 2)
3.17(set 3)

– False positives/vehicle: 0.06(set 1) 0.31(set 2) 0.09(set
3)

N/A Monocular
vision

Barth et
al.,2010
[154]

Motion and
depth infor-
mation

Kalman fil-
ter, IMM • Dataset: synthetic stereo images

• Performance evaluate: root mean squared corner error
• Results: average 0.49m

80 ms per frame on an In-
tel Quad Core processor,

Stereo
vision

Danescu
et al.,2011
[120]

Occupancy
grids

Particle filter
• Dataset: synthetic stereo images
• Performance evaluate: speed and orientation estimation

accuracy
• Results: quickly converge toward the ground truth and

stable

40 ms per frame on an In-
tel Core 2 Duo processor
at 2.1 GHz

Stereo
vision

Lim et
al.,2013
[155]

HOG Markov
chain Monte
Carlo
particle
filter

• Dataset: real world stereo images
• Performance evaluate: the MOTP score and the MOTA

score
• Results:

– MOTA: 94.0% (Scene1) 89.8% (Scene2)
– MOTP: 68.2% (Scene1) 69.3% (Scene2)

N/A Stereo
vision

Fortin et
al.,2015
[156]

Point sets Sequential
Monte Carlo
methods

• Dataset: synthetic data and real data from an IBEO LD
Automotive scanning laser telemeter

• Performance evaluate: estimation accuracies, cardinality
accuracy, and OSPA-T distance

N/A LiDAR

Chavez-
Garcia et
al.,2016
[157]

Point sets
and HOG

Markov
chain Monte
Carlo

• Dataset: two datasets from urban areas and two datasets
from highways

• Performance evaluate: vehicle mis-classifications
• Results: 5.4% (Highway 1 ) 4.5% (Highway 2) 10.2%

(Urban 1) 10.3% (Urban 2)

N/A Radar, cam-
era, and Li-
DAR

B. Scene classification

As most scenes are composed of entities in a highly vari-
able layout, scene classification is an important problem for
environment perception. In the literature, scene classification

has been focused on binary problems, such as distinguishing
indoor from outdoor scenes. Inspired by the way how the
human perception system works, numerous efforts have been
devoted to classify a large number of scene categories. The
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Fig. 6. The samples tracking results by these four algorithms. The red box is the results of the tracking by detection method, the green box is the results
of the scene flow-based method, the blue box is the results of the L1-based tracker method, and the yellow box is the results of the compressive tracking
method.

most popular method is the “bag-of-features”. It represents
images as orderless collections. The features can be extracted
by the Scale-invariant feature transform (SIFT) [178] or the
HOG method [179]. In [180], the SIFT was proposed to
extract visual features and these features were encoded to a
Fisher kernel framework for scene classification. In [181], a
convolutional neural network (CNN) was proposed to perform
scene classification.

Recently, the model of “bag-of-semantics” was proposed. In
this model, an image is extracted as a semantic feature space.
It has the capability to perform a spatially localized semantic
mapping. In [182], a set of classifiers for individual semantic
attributes was trained for object classification. In [183], a high-
level image representation encoding object appearance and
spatial location information was proposed. In [184], a semantic
Fisher vector, which is an extension of the Fisher vector to bag-
of-semantics, was applied to classify image patches. Table VIII
highlights some representative works in scene understanding.

C. Datasets

Datasets are publicly available for scene understanding,
such as: the KITTI Vision dataset11 and the CityScapes
segmentation benchmark12. Furthermore, some researchers
have annotated KITTI images with semantic labels, such
as Jose Alvarez13, Philippe Xu14, Lubor Ladicky15, Fatma
Güney16, Sunando Sengupta17, German Ros18 and Abhijit
Kundu19. Some other datasets were captured using Kinect or
similar devices20.

VII. D ISCUSSION

From Section II to Section VI, the subtasks of environment
perception are given. In general, the process of segmentation,

11http://www.cvlibs.net/datasets/kitti/
12https://www.cityscapes-dataset.com/news/
13https://rsu.forge.nicta.com.au/people/jalvarez/researchbbdd.php
14https://www.hds.utc.fr/̃xuphilip/dokuwiki/en/data
15https://www.inf.ethz.ch/personal/ladickyl/
16http://www.cvlibs.net/projects/displets/
17http://www.robots.ox.ac.uk/t̃vg/projects/SemanticUrbanModelling/index.php
18http://adas.cvc.uab.es/s2uad/
19http://www.cc.gatech.edu/ãkundu7/projects/JointSegRec/
20http://www.cs.ucl.ac.uk/staff/M.Firman/RGBDdatasets/

detection, classification, and tracking can be treated as a piece
or whole framework for each subtasks. In this framework
feature extraction represents a key challenge. We summarize
some representative feature cues in Table IX.

For the lane and road detection, different methods rely on
different assumptions. Many features have been investigated.
A better solution is fusion of multiple features to achieve
reasonable performance. For model fitting, straight line is a
simple and effective model for short range roads or highway.
Splines are good models for curved roads.

In the traffic sign recognition systems, most segmentation
methods rely on color or shape information. The detection
approach is dependent on the choice of features. In most
traffic sign recognition system, color, shape, and structural
features are typically considered. The Hough transform and its
derivatives have been widely applied for the purposes of object
detection. The SVM, neural networks, and cascaded classifiers
have been used to classify the traffic sign using HOG or Haar
wavelet features. The performance of traffic sign recognition
can be improved, for instance by creating a combined feature
space and by using the map information. A drawback of traffic
sign recognition systems is due to the lack of public datasets
for training and testing.

For the purpose of vehicle tracking, the tradeoff between
accuracy and computational complexity is of primary impor-
tance. The motion and depth information add another layer
that can help improving the accuracy. However, most current
vehicle tracking algorithms do not use information about the
fact of vehicle driving on the road. We believe that a joint
framework of lane detection, vehicle classification, and vehicle
tracking are in the heart of the next generation of intelligent
vehicles.

The methods of deep learning [174] and semantic Fisher
vector [184] have a big potential in scene understanding.

VIII. C ONCLUSION

The development of environment perception and modeling
technology is one of the key aspects for intelligent vehicles.
This paper presents an overview of the state of the arts of
environment perception and modeling technology. First, the
pros and cons of vehicular sensors are presented. Next, popular
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TABLE VIII
SOME REPRESENTATIVE WORKS IN SCENE UNDERSTANDING

Research
study

Indoor or
outdoor

Characteristics Accuracy reported in the original paper Processing time reported
in the original paper

Comment

Lee et al.,
2009 [185]

indoor 3D cuboid from a single
image • Dataset: 54 images of indoor scenes

• Results:

– Classified correctly: 81% of the pixels
– Less than 30% misclassified pixels: 76% of the images
– 10% misclassified pixels: 44%

N/A Built on edges and image segments as features; most of them
rely on the Manhattan world assumption

Hedau et al.,
2009 [186]

indoor 3D occupancy grids
• Dataset: 308 indoor images
• Results:

– Error for box layout estimation: 21.2%(pixel error),
6.3%(corner error)

– Pixel error for surface label estimation: 18.3%(pixel
error)

N/A Modeling the room clutter using 3D occupancy grids

Pero et al.,
2012 [187]

indoor cuboids
• Dataset: UCB dataset and Hedau test
• Results: Average error on room layout estimation

– UCB dataset: 18.4%
– Hedau test: 16.3%

N/A Modeling the geometry and location of specific objects using
cuboids

Delaitre et
al., 2012
[188]

indoor context from observing
people • Dataset: 146 time-lapse videos

• Results:

– Pose estimation

∗ Average precision: about 50%
∗ Percentage of Correct Parts: about 56%

– Semantic labeling of objects

∗ Average precision: 43± 4.3(appearance, location
and person features combined)

N/A Functional object description to recognize objects by the way
people interact with them

Zeisl et al.,
2011 [189]

indoor structure prior vertical and non-vertical structures coexist O(nL) for an m*n image
and considering L depth
values

A natural assumption of bounded open space for building
interiors: (i) by parallel ground and ceiling planes, and (ii) by
vertical wall elements

Hoiem et al.,
2007 [190]

outdoor 3D layout of a scene from
a single image

Results: Average accuracy of varying levels of spatial support
and four types of cues are given

N/A Separating the ground from the vertical structures and the sky

Hoiem et al.,
2008 [191]

outdoor tree-structured modeling
(check) • Dataset: 422 outdoor images from the LabelMe dataset

• Performance evaluate:

– Object Detection : ROC curves for car and pedestrian
detection

– Horizon Estimation : median absolute error

N/A Framework for placing local object detection in the context of
the overall 3D scene by modeling the interdependence of objects

Sudderth et
al., 2008
[172]

outdoor hierarchical Dirichlet
process • Dataset: 613 street scenes and 315 pictures of office scenes

• Performance evaluate: segmentation results, ROC curves

N/A Couples topic models originally developed for text analysis
with spatial transformations; consistently accounts for geometric
constraints

Geiger et al.,
2012 [192]

outdoor Prior, Vehicle Tracklet,
Vanishing points, seman-
tic scene label, scene
flow, occupancy grid

• Dataset: 113 intersections scenes
• Performance evaluate: Topology Accuracy, Location Error,

Street Orient, Road Area Overlap, Tracklet Accuracy, Lane
Accuracy, Object Orient error, and Object Detection Ac-
curacy

N/A Understanding traffic situations at intersection

TABLE IX
SOME REPRESENTATIVE FEATURE CUES

Type Cues Characteristics or advantages Limitations
Appearance-
based

Color Simple calculations Affect from background with same color
Edge Low computational load

• Affect from outlier
• Difficult to choose the threshold

Symmetry
• Vertically symmetrical in multi-vehicle in road
• Useful to ROI estimation

• High computational load
• Difficult to choose the threshold

Corners Find corners with edge pixels Not useful in complex environment
Multiple
features • More precision

• Robustness

High computational load

Motion-
based

Occupancy
grids

Computing static obstacles and free space High computational load

Optical flow Matching pixels or feature points between two frames
• Not useful to slow moving objects
• High computational load

modeling methods and algorithms of lane and road detection,
traffic sign recognition, vehicle tracking and behavior analysis,
and scene understanding are reviewed. Public datasets and

codes of environment perception and modeling technology are
also described.

Current challenges for environment perception and model-
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ing technology are due to the complex outdoor environments
and the need of efficient methods for their perception in real
time. The changeable lighting and weather conditions, and the
complex backgrounds, especially the presence of occluding
objects still represent significant challenges to intelligent ve-
hicles. Furthermore, it is very important to recognize road in
the off-road environment.

As many algorithms have been proposed for environment
perception, it is necessary to establish more benchmarks
and performance evaluations on environment perception for
intelligent vehicles.

Since environment perception and modeling technology
stage is the link with the work of localization and map build-
ing, path planning and decision-making, and motion control,
the next step is to develop the entire system.
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